uc/lc consistency, typo and style fixes for Moose::Manual documents
[gitmo/Moose.git] / lib / Moose / Manual / Types.pod
1 =pod
2
3 =head1 NAME
4
5 Moose::Manual::Types - Moose's type system
6
7 =head1 TYPES IN PERL?
8
9 Moose provides its own type system for attributes. You can also use
10 these types to validate method parameters with the help of a MooseX
11 module.
12
13 Moose's type system is based on a combination of Perl 5's own
14 I<implicit> types and some Perl 6 concepts. You can easily create your
15 own subtypes with custom constraints, making it easy to express any
16 sort of validation.
17
18 Types have names, and you can re-use them by name, making it easy to
19 share types throughout a large application.
20
21 Let us be clear that is not a "real" type system. Moose does not
22 magically make Perl start associating types with variables. This is
23 just an advanced parameter checking system which allows you to
24 associate a name with a constraint.
25
26 That said, it's still pretty damn useful, and we think it's one of the
27 things that makes Moose both fun and powerful. Taking advantage of the
28 type system makes it much easier to ensure that you are getting valid
29 data, and it also contributes greatly to code maintainability.
30
31 =head1 THE TYPES
32
33 The basic Moose type hierarchy looks like this
34
35   Any
36   Item
37       Bool
38       Maybe[`a]
39       Undef
40       Defined
41           Value
42               Num
43                 Int
44               Str
45                 ClassName
46           Ref
47               ScalarRef
48               ArrayRef[`a]
49               HashRef[`a]
50               CodeRef
51               RegexpRef
52               GlobRef
53                 FileHandle
54               Object
55                 Role
56
57 In practice, the only difference between C<Any> and C<Item> is
58 conceptual. C<Item> is used as the top-level type in the hierarchy.
59
60 The rest of these types correspond to existing Perl concepts. For
61 example, a C<Num> is anything that Perl thinks looks like a number. An
62 C<Object> is a blessed reference, etc.
63
64 The types followed by "[`a]" can be parameterized. So instead of just
65 plain C<ArrayRef> we can say that we want C<ArrayRef[Int]> instead. We
66 can even do something like C<HashRef[ArrayRef[Str]]>.
67
68 The C<Maybe[`a]> type deserves a special mention. Used by itself, it
69 doesn't really mean anything (and is equivalent to C<Item>). When it
70 is parameterized, it means that the value is either C<undef> or the
71 parameterized type. So C<Maybe[Int]> means an integer or C<undef>
72
73 For more details on the type hierarchy, see
74 L<Moose::Util::TypeConstraints>.
75
76 =head1 WHAT IS A TYPE?
77
78 It's important to realize that types are not classes (or
79 packages). Types are just objects (L<Moose::Meta::TypeConstraint>
80 objects, to be exact) with a name and a constraint. Moose maintains a
81 global type registry that lets it convert names like "Num" into the
82 appropriate object.
83
84 However, class names I<can be> type names. When you define a new class
85 using Moose, it defines an associated type name behind the scenes:
86
87   package MyApp::User;
88
89   use Moose;
90
91 Now you can use C<'MyApp::User'> as a type name:
92
93   has creator => (
94       is  => 'rw',
95       isa => 'MyApp::User',
96   );
97
98 However, for non-Moose classes there's no magic. You may have to
99 explicitly declare the class type. This is a bit muddled because Moose
100 assumes that any unknown type name passed as the C<isa> value for an
101 attribute is a class. So this works:
102
103   has 'birth_date' => (
104       is  => 'rw',
105       isa => 'DateTime',
106   );
107
108 In general, when Moose is presented with an unknown name, it assumes
109 that the name is a class:
110
111   subtype 'ModernDateTime'
112       => as 'DateTime'
113       => where { $_->year() >= 1980 }
114       => message { 'The date you provided is not modern enough' };
115
116   has 'valid_dates' => (
117       is  => 'ro',
118       isa => 'ArrayRef[DateTime]',
119   );
120
121 Moose will assume that C<DateTime> is a class name in both of these
122 instances.
123
124 =head1 SUBTYPES
125
126 Moose uses subtypes in its built-in hierarchy. C<Int> is a child of
127 C<Num> for example.
128
129 A subtype is defined in terms of a parent type and a constraint. Any
130 constraints defined by the parent(s) will be checked first, and then
131 the the subtype's. A value must pass I<all> of these checks to be
132 valid for the subtype.
133
134 Typically, a subtype takes the parent's constraint and makes it more
135 specific.
