X-Git-Url: http://git.shadowcat.co.uk/gitweb/gitweb.cgi?p=scpubgit%2Fstemmatology.git;a=blobdiff_plain;f=lib%2FText%2FTradition%2FAnalysis.pm;h=1a3e7b19a5e14ba8b86b40869d6145719bfc53c5;hp=f4605ed8d230756ba067dc260b5a6dadc3097af2;hb=62a39b8f5d0ae86b26350664828069a2a44f5645;hpb=94a077d641e8c906d7131a059b009f335781337a diff --git a/lib/Text/Tradition/Analysis.pm b/lib/Text/Tradition/Analysis.pm index f4605ed..1a3e7b1 100644 --- a/lib/Text/Tradition/Analysis.pm +++ b/lib/Text/Tradition/Analysis.pm @@ -2,191 +2,1052 @@ package Text::Tradition::Analysis; use strict; use warnings; +use Benchmark; +use Encode qw/ encode_utf8 /; +use Exporter 'import'; +use Graph; +use JSON qw/ encode_json decode_json /; +use LWP::UserAgent; use Text::Tradition; use Text::Tradition::Stemma; +use TryCatch; -sub new { - my( $class, $args ) = @_; - my $self = {}; - bless( $self, $class ); - $self->{'data'} = []; - foreach my $t ( @{$args->{'traditions'}} ) { - $self->run_analysis( $t->{'file'}, $t->{'stemmadot'} ); +use vars qw/ @EXPORT_OK /; +@EXPORT_OK = qw/ run_analysis group_variants analyze_variant_location wit_stringify /; + +=head1 NAME + +Text::Tradition::Analysis - functions for stemma analysis of a tradition + +=head1 SYNOPSIS + + use Text::Tradition; + use Text::Tradition::Analysis qw/ run_analysis analyze_variant_location /; + my $t = Text::Tradition->new( + 'name' => 'this is a text', + 'input' => 'TEI', + 'file' => '/path/to/tei_parallel_seg_file.xml' ); + $t->add_stemma( 'dotfile' => $stemmafile ); + + my $variant_data = run_analysis( $tradition ); + # Recalculate rank $n treating all orthographic variants as equivalent + my $reanalyze = analyze_variant_location( $tradition, $n, 0, 'orthographic' ); + +=head1 DESCRIPTION + +Text::Tradition is a library for representation and analysis of collated +texts, particularly medieval ones. The Collation is the central feature of +a Tradition, where the text, its sequence of readings, and its relationships +between readings are actually kept. + +=head1 SUBROUTINES + +=head2 run_analysis( $tradition, %opts ) + +Runs the analysis described in analyze_variant_location on every location in the +collation of the given tradition, with the given options. These include: + +=over 4 + +=item * stemma_id - Specify which of the tradition's stemmata to use. Default +is 0 (i.e. the first). + +=item * ranks - Specify a list of location ranks to analyze; exclude the rest. + +=item * merge_types - Specify a list of relationship types, where related readings +should be treated as identical for the purposes of analysis. + +=item * exclude_type1 - Exclude those ranks whose groupings have only type-1 variants. + +=back + +=begin testing + +use Text::Tradition; +use Text::Tradition::Analysis qw/ run_analysis analyze_variant_location /; + +my $datafile = 't/data/florilegium_tei_ps.xml'; +my $tradition = Text::Tradition->new( 'input' => 'TEI', + 'name' => 'test0', + 'file' => $datafile ); +my $s = $tradition->add_stemma( 'dotfile' => 't/data/florilegium.dot' ); +is( ref( $s ), 'Text::Tradition::Stemma', "Added stemma to tradition" ); + +my %expected_genealogical = ( + 1 => 0, + 2 => 1, + 3 => 0, + 5 => 0, + 7 => 0, + 8 => 0, + 10 => 0, + 13 => 1, + 33 => 0, + 34 => 0, + 37 => 0, + 60 => 0, + 81 => 1, + 84 => 0, + 87 => 0, + 101 => 0, + 102 => 0, + 122 => 1, + 157 => 0, + 166 => 1, + 169 => 1, + 200 => 0, + 216 => 1, + 217 => 1, + 219 => 1, + 241 => 1, + 242 => 1, + 243 => 1, +); + +my $data = run_analysis( $tradition ); +my $c = $tradition->collation; +foreach my $row ( @{$data->{'variants'}} ) { + # Account for rows that used to be "not useful" + unless( exists $expected_genealogical{$row->{'id'}} ) { + $expected_genealogical{$row->{'id'}} = 1; + } + my $gen_bool = $row->{'genealogical'} ? 1 : 0; + is( $gen_bool, $expected_genealogical{$row->{'id'}}, + "Got correct genealogical flag for row " . $row->{'id'} ); + # Check that we have the right row with the right groups + my $rank = $row->{'id'}; + foreach my $rdghash ( @{$row->{'readings'}} ) { + # Skip 'readings' that aren't really + next unless $c->reading( $rdghash->{'readingid'} ); + # Check the rank + is( $c->reading( $rdghash->{'readingid'} )->rank, $rank, + "Got correct reading rank" ); + # Check the witnesses + my @realwits = sort $c->reading_witnesses( $rdghash->{'readingid'} ); + my @sgrp = sort @{$rdghash->{'group'}}; + is_deeply( \@sgrp, \@realwits, "Reading analyzed with correct groups" ); } - return $self; } +is( $data->{'variant_count'}, 58, "Got right total variant number" ); +# TODO Make something meaningful of conflict count, maybe test other bits + +=end testing + +=cut sub run_analysis { - my( $self, $file, $stemmadot ) = @_; - # What we will return - my $svg; - my $variants = []; - my $data = {}; - - # Read in the file and stemma - my $tradition = Text::Tradition->new( - 'input' => 'Self', - 'file' => $file, - 'linear' => 1, - ); - $data->{'title'} = $tradition->name; - - my $stemma = Text::Tradition::Stemma->new( - 'collation' => $tradition->collation, - 'dot' => $stemmadot, - ); - # We will return the stemma picture - $svg = $stemma->as_svg( { size => "8,7.5" } );; - $data->{'svg'} = $svg; - - # We have the collation, so get the alignment table with witnesses in rows. - # Also return the reading objects in the table, rather than just the words. - - my $all_wits_table = $tradition->collation->make_alignment_table( 'refs' ); - - # For each column