# accessor methods instead.
# class constants, use Class->constant_name() to access
-$round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'
+# one of 'even', 'odd', '+inf', '-inf', 'zero', 'trunc' or 'common'
+$round_mode = 'even';
$accuracy = undef;
$precision = undef;
$div_scale = 40;
###############################################################################
# trigonometric functions
-# helper function for bpi()
+# helper function for bpi() and batan2(), calculates arcus tanges (1/x)
-sub _signed_sub
+sub _atan_inv
{
- my ($a, $s, $b) = @_;
-
- if ($s == 0)
- {
- # $a and $b are negativ: -> add
- $MBI->_add($a, $b);
- }
- else
- {
- my $c = $MBI->_acmp($a,$b);
- # $a positiv, $b negativ
- if ($c >= 0)
- {
- $MBI->_sub($a,$b);
- }
- else
- {
- # make negativ
- $a = $MBI->_sub( $MBI->_copy($b), $a);
- $s = 0;
- }
- }
+ # return a/b so that a/b approximates atan(1/x) to at least limit digits
+ my ($self, $x, $limit) = @_;
- ($a,$s);
- }
+ # Taylor: x^3 x^5 x^7 x^9
+ # atan = x - --- + --- - --- + --- - ...
+ # 3 5 7 9
-sub _signed_add
- {
- my ($a, $s, $b) = @_;
+ # 1 1 1 1
+ # atan 1/x = - - ------- + ------- - ------- + ...
+ # x x^3 * 3 x^5 * 5 x^7 * 7
+
+ # 1 1 1 1
+ # atan 1/x = - - --------- + ---------- - ----------- + ...
+ # 5 3 * 125 5 * 3125 7 * 78125
+
+ # Subtraction/addition of a rational:
+
+ # 5 7 5*3 +- 7*4
+ # - +- - = ----------
+ # 4 3 4*3
+
+ # Term: N N+1
+ #
+ # a 1 a * d * c +- b
+ # ----- +- ------------------ = ----------------
+ # b d * c b * d * c
+
+ # since b1 = b0 * (d-2) * c
+
+ # a 1 a * d +- b / c
+ # ----- +- ------------------ = ----------------
+ # b d * c b * d
+
+ # and d = d + 2
+ # and c = c * x * x
+
+ # u = d * c
+ # stop if length($u) > limit
+ # a = a * u +- b
+ # b = b * u
+ # d = d + 2
+ # c = c * x * x
+ # sign = 1 - sign
+
+ my $a = $MBI->_one();
+ my $b = $MBI->_new($x);
- if ($s == 1)
- {
- # $a and $b are positiv: -> add
- $MBI->_add($a, $b);
- }
- else
+ my $x2 = $MBI->_mul( $MBI->_new($x), $b); # x2 = x * x
+ my $d = $MBI->_new( 3 ); # d = 3
+ my $c = $MBI->_mul( $MBI->_new($x), $x2); # c = x ^ 3
+ my $two = $MBI->_new( 2 );
+
+ # run the first step unconditionally
+ my $u = $MBI->_mul( $MBI->_copy($d), $c);
+ $a = $MBI->_mul($a, $u);
+ $a = $MBI->_sub($a, $b);
+ $b = $MBI->_mul($b, $u);
+ $d = $MBI->_add($d, $two);
+ $c = $MBI->_mul($c, $x2);
+
+ # a is now a * (d-3) * c
+ # b is now b * (d-2) * c
+
+ # run the second step unconditionally
+ $u = $MBI->_mul( $MBI->_copy($d), $c);
+ $a = $MBI->_mul($a, $u);
+ $a = $MBI->_add($a, $b);
+ $b = $MBI->_mul($b, $u);
+ $d = $MBI->_add($d, $two);
+ $c = $MBI->_mul($c, $x2);
+
+ # a is now a * (d-3) * (d-5) * c * c
+ # b is now b * (d-2) * (d-4) * c * c
+
+ # so we can remove c * c from both a and b to shorten the numbers involved:
+ $a = $MBI->_div($a, $x2);
+ $b = $MBI->_div($b, $x2);
+ $a = $MBI->_div($a, $x2);
+ $b = $MBI->_div($b, $x2);
+
+# my $step = 0;
+ my $sign = 0; # 0 => -, 1 => +
+ while (3 < 5)
{
- my $c = $MBI->_acmp($a,$b);