136
137 A subtype can also define its own constraint failure message. This
138 lets you do things like have an error "The value you provided (20),
139 was not a valid rating, which must be a number from 1-10." This is
140 much friendlier than the default error, which just says that the value
141 failed a validation check for the type.
142
143 Here's a simple (and useful) subtype example:
144
145   subtype 'PositiveInt'
146       => as 'Int'
147       => where { $_ > 0 }
148       => message { "The number you provided, $_, was not a positive number" }
149
150 Note that the sugar functions for working with types are all exported
151 by L<Moose::Util::TypeConstraints>.
152
153 =head2 Creating a new type (that isn't a subtype)
154
155 You can also create new top-level types:
156
157   type 'FourCharacters' => where { defined $_ && length $_ == 4 };
158
159 In practice, this example is more or less the same as subtyping
160 C<Str>, except you have to check definedness yourself.
161
162 It's hard to find a case where you wouldn't want to subtype a very
163 broad type like C<Defined>, C<Ref> or C<Object>.
164
165 Defining a new top-level type is conceptually the same as subtyping
166 C<Item>.
167
168 =head1 TYPE NAMES
169
170 Type names are global throughout the current Perl
171 interpreter. Internally, Moose maps names to type objects via a
172 L<registry|Moose::Meta::TypeConstraint::Registry>.
173
174 If you have multiple apps or libraries all using Moose in the same
175 process, you could have problems with collisions. We recommend that
176 you prefix names with some sort of namespace indicator to prevent
177 these sorts of collisions.
178
179 For example, instead of calling a type "PositiveInt", call it
180 "MyApp.Type.PositiveInt".
181
182 Type names are just strings. We recommend that you I<do not> use "::"
183 as a separator in type names. This can be very confusing, because
184 class names are I<also> valid type names! Using something else, like a
185 period, makes it clear that "MyApp::User" is a class and
186 "MyApp.Type.PositiveInt" is a Moose type defined by your application.
187
188 The L<MooseX::Types> module lets you create bareword aliases to longer
189 names and also automatically namespaces all the types you define.
190
191 =head1 COERCION
192
193 One of the most powerful features of Moose's type system is its
194 coercions. A coercion is a way to convert from one type to another.
195
196   subtype 'ArrayRefOfInts'
197       => as 'ArrayRef[Int]';
198
199   coerce 'ArrayRefOfInts'
200       => from 'Int'
201       => via { [ $_ ] };
202
203 You'll note that we had to create a subtype rather than coercing
204 C<ArrayRef[Int]> directly. This is just a quirk of how Moose
205 works.
206
207 Coercions, like type names, are global. This is I<another> reason why
208 it is good to namespace your types. Moose will I<never> try to coerce
209 a value unless you explicitly ask for it. This is done by setting the
210 C<coerce> attribute parameter to a true value:
211
212   package Foo;
213
214   has 'sizes' => (
215       is     => 'rw',
216       isa    => 'ArrayRefOfInts',
217       coerce => 1,
218   );
219
220   Foo->new( sizes => 42 );
221
222 This code example will do the right thing, and the newly created
223 object will have C<[ 42 ]> as its C<sizes> attribute.
224
225 =head2 Deep coercion
226
227 Deep coercion is the coercion of type parameters for parameterized
228 types. Let's take these types as an example:
229
230   subtype 'HexNum'
231       => as 'Str'
232       => where { /[a-f0-9]/i };
233
234   coerce 'Int'
235       => from 'HexNum'
236       => via { hex $_ };
237
238   has 'sizes' => (
239       is     => 'rw',
240       isa    => 'ArrayRef[Int]',
241       coerce => 1,
242   );
243
244 If we try passing an array reference of hex numbers for the C<sizes>
245 attribute, Moose will not do any coercion.
246
247 However, you can define a set of subtypes to enable coercion between
248 two parameterized types.
249
250   subtype 'ArrayRefOfHexNums'
251       => as 'ArrayRef[HexNum]';
252
253   subtype 'ArrayRefOfInts'
254       => as 'ArrayRef[Int]';
255
256   coerce 'ArrayRefOfInts'
257       => from 'ArrayRefOfHexNums'
258       => via { [ map { hex } @{$_} ] };
259
260   Foo->new( sizes => [ 'a1', 'ff', '22' ] );
261
262 Now Moose will coerce the hex numbers to integers.
263
264 However, Moose does not attempt to chain coercions, so it will not
265 coerce a single hex number. To do that, we need to define a separate
266 coercion:
267
268   coerce 'ArrayRefOfInts'
269       => from 'HexNum'
270       => via { [ hex $_ ] };
271
272 Yes, this can all get verbose, but coercion is tricky magic, and we
273 think it's best to make it explicit.