in the alignment table, we want to see if the existing - # groupings of witnesses match our stemma hypothesis. We also want, at the - # end, to produce an HTML table with all the variants. - my $html_columns = 0; - my ( $total, $genealogical, $conflicts ) = ( 0, 0, 0 ); - - # Strip the list of sigla and save it for correlation to the readings. - my $col_wits = shift @$all_wits_table; + my( $tradition, %opts ) = @_; + my $c = $tradition->collation; + + my $stemma_id = $opts{'stemma_id'} || 0; + my @ranks = ref( $opts{'ranks'} ) eq 'ARRAY' ? @{$opts{'ranks'}} : (); + my @collapse = ref( $opts{'merge_types'} ) eq 'ARRAY' ? @{$opts{'merge_types'}} : (); + + # Get the stemma + my $stemma = $tradition->stemma( $stemma_id ); + + # Figure out which witnesses we are working with - that is, the ones that + # appear both in the stemma and in the tradition. All others are 'lacunose' + # for our purposes. + my @lacunose = $stemma->hypotheticals; + my @tradition_wits = map { $_->sigil } $tradition->witnesses; + push( @lacunose, _symmdiff( [ $stemma->witnesses ], \@tradition_wits ) ); + + # Find and mark 'common' ranks for exclusion, unless they were + # explicitly specified. + unless( @ranks ) { + my %common_rank; + foreach my $rdg ( $c->common_readings ) { + $common_rank{$rdg->rank} = 1; + } + @ranks = grep { !$common_rank{$_} } ( 1 .. $c->end->rank-1 ); + } - # We will return a data structure, an array for each row that looks like: - # { id = X, genealogical = Y, readings = [ text = X, group = Y], empty = N } - foreach my $i ( 0 .. $#$all_wits_table ) { - # For each column in the table, group the readings by witness. - my $rdg_wits = {}; - my $col_rdgs = shift @$all_wits_table; - my $rank; - my $lacunose = []; - foreach my $j ( 0 .. $#{$col_rdgs} ) { - my $rdg = $col_rdgs->[$j]; - my $rdg_text = '(omitted)'; # Initialize in case of empty reading + # Group the variants to send to the solver + my @groups; + my @use_ranks; + my %lacunae; + my $moved = {}; + foreach my $rank ( @ranks ) { + my $missing = [ @lacunose ]; + my $rankgroup = group_variants( $tradition, $rank, $missing, $moved, \@collapse ); + # Filter out any empty rankgroups + # (e.g. from the later rank for a transposition) + next unless keys %$rankgroup; + if( $opts{'exclude_type1'} ) { + # Check to see whether this is a "useful" group. + my( $rdgs, $grps ) = _useful_variant( $rankgroup, + $stemma->graph, $c->ac_label ); + next unless @$rdgs; + } + push( @use_ranks, $rank ); + push( @groups, $rankgroup ); + $lacunae{$rank} = $missing; + } + # Run the solver + my $answer = solve_variants( $stemma, @groups ); + + # Do further analysis on the answer + my $conflict_count = 0; + my $aclabel = $c->ac_label; + foreach my $idx ( 0 .. $#use_ranks ) { + my $location = $answer->{'variants'}->[$idx]; + # Add the rank back in + my $rank = $use_ranks[$idx]; + $location->{'id'} = $rank; + # Note what our lacunae are + my %lmiss; + map { $lmiss{$_} = 1 } @{$lacunae{$use_ranks[$idx]}}; + $location->{'missing'} = [ keys %lmiss ]; + + # Run the extra analysis we need. + analyze_location( $tradition, $stemma, $location, \%lmiss ); + + my @layerwits; + # Do the final post-analysis tidying up of the data. + foreach my $rdghash ( @{$location->{'readings'}} ) { + $conflict_count++ + if exists $rdghash->{'conflict'} && $rdghash->{'conflict'}; + # Add the reading text back in, setting display value as needed + my $rdg = $c->reading( $rdghash->{'readingid'} ); if( $rdg ) { - if( $rdg->is_lacuna ) { - $rdg_text = undef; # Don't count lacunae - push( @$lacunose, $col_wits->[$j] ); - } else { - $rdg_text = $rdg->text; - # Get the rank from any real reading; they should be identical. - $rank = $rdg->rank; + $rdghash->{'text'} = $rdg->text . + ( $rdg->rank == $rank ? '' : ' [' . $rdg->rank . ']' ); + } + # Remove lacunose witnesses from this reading's list now that the + # analysis is done + my @realgroup; + map { push( @realgroup, $_ ) unless $lmiss{$_} } @{$rdghash->{'group'}}; + $rdghash->{'group'} = \@realgroup; + # Note any layered witnesses that appear in this group + foreach( @realgroup ) { + if( $_ =~ /^(.*)\Q$aclabel\E$/ ) { + push( @layerwits, $1 ); } } - if( defined $rdg_text ) { - # Initialize the witness array if we haven't got one yet - $rdg_wits->{$rdg_text} = [] unless $rdg_wits->{$rdg_text}; - # Add the relevant witness, subject to a.c. logic - add_variant_wit( $rdg_wits->{$rdg_text}, $col_wits->[$j], - $tradition->collation->ac_label ); + } + $location->{'layerwits'} = \@layerwits if @layerwits; + } + $answer->{'conflict_count'} = $conflict_count; + + return $answer; +} + +=head2 group_variants( $tradition, $rank, $lacunose, @merge_relationship_types ) + +Groups the variants at the given $rank of the collation, treating any +relationships in @merge_relationship_types as equivalent. $lacunose should +be a reference to an array, to which the sigla of lacunose witnesses at this +rank will be appended; $transposed should be a reference to a hash, wherein +the identities of transposed readings and their relatives will be stored. + +Returns a hash $group_readings where $rdg is attested by the witnesses listed +in $group_readings->{$rdg}. + +=cut + +# Return group_readings, groups, lacunose +sub group_variants { + my( $tradition, $rank, $lacunose, $transposed, $collapse ) = @_; + my $c = $tradition->collation; + my $aclabel = $c->ac_label; + my $table = $c->alignment_table; + # Get the alignment table readings + my %readings_at_rank; + my %is_lacunose; # lookup table for witnesses not in stemma + map { $is_lacunose{$_} = 1; $is_lacunose{$_.