- # $a positiv, $b negativ
- if ($c >= 0)
+# $step++;
+# if (($i++ % 100) == 0)
+# {
+# print "a=",$MBI->_str($a),"\n";
+# print "b=",$MBI->_str($b),"\n";
+# }
+# print "d=",$MBI->_str($d),"\n";
+# print "x2=",$MBI->_str($x2),"\n";
+# print "c=",$MBI->_str($c),"\n";
+
+ my $u = $MBI->_mul( $MBI->_copy($d), $c);
+ # use _alen() for libs like GMP where _len() would be O(N^2)
+ last if $MBI->_alen($u) > $limit;
+ my ($bc,$r) = $MBI->_div( $MBI->_copy($b), $c);
+ if ($MBI->_is_zero($r))
{
- $MBI->_sub($a,$b);
+ # b / c is an integer, so we can remove c from all terms
+ # this happens almost every time:
+ $a = $MBI->_mul($a, $d);
+ $a = $MBI->_sub($a, $bc) if $sign == 0;
+ $a = $MBI->_add($a, $bc) if $sign == 1;
+ $b = $MBI->_mul($b, $d);
}
else
{
- # make positiv
- $a = $MBI->_sub( $MBI->_copy($b), $a);
- $s = 1;
+ # b / c is not an integer, so we keep c in the terms
+ # this happens very rarely, for instance for x = 5, this happens only
+ # at the following steps:
+ # 1, 5, 14, 32, 72, 157, 340, ...
+ $a = $MBI->_mul($a, $u);
+ $a = $MBI->_sub($a, $b) if $sign == 0;
+ $a = $MBI->_add($a, $b) if $sign == 1;
+ $b = $MBI->_mul($b, $u);
}
+ $d = $MBI->_add($d, $two);
+ $c = $MBI->_mul($c, $x2);
+ $sign = 1 - $sign;
+
}
- ($a,$s);
+# print "Took $step steps for $x\n";
+# print "a=",$MBI->_str($a),"\n"; print "b=",$MBI->_str($b),"\n";
+ # return a/b so that a/b approximates atan(1/x)
+ ($a,$b);
}
sub bpi
{
- # Calculate PI to N digits (including the 3 before the dot).
-
- # The basic algorithm is the one implemented in:
-
- # The Computer Language Shootout
- # http://shootout.alioth.debian.org/
- #
- # contributed by Robert Bradshaw
- # modified by Ruud H.G.van Tol
- # modified by Emanuele Zeppieri
-
- # We re-implement it here by using the low-level library directly. Also,
- # the functions consume() and extract_digit() were inlined and some
- # rendundand operations ( like *= 1 ) were removed.
-
my ($self,$n) = @_;
if (@_ == 0)
{
$self = ref($self) if ref($self);
$n = 40 if !defined $n || $n < 1;
- my $z0 = $MBI->_one();
- my $z1 = $MBI->_zero();
- my $z2 = $MBI->_one();
- my $ten = $MBI->_ten();
- my $three = $MBI->_new(3);
- my ($s, $d, $e, $r); my $k = 0; my $z1_sign = 0;
-
- # main loop
- for (1..$n)
- {
- while ( 1 < 3 )
- {
- if ($MBI->_acmp($z0,$z2) != 1)
- {
- # my $o = $z0 * 3 + $z1;
- my $o = $MBI->_mul( $MBI->_copy($z0), $three);
- $z1_sign == 0 ? $MBI->_sub( $o, $z1) : $MBI->_add( $o, $z1);
- ($d,$r) = $MBI->_div( $MBI->_copy($o), $z2 );
- $d = $MBI->_num($d);
- $e = $MBI->_num( scalar $MBI->_div( $MBI->_add($o, $z0), $z2 ) );
- last if $d == $e;
- }
- $k++;
- my $k2 = $MBI->_new( 2*$k+1 );
- # mul works regardless of the sign of $z1 since $k is always positive
- $MBI->_mul( $z1, $k2 );
- ($z1, $z1_sign) = _signed_add($z1, $z1_sign, $MBI->_mul( $MBI->_new(4*$k+2), $z0 ) );
- $MBI->_mul( $z0, $MBI->_new($k) );
- $MBI->_mul( $z2, $k2 );
- }
- $MBI->_mul( $z1, $ten );
- ($z1, $z1_sign) = _signed_sub($z1, $z1_sign, $MBI->_mul( $MBI->_new(10*$d), $z2 ) );
