* You may distribute under the terms of either the GNU General Public
* License or the Artistic License, as specified in the README file.
*
+ * Options:
*
+ * Defining _USE_MSVCRT_MEM_ALLOC will cause all memory allocations
+ * to be forwarded to MSVCRT.DLL. Defining _USE_LINKED_LIST as well will
+ * track all allocations in a doubly linked list, so that the host can
+ * free all memory allocated when it goes away.
+ * If _USE_MSVCRT_MEM_ALLOC is not defined then Knuth's boundary tag algorithm
+ * is used; defining _USE_BUDDY_BLOCKS will use Knuth's algorithm R
+ * (Buddy system reservation)
+ *
+ */
+
+#ifndef ___VMEM_H_INC___
+#define ___VMEM_H_INC___
+
+// #define _USE_MSVCRT_MEM_ALLOC
+
+// #define _USE_BUDDY_BLOCKS
+
+// #define _DEBUG_MEM
+#ifdef _DEBUG_MEM
+#define ASSERT(f) if(!(f)) DebugBreak();
+
+inline void MEMODS(char *str)
+{
+ OutputDebugString(str);
+ OutputDebugString("\n");
+}
+
+inline void MEMODSlx(char *str, long x)
+{
+ char szBuffer[512];
+ sprintf(szBuffer, "%s %lx\n", str, x);
+ OutputDebugString(szBuffer);
+}
+
+#define WALKHEAP() WalkHeap(0)
+#define WALKHEAPTRACE() WalkHeap(1)
+
+#else
+
+#define ASSERT(f)
+#define MEMODS(x)
+#define MEMODSlx(x, y)
+#define WALKHEAP()
+#define WALKHEAPTRACE()
+
+#endif
+
+#ifdef _USE_MSVCRT_MEM_ALLOC
+
+#ifndef _USE_LINKED_LIST
+// #define _USE_LINKED_LIST
+#endif
+
+/*
+ * Pass all memory requests throught to msvcrt.dll
+ * optionaly track by using a doubly linked header
+ */
+
+typedef void (*LPFREE)(void *block);
+typedef void* (*LPMALLOC)(size_t size);
+typedef void* (*LPREALLOC)(void *block, size_t size);
+#ifdef _USE_LINKED_LIST
+typedef struct _MemoryBlockHeader* PMEMORY_BLOCK_HEADER;
+typedef struct _MemoryBlockHeader {
+ PMEMORY_BLOCK_HEADER pNext;
+ PMEMORY_BLOCK_HEADER pPrev;
+} MEMORY_BLOCK_HEADER, *PMEMORY_BLOCK_HEADER;
+#endif
+
+class VMem
+{
+public:
+ VMem();
+ ~VMem();
+ virtual void* Malloc(size_t size);
+ virtual void* Realloc(void* pMem, size_t size);
+ virtual void Free(void* pMem);
+ virtual void GetLock(void);
+ virtual void FreeLock(void);
+ virtual int IsLocked(void);
+ virtual long Release(void);
+ virtual long AddRef(void);
+
+ inline BOOL CreateOk(void)
+ {
+ return TRUE;
+ };
+
+protected:
+#ifdef _USE_LINKED_LIST
+ void LinkBlock(PMEMORY_BLOCK_HEADER ptr)
+ {
+ PMEMORY_BLOCK_HEADER next = m_Dummy.pNext;
+ m_Dummy.pNext = ptr;
+ ptr->pPrev = &m_Dummy;
+ ptr->pNext = next;
+ next->pPrev = ptr;
+ }
+ void UnlinkBlock(PMEMORY_BLOCK_HEADER ptr)
+ {
+ PMEMORY_BLOCK_HEADER next = ptr->pNext;
+ PMEMORY_BLOCK_HEADER prev = ptr->pPrev;
+ prev->pNext = next;
+ next->pPrev = prev;
+ }
+
+ MEMORY_BLOCK_HEADER m_Dummy;
+#endif
+
+ long m_lRefCount; // number of current users
+ CRITICAL_SECTION m_cs; // access lock
+ HINSTANCE m_hLib;
+ LPFREE m_pfree;
