use 5.005;
use strict;
-use Math::Complex 1.44;
+use Math::Complex 1.47;
use Math::Complex qw(:trig :pi);
use vars qw($VERSION $PACKAGE @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);
@ISA = qw(Exporter);
-$VERSION = 1.09;
+$VERSION = 1.12;
my @angcnv = qw(rad2deg rad2grad
deg2rad deg2grad
grad2rad grad2deg);
+my @areal = qw(asin_real acos_real);
+
@EXPORT = (@{$Math::Complex::EXPORT_TAGS{'trig'}},
- @angcnv);
+ @angcnv, @areal);
my @rdlcnv = qw(cartesian_to_cylindrical
cartesian_to_spherical
sub grad2rad ($;$) { my $d = _GR * $_[0]; $_[1] ? $d : rad2rad($d) }
+#
+# acos and asin functions which always return a real number
+#
+
+sub acos_real {
+ return 0 if $_[0] >= 1;
+ return pi if $_[0] <= -1;
+ return acos($_[0]);
+}
+
+sub asin_real {
+ return &pip2 if $_[0] >= 1;
+ return -&pip2 if $_[0] <= -1;
+ return asin($_[0]);
+}
+
sub cartesian_to_spherical {
my ( $x, $y, $z ) = @_;
return ( $rho,
atan2( $y, $x ),
- $rho ? acos( $z / $rho ) : 0 );
+ $rho ? acos_real( $z / $rho ) : 0 );
}
sub spherical_to_cartesian {
my $lat1 = pip2 - $phi1;
return $rho *
- acos(cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +
- sin( $lat0 ) * sin( $lat1 ) );
+ acos_real( cos( $lat0 ) * cos( $lat1 ) * cos( $theta0 - $theta1 ) +
+ sin( $lat0 ) * sin( $lat1 ) );
}
sub great_circle_direction {
my $lat1 = pip2 - $phi1;
my $direction =
- acos((sin($lat1) - sin($lat0) * cos($distance)) /
- (cos($lat0) * sin($distance)));
-
+ acos_real((sin($lat1) - sin($lat0) * cos($distance)) /
+ (cos($lat0) * sin($distance)));
+
$direction = pi2 - $direction
if sin($theta1 - $theta0) < 0;
my $z = $A * sin($lat0) + $B * sin($lat1);
my $theta = atan2($y, $x);
- my $phi = acos($z);
+ my $phi = acos_real($z);
return ($theta, $phi);
}
my $lat0 = pip2 - $phi0;
- my $phi1 = asin(sin($lat0)*cos($dst)+cos($lat0)*sin($dst)*cos($dir0));
+ my $phi1 = asin_real(sin($lat0)*cos($dst) +
+ cos($lat0)*sin($dst)*cos($dir0));
my $theta1 = $theta0 + atan2(sin($dir0)*sin($dst)*cos($lat0),
cos($dst)-sin($lat0)*sin($phi1));
defaults to radians.
If you think geographically the I<theta> are longitudes: zero at the
-Greenwhich meridian, eastward positive, westward negative--and the
+Greenwhich meridian, eastward positive, westward negative -- and the
I<phi> are latitudes: zero at the North Pole, northward positive,
southward negative. B<NOTE>: this formula thinks in mathematics, not
geographically: the I<phi> zero is at the North Pole, not at the
Notice that the resulting directions might be somewhat surprising if
you are looking at a flat worldmap: in such map projections the great
-circles quite often do not look like the shortest routes-- but for
+circles quite often do not look like the shortest routes -- but for
example the shortest possible routes from Europe or North America to
-Asia do often cross the polar regions.
+Asia do often cross the polar regions. (The common Mercator projection
+does B<not> show great circles as straight lines: straight lines in the
+Mercator projection are lines of constant bearing.)
=head1 EXAMPLES
(slightly aspherical) form of the Earth. The errors are at worst
about 0.55%, but generally below 0.3%.
+=head2 Real-valued asin and acos
+
+For small inputs asin() and acos() may return complex numbers even
+when real numbers would be enough and correct, this happens because of
+floating-point inaccuracies. You can see these inaccuracies for
+example by trying theses:
+
+ print cos(1e-6)**2+sin(1e-6)**2 - 1,"\n";
+ printf "%.20f", cos(1e-6)**2+sin(1e-6)**2,"\n";
+
+which will print something like this
+
+ -1.11022302462516e-16
+ 0.99999999999999988898
+
+even though the expected results are of course exactly zero and one.
+The formulas used to compute asin() and acos() are quite sensitive to
+this, and therefore they might accidentally slip into the complex
+plane even when they should not. To counter this there are two
+interfaces that are guaranteed to return a real-valued output.
+
+=over 4
+
+=item asin_real
+
+ use Math::Trig qw(asin_real);
+
+ $real_angle = asin_real($input_sin);
+
+Return a real-valued arcus sine if the input is between [-1, 1],
+B<inclusive> the endpoints. For inputs greater than one, pi/2
+is returned. For inputs less than minus one, -pi/2 is returned.
+
+=item acos_real
+
+ use Math::Trig qw(acos_real);
+
+ $real_angle = acos_real($input_cos);
+
+Return a real-valued arcus cosine if the input is between [-1, 1],
+B<inclusive> the endpoints. For inputs greater than one, zero
+is returned. For inputs less than minus one, pi is returned.
+
+=back
+
=head1 BUGS
Saying C<use Math::Trig;> exports many mathematical routines in the
}
}
-plan(tests => 135);
+plan(tests => 153);
-use Math::Trig 1.09;
-use Math::Trig 1.09 qw(Inf);
+use Math::Trig 1.12;
+use Math::Trig 1.12 qw(:pi Inf);
my $pip2 = pi / 2;
cmp_ok(tanh(-1e5), '==', -1);
cmp_ok(coth(-1e5), '==', -1);
+print "# great_circle_distance with small angles\n";
+
+for my $e (qw(1e-2 1e-3 1e-4 1e-5)) {
+ # Can't assume == 0 because of floating point fuzz,
+ # but let's hope for at least < $e.
+ cmp_ok(great_circle_distance(0, $e, 0, $e), '<', $e);
+}
+
+print "# asin_real, acos_real\n";
+
+is(acos_real(-2.0), pi);
+is(acos_real(-1.0), pi);
+is(acos_real(-0.5), acos(-0.5));
+is(acos_real( 0.0), acos( 0.0));
+is(acos_real( 0.5), acos( 0.5));
+is(acos_real( 1.0), 0);
+is(acos_real( 2.0), 0);
+
+is(asin_real(-2.0), -&pip2);
+is(asin_real(-1.0), -&pip2);
+is(asin_real(-0.5), asin(-0.5));
+is(asin_real( 0.0), asin( 0.0));
+is(asin_real( 0.5), asin( 0.5));
+is(asin_real( 1.0), pip2);
+is(asin_real( 2.0), pip2);
+
# eof