print "ok $_[0]\n";
} else {
my $error = abs ($_[1] - $_[2]) / $_[1];
- if ($error < 1e-10) {
+ if ($error < 1e-9) {
print "ok $_[0] # $_[1] is close to $_[2], \$^O eq $^O\n";
} else {
print "not ok $_[0] # $_[1] != $_[2]\n";
tryeq 121, -0x80000000/-1, 0x80000000;
# The example for sloppy divide, rigged to avoid the peephole optimiser.
-tryeq 122, "20." / "5.", 4;
+tryeq_sloppy 122, "20." / "5.", 4;
tryeq 123, 2.5 / 2, 1.25;
tryeq 124, 3.5 / -2, -1.75;
# Bluuurg if your floating point can't accurately cope with powers of 2
# [I suspect this is parsing string->float problems, not actual arith]
tryeq_sloppy 127, 18446744073709551616/1, 18446744073709551616; # Bluuurg
-tryeq 128, 18446744073709551616/2, 9223372036854775808;
-tryeq 129, 18446744073709551616/4294967296, 4294967296;
-tryeq 130, 18446744073709551616/9223372036854775808, 2;
+tryeq_sloppy 128, 18446744073709551616/2, 9223372036854775808;
+tryeq_sloppy 129, 18446744073709551616/4294967296, 4294967296;
+tryeq_sloppy 130, 18446744073709551616/9223372036854775808, 2;
{
# The peephole optimiser is wrong to think that it can substitute intops
my $n = 1127;
my $float = ($n % 1000) * 167772160.0;
- tryeq 131, $float, 21307064320;
+ tryeq 131_sloppy, $float, 21307064320;
# On a 32 bit machine, if the i_multiply op is used, you will probably get
# -167772160. It's actually undefined behaviour, so anything may happen.