+ LPMALLOC m_pmalloc;
+ LPREALLOC m_prealloc;
+};
+
+VMem::VMem()
+{
+ m_lRefCount = 1;
+ InitializeCriticalSection(&m_cs);
+#ifdef _USE_LINKED_LIST
+ m_Dummy.pNext = m_Dummy.pPrev = &m_Dummy;
+#endif
+ m_hLib = LoadLibrary("msvcrt.dll");
+ if (m_hLib) {
+ m_pfree = (LPFREE)GetProcAddress(m_hLib, "free");
+ m_pmalloc = (LPMALLOC)GetProcAddress(m_hLib, "malloc");
+ m_prealloc = (LPREALLOC)GetProcAddress(m_hLib, "realloc");
+ }
+}
+
+VMem::~VMem(void)
+{
+#ifdef _USE_LINKED_LIST
+ while (m_Dummy.pNext != &m_Dummy) {
+ Free(m_Dummy.pNext+1);
+ }
+#endif
+ if (m_hLib)
+ FreeLibrary(m_hLib);
+ DeleteCriticalSection(&m_cs);
+}
+
+void* VMem::Malloc(size_t size)
+{
+#ifdef _USE_LINKED_LIST
+ PMEMORY_BLOCK_HEADER ptr = (PMEMORY_BLOCK_HEADER)m_pmalloc(size+sizeof(MEMORY_BLOCK_HEADER));
+ LinkBlock(ptr);
+ return (ptr+1);
+#else
+ return m_pmalloc(size);
+#endif
+}
+
+void* VMem::Realloc(void* pMem, size_t size)
+{
+#ifdef _USE_LINKED_LIST
+ if (!pMem)
+ return Malloc(size);
+
+ if (!size) {
+ Free(pMem);
+ return NULL;
+ }
+
+ PMEMORY_BLOCK_HEADER ptr = (PMEMORY_BLOCK_HEADER)(((char*)pMem)-sizeof(MEMORY_BLOCK_HEADER));
+ UnlinkBlock(ptr);
+ ptr = (PMEMORY_BLOCK_HEADER)m_prealloc(ptr, size+sizeof(MEMORY_BLOCK_HEADER));
+ LinkBlock(ptr);
+
+ return (ptr+1);
+#else
+ return m_prealloc(pMem, size);
+#endif
+}
+
+void VMem::Free(void* pMem)
+{
+#ifdef _USE_LINKED_LIST
+ if (pMem) {
+ PMEMORY_BLOCK_HEADER ptr = (PMEMORY_BLOCK_HEADER)(((char*)pMem)-sizeof(MEMORY_BLOCK_HEADER));
+ UnlinkBlock(ptr);
+ m_pfree(ptr);
+ }
+#else
+ m_pfree(pMem);
+#endif
+}
+
+void VMem::GetLock(void)
+{
+ EnterCriticalSection(&m_cs);
+}
+
+void VMem::FreeLock(void)
+{
+ LeaveCriticalSection(&m_cs);
+}
+
+int VMem::IsLocked(void)
+{
+#if 0
+ /* XXX TryEnterCriticalSection() is not available in some versions
+ * of Windows 95. Since this code is not used anywhere yet, we
+ * skirt the issue for now. */
+ BOOL bAccessed = TryEnterCriticalSection(&m_cs);
+ if(bAccessed) {
+ LeaveCriticalSection(&m_cs);
+ }
+ return !bAccessed;
+#else
+ ASSERT(0); /* alarm bells for when somebody calls this */
+ return 0;
+#endif
+}
+
+long VMem::Release(void)
+{
+ long lCount = InterlockedDecrement(&m_lRefCount);
+ if(!lCount)
+ delete this;
+ return lCount;
+}
+
+long VMem::AddRef(void)
+{
+ long lCount = InterlockedIncrement(&m_lRefCount);
+ return lCount;
+}
+
+#else /* _USE_MSVCRT_MEM_ALLOC */
+
+/*
* Knuth's boundary tag algorithm Vol #1, Page 440.
*
* Each block in the heap has tag words before and after it,
* is freed, therefore space needs to be reserved for them. Thus, the minimum
* block size (not counting the tags) is 8 bytes.
*
- * Since memory allocation may occur on a single threaded, explict locks are
+ * Since memory allocation may occur on a single threaded, explict locks are not
* provided.