$aclabel} = 1 } @$lacunose; + my @check_for_gaps; + my %moved_wits; + my $has_transposition; + foreach my $tablewit ( @{$table->{'alignment'}} ) { + my $rdg = $tablewit->{'tokens'}->[$rank-1]; + my $wit = $tablewit->{'witness'}; + # Exclude the witness if it is "lacunose" which if we got here + # means "not in the stemma". + next if $is_lacunose{$wit}; + # Note if the witness is actually in a lacuna + if( $rdg && $rdg->{'t'}->is_lacuna ) { + _add_to_witlist( $wit, $lacunose, $aclabel ); + # Otherwise the witness either has a positive reading... + } elsif( $rdg ) { + # If the reading has been counted elsewhere as a transposition, ignore it. + if( $transposed->{$rdg->{'t'}->id} ) { + # TODO Does this cope with three-way transpositions? + map { $moved_wits{$_} = 1 } @{$transposed->{$rdg->{'t'}->id}}; + next; + } + # Otherwise, record it... + $readings_at_rank{$rdg->{'t'}->id} = $rdg->{'t'}; + # ...and grab any transpositions, and their relations. + my @transp = grep { $_->rank != $rank } $rdg->{'t'}->related_readings(); + foreach my $trdg ( @transp ) { + next if exists $readings_at_rank{$trdg->id}; + $has_transposition = 1; + my @affected_wits = _table_witnesses( + $table, $trdg, \%is_lacunose, $aclabel ); + next unless @affected_wits; + map { $moved_wits{$_} = 1 } @affected_wits; + $transposed->{$trdg->id} = + [ _table_witnesses( $table, $rdg->{'t'}, \%is_lacunose, $aclabel ) ]; + $readings_at_rank{$trdg->id} = $trdg; } + # ...or it is empty, ergo a gap. + } else { + _add_to_witlist( $wit, \@check_for_gaps, $aclabel ); } + } + my @gap_wits; + map { _add_to_witlist( $_, \@gap_wits, $aclabel ) + unless $moved_wits{$_} } @check_for_gaps; + # Group the readings, collapsing groups by relationship if needed + my $grouped_readings = {}; + foreach my $rdg ( values %readings_at_rank ) { + # Skip readings that have been collapsed into others. + next if exists $grouped_readings->{$rdg->id} + && $grouped_readings->{$rdg->id} eq 'COLLAPSE'; + # Get the witness list, including from readings collapsed into this one. + my @wits = _table_witnesses( $table, $rdg, \%is_lacunose, $aclabel ); + if( $collapse && @$collapse ) { + my $filter = sub { my $r = $_[0]; grep { $_ eq $r->type } @$collapse; }; + foreach my $other ( $rdg->related_readings( $filter ) ) { + my @otherwits = _table_witnesses( + $table, $other, \%is_lacunose, $aclabel ); + push( @wits, @otherwits ); + $grouped_readings->{$other->id} = 'COLLAPSE'; + } + } + $grouped_readings->{$rdg->id} = \@wits; + } + $grouped_readings->{'(omitted)'} = \@gap_wits if @gap_wits; + # Get rid of our collapsed readings + map { delete $grouped_readings->{$_} if $grouped_readings->{$_} eq 'COLLAPSE' } + keys %$grouped_readings + if $collapse; - # See if this column has any potentially genealogical variants. - # If not, skip to the next. - $total++ unless scalar keys %$rdg_wits == 1; - my( $groups, $readings ) = useful_variant( $rdg_wits ); - next unless $groups && $readings; + # If something was transposed, check the groups for doubled-up readings + if( $has_transposition ) { + # print STDERR "Group for rank $rank:\n"; + # map { print STDERR "\t$_: " . join( ' ' , @{$grouped_readings->{$_}} ) . "\n" } + # keys %$grouped_readings; + _check_transposed_consistency( $c, $rank, $transposed, $grouped_readings ); + } + + # Return the result + return $grouped_readings; +} + +# Helper function to query the alignment table for all witnesses (a.c. included) +# that have a given reading at its rank. +sub _table_witnesses { + my( $table, $trdg, $lacunose, $aclabel ) = @_; + my $tableidx = $trdg->rank - 1; + my @has_reading; + foreach my $row ( @{$table->{'alignment'}} ) { + my $wit = $row->{'witness'}; + next if $lacunose->{$wit}; + my $rdg = $row->{'tokens'}->[$tableidx]; + next unless exists $rdg->{'t'} && defined $rdg->{'t'}; + _add_to_witlist( $wit, \@has_reading, $aclabel ) + if $rdg->{'t'}->id eq $trdg->id; + } + return @has_reading; +} + +# Helper function to ensure that X and X a.c. never appear in the same list. +sub _add_to_witlist { + my( $wit, $list, $acstr ) = @_; + my %inlist; + my $idx = 0; + map { $inlist{$_} = $idx++ } @$list; + if( $wit =~ /^(.*)\Q$acstr\E$/ ) { + my $acwit = $1; + unless( exists $inlist{$acwit} ) { + push( @$list, $acwit.$acstr ); + } + } else { + if( exists( $inlist{$wit.$acstr} ) ) { + # Replace the a.c. version with the main witness + my $i = $inlist{$wit.$acstr}; + $list->[$i] = $wit; + } else { + push( @$list, $wit ); + } + } +} + +sub _check_transposed_consistency { + my( $c, $rank, $transposed, $groupings ) = @_; + my %seen_wits; + my %thisrank; + # Note which readings are actually at this rank, and which witnesses + # belong to which reading. + foreach my $rdg ( keys %$groupings ) { + my $rdgobj = $c->reading( $rdg ); + # Count '(omitted)' as a reading at this rank + $thisrank{$rdg} = 1 if !$rdgobj || $rdgobj->rank == $rank; + map { push( @{$seen_wits{$_}}, $rdg ) } @{$groupings->{$rdg}}; + } + # Our work is done if we have no witness belonging to more than one + # reading. + my @doubled = grep { scalar @{$seen_wits{$_}} > 1 } keys %seen_wits; + return unless @doubled; + # If we have a symmetric related transposition, drop the non-rank readings. + if( @doubled == scalar keys %seen_wits ) { + foreach my $rdg ( keys %$groupings ) { + if( !