274
275 =head1 TYPE UNIONS
276
277 Moose allows you to say that an attribute can be of two or more
278 disparate types. For example, we might allow an C<Object> or
279 C<FileHandle>:
280
281   has 'output' => (
282       is  => 'rw',
283       isa => 'Object | FileHandle',
284   );
285
286 Moose actually parses that string and recognizes that you are creating
287 a type union. The C<output> attribute will accept any sort of object,
288 as well as an unblessed file handle. It is up to you to do the right
289 thing for each of them in your code.
290
291 Whenever you use a type union, you should consider whether or not
292 coercion might be a better answer.
293
294 For our example above, we might want to be more specific, and insist
295 that output be an object with a C<print> method:
296
297   subtype 'CanPrint'
298       => as 'Object'
299       => where { $_->can('print') };
300
301 We can coerce file handles to an object that satisfies this condition
302 with a simple wrapper class:
303
304   package FHWrapper;
305
306   use Moose;
307
308   has 'handle' => (
309       is  => 'ro',
310       isa => 'FileHandle',
311   );
312
313   sub print {
314       my $self = shift;
315       my $fh   = $self->handle();
316
317       print $fh @_;
318   }
319
320 Now we can define a coercion from C<FileHandle> to our wrapper class:
321
322   coerce 'CanPrint'
323       => from 'FileHandle'
324       => via { FHWrapper->new( handle => $_ ) };
325
326   has 'output' => (
327       is     => 'rw',
328       isa    => 'CanPrint',
329       coerce => 1,
330   );
331
332 This pattern of using a coercion instead of a type union will help
333 make your class internals simpler.
334
335 =head1 TYPE CREATION HELPERS
336
337 The L<Moose::Util::TypeConstraints> module exports a number of helper
338 functions for creating specific kinds of types. These include
339 C<class_type>, C<role_type>, and C<maybe_type>. See the docs for
340 details.
341
342 One helper worth noting is C<enum>, which allows you to create a
343 subtype of C<Str> that only allows the specified values:
344
345   enum 'RGB' => qw( red green blue );
346
347 This creates a type named C<RGB>
348
349 =head1 ANONYMOUS TYPES
350
351 All of the type creation functions return a type object. This type
352 object can be used wherever you would use a type name, as a parent
353 type, or as the value for an attribute's C<isa> parameter:
354
355   has 'size' => (
356       is => 'rw',
357       isa => subtype 'Int' => where { $_ > 0 },
358   );
359
360 This is handy when you want to create a one-off type and don't want to
361 "pollute" the global namespace registry.
362
363 =head1 VALIDATING METHOD PARAMETERS
364
365 Moose does not provide any means of validating method
366 parameters. However, there are several MooseX extensions on CPAN which
367 let you do this.
368
369 The simplest and least sugary is L<MooseX::Params::Validate>. This
370 lets you validate a set of named parameters using Moose types:
371
372   use Moose;
373   use MooseX::Params::Validate;
374
375   sub foo {
376       my $self   = shift;
377       my %params = validated_hash(
378           \@_,
379           bar => { isa => 'Str', default => 'Moose' },
380       );
381       ...
382   }
383
384 L<MooseX::Params::Validate> also supports coercions.
385
386 There are several more powerful extensions that support method
387 parameter validation using Moose types, including
388 L<MooseX::Method::Signatures>, which gives you a full-blown C<method>
389 keyword.
390
391   method morning (Str $name) {
392       $self->say("Good morning ${name}!");
393   }
394
395 =head1 LOAD ORDER ISSUES
396
397 Because Moose types are defined at runtime, you may run into load
398 order problems. In particular, you may want to use a class's type
399 constraint before that type has been defined.
400
401 We have several recommendations for ameliorating this problem. First,
402 define I<all> of your custom types in one module,
403 C<MyApp::Types>. Second, load this module in all of your other
404 modules.
405
406 If you are still having load order problems, you can make use of the
407 C<find_type_constraint> function exported by
408 L<Moose::Util::TypeConstraints>:
409
410   class_type('MyApp::User')
411       unless find_type_constraint('MyApp::User') || ;
412
413 This sort of "find or create" logic is simple to write, and will let
414 you work around load order issues.
415
416 =head1 AUTHOR
417
418 Dave Rolsky E<lt>autarch@urth.orgE<gt>
419
420 =head1 COPYRIGHT AND LICENSE
421
422 Copyright 2009 by Infinity Interactive, Inc.
423
424 L<http://www.iinteractive.com>
425
426 This library is free software; you can redistribute it and/or modify
427 it under the same terms as Perl itself.
428
429 =cut