our($VERSION, @ISA, @EXPORT, %EXPORT_TAGS);
-my ( $i, $ip2, %logn );
+my ( $i, %logn );
$VERSION = sprintf("%s", q$Id: Complex.pm,v 1.26 1998/11/01 00:00:00 dsl Exp $ =~ /(\d+\.\d+)/);
'*' => \&multiply,
'/' => \÷,
'**' => \&power,
+ '==' => \&numeq,
'<=>' => \&spaceship,
'neg' => \&negate,
'~' => \&conjugate,
'polar_pretty_print' => 1);
my $eps = 1e-14; # Epsilon
+my $Inf = CORE::exp(CORE::exp(30));
+$Inf = "Inf" if !defined $Inf || !$Inf > 0;
+
#
# Object attributes (internal):
# cartesian [real, imaginary] -- cartesian form
}
#
+# ip2
+#
+# Half of i.
+#
+sub ip2 () { i / 2 }
+
+#
# Attribute access/set routines
#
my ($x, $y) = @{$self->{'cartesian'}};
$self->{p_dirty} = 0;
return $self->{'polar'} = [0, 0] if $x == 0 && $y == 0;
- return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y), CORE::atan2($y, $x)];
+ return $self->{'polar'} = [CORE::sqrt($x*$x + $y*$y),
+ CORE::atan2($y, $x)];
}
#
if (defined $_[1]) {
$mess .= "(Because in the definition of $_[0], the divisor ";
- $mess .= "$_[1] " unless ($_[1] eq '0');
+ $mess .= "$_[1] " unless ("$_[1]" eq '0');
$mess .= "is 0)\n";
}
return 1 if $z2 == 0 || $z1 == 1;
return 0 if $z1 == 0 && Re($z2) > 0;
}
- my $w = $inverted ? CORE::exp($z1 * CORE::log($z2))
- : CORE::exp($z2 * CORE::log($z1));
+ my $w = $inverted ? &exp($z1 * &log($z2))
+ : &exp($z2 * &log($z1));
# If both arguments cartesian, return cartesian, else polar.
return $z1->{c_dirty} == 0 &&
(not ref $z2 or $z2->{c_dirty} == 0) ?
}
#
+# (numeq)
+#
+# Computes z1 == z2.
+#
+# (Required in addition to spaceship() because of NaNs.)
+sub numeq {
+ my ($z1, $z2, $inverted) = @_;
+ my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0);
+ my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
+ return $re1 == $re2 && $im1 == $im2 ? 1 : 0;
+}
+
+#
# (negate)
#
# Computes -z.
#
sub abs {
my ($z, $rho) = @_;
- return $z unless ref $z;
+ unless (ref $z) {
+ if (@_ == 2) {
+ $_[0] = $_[1];
+ } else {
+ return CORE::abs($z);
+ }
+ }
if (defined $rho) {
$z->{'polar'} = [ $rho, ${$z->polar}[1] ];
$z->{p_dirty} = 0;
sub sqrt {
my ($z) = @_;
my ($re, $im) = ref $z ? @{$z->cartesian} : ($z, 0);
- return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re) if $im == 0;
+ return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re)
+ if $im == 0;
my ($r, $t) = @{$z->polar};
return (ref $z)->emake(CORE::sqrt($r), $t/2);
}
#
sub cbrt {
my ($z) = @_;
- return $z < 0 ? -CORE::exp(CORE::log(-$z)/3) : ($z > 0 ? CORE::exp(CORE::log($z)/3): 0)
+ return $z < 0 ?
+ -CORE::exp(CORE::log(-$z)/3) :
+ ($z > 0 ? CORE::exp(CORE::log($z)/3): 0)
unless ref $z;
my ($r, $t) = @{$z->polar};
+ return 0 if $r == 0;
return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3);
}
# Die on bad root.
#
sub _rootbad {
- my $mess = "Root $_[0] not defined, root must be positive integer.\n";
+ my $mess = "Root $_[0] illegal, root rank must be positive integer.\n";
my @up = caller(1);
sub root {
my ($z, $n) = @_;
_rootbad($n) if ($n < 1 or int($n) != $n);
- my ($r, $t) = ref $z ? @{$z->polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);
+ my ($r, $t) = ref $z ?