- $MBI->_mul( $z0, $ten );
- $s .= $d;
- }
-
- my $x = $self->new(0);
- $x->{_es} = '-';
- $x->{_e} = $MBI->_new(length($s)-1);
- $x->{_m} = $MBI->_new($s);
-
- $x;
+ # after 黃見利 (Hwang Chien-Lih) (1997)
+ # pi/4 = 183 * atan(1/239) + 32 * atan(1/1023) – 68 * atan(1/5832)
+ # + 12 * atan(1/110443) - 12 * atan(1/4841182) - 100 * atan(1/6826318)
+
+ # a few more to prevent rounding errors
+ $n += 4;
+
+ my ($a,$b) = $self->_atan_inv(239,$n);
+ my ($c,$d) = $self->_atan_inv(1023,$n);
+ my ($e,$f) = $self->_atan_inv(5832,$n);
+ my ($g,$h) = $self->_atan_inv(110443,$n);
+ my ($i,$j) = $self->_atan_inv(4841182,$n);
+ my ($k,$l) = $self->_atan_inv(6826318,$n);
+
+ $MBI->_mul($a, $MBI->_new(732));
+ $MBI->_mul($c, $MBI->_new(128));
+ $MBI->_mul($e, $MBI->_new(272));
+ $MBI->_mul($g, $MBI->_new(48));
+ $MBI->_mul($i, $MBI->_new(48));
+ $MBI->_mul($k, $MBI->_new(400));
+
+ my $x = $self->bone(); $x->{_m} = $a; my $x_d = $self->bone(); $x_d->{_m} = $b;
+ my $y = $self->bone(); $y->{_m} = $c; my $y_d = $self->bone(); $y_d->{_m} = $d;
+ my $z = $self->bone(); $z->{_m} = $e; my $z_d = $self->bone(); $z_d->{_m} = $f;
+ my $u = $self->bone(); $u->{_m} = $g; my $u_d = $self->bone(); $u_d->{_m} = $h;
+ my $v = $self->bone(); $v->{_m} = $i; my $v_d = $self->bone(); $v_d->{_m} = $j;
+ my $w = $self->bone(); $w->{_m} = $k; my $w_d = $self->bone(); $w_d->{_m} = $l;
+ $x->bdiv($x_d, $n);
+ $y->bdiv($y_d, $n);
+ $z->bdiv($z_d, $n);
+ $u->bdiv($u_d, $n);
+ $v->bdiv($v_d, $n);
+ $w->bdiv($w_d, $n);
+
+ delete $x->{a}; delete $y->{a}; delete $z->{a};
+ delete $u->{a}; delete $v->{a}; delete $w->{a};
+ $x->badd($y)->bsub($z)->badd($u)->bsub($v)->bsub($w);
+
+ $x->round($n-4);
}
sub bcos
$x;
}
+sub batan2
+ {
+ # calculate arcus tangens of ($x/$y)
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('batan2');
+
+ return $x->bnan() if (($x->{sign} eq $nan) ||
+ ($y->{sign} eq $nan) ||
+ ($x->is_zero() && $y->is_zero()));
+
+ # inf handling
+ if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
+ {
+ # XXX TODO:
+ return $x->bnan();
+ }
+
+ return $upgrade->new($x)->batan2($upgrade->new($y),@r) if defined $upgrade;
+
+ # divide $x by $y
+ $x->bdiv($y)->batan(@r);
+
+ # set the sign of $x depending on $y
+ $x->{sign} = '-' if $y->{sign} eq '-';
+
+ $x;
+ }
+
sub batan
{
# Calculate a arcus tangens of x.
die("$x is out of range for batan()!");
}
+ return $x->bzero(@r) if $x->is_zero();
+
# we need to limit the accuracy to protect against overflow
my $fallback = 0;
my ($scale,@params);
my $sign = 1; # start with -=
my $below = $self->new(3);
my $two = $self->new(2);
- $x->bone(); delete $x->{a}; delete $x->{p};
+ delete $x->{a}; delete $x->{p};
my $limit = $self->new("1E-". ($scale-1));
#my $steps = 0;
print Math::BigFloat->bpi(100), "\n";
-Calculate PI to N digits (including the 3 before the dot).
+Calculate PI to N digits (including the 3 before the dot). The result is
+rounded according to the current rounding mode, which defaults to "even".