*
*/
-#ifndef ___VMEM_H_INC___
-#define ___VMEM_H_INC___
-
-const long lAllocStart = 0x00010000; /* start at 64K */
+const long lAllocStart = 0x00020000; /* start at 128K */
const long minBlockSize = sizeof(void*)*2;
const long sizeofTag = sizeof(long);
const long blockOverhead = sizeofTag*2;
const long minAllocSize = minBlockSize+blockOverhead;
+#ifdef _USE_BUDDY_BLOCKS
+const long lSmallBlockSize = 1024;
+const size_t nListEntries = ((lSmallBlockSize-minAllocSize)/sizeof(long));
+
+inline size_t CalcEntry(size_t size)
+{
+ ASSERT((size&(sizeof(long)-1)) == 0);
+ return ((size - minAllocSize) / sizeof(long));
+}
+#endif
typedef BYTE* PBLOCK; /* pointer to a memory block */
*/
#define SIZE(block) (*(ULONG*)(((PBLOCK)(block))-sizeofTag))
-#define PSIZE(block) (*(ULONG*)(((PBLOCK)(block))-(sizeofTag*2)))
+#define PSIZE(block) (*(ULONG*)(((PBLOCK)(block))-(blockOverhead)))
inline void SetTags(PBLOCK block, long size)
{
SIZE(block) = size;
NEXT(prev) = next;
PREV(next) = prev;
}
+#ifndef _USE_BUDDY_BLOCKS
inline void AddToFreeList(PBLOCK block, PBLOCK pInList)
{
PBLOCK next = NEXT(pInList);
SetLink(block, pInList, next);
PREV(next) = block;
}
-
+#endif
/* Macro for rounding up to the next sizeof(long) */
#define ROUND_UP(n) (((ULONG)(n)+sizeof(long)-1)&~(sizeof(long)-1))
* Each record in this array contains information about a non-contiguous heap area.
*/
-const int maxHeaps = 64;
+const int maxHeaps = 32; /* 64 was overkill */
const long lAllocMax = 0x80000000; /* max size of allocation */
+#ifdef _USE_BUDDY_BLOCKS
+typedef struct _FreeListEntry
+{
+ BYTE Dummy[minAllocSize]; // dummy free block
+} FREE_LIST_ENTRY, *PFREE_LIST_ENTRY;
+#endif
+
+#ifndef _USE_BUDDY_BLOCKS
+#define USE_BIGBLOCK_ALLOC
+#endif
+/*
+ * performance tuning
+ * Use VirtualAlloc() for blocks bigger than nMaxHeapAllocSize since
+ * Windows 95/98/Me have heap managers that are designed for memory
+ * blocks smaller than four megabytes.
+ */
+
+#ifdef USE_BIGBLOCK_ALLOC
+const int nMaxHeapAllocSize = (1024*512); /* don't allocate anything larger than this from the heap */
+#endif
+
typedef struct _HeapRec
{
PBLOCK base; /* base of heap area */
ULONG len; /* size of heap area */
+#ifdef USE_BIGBLOCK_ALLOC
+ BOOL bBigBlock; /* was allocate using VirtualAlloc */
+#endif
} HeapRec;
-
class VMem
{
public:
inline BOOL CreateOk(void)
{
+#ifdef _USE_BUDDY_BLOCKS
+ return TRUE;
+#else
return m_hHeap != NULL;
+#endif
};
void ReInit(void);
protected:
void Init(void);
int Getmem(size_t size);
- int HeapAdd(void* ptr, size_t size);
+
+ int HeapAdd(void* ptr, size_t size
+#ifdef USE_BIGBLOCK_ALLOC
+ , BOOL bBigBlock
+#endif
+ );
+
void* Expand(void* block, size_t size);
- void WalkHeap(void);
+#ifdef _USE_BUDDY_BLOCKS
+ inline PBLOCK GetFreeListLink(int index)
+ {
+ if (index >= nListEntries)
+ index = nListEntries-1;
+ return &m_FreeList[index].Dummy[sizeofTag];
+ }
+ inline PBLOCK GetOverSizeFreeList(void)
+ {
+ return &m_FreeList[nListEntries-1].Dummy[sizeofTag];
+ }
+ inline PBLOCK GetEOLFreeList(void)
+ {
+ return &m_FreeList[nListEntries].Dummy[sizeofTag];
+ }
+
+ void AddToFreeList(PBLOCK block, size_t size)
+ {
+ PBLOCK pFreeList = GetFreeListLink(CalcEntry(size));
+ PBLOCK next = NEXT(pFreeList);
+ NEXT(pFreeList) = block;
+ SetLink(block, pFreeList, next);
+ PREV(next) = block;
+ }
+#endif
+ inline size_t CalcAllocSize(size_t size)
+ {
+ /*
+ * Adjust the real size of the block to be a multiple of sizeof(long), and add
+ * the overhead for the boundary tags. Disallow negative or zero sizes.
