spherical_to_cartesian
spherical_to_cylindrical);
-@EXPORT_OK = (@rdlcnv, 'great_circle_distance');
+@EXPORT_OK = (@rdlcnv, 'great_circle_distance', 'great_circle_direction');
%EXPORT_TAGS = ('radial' => [ @rdlcnv ]);
sin( $lat0 ) * sin( $lat1 ) );
}
+sub great_circle_direction {
+ my ( $theta0, $phi0, $theta1, $phi1 ) = @_;
+
+ my $lat0 = pip2 - $phi0;
+ my $lat1 = pip2 - $phi1;
+
+ my $direction =
+ atan2(sin($theta0 - $theta1) * cos($lat1),
+ cos($lat0) * sin($lat1) -
+ sin($lat0) * cos($lat1) * cos($theta0 - $theta1));
+
+ return rad2rad($direction);
+}
+
=pod
=head1 NAME
=back
-=head1 GREAT CIRCLE DISTANCES
+=head1 GREAT CIRCLE DISTANCES AND DIRECTIONS
You can compute spherical distances, called B<great circle distances>,
-by importing the C<great_circle_distance> function:
+by importing the great_circle_distance() function:
- use Math::Trig 'great_circle_distance'
+ use Math::Trig 'great_circle_distance';
$distance = great_circle_distance($theta0, $phi0, $theta1, $phi1, [, $rho]);
$distance = great_circle_distance($lon0, pi/2 - $lat0,
$lon1, pi/2 - $lat1, $rho);
+The direction you must follow the great circle can be computed by the
+great_circle_direction() function:
+
+ use Math::Trig 'great_circle_direction';
+
+ $direction = great_circle_direction($theta0, $phi0, $theta1, $phi1);
+
+The result is in radians, zero indicating straight north, pi or -pi
+straight south, pi/2 straight west, and -pi/2 straight east.
+
+Notice that the resulting directions might be somewhat surprising if
+you are looking at a flat worldmap: in such map projections the great
+circles quite often do not look like the shortest routes-- but for
+example the shortest possible routes from Europe or North America to
+Asia do often cross the polar regions.
+
=head1 EXAMPLES
-To calculate the distance between London (51.3N 0.5W) and Tokyo (35.7N
-139.8E) in kilometers:
+To calculate the distance between London (51.3N 0.5W) and Tokyo
+(35.7N 139.8E) in kilometers:
use Math::Trig qw(great_circle_distance deg2rad);
$km = great_circle_distance(@L, @T, 6378);
-The answer may be off by few percentages because of the irregular
-(slightly aspherical) form of the Earth. The used formula
+The direction you would have to go from London to Tokyo
+
+ use Math::Trig qw(great_circle_direction);
+
+ $rad = great_circle_direction(@L, @T);
+
+=head2 CAVEAT FOR GREAT CIRCLE FORMULAS
+
+The answers may be off by few percentages because of the irregular
+(slightly aspherical) form of the Earth. The formula used for
+grear circle distances
lat0 = 90 degrees - phi0
lat1 = 90 degrees - phi1
$_[1] ? (abs($_[0]/$_[1] - 1) < $e) : abs($_[0]) < $e;
}
-print "1..23\n";
+print "1..26\n";
$x = 0.9;
print 'not ' unless (near(tan($x), sin($x) / cos($x)));
print "ok 23\n";
}
+{
+ use Math::Trig 'great_circle_direction';
+
+ print 'not '
+ unless (near(great_circle_direction(0, 0, 0, pi/2), pi));
+ print "ok 24\n";
+
+ print 'not '
+ unless (near(great_circle_direction(0, 0, pi, pi), -pi/2));
+ print "ok 25\n";
+
+ # London to Tokyo.
+ my @L = (deg2rad(-0.5), deg2rad(90 - 51.3));
+ my @T = (deg2rad(139.8),deg2rad(90 - 35.7));
+
+ my $rad = great_circle_direction(@L, @T);
+
+ print 'not ' unless (near($rad, -0.546644569997376));
+ print "ok 26\n";
+}
+
# eof