$thisrank{$rdg} ) { + my $groupstr = wit_stringify( $groupings->{$rdg} ); + my ( $matched ) = grep { $groupstr eq wit_stringify( $groupings->{$_} ) } + keys %thisrank; + delete $groupings->{$rdg}; + # If we found a group match, assume there is a symmetry happening. + # TODO think more about this + # print STDERR "*** Deleting symmetric reading $rdg\n"; + unless( $matched ) { + delete $transposed->{$rdg}; + warn "Found problem in evident symmetry with reading $rdg"; + } + } + } + # Otherwise 'unhook' the transposed reading(s) that have duplicates. + } else { + foreach my $dup ( @doubled ) { + foreach my $rdg ( @{$seen_wits{$dup}} ) { + next if $thisrank{$rdg}; + next unless exists $groupings->{$rdg}; + # print STDERR "*** Deleting asymmetric doubled-up reading $rdg\n"; + delete $groupings->{$rdg}; + delete $transposed->{$rdg}; + } + } + # and put any now-orphaned readings into an 'omitted' reading. + foreach my $wit ( keys %seen_wits ) { + unless( grep { exists $groupings->{$_} } @{$seen_wits{$wit}} ) { + $groupings->{'(omitted)'} = [] unless exists $groupings->{'(omitted)'}; + _add_to_witlist( $wit, $groupings->{'(omitted)'}, $c->ac_label ); + } + } + } +} + +=head2 solve_variants( $graph, @groups ) + +Sends the set of groups to the external graph solver service and returns +a cleaned-up answer, adding the rank IDs back where they belong. + +The JSON has the form + { "graph": [ stemmagraph DOT string without newlines ], + "groupings": [ array of arrays of groups, one per rank ] } + +The answer has the form + { "variants" => [ array of variant location structures ], + "variant_count" => total, + "conflict_count" => number of conflicts detected, + "genealogical_count" => number of solutions found } + +=cut + +sub solve_variants { + my( $stemma, @groups ) = @_; + my $aclabel = $stemma->collation->ac_label; + + # Filter the groups down to distinct groups, and work out what graph + # should be used in the calculation of each group. We want to send each + # distinct problem to the solver only once. + # We need a whole bunch of lookup tables for this. + my $index_groupkeys = {}; # Save the order of readings + my $group_indices = {}; # Save the indices that have a given grouping + my $graph_problems = {}; # Save the groupings for the given graph + + foreach my $idx ( 0..$#groups ) { + my $ghash = $groups[$idx]; + my @grouping; + # Sort the groupings from big to little, and scan for a.c. witnesses + # that would need an extended graph. + my @acwits; # note which AC witnesses crop up at this rank + my @idxkeys = sort { scalar @{$ghash->{$b}} <=> scalar @{$ghash->{$a}} } + keys %$ghash; + foreach my $rdg ( @idxkeys ) { + my @sg = sort @{$ghash->{$rdg}}; + push( @acwits, grep { $_ =~ /\Q$aclabel\E$/ } @sg ); + push( @grouping, \@sg ); + } + # Save the reading order + $index_groupkeys->{$idx} = \@idxkeys; - # Keep track of our widest row - $html_columns = scalar @$groups if scalar @$groups > $html_columns; + # Now associate the distinct group with this index + my $gstr = wit_stringify( \@grouping ); + push( @{$group_indices->{$gstr}}, $idx ); - # We can already look up witnesses for a reading; we also want to look - # up readings for a given witness. - my $group_readings = {}; - foreach my $x ( 0 .. $#$groups ) { - $group_readings->{wit_stringify( $groups->[$x] )} = $readings->[$x]; + # Finally, add the group to the list to be calculated for this graph. + map { s/\Q$aclabel\E$// } @acwits; + my $graph; + try { + $graph = $stemma->extend_graph( \@acwits ); + } catch { + die "Unable to extend graph with @acwits"; + } + unless( exists $graph_problems->{"$graph"} ) { + $graph_problems->{"$graph"} = { 'object' => $graph, 'groups' => [] }; } + push( @{$graph_problems->{"$graph"}->{'groups'}}, \@grouping ); + } + + ## For each distinct graph, send its groups to the solver. + my $solver_url = 'http://byzantini.st/cgi-bin/graphcalc.cgi'; + my $ua = LWP::UserAgent->new(); + ## Witness map is a HACK to get around limitations in node names from IDP + my $witness_map = {}; + ## Variables to store answers as they come back + my $variants = [ ( undef ) x ( scalar keys %$index_groupkeys ) ]; + my $genealogical = 0; + foreach my $graphkey ( keys %$graph_problems ) { + my $graph = $graph_problems->{$graphkey}->{'object'}; + my $groupings = $graph_problems->{$graphkey}->{'groups'}; + my $json = encode_json( _safe_wit_strings( $graph, $stemma->collation, + $groupings, $witness_map ) ); + # Send it off and get the result + #print STDERR "Sending request: $json\n"; + my $resp = $ua->post( $solver_url, 'Content-Type' => 'application/json', + 'Content' => $json ); + my $answer; + my $used_idp; + if( $resp->is_success ) { + $answer = _desanitize_names( decode_json( $resp->content ), $witness_map ); + $used_idp = 1; + } else { + # Fall back to the old method. + warn "IDP solver returned " . $resp->status_line . " / " . $resp->content + . "; falling back to perl method"; + $answer = perl_solver( $graph, @$groupings ); + } + ## The answer is the evaluated groupings, plus a boolean for whether + ## they were genealogical. Reconstruct our original groups. + foreach my $gidx ( 0 .. $#{$groupings} ) { + my( $calc_groups, $result ) = @{$answer->[$gidx]}; + if( $result ) { + $genealogical++; + # Prune the calculated groups, in case the IDP solver failed to. + if( $used_idp ) { + my @pruned_groups; + foreach my $cg ( @$calc_groups ) { + # This is a little