+ */
+ return (size < minBlockSize) ? minAllocSize : (size_t)ROUND_UP(size) + blockOverhead;
+ }
+
+#ifdef _USE_BUDDY_BLOCKS
+ FREE_LIST_ENTRY m_FreeList[nListEntries+1]; // free list with dummy end of list entry as well
+#else
HANDLE m_hHeap; // memory heap for this script
char m_FreeDummy[minAllocSize]; // dummy free block
PBLOCK m_pFreeList; // pointer to first block on free list
+#endif
PBLOCK m_pRover; // roving pointer into the free list
HeapRec m_heaps[maxHeaps]; // list of all non-contiguous heap areas
int m_nHeaps; // no. of heaps in m_heaps
long m_lAllocSize; // current alloc size
long m_lRefCount; // number of current users
CRITICAL_SECTION m_cs; // access lock
+
#ifdef _DEBUG_MEM
+ void WalkHeap(int complete);
+ void MemoryUsageMessage(char *str, long x, long y, int c);
FILE* m_pLog;
#endif
};
-// #define _DEBUG_MEM
-#ifdef _DEBUG_MEM
-#define ASSERT(f) if(!(f)) DebugBreak();
-
-inline void MEMODS(char *str)
-{
- OutputDebugString(str);
- OutputDebugString("\n");
-}
-
-inline void MEMODSlx(char *str, long x)
-{
- char szBuffer[512];
- sprintf(szBuffer, "%s %lx\n", str, x);
- OutputDebugString(szBuffer);
-}
-
-#define WALKHEAP() WalkHeap()
-#define WALKHEAPTRACE() m_pRover = NULL; WalkHeap()
-
-#else
-
-#define ASSERT(f)
-#define MEMODS(x)
-#define MEMODSlx(x, y)
-#define WALKHEAP()
-#define WALKHEAPTRACE()
-
-#endif
-
-
VMem::VMem()
{
m_lRefCount = 1;
+#ifndef _USE_BUDDY_BLOCKS
BOOL bRet = (NULL != (m_hHeap = HeapCreate(HEAP_NO_SERIALIZE,
lAllocStart, /* initial size of heap */
0))); /* no upper limit on size of heap */
ASSERT(bRet);
+#endif
InitializeCriticalSection(&m_cs);
#ifdef _DEBUG_MEM
VMem::~VMem(void)
{
+#ifndef _USE_BUDDY_BLOCKS
ASSERT(HeapValidate(m_hHeap, HEAP_NO_SERIALIZE, NULL));
- WALKHEAPTRACE();
-#ifdef _DEBUG_MEM
- MemoryUsageMessage(NULL, 0, 0, 0);
#endif
+ WALKHEAPTRACE();
+
DeleteCriticalSection(&m_cs);
+#ifdef _USE_BUDDY_BLOCKS
+ for(int index = 0; index < m_nHeaps; ++index) {
+ VirtualFree(m_heaps[index].base, 0, MEM_RELEASE);
+ }
+#else /* !_USE_BUDDY_BLOCKS */
+#ifdef USE_BIGBLOCK_ALLOC
+ for(int index = 0; index < m_nHeaps; ++index) {
+ if (m_heaps[index].bBigBlock) {
+ VirtualFree(m_heaps[index].base, 0, MEM_RELEASE);
+ }
+ }
+#endif
BOOL bRet = HeapDestroy(m_hHeap);
ASSERT(bRet);
+#endif /* _USE_BUDDY_BLOCKS */
}
void VMem::ReInit(void)
{
- for(int index = 0; index < m_nHeaps; ++index)
- HeapFree(m_hHeap, HEAP_NO_SERIALIZE, m_heaps[index].base);
+ for(int index = 0; index < m_nHeaps; ++index) {
+#ifdef _USE_BUDDY_BLOCKS
+ VirtualFree(m_heaps[index].base, 0, MEM_RELEASE);
+#else
+#ifdef USE_BIGBLOCK_ALLOC
+ if (m_heaps[index].bBigBlock) {
+ VirtualFree(m_heaps[index].base, 0, MEM_RELEASE);
+ }
+ else
+#endif
+ HeapFree(m_hHeap, HEAP_NO_SERIALIZE, m_heaps[index].base);
+#endif /* _USE_BUDDY_BLOCKS */
+ }
Init();
}
void VMem::Init(void)
-{ /*
+{
+#ifdef _USE_BUDDY_BLOCKS
+ PBLOCK pFreeList;
+ /*
+ * Initialize the free list by placing a dummy zero-length block on it.
+ * Set the end of list marker.
+ * Set the number of non-contiguous heaps to zero.
+ * Set the next allocation size.
+ */
+ for (int index = 0; index < nListEntries; ++index) {
+ pFreeList = GetFreeListLink(index);
+ SIZE(pFreeList) = PSIZE(pFreeList+minAllocSize) = 0;
+ PREV(pFreeList) = NEXT(pFreeList) = pFreeList;
+ }
+ pFreeList = GetEOLFreeList();
+ SIZE(pFreeList) = PSIZE(pFreeList+minAllocSize) = 0;
+ PREV(pFreeList) = NEXT(pFreeList) = NULL;
+ m_pRover = GetOverSizeFreeList();
+#else
+ /*
* Initialize the free list by placing a dummy zero-length block on it.