+ @{$z->polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);
my @root;
my $k;
my $theta_inc = pit2 / $n;
$z = cplx($z, 0) unless ref $z;
my $logn = $logn{$n};
$logn = $logn{$n} = CORE::log($n) unless defined $logn; # Cache log(n)
- return CORE::log($z) / $logn;
+ return &log($z) / $logn;
}
#
#
sub cos {
my ($z) = @_;
+ return CORE::cos($z) unless ref $z;
my ($x, $y) = @{$z->cartesian};
my $ey = CORE::exp($y);
- my $ey_1 = 1 / $ey;
- return (ref $z)->make(CORE::cos($x) * ($ey + $ey_1)/2,
- CORE::sin($x) * ($ey_1 - $ey)/2);
+ my $sx = CORE::sin($x);
+ my $cx = CORE::cos($x);
+ my $ey_1 = $ey ? 1 / $ey : $Inf;
+ return (ref $z)->make($cx * ($ey + $ey_1)/2,
+ $sx * ($ey_1 - $ey)/2);
}
#
#
sub sin {
my ($z) = @_;
+ return CORE::sin($z) unless ref $z;
my ($x, $y) = @{$z->cartesian};
my $ey = CORE::exp($y);
- my $ey_1 = 1 / $ey;
- return (ref $z)->make(CORE::sin($x) * ($ey + $ey_1)/2,
- CORE::cos($x) * ($ey - $ey_1)/2);
+ my $sx = CORE::sin($x);
+ my $cx = CORE::cos($x);
+ my $ey_1 = $ey ? 1 / $ey : $Inf;
+ return (ref $z)->make($sx * ($ey + $ey_1)/2,
+ $cx * ($ey - $ey_1)/2);
}
#
#
sub tan {
my ($z) = @_;
- my $cz = CORE::cos($z);
- _divbyzero "tan($z)", "cos($z)" if (CORE::abs($cz) < $eps);
- return CORE::sin($z) / $cz;
+ my $cz = &cos($z);
+ _divbyzero "tan($z)", "cos($z)" if $cz == 0;
+ return &sin($z) / $cz;
}
#
#
sub sec {
my ($z) = @_;
- my $cz = CORE::cos($z);
+ my $cz = &cos($z);
_divbyzero "sec($z)", "cos($z)" if ($cz == 0);
return 1 / $cz;
}
#
sub csc {
my ($z) = @_;
- my $sz = CORE::sin($z);
+ my $sz = &sin($z);
_divbyzero "csc($z)", "sin($z)" if ($sz == 0);
return 1 / $sz;
}
#
sub cot {
my ($z) = @_;
- my $sz = CORE::sin($z);
+ my $sz = &sin($z);
_divbyzero "cot($z)", "sin($z)" if ($sz == 0);
- return CORE::cos($z) / $sz;
+ return &cos($z) / $sz;
}
#
#
sub acos {
my $z = $_[0];
- return CORE::atan2(CORE::sqrt(1-$z*$z), $z) if (! ref $z) && CORE::abs($z) <= 1;
+ return CORE::atan2(CORE::sqrt(1-$z*$z), $z)
+ if (! ref $z) && CORE::abs($z) <= 1;
my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0);
+ return 0 if $x == 1 && $y == 0;
my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
my $alpha = ($t1 + $t2)/2;
#
sub asin {
my $z = $_[0];
- return CORE::atan2($z, CORE::sqrt(1-$z*$z)) if (! ref $z) && CORE::abs($z) <= 1;
+ return CORE::atan2($z, CORE::sqrt(1-$z*$z))
+ if (! ref $z) && CORE::abs($z) <= 1;
my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0);
+ return 0 if $x == 0 && $y == 0;
my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
my $alpha = ($t1 + $t2)/2;
sub atan {
my ($z) = @_;
return CORE::atan2($z, 1) unless ref $z;
+ my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0);
+ return 0 if $x == 0 && $y == 0;
_divbyzero "atan(i)" if ( $z == i);
- _divbyzero "atan(-i)" if (-$z == i);
- my $log = CORE::log((i + $z) / (i - $z));
- $ip2 = 0.5 * i unless defined $ip2;
- return $ip2 * $log;
+ _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test...
