my $z = $_[0];
return CORE::atan2(CORE::sqrt(1-$z*$z), $z)
if (! ref $z) && CORE::abs($z) <= 1;
- my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0);
+ $z = cplx($z, 0) unless ref $z;
+ my ($x, $y) = @{$z->cartesian};
return 0 if $x == 1 && $y == 0;
my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
my $u = CORE::atan2(CORE::sqrt(1-$beta*$beta), $beta);
my $v = CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
$v = -$v if $y > 0 || ($y == 0 && $x < -1);
- return __PACKAGE__->make($u, $v);
+ return (ref $z)->make($u, $v);
}
#
my $z = $_[0];
return CORE::atan2($z, CORE::sqrt(1-$z*$z))
if (! ref $z) && CORE::abs($z) <= 1;
- my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0);
+ $z = cplx($z, 0) unless ref $z;
+ my ($x, $y) = @{$z->cartesian};
return 0 if $x == 0 && $y == 0;
my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
my $u = CORE::atan2($beta, CORE::sqrt(1-$beta*$beta));
my $v = -CORE::log($alpha + CORE::sqrt($alpha*$alpha-1));
$v = -$v if $y > 0 || ($y == 0 && $x < -1);
- return __PACKAGE__->make($u, $v);
+ return (ref $z)->make($u, $v);
}
#
if CORE::abs($re) < 1;
}
my $t = &sqrt($z * $z - 1) + $z;
- # Try MacLaurin if looking bad.
+ # Try Taylor if looking bad (this usually means that
+ # $z was large negative, therefore the sqrt is really
+ # close to abs(z), summing that with z...)
$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
if $t == 0;
my $u = &log($t);
- $u->Im(-$u->Im) if $im == 0;
+ $u->Im(-$u->Im) if $re < 0 && $im == 0;
return $re < 0 ? -$u : $u;
}
return CORE::log($t) if $t;
}
my $t = &sqrt($z * $z + 1) + $z;
- # Try MacLaurin if looking bad.
+ # Try Taylor if looking bad (this usually means that
+ # $z was large negative, therefore the sqrt is really
+ # close to abs(z), summing that with z...)
$t = 1/(2 * $z) - 1/(8 * $z**3) + 1/(16 * $z**5) - 5/(128 * $z**7)
if $t == 0;
return &log($t);
}
if ($y) {
- if ($y == 1) { $im = "" }
- elsif ($y == -1) { $im = "-" }
- elsif ($y =~ /^(NaN[QS]?)$/i) {
+ if ($y =~ /^(NaN[QS]?)$/i) {
$im = $y;
} else {
if ($y =~ /^-?$Inf$/oi) {
$im = $y;
} else {
- $im = defined $format ? sprintf($format, $y) : $y;
+ $im =
+ defined $format ?
+ sprintf($format, $y) :
+ ($y == 1 ? "" : ($y == -1 ? "-" : $y));
}
}
$im .= "i";
a parameter hash instead of just a one parameter.
The old display format style, which can have values C<"cartesian"> or
-C<"polar">, can be changed using the C<"style"> parameter. (The one
-parameter calling convention also still works.)
+C<"polar">, can be changed using the C<"style"> parameter.
+
+ $j->display_format(style => "polar");
+
+The one parameter calling convention also still works.
+
+ $j->display_format("polar");
There are two new display parameters.
-The first one is C<"format">, which is a sprintf()-style format
-string to be used for both parts of the complex number(s). The
-default is C<undef>, which corresponds usually (this is somewhat
-system-dependent) to C<"%.15g">. You can revert to the default by
-setting the format string to C<undef>.
+The first one is C<"format">, which is a sprintf()-style format string
+to be used for both numeric parts of the complex number(s). The is
+somewhat system-dependent but most often it corresponds to C<"%.15g">.
+You can revert to the default by setting the C<format> to C<undef>.
# the $j from the above example
$j->display_format('format' => '%.5f');
print "j = $j\n"; # Prints "j = -0.50000+0.86603i"
- $j->display_format('format' => '%.6f');
+ $j->display_format('format' => undef);
print "j = $j\n"; # Prints "j = -0.5+0.86603i"
Notice that this affects also the return values of the
C<display_format> methods: in list context the whole parameter hash
-will be returned, as opposed to only the style parameter value. If
-you want to know the whole truth for a complex number, you must call
-both the class method and the object method:
+will be returned, as opposed to only the style parameter value.
+This is a potential incompatibility with earlier versions if you
+have been calling the C<display_format> method in list context.
The second new display parameter is C<"polar_pretty_print">, which can
be set to true or false, the default being true. See the previous
Note that because we are operating on approximations of real numbers,
these errors can happen when merely `too close' to the singularities
-listed above. For example C<tan(2*atan2(1,1)+1e-15)> will die of
-division by zero.
+listed above.
=head1 ERRORS DUE TO INDIGESTIBLE ARGUMENTS