* Set the number of non-contiguous heaps to zero.
*/
- m_pFreeList = m_pRover = (PBLOCK)(&m_FreeDummy[minBlockSize]);
- PSIZE(m_pFreeList) = SIZE(m_pFreeList) = 0;
+ m_pFreeList = m_pRover = (PBLOCK)(&m_FreeDummy[sizeofTag]);
+ PSIZE(m_pFreeList+minAllocSize) = SIZE(m_pFreeList) = 0;
PREV(m_pFreeList) = NEXT(m_pFreeList) = m_pFreeList;
+#endif
m_nHeaps = 0;
m_lAllocSize = lAllocStart;
{
WALKHEAP();
+ PBLOCK ptr;
+ size_t lsize, rem;
/*
- * Adjust the real size of the block to be a multiple of sizeof(long), and add
- * the overhead for the boundary tags. Disallow negative or zero sizes.
+ * Disallow negative or zero sizes.
*/
- size_t realsize = (size < blockOverhead) ? minAllocSize : (size_t)ROUND_UP(size) + minBlockSize;
+ size_t realsize = CalcAllocSize(size);
if((int)realsize < minAllocSize || size == 0)
return NULL;
+#ifdef _USE_BUDDY_BLOCKS
+ /*
+ * Check the free list of small blocks if this is free use it
+ * Otherwise check the rover if it has no blocks then
+ * Scan the free list entries use the first free block
+ * split the block if needed, stop at end of list marker
+ */
+ {
+ int index = CalcEntry(realsize);
+ if (index < nListEntries-1) {
+ ptr = GetFreeListLink(index);
+ lsize = SIZE(ptr);
+ if (lsize >= realsize) {
+ rem = lsize - realsize;
+ if(rem < minAllocSize) {
+ /* Unlink the block from the free list. */
+ Unlink(ptr);
+ }
+ else {
+ /*
+ * split the block
+ * The remainder is big enough to split off into a new block.
+ * Use the end of the block, resize the beginning of the block
+ * no need to change the free list.
+ */
+ SetTags(ptr, rem);
+ ptr += SIZE(ptr);
+ lsize = realsize;
+ }
+ SetTags(ptr, lsize | 1);
+ return ptr;
+ }
+ ptr = m_pRover;
+ lsize = SIZE(ptr);
+ if (lsize >= realsize) {
+ rem = lsize - realsize;
+ if(rem < minAllocSize) {
+ /* Unlink the block from the free list. */
+ Unlink(ptr);
+ }
+ else {
+ /*
+ * split the block
+ * The remainder is big enough to split off into a new block.
+ * Use the end of the block, resize the beginning of the block
+ * no need to change the free list.
+ */
+ SetTags(ptr, rem);
+ ptr += SIZE(ptr);
+ lsize = realsize;
+ }
+ SetTags(ptr, lsize | 1);
+ return ptr;
+ }
+ ptr = GetFreeListLink(index+1);
+ while (NEXT(ptr)) {
+ lsize = SIZE(ptr);
+ if (lsize >= realsize) {
+ size_t rem = lsize - realsize;
+ if(rem < minAllocSize) {
+ /* Unlink the block from the free list. */
+ Unlink(ptr);
+ }
+ else {
+ /*
+ * split the block
+ * The remainder is big enough to split off into a new block.
+ * Use the end of the block, resize the beginning of the block
+ * no need to change the free list.
+ */
+ SetTags(ptr, rem);
+ ptr += SIZE(ptr);
+ lsize = realsize;
+ }
+ SetTags(ptr, lsize | 1);
+ return ptr;
+ }
+ ptr += sizeof(FREE_LIST_ENTRY);
+ }
+ }
+ }
+#endif
+
/*
* Start searching the free list at the rover. If we arrive back at rover without
* finding anything, allocate some memory from the heap and try again.
*/
- PBLOCK ptr = m_pRover; /* start searching at rover */
- int loops = 2; /* allow two times through the loop */
+ ptr = m_pRover; /* start searching at rover */
+ int loops = 2; /* allow two times through the loop */
for(;;) {
- size_t lsize = SIZE(ptr);
+ lsize = SIZE(ptr);
ASSERT((lsize&1)==0);
/* is block big enough? */
if(lsize >= realsize) {
/* if the remainder is too small, don't bother splitting the block. */
- size_t rem = lsize - realsize;
+ rem = lsize - realsize;
if(rem < minAllocSize) {
if(m_pRover == ptr)
m_pRover = NEXT(ptr);
if(Expand(block, size) != NULL)
return block;
- /*
- * adjust the real size of the block to be a multiple of sizeof(long), and add the
- * overhead for the boundary tags. Disallow negative or zero sizes.