+ my $log = &log((i + $z) / (i - $z));
+ return ip2 * $log;
}
#
#
sub acot {
my ($z) = @_;
- _divbyzero "acot(0)" if (CORE::abs($z) < $eps);
- return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z) unless ref $z;
- _divbyzero "acot(i)" if (CORE::abs($z - i) < $eps);
- _logofzero "acot(-i)" if (CORE::abs($z + i) < $eps);
+ _divbyzero "acot(0)" if $z == 0;
+ return ($z >= 0) ? CORE::atan2(1, $z) : CORE::atan2(-1, -$z)
+ unless ref $z;
+ _divbyzero "acot(i)" if ($z - i == 0);
+ _logofzero "acot(-i)" if ($z + i == 0);
return atan(1 / $z);
}
my $ex;
unless (ref $z) {
$ex = CORE::exp($z);
- return ($ex + 1/$ex)/2;
+ return $ex ? ($ex + 1/$ex)/2 : $Inf;
}
my ($x, $y) = @{$z->cartesian};
+ my $cy = CORE::cos($y);
+ my $sy = CORE::cos($y);
$ex = CORE::exp($x);
- my $ex_1 = 1 / $ex;
+ my $ex_1 = $ex ? 1 / $ex : $Inf;
return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2,
CORE::sin($y) * ($ex - $ex_1)/2);
}
my ($z) = @_;
my $ex;
unless (ref $z) {
+ return 0 if $z == 0;
$ex = CORE::exp($z);
- return ($ex - 1/$ex)/2;
+ return $ex ? ($ex - 1/$ex)/2 : "-$Inf";
}
my ($x, $y) = @{$z->cartesian};
+ my $cy = CORE::cos($y);
+ my $sy = CORE::sin($y);
$ex = CORE::exp($x);
- my $ex_1 = 1 / $ex;
- return (ref $z)->make(CORE::cos($y) * ($ex - $ex_1)/2,
- CORE::sin($y) * ($ex + $ex_1)/2);
+ my $ex_1 = $ex ? 1 / $ex : $Inf;
+ return (ref $z)->make($cy * ($ex - $ex_1)/2,
+ $sy * ($ex + $ex_1)/2);
}
#
sub coth {
my ($z) = @_;
my $sz = sinh($z);
- _divbyzero "coth($z)", "sinh($z)" if ($sz == 0);
+ _divbyzero "coth($z)", "sinh($z)" if $sz == 0;
return cosh($z) / $sz;
}
sub acosh {
my ($z) = @_;
unless (ref $z) {
- return CORE::log($z + CORE::sqrt($z*$z-1)) if $z >= 1;
$z = cplx($z, 0);
}
my ($re, $im) = @{$z->cartesian};
if ($im == 0) {
- return cplx(CORE::log($re + CORE::sqrt($re*$re - 1)), 0) if $re >= 1;
- return cplx(0, CORE::atan2(CORE::sqrt(1-$re*$re), $re)) if CORE::abs($re) <= 1;
+ return CORE::log($re + CORE::sqrt($re*$re - 1))
+ if $re >= 1;
+ return cplx(0, CORE::atan2(CORE::sqrt(1 - $re*$re), $re))
+ if CORE::abs($re) < 1;
}
- return CORE::log($z + CORE::sqrt($z*$z - 1));
+ my $s = &sqrt($z*$z - 1);
+ my $t = $z + $s;
+ $t = 1/(2*$s) if $t == 0 || $t && &abs(cosh(&log($t)) - $z) > $eps;
+ return &log($t);
}
#
# asinh
#
-# Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z-1))
+# Computes the arc hyperbolic sine asinh(z) = log(z + sqrt(z*z+1))
#
sub asinh {
my ($z) = @_;
- return CORE::log($z + CORE::sqrt($z*$z + 1));
+ unless (ref $z) {
+ my $t = $z + CORE::sqrt($z*$z + 1);
+ return CORE::log($t) if $t;
+ }
+ my $s = &sqrt($z*$z + 1);
+ my $t = $z + $s;
+ # Try Taylor series if looking bad.
+ $t = 1/(2*$s) if $t == 0 || $t && &abs(sinh(&log($t)) - $z) > $eps;
+ return &log($t);
}
#
return CORE::log((1 + $z)/(1 - $z))/2 if CORE::abs($z) < 1;
$z = cplx($z, 0);
}
- _divbyzero 'atanh(1)', "1 - $z" if ($z == 1);
- _logofzero 'atanh(-1)' if ($z == -1);
- return 0.5 * CORE::log((1 + $z) / (1 - $z));
+ _divbyzero 'atanh(1)', "1 - $z" if (1 - $z == 0);
+ _logofzero 'atanh(-1)' if (1 + $z == 0);
+ return 0.5 * &log((1 + $z) / (1 - $z));
}
#
#
sub asech {
my ($z) = @_;
- _divbyzero 'asech(0)', $z if ($z == 0);
+ _divbyzero 'asech(0)', "$z" if ($z == 0);
return acosh(1 / $z);
}
#
sub acoth {
my ($z) = @_;
- _divbyzero 'acoth(0)' if (CORE::abs($z) < $eps);