wasteful but the path of least + # resistance. Send both the stemma, which knows what + # its hypotheticals are, and the actual graph used. + my @pg = _prune_group( $cg, $stemma, $graph ); + push( @pruned_groups, \@pg ); + } + $calc_groups = \@pruned_groups; + } + } + # Retrieve the key for the original group that went to the solver + my $input_group = wit_stringify( $groupings->[$gidx] ); + foreach my $oidx ( @{$group_indices->{$input_group}} ) { + my @readings = @{$index_groupkeys->{$oidx}}; + my $vstruct = { + 'genealogical' => $result, + 'readings' => [], + }; + foreach my $ridx ( 0 .. $#readings ) { + push( @{$vstruct->{'readings'}}, + { 'readingid' => $readings[$ridx], + 'group' => $calc_groups->[$ridx] } ); + } + $variants->[$oidx] = $vstruct; + } + } + } + + return { 'variants' => $variants, + 'variant_count' => scalar @$variants, + 'genealogical_count' => $genealogical }; +} + +#### HACKERY to cope with IDP's limited idea of what a node name looks like ### + +sub _safe_wit_strings { + my( $graph, $c, $groupings, $witness_map ) = @_; + # Parse the graph we were given into a stemma. + my $safegraph = Graph->new(); + # Convert the graph to a safe representation and store the conversion. + foreach my $n ( $graph->vertices ) { + my $sn = _safe_witstr( $n ); + if( exists $witness_map->{$sn} ) { + warn "Ambiguous stringification $sn for $n and " . $witness_map->{$sn} + if $witness_map->{$sn} ne $n; + } else { + $witness_map->{$sn} = $n; + } + $safegraph->add_vertex( $sn ); + $safegraph->set_vertex_attributes( $sn, + $graph->get_vertex_attributes( $n ) ); + } + foreach my $e ( $graph->edges ) { + my @safe_e = ( _safe_witstr( $e->[0] ), _safe_witstr( $e->[1] ) ); + $safegraph->add_edge( @safe_e ); + } + my $safe_stemma = Text::Tradition::Stemma->new( + 'collation' => $c, 'graph' => $safegraph ); - # For all the groups with more than one member, collect the list of all - # contiguous vertices needed to connect them. - # TODO: deal with a.c. reading logic - $DB::single = 1 if $rank == 25; - my $variant_row = analyze_variant_location( $group_readings, $groups, - $stemma->apsp, $lacunose ); - $variant_row->{'id'} = $rank; - $genealogical++ if $variant_row->{'genealogical'}; - $conflicts += grep { $_->{'conflict'} } @{$variant_row->{'readings'}}; - - # Now run the same analysis given the calculated distance tree(s). -# my @trees = @{$stemma->distance_trees}; -# if( @trees ) { -# foreach my $tree ( 0 .. $#trees ) { -# my $dc = analyze_variant_location( $group_readings, $groups, -# $stemma->distance_apsps->[$tree] ); -# foreach my $rdg ( keys %$dc ) { -# my $var = $dc->{$rdg}; -# # TODO Do something with this -# } -# } -# } - - # Record that we used this variant in an analysis - push( @$variants, $variant_row ); + # Now convert the witness groupings to a safe representation. + my $safe_groupings = []; + foreach my $grouping ( @$groupings ) { + my $safe_grouping = []; + foreach my $group ( @$grouping ) { + my $safe_group = []; + foreach my $n ( @$group ) { + my $sn = _safe_witstr( $n ); + warn "Ambiguous stringification $sn for $n and " . $witness_map->{$sn} + if exists $witness_map->{$sn} && $witness_map->{$sn} ne $n; + $witness_map->{$sn} = $n; + push( @$safe_group, $sn ); + } + push( @$safe_grouping, $safe_group ); + } + push( @$safe_groupings, $safe_grouping ); } - # Go through our variant rows, after we have seen all of them once, - # and add the number of empty columns needed by each. - foreach my $row ( @$variants ) { - my $empty = $html_columns - scalar @{$row->{'readings'}}; - $row->{'empty'} = $empty; + # Return it all in the struct we expect. We have stored the reductions + # in the $witness_map that we were passed. + return { 'graph' => $safe_stemma->editable( { 'linesep' => ' ' } ), + 'groupings' => $safe_groupings }; +} + +sub _safe_witstr { + my $witstr = shift; + $witstr =~ s/\s+/_/g; + $witstr =~ s/[^\w\d-]//g; + return $witstr; +} + +sub _desanitize_names { + my( $jsonstruct, $witness_map ) = @_; + my $result = []; + foreach my $grouping ( @$jsonstruct ) { + my $real_grouping = []; + foreach my $element ( @$grouping ) { + if( ref( $element ) eq 'ARRAY' ) { + # it's the groupset. + my $real_groupset = []; + foreach my $group ( @$element ) { + my $real_group = []; + foreach my $n ( @$group ) { + my $rn = $witness_map->{$n}; + push( @$real_group, $rn ); + } + push( @$real_groupset, $real_group ); + } + push( @$real_grouping, $real_groupset ); + } else { + # It is the boolean, not actually a group. + push( @$real_grouping, $element ); + } + } + push( @$result, $real_grouping ); + } + return $result; +} + +### END HACKERY ### + +=head2 analyze_location ( $tradition, $graph, $location_hash ) + +Given the tradition, its stemma graph, and the solution from the graph solver, +work out the rest of the information we want. For each reading we need missing, +conflict, reading_parents, independent_occurrence, followed, not_followed, and follow_unknown. Alters the location_hash in place. + +=cut + +sub analyze_location { + my ( $tradition, $stemma, $variant_row, $lacunose ) = @_; + my $c = $tradition->collation; + + # Make a hash of all known node memberships, and make the subgraphs. + my $contig = {}; + my $reading_roots = {}; + my $subgraph = {}; + my $acstr = $c->ac_label; + my @acwits; + $DB::single = 1 if $variant_row->{id} == 87; + # Note which witnesses positively belong to which group + foreach my $rdghash ( @{$variant_row->{'readings'}} ) { + my $rid = $rdghash->{'readingid'}; + foreach my $wit ( @{$rdghash->{'group'}} ) { + $contig->{$wit} = $rid; + if( $wit =~ /^(.