- */
- size_t realsize = (size < blockOverhead) ? minAllocSize : (size_t)ROUND_UP(size) + minBlockSize;
+ size_t realsize = CalcAllocSize(size);
if((int)realsize < minAllocSize)
return NULL;
* next block cannot be free
*/
SetTags(prev, rem);
+#ifdef _USE_BUDDY_BLOCKS
+ AddToFreeList(prev, rem);
+#else
AddToFreeList(prev, m_pFreeList);
+#endif
cursize = realsize;
}
/* Set the boundary tags to mark it as allocated. */
/* Allocate a new block, copy the old to the new, and free the old. */
if((ptr = (PBLOCK)Malloc(size)) != NULL) {
- memmove(ptr, block, cursize-minBlockSize);
+ memmove(ptr, block, cursize-blockOverhead);
Free(block);
}
return ((void *)ptr);
size &= ~1; /* remove allocated tag */
/* if previous block is free, add this block to it. */
+#ifndef _USE_BUDDY_BLOCKS
int linked = FALSE;
+#endif
size_t psize = PSIZE(ptr);
if((psize&1) == 0) {
ptr -= psize; /* point to previous block */
size += psize; /* merge the sizes of the two blocks */
+#ifdef _USE_BUDDY_BLOCKS
+ Unlink(ptr);
+#else
linked = TRUE; /* it's already on the free list */
+#endif
}
/* if the next physical block is free, merge it with this block. */
SetTags(ptr, size);
/* Link the block to the head of the free list. */
+#ifdef _USE_BUDDY_BLOCKS
+ AddToFreeList(ptr, size);
+#else
if(!linked) {
AddToFreeList(ptr, m_pFreeList);
}
+#endif
}
void VMem::GetLock(void)
int VMem::Getmem(size_t requestSize)
{ /* returns -1 is successful 0 if not */
+#ifdef USE_BIGBLOCK_ALLOC
+ BOOL bBigBlock;
+#endif
void *ptr;
/* Round up size to next multiple of 64K. */
size_t size = (size_t)ROUND_UP64K(requestSize);
-
+
/*
* if the size requested is smaller than our current allocation size
* adjust up
/* Update the size to allocate on the next request */
if(m_lAllocSize != lAllocMax)
- m_lAllocSize <<= 1;
+ m_lAllocSize <<= 2;
- if(m_nHeaps != 0) {
+#ifndef _USE_BUDDY_BLOCKS
+ if(m_nHeaps != 0
+#ifdef USE_BIGBLOCK_ALLOC
+ && !m_heaps[m_nHeaps-1].bBigBlock
+#endif
+ ) {
/* Expand the last allocated heap */
- ptr = HeapReAlloc(m_hHeap, HEAP_REALLOC_IN_PLACE_ONLY|HEAP_ZERO_MEMORY|HEAP_NO_SERIALIZE,
+ ptr = HeapReAlloc(m_hHeap, HEAP_REALLOC_IN_PLACE_ONLY|HEAP_NO_SERIALIZE,
m_heaps[m_nHeaps-1].base,
m_heaps[m_nHeaps-1].len + size);
if(ptr != 0) {
- HeapAdd(((char*)ptr) + m_heaps[m_nHeaps-1].len, size);
+ HeapAdd(((char*)ptr) + m_heaps[m_nHeaps-1].len, size
+#ifdef USE_BIGBLOCK_ALLOC
+ , FALSE
+#endif
+ );
return -1;
}
}
+#endif /* _USE_BUDDY_BLOCKS */
/*
* if we didn't expand a block to cover the requested size
* the above ROUND_UP64K may not have added any memory to include this.