This method was added in v1.87 of Math::BigInt (June 2007).
This method was added in v1.87 of Math::BigInt (June 2007).
+=head2 batan2()
+
+ my $x = Math::BigFloat->new(0.5);
+ print $x->batan2(0.5), "\n";
+
+Calculate the arcus tanges of $x / $y, modifying $x in place.
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
=head2 bmuladd()
$x->bmuladd($y,$z);
'cos' => sub { $_[0]->copy->bcos(); },
'sin' => sub { $_[0]->copy->bsin(); },
'atan2' => sub { $_[2] ?
- atan2($_[1],$_[0]->numify()) :
- atan2($_[0]->numify(),$_[1]) },
+ ref($_[0])->new($_[1])->batan2($_[0]) :
+ $_[0]->copy()->batan2($_[1]) },
# are not yet overloadable
#'hex' => sub { print "hex"; $_[0]; },
return $upgrade->new($x)->bcos(@r) if defined $upgrade;
+ require Math::BigFloat;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->bcos(@r)->as_int();
return $upgrade->new($x)->bsin(@r) if defined $upgrade;
+ require Math::BigFloat;
# calculate the result and truncate it to integer
my $t = Math::BigFloat->new($x)->bsin(@r)->as_int();
$x->round(@r);
}
+sub batan2
+ {
+ # calculate arcus tangens of ($x/$y)
+
+ # set up parameters
+ my ($self,$x,$y,@r) = (ref($_[0]),@_);
+ # objectify is costly, so avoid it
+ if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
+ {
+ ($self,$x,$y,@r) = objectify(2,@_);
+ }
+
+ return $x if $x->modify('batan2');
+
+ return $x->bnan() if (($x->{sign} eq $nan) ||
+ ($y->{sign} eq $nan) ||
+ ($x->is_zero() && $y->is_zero()));
+
+ # inf handling
+ if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
+ {
+ # XXX TODO:
+ return $x->bnan();
+ }
+
+ return $upgrade->new($x)->batan2($upgrade->new($y),@r) if defined $upgrade;
+
+ require Math::BigFloat;
+ my $r = Math::BigFloat->new($x)->batan2(Math::BigFloat->new($y),@r)->as_int();
+
+ $x->{value} = $r->{value};
+ $x->{sign} = $r->{sign};
+
+ $x;
+ }
+
sub batan
{
# Calculate arcus tangens of x to N digits. Unless upgrading is in effect, returns the
print Math::BigInt->bpi(100), "\n"; # 3
-Returns PI truncated to an integer, with the argument being ignored. that
-is it always returns C<3>.
+Returns PI truncated to an integer, with the argument being ignored. This means
+under BigInt this always returns C<3>.
-If upgrading is in effect, returns PI to N digits (including the "3"
-before the dot):
+If upgrading is in effect, returns PI, rounded to N digits with the
+current rounding mode:
use Math::BigFloat;
use Math::BigInt upgrade => Math::BigFloat;
=head2 bcos()
- my $x = Math::BigFloat->new(1);
+ my $x = Math::BigInt->new(1);
print $x->bcos(100), "\n";
Calculate the cosinus of $x, modifying $x in place.
+In BigInt, unless upgrading is in effect, the result is truncated to an
+integer.
+
This method was added in v1.87 of Math::BigInt (June 2007).
=head2 bsin()
- my $x = Math::BigFloat->new(1);
+ my $x = Math::BigInt->new(1);
print $x->bsin(100), "\n";
Calculate the sinus of $x, modifying $x in place.
+In BigInt, unless upgrading is in effect, the result is truncated to an
+integer.
+
This method was added in v1.87 of Math::BigInt (June 2007).
=head2 batan()
- my $x = Math::BigFloat->new(0.5);
+ my $x = Math::BigInt->new(1);
print $x->batan(100), "\n";
Calculate the arcus tanges of $x, modifying $x in place.
+In BigInt, unless upgrading is in effect, the result is truncated to an
+integer.
+
+This method was added in v1.87 of Math::BigInt (June 2007).
+
+=head2 batan2()
+
+ my $x = Math::BigInt->new(1);
+ print $x->batan2(5), "\n";
+
+Calculate the arcus tanges of $x / $y, modifying $x in place.
+
+In BigInt, unless upgrading is in effect, the result is truncated to an
+integer.
+
This method was added in v1.87 of Math::BigInt (June 2007).
=head2 blsft()