*)\Q$acstr\E$/ ) { + push( @acwits, $1 ); + } + } + } + + # Get the actual graph we should work with + my $graph; + try { + $graph = @acwits ? $stemma->extend_graph( \@acwits ) : $stemma->graph; + } catch { + die "Could not extend graph with a.c. witnesses @acwits"; } - # Populate self with our analysis data. - $data->{'variants'} = $variants; - $data->{'variant_count'} = $total; - $data->{'conflict_count'} = $conflicts; - $data->{'genealogical_count'} = $genealogical; - push( @{$self->{'data'}}, $data ); + # Now, armed with that knowledge, make a subgraph for each reading + # and note the root(s) of each subgraph. + foreach my $rdghash( @{$variant_row->{'readings'}} ) { + my $rid = $rdghash->{'readingid'}; + my %rdgwits; + # Make the subgraph. + my $part = $graph->copy; + my @todelete = grep { exists $contig->{$_} && $contig->{$_} ne $rid } + keys %$contig; + $part->delete_vertices( @todelete ); + _prune_subtree( $part, $lacunose ); + $subgraph->{$rid} = $part; + # Record the remaining lacunose nodes as part of this group, if + # we are dealing with a non-genealogical reading. + unless( $variant_row->{'genealogical'} ) { + map { $contig->{$_} = $rid } $part->vertices; + } + # Get the reading roots. + map { $reading_roots->{$_} = $rid } $part->predecessorless_vertices; + } + + # Now that we have all the node group memberships, calculate followed/ + # non-followed/unknown values for each reading. Also figure out the + # reading's evident parent(s). + foreach my $rdghash ( @{$variant_row->{'readings'}} ) { + my $rid = $rdghash->{'readingid'}; + # Get the subgraph + my $part = $subgraph->{$rid}; + + # Start figuring things out. + my @roots = grep { $reading_roots->{$_} eq $rid } keys %$reading_roots; + $rdghash->{'independent_occurrence'} = \@roots; + $rdghash->{'followed'} = scalar( $part->vertices ) - scalar( @roots ); + # Find the parent readings, if any, of this reading. + my $rdgparents = {}; + foreach my $wit ( @roots ) { + # Look in the main stemma to find this witness's extant or known-reading + # immediate ancestor(s), and look up the reading that each ancestor olds. + my @check = $graph->predecessors( $wit ); + while( @check ) { + my @next; + foreach my $wparent( @check ) { + my $preading = $contig->{$wparent}; + if( $preading ) { + $rdgparents->{$preading} = 1; + } else { + push( @next, $graph->predecessors( $wparent ) ); + } + } + @check = @next; + } + } + foreach my $p ( keys %$rdgparents ) { + # Resolve the relationship of the parent to the reading, and + # save it in our hash. + my $pobj = $c->reading( $p ); + my $relation; + my $prep = $pobj ? $pobj->id . ' (' . $pobj->text . ')' : $p; + if( $pobj ) { + my $rel = $c->get_relationship( $p, $rdghash->{readingid} ); + if( $rel ) { + $relation = { type => $rel->type }; + if( $rel->has_annotation ) { + $relation->{'annotation'} = $rel->annotation; + } + } + } + $rdgparents->{$p} = { 'label' => $prep, 'relation' => $relation }; + } + + $rdghash->{'reading_parents'} = $rdgparents; + + # Find the number of times this reading was altered, and the number of + # times we're not sure. + my( %nofollow, %unknownfollow ); + foreach my $wit ( $part->vertices ) { + foreach my $wchild ( $graph->successors( $wit ) ) { + next if $part->has_vertex( $wchild ); + if( $reading_roots->{$wchild} && $contig->{$wchild} ) { + # It definitely changed here. + $nofollow{$wchild} = 1; + } elsif( !($contig->{$wchild}) ) { + # The child is a hypothetical node not definitely in + # any group. Answer is unknown. + $unknownfollow{$wchild} = 1; + } # else it's a non-root node in a known group, and therefore + # is presumed to have its reading from its group, not this link. + } + } + $rdghash->{'not_followed'} = keys %nofollow; + $rdghash->{'follow_unknown'} = keys %unknownfollow; + + # Now say whether this reading represents a conflict. + unless( $variant_row->{'genealogical'} ) { + $rdghash->{'conflict'} = @roots != 1; + } + } } -# variant_row -> genealogical -# -> readings [ { text, group, conflict, missing } ] -sub analyze_variant_location { - my( $group_readings, $groups, $apsp, $lacunose ) = @_; - my %contig; +=head2 perl_solver( $tradition, $rank, $stemma_id, @merge_relationship_types ) + +** NOTE ** This method should hopefully not be called - it is not guaranteed +to be correct. Serves as a backup for the real solver. + +Runs an analysis of the given tradition, at the location given in $rank, +against the graph of the stemma specified in $stemma_id. The argument +@merge_relationship_types is an optional list of relationship types for +which readings so related should be treated as equivalent. + +Returns a nested array data structure as follows: + + [ [ group_list, is_genealogical ], [ group_list, is_genealogical ] ... ] + +where the group list is the array of arrays passed in for each element of @groups, +possibly with the addition of hypothetical readings. + + +=cut + +sub perl_solver { + my( $graph, @groups ) = @_; + my @answer; + foreach my $g ( @groups ) { + push( @answer, _solve_variant_location( $graph, $g ) ); + } + return \@answer; +} + +sub _solve_variant_location { + my( $graph, $groups ) = @_; + # Now do the work. + my $contig = {}; + my $subgraph = {}; + my $is_conflicted; my $conflict = {}; - my %missing; - map { $missing{$_} = 1 } @$lacunose; - my $variant_row = { 'readings' => [] }; + # Mark each ms as in its own group, first. foreach my $g ( @$groups ) { my $gst = wit_stringify( $g ); - map { $contig{$_} = $gst } @$g; + map { $contig->{$_} = $gst } @$g; } + + # Now for each unmarked node in the graph, initialize an array + # for possible group memberships. We will use this later to + # resolve potential conflicts. + map { $contig->{$_} = [] unless $contig->{$_} } $graph->vertices; foreach my $g ( sort { scalar @$b <=> scalar @$a } @$groups ) { - my @members = @$g; - my $gst = wit_stringify( $g ); # $gst is now the name of this group. - while( @members ) { - # Gather the list of vertices that are needed to join all members. - my $curr = pop @members; - foreach my $m ( @members ) { - foreach my $v ( $apsp->path_vertices( $curr, $m ) ) { - $contig{$v} = $gst unless exists $contig{$v}; - next if $contig{$v} eq $gst; - # Record what is conflicting. TODO do we use this? - $conflict->{$group_readings->{$gst}} = $group_readings->{$contig{$v}}; - } - } + my $gst = wit_stringify( $g ); # This is the group name + # Copy the graph, and delete all non-members from the new graph. + my $part = $graph->copy; + my @group_roots; + $part->delete_vertices( + grep { !ref( $contig->{$_} ) && $contig->{$_} ne $gst } $graph->vertices ); + + # Now look to see if our group is connected. + if( @$g > 1 ) { + # We have to take directionality into account. + # How many root nodes do we have? + my @roots = grep { ref( $contig->{$_} ) || $contig->{$_} eq $gst } + $part->predecessorless_vertices; + # Assuming that @$g > 1, find the first root node that has at + # least one successor belonging to our group. If this reading + # is genealogical, there should be only one, but we will check + # that implicitly later. + foreach my $root ( @roots ) { + # Prune the tree to get rid of extraneous hypotheticals. + $root = _prune_subtree_old( $part, $root, $contig ); + next unless $root; + # Save this root for our group. + push( @group_roots, $root ); + # Get all the successor nodes of our root. + } + } else { + # Dispense with the trivial case of one reading. + my $wit = $g->[0]; + @group_roots = ( $wit ); + foreach my $v ( $part->vertices ) { + $part->delete_vertex( $v ) unless $v eq $wit; + } } - # Write the reading. - my $reading = { 'text' => $group_readings->{$gst}, - 'missing' => wit_stringify( $lacunose ), - 'conflict' => exists( $conflict->{$group_readings->{$gst}} ) }; - if( $reading->{'conflict'} ) { - $reading->{'group'} = $gst; - } else { - my @all_vertices = grep { $contig{$_} eq $gst && !$missing{$_} } keys %contig; - $reading->{'group'} = wit_stringify( \@all_vertices ); + + if( @group_roots > 1 ) { + $conflict->{$gst} = 1; + $is_conflicted = 1; } - push( @{$variant_row->{'readings'}}, $reading ); + # Paint the 'hypotheticals' with our group. + foreach my $wit ( $part->vertices ) { + if( ref( $contig->{$wit} ) ) { + push( @{$contig->{$wit}}, $gst ); + } elsif( $contig->{$wit} ne $gst ) { + warn "How did we get here?"; + } + } + + + # Save the relevant subgraph. + $subgraph->{$gst} = $part; + } + + # For each of our hypothetical readings, flatten its 'contig' array if + # the array contains zero or one group. If we have any unflattened arrays, + # we may need to run the resolution process. If the reading is already known + # to have a conflict, flatten the 'contig' array to nothing; we won't resolve + # it. + my @resolve; + foreach my $wit ( keys %$contig ) { + next unless ref( $contig->{$wit} ); + if( @{$contig->{$wit}} > 1 ) { + if( $is_conflicted ) { + $contig->{$wit} = ''; # We aren't going to decide. + } else { + push( @resolve, $wit ); + } + } else { + my $gst = pop @{$contig->{$wit}}; + $contig->{$wit} = $gst || ''; + } + } + + if( @resolve ) { + my $still_contig = {}; + foreach my $h ( @resolve ) { + # For each of the hypothetical readings with more than one possibility, + # try deleting it from each of its member subgraphs in turn, and see + # if that breaks the contiguous grouping. + # TODO This can still break in a corner case where group A can use + # either vertex 1 or 2, and group B can use either vertex 2 or 1. + # Revisit this if necessary; it could get brute-force nasty. + foreach my $gst ( @{$contig->{$h}} ) { + my $gpart = $subgraph->{$gst}->copy(); + # If we have come this far, there is only one root and everything + # is reachable from it. + my( $root ) = $gpart->predecessorless_vertices; + my $reachable = {}; + map { $reachable->{$_} = 1 } $gpart->vertices; + + # Try deleting the hypothetical node. + $gpart->delete_vertex( $h ); + if( $h eq $root ) { + # See if we still have a single root. + my @roots = $gpart->predecessorless_vertices; + warn "This shouldn't have happened" unless @roots; + if( @roots > 1 ) { + # $h is needed by this group. + if( exists( $still_contig->{$h} ) ) { + # Conflict! + $conflict->{$gst} = 1; + $still_contig->{$h} = ''; + } else { + $still_contig->{$h} = $gst; + } + } + } else { + # $h is somewhere in the middle. See if everything + # else can still be reached from the root. + my %still_reachable = ( $root => 1 ); + map { $still_reachable{$_} = 1 } + $gpart->all_successors( $root ); + foreach my $v ( keys %$reachable ) { + next if $v eq $h; + if( !