*/
if(size == requestSize)
- size = (size_t)ROUND_UP64K(requestSize+(sizeofTag*2));
+ size = (size_t)ROUND_UP64K(requestSize+(blockOverhead));
+
+Restart:
+#ifdef _USE_BUDDY_BLOCKS
+ ptr = VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
+#else
+#ifdef USE_BIGBLOCK_ALLOC
+ bBigBlock = FALSE;
+ if (size >= nMaxHeapAllocSize) {
+ bBigBlock = TRUE;
+ ptr = VirtualAlloc(NULL, size, MEM_COMMIT, PAGE_READWRITE);
+ }
+ else
+#endif
+ ptr = HeapAlloc(m_hHeap, HEAP_NO_SERIALIZE, size);
+#endif /* _USE_BUDDY_BLOCKS */
+
+ if (!ptr) {
+ /* try to allocate a smaller chunk */
+ size >>= 1;
+ if(size > requestSize)
+ goto Restart;
+ }
- ptr = HeapAlloc(m_hHeap, HEAP_ZERO_MEMORY|HEAP_NO_SERIALIZE, size);
if(ptr == 0) {
MEMODSlx("HeapAlloc failed on size!!!", size);
return 0;
}
+#ifdef _USE_BUDDY_BLOCKS
+ if (HeapAdd(ptr, size)) {
+ VirtualFree(ptr, 0, MEM_RELEASE);
+ return 0;
+ }
+#else
+#ifdef USE_BIGBLOCK_ALLOC
+ if (HeapAdd(ptr, size, bBigBlock)) {
+ if (bBigBlock) {
+ VirtualFree(ptr, 0, MEM_RELEASE);
+ }
+ }
+#else
HeapAdd(ptr, size);
+#endif
+#endif /* _USE_BUDDY_BLOCKS */
return -1;
}
-int VMem::HeapAdd(void *p, size_t size)
+int VMem::HeapAdd(void* p, size_t size
+#ifdef USE_BIGBLOCK_ALLOC
+ , BOOL bBigBlock
+#endif
+ )
{ /* if the block can be succesfully added to the heap, returns 0; otherwise -1. */
int index;
size = (size_t)ROUND_DOWN(size);
PBLOCK ptr = (PBLOCK)p;
- /*
- * Search for another heap area that's contiguous with the bottom of this new area.
- * (It should be extremely unusual to find one that's contiguous with the top).
- */
- for(index = 0; index < m_nHeaps; ++index) {
- if(ptr == m_heaps[index].base + (int)m_heaps[index].len) {
- /*
- * The new block is contiguous with a previously allocated heap area. Add its
- * length to that of the previous heap. Merge it with the the dummy end-of-heap
- * area marker of the previous heap.
- */
- m_heaps[index].len += size;
- break;
+#ifdef USE_BIGBLOCK_ALLOC
+ if (!bBigBlock) {
+#endif
+ /*
+ * Search for another heap area that's contiguous with the bottom of this new area.
+ * (It should be extremely unusual to find one that's contiguous with the top).
+ */
+ for(index = 0; index < m_nHeaps; ++index) {
+ if(ptr == m_heaps[index].base + (int)m_heaps[index].len) {
+ /*
+ * The new block is contiguous with a previously allocated heap area. Add its
+ * length to that of the previous heap. Merge it with the the dummy end-of-heap
+ * area marker of the previous heap.
+ */
+ m_heaps[index].len += size;
+ break;
+ }
}
+#ifdef USE_BIGBLOCK_ALLOC
+ }
+ else {
+ index = m_nHeaps;
}
+#endif
if(index == m_nHeaps) {
- /* The new block is not contiguous. Add it to the heap list. */
+ /* The new block is not contiguous, or is BigBlock. Add it to the heap list. */
if(m_nHeaps == maxHeaps) {
return -1; /* too many non-contiguous heaps */
}
m_heaps[m_nHeaps].base = ptr;
m_heaps[m_nHeaps].len = size;
+#ifdef USE_BIGBLOCK_ALLOC
+ m_heaps[m_nHeaps].bBigBlock = bBigBlock;
+#endif
m_nHeaps++;
/*
* Reserve the first LONG in the block for the ending boundary tag of a dummy
* block at the start of the heap area.
*/
- size -= minBlockSize;
- ptr += minBlockSize;
+ size -= blockOverhead;
+ ptr += blockOverhead;
PSIZE(ptr) = 1; /* mark the dummy previous block as allocated */
}
void* VMem::Expand(void* block, size_t size)
{
/*
- * Adjust the size of the block to be a multiple of sizeof(long), and add the
- * overhead for the boundary tags. Disallow negative or zero sizes.
+ * Disallow negative or zero sizes.
*/
- size_t realsize = (size < blockOverhead) ? minAllocSize : (size_t)ROUND_UP(size) + minBlockSize;
+ size_t realsize = CalcAllocSize(size);
if((int)realsize < minAllocSize || size == 0)
return NULL;
* next block cannot be free
*/
SetTags(next, rem);
+#ifdef _USE_BUDDY_BLOCKS
+ AddToFreeList(next, rem);
+#else
AddToFreeList(next, m_pFreeList);
+#endif
cursize = realsize;
}
/* Set the boundary tags to mark it as allocated. */
#ifdef _DEBUG_MEM
#define LOG_FILENAME ".\\MemLog.txt"
-void MemoryUsageMessage(char *str, long x, long y, int c)
+void VMem::MemoryUsageMessage(char *str, long x, long y, int c)
{
char szBuffer[512];
if(str) {
fputs(szBuffer, m_pLog);
}
else {
- fflush(m_pLog);
- fclose(m_pLog);
- m_pLog = 0;
+ if(m_pLog) {
+ fflush(m_pLog);
+ fclose(m_pLog);
+ m_pLog = 0;
+ }
}
}
-void VMem::WalkHeap(void)
+void VMem::WalkHeap(int complete)
{
- if(!m_pRover) {
- MemoryUsageMessage("VMem heaps used %d\n", m_nHeaps, 0, 0);
- }
+ if(complete) {
+ MemoryUsageMessage(NULL, 0, 0, 0);
+ size_t total = 0;
+ for(int i = 0; i < m_nHeaps; ++i) {
+ total += m_heaps[i].len;
+ }
+ MemoryUsageMessage("VMem heaps used %d. Total memory %08x\n", m_nHeaps, total, 0);
+
+ /* Walk all the heaps - verify structures */
+ for(int index = 0; index < m_nHeaps; ++index) {
+ PBLOCK ptr = m_heaps[index].base;
+ size_t size = m_heaps[index].len;
+#ifndef _USE_BUDDY_BLOCKS
+#ifdef USE_BIGBLOCK_ALLOC
+ if (!m_heaps[m_nHeaps].bBigBlock)
+#endif
+ ASSERT(HeapValidate(m_hHeap, HEAP_NO_SERIALIZE, ptr));
+#endif
- /* Walk all the heaps - verify structures */
- for(int index = 0; index < m_nHeaps; ++index) {
- PBLOCK ptr = m_heaps[index].base;
- size_t size = m_heaps[index].len;
- ASSERT(HeapValidate(m_hHeap, HEAP_NO_SERIALIZE, p));
-
- /* set over reserved header block */
- size -= minBlockSize;
- ptr += minBlockSize;
- PBLOCK pLast = ptr + size;
- ASSERT(PSIZE(ptr) == 1); /* dummy previous block is allocated */
- ASSERT(SIZE(pLast) == 1); /* dummy next block is allocated */
- while(ptr < pLast) {
- ASSERT(ptr > m_heaps[index].base);
- size_t cursize = SIZE(ptr) & ~1;
- ASSERT((PSIZE(ptr+cursize) & ~1) == cursize);
- if(!m_pRover) {
- MemoryUsageMessage("Memory Block %08x: Size %08x %c\n", (long)ptr, cursize, (SIZE(p)&1) ? 'x' : ' ');
- }
- if(!(SIZE(ptr)&1)) {
- /* this block is on the free list */
- PBLOCK tmp = NEXT(ptr);
- while(tmp != ptr) {
- ASSERT((SIZE(tmp)&1)==0);
- if(tmp == m_pFreeList)
- break;
- ASSERT(NEXT(tmp));
- tmp = NEXT(tmp);
- }
- if(tmp == ptr) {
- MemoryUsageMessage("Memory Block %08x: Size %08x free but not in free list\n", (long)ptr, cursize, 0);
+ /* set over reserved header block */
+ size -= blockOverhead;
+ ptr += blockOverhead;
+ PBLOCK pLast = ptr + size;
+ ASSERT(PSIZE(ptr) == 1); /* dummy previous block is allocated */
+ ASSERT(SIZE(pLast) == 1); /* dummy next block is allocated */
+ while(ptr < pLast) {
+ ASSERT(ptr > m_heaps[index].base);
+ size_t cursize = SIZE(ptr) & ~1;
+ ASSERT((PSIZE(ptr+cursize) & ~1) == cursize);
+ MemoryUsageMessage("Memory Block %08x: Size %08x %c\n", (long)ptr, cursize, (SIZE(ptr)&1) ? 'x' : ' ');
+ if(!(SIZE(ptr)&1)) {
+ /* this block is on the free list */
+ PBLOCK tmp = NEXT(ptr);
+ while(tmp != ptr) {
+ ASSERT((SIZE(tmp)&1)==0);
+ if(tmp == m_pFreeList)
+ break;
+ ASSERT(NEXT(tmp));
+ tmp = NEXT(tmp);
+ }
+ if(tmp == ptr) {
+ MemoryUsageMessage("Memory Block %08x: Size %08x free but not in free list\n", (long)ptr, cursize, 0);
+ }
}
+ ptr += cursize;
}
- ptr += cursize;
}
- }
- if(!m_pRover) {
MemoryUsageMessage(NULL, 0, 0, 0);
}
}
-#endif
+#endif /* _DEBUG_MEM */
+
+#endif /* _USE_MSVCRT_MEM_ALLOC */
#endif /* ___VMEM_H_INC___ */