$still_reachable{$v} + && ( $contig->{$v} eq $gst + || ( exists $still_contig->{$v} + && $still_contig->{$v} eq $gst ) ) ) { + # We need $h. + if( exists $still_contig->{$h} ) { + # Conflict! + $conflict->{$gst} = 1; + $still_contig->{$h} = ''; + } else { + $still_contig->{$h} = $gst; + } + last; + } # else we don't need $h in this group. + } # end foreach $v + } # endif $h eq $root + } # end foreach $gst + } # end foreach $h + + # Now we have some hypothetical vertices in $still_contig that are the + # "real" group memberships. Replace these in $contig. + foreach my $v ( keys %$contig ) { + next unless ref $contig->{$v}; + $contig->{$v} = $still_contig->{$v}; + } + } # end if @resolve + + my $is_genealogical = keys %$conflict ? JSON::false : JSON::true; + my $variant_row = [ [], $is_genealogical ]; + # Fill in the groupings from $contig. + foreach my $g ( @$groups ) { + my $gst = wit_stringify( $g ); + my @realgroup = grep { $contig->{$_} eq $gst } keys %$contig; + push( @{$variant_row->[0]}, \@realgroup ); } - $variant_row->{'genealogical'} = keys %$conflict ? undef : 1; return $variant_row; } +sub _prune_group { + my( $group, $stemma, $graph ) = @_; + my $lacunose = {}; + map { $lacunose->{$_} = 1 } $stemma->hypotheticals; + map { $lacunose->{$_} = 0 } @$group; + # Make our subgraph + my $subgraph = $graph->copy; + map { $subgraph->delete_vertex( $_ ) unless exists $lacunose->{$_} } + $subgraph->vertices; + # ...and find the root. + # Now prune and return the remaining vertices. + _prune_subtree( $subgraph, $lacunose ); + return $subgraph->vertices; +} + +sub _prune_subtree { + my( $tree, $lacunose ) = @_; + + # Delete lacunose witnesses that have no successors + my @orphan_hypotheticals; + my $ctr = 0; + do { + die "Infinite loop on leaves" if $ctr > 100; + @orphan_hypotheticals = grep { $lacunose->{$_} } + $tree->successorless_vertices; + $tree->delete_vertices( @orphan_hypotheticals ); + $ctr++; + } while( @orphan_hypotheticals ); + + # Delete lacunose roots that have a single successor + my @redundant_root; + $ctr = 0; + do { + die "Infinite loop on roots" if $ctr > 100; + @redundant_root = grep { $lacunose->{$_} && $tree->successors( $_ ) == 1 } + $tree->predecessorless_vertices; + $tree->delete_vertices( @redundant_root ); + $ctr++; + } while( @redundant_root ); +} + +sub _prune_subtree_old { + my( $tree, $root, $contighash ) = @_; + # First, delete hypothetical leaves / orphans until there are none left. + my @orphan_hypotheticals = grep { ref( $contighash->{$_} ) } + $tree->successorless_vertices; + while( @orphan_hypotheticals ) { + $tree->delete_vertices( @orphan_hypotheticals ); + @orphan_hypotheticals = grep { ref( $contighash->{$_} ) } + $tree->successorless_vertices; + } + # Then delete a hypothetical root with only one successor, moving the + # root to the first child that has no other predecessors. + while( $tree->successors( $root ) == 1 && ref $contighash->{$root} ) { + my @nextroot = $tree->successors( $root ); + $tree->delete_vertex( $root ); + ( $root ) = grep { $tree->is_predecessorless_vertex( $_ ) } @nextroot; + } + # The tree has been modified in place, but we need to know the new root. + $root = undef unless $root && $tree->has_vertex( $root ); + return $root; +} # Add the variant, subject to a.c. representation logic. # This assumes that we will see the 'main' version before the a.c. version. sub add_variant_wit { @@ -199,25 +1060,39 @@ sub add_variant_wit { push( @$arr, $wit ) unless $skip; } -# Return an answer if the variant is useful, i.e. if there are at least 2 variants -# with at least 2 witnesses each. -sub useful_variant { - my( $readings ) = @_; - my $total = keys %$readings; - foreach my $var ( keys %$readings ) { - $total-- if @{$readings->{$var}} == 1; - } - return( undef, undef ) if $total <= 1; - my( $groups, $text ); - foreach my $var ( keys %$readings ) { - push( @$groups, $readings->{$var} ); - push( @$text, $var ); - } - return( $groups, $text ); +sub _useful_variant { + my( $group_readings, $graph, $acstr ) = @_; + + # TODO Decide what to do with AC witnesses + + # Sort by group size and return + my $is_useful = 0; + my( @readings, @groups ); # The sorted groups for our answer. + foreach my $rdg ( sort { @{$group_readings->{$b}} <=> @{$group_readings->{$a}} } + keys %$group_readings ) { + push( @readings, $rdg ); + push( @groups, $group_readings->{$rdg} ); + if( @{$group_readings->{$rdg}} > 1 ) { + $is_useful++; + } else { + my( $wit ) = @{$group_readings->{$rdg}}; + $wit =~ s/^(.*)\Q$acstr\E$/$1/; + $is_useful++ unless( $graph->is_sink_vertex( $wit ) ); + } + } + if( $is_useful > 1 ) { + return( \@readings, \@groups ); + } else { + return( [], [] ); + } } -# Take an array of witness groupings and produce a string like -# ['A','B'] / ['C','D','E'] / ['F'] +=head2 wit_stringify( $groups ) + +Takes an array of witness groupings and produces a string like +['A','B'] / ['C','D','E'] / ['F'] + +=cut sub wit_stringify { my $groups = shift; @@ -233,5 +1108,25 @@ sub wit_stringify { } return join( ' / ', @gst ); } - -1; \ No newline at end of file + +sub _symmdiff { + my( $lista, $listb ) = @_; + my %union; + my %scalars; + map { $union{$_} = 1; $scalars{$_} = $_ } @$lista; + map { $union{$_} += 1; $scalars{$_} = $_ } @$listb; + my @set = grep { $union{$_} == 1 } keys %union; + return map { $scalars{$_} } @set; +} + +1; + +=head1 LICENSE + +This package is free software and is provided "as is" without express +or implied warranty. You can redistribute it and/or modify it under +the same terms as Perl itself. + +=head1 AUTHOR + +Tara L Andrews Eaurum@cpan.orgE