+ _divbyzero 'acoth(0)' if ($z == 0);
unless (ref $z) {
return CORE::log(($z + 1)/($z - 1))/2 if CORE::abs($z) > 1;
$z = cplx($z, 0);
}
- _divbyzero 'acoth(1)', "$z - 1" if (CORE::abs($z - 1) < $eps);
- _logofzero 'acoth(-1)', "1 / $z" if (CORE::abs($z + 1) < $eps);
- return CORE::log((1 + $z) / ($z - 1)) / 2;
+ _divbyzero 'acoth(1)', "$z - 1" if ($z - 1 == 0);
+ _logofzero 'acoth(-1)', "1 + $z" if (1 + $z == 0);
+ return &log((1 + $z) / ($z - 1)) / 2;
}
#
($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
}
if ($im2 == 0) {
- return cplx(CORE::atan2($re1, $re2), 0) if $im1 == 0;
- return cplx(($im1<=>0) * pip2, 0) if $re2 == 0;
+ return CORE::atan2($re1, $re2) if $im1 == 0;
+ return ($im1<=>0) * pip2 if $re2 == 0;
}
my $w = atan($z1/$z2);
my ($u, $v) = ref $w ? @{$w->cartesian} : ($w, 0);
my ($x, $y) = @{$z->cartesian};
my ($re, $im);
- $x = int($x + ($x < 0 ? -1 : 1) * $eps)
- if int(CORE::abs($x)) != int(CORE::abs($x) + $eps);
- $y = int($y + ($y < 0 ? -1 : 1) * $eps)
- if int(CORE::abs($y)) != int(CORE::abs($y) + $eps);
-
- $re = "$x" if CORE::abs($x) >= $eps;
-
my %format = $z->display_format;
my $format = $format{format};
- if ($y == 1) { $im = 'i' }
- elsif ($y == -1) { $im = '-i' }
- elsif (CORE::abs($y) >= $eps) {
- $im = (defined $format ? sprintf($format, $y) : $y) . "i";
+ if ($x) {
+ if ($x =~ /^NaN[QS]?$/i) {
+ $re = $x;
+ } else {
+ if ($x =~ /^-?$Inf$/oi) {
+ $re = $x;
+ } else {
+ $re = defined $format ? sprintf($format, $x) : $x;
+ }
+ }
+ } else {
+ undef $re;
+ }
+
+ if ($y) {
+ if ($y == 1) { $im = "" }
+ elsif ($y == -1) { $im = "-" }
+ elsif ($y =~ /^(NaN[QS]?)$/i) {
+ $im = $y;
+ } else {
+ if ($y =~ /^-?$Inf$/oi) {
+ $im = $y;
+ } else {
+ $im = defined $format ? sprintf($format, $y) : $y;
+ }
+ }
+ $im .= "i";
+ } else {
+ undef $im;
}
- my $str = '';
- $str = defined $format ? sprintf($format, $re) : $re
- if defined $re;
+ my $str = $re;
+
if (defined $im) {
if ($y < 0) {
$str .= $im;
- } elsif ($y > 0) {
+ } elsif ($y > 0 || $im =~ /^NaN[QS]?i$/i) {
$str .= "+" if defined $re;
$str .= $im;
}
+ } elsif (!defined $re) {
+ $str = "0";
}
return $str;
}
-# Helper for stringify_polar, a Greatest Common Divisor with a memory.
-
-sub _gcd {
- my ($a, $b) = @_;
-
- use integer;
-
- # Loops forever if given negative inputs.
-
- if ($b and $a > $b) { return gcd($a % $b, $b) }
- elsif ($a and $b > $a) { return gcd($b % $a, $a) }
- else { return $a ? $a : $b }
-}
-
-my %gcd;
-
-sub gcd {
- my ($a, $b) = @_;
-
- my $id = "$a $b";
-
- unless (exists $gcd{$id}) {
- $gcd{$id} = _gcd($a, $b);
- $gcd{"$b $a"} = $gcd{$id};
- }
-
- return $gcd{$id};
-}
-
#
# ->stringify_polar
#
my ($r, $t) = @{$z->polar};
my $theta;
- return '[0,0]' if $r <= $eps;
-
my %format = $z->display_format;
+ my $format = $format{format};
- my $nt = $t / pit2;
- $nt = ($nt - int($nt)) * pit2;
- $nt += pit2 if $nt < 0; # Range [0, 2pi]
-
- if (CORE::abs($nt) <= $eps) { $theta = 0 }
- elsif (CORE::abs(pi-$nt) <= $eps) { $theta = 'pi' }
-
- if (defined $theta) {
- $r = int($r + ($r < 0 ? -1 : 1) * $eps)
- if int(CORE::abs($r)) != int(CORE::abs($r) + $eps);
- $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps)
- if ($theta ne 'pi' and
- int(CORE::abs($theta)) != int(CORE::abs($theta) + $eps));
- return "\[$r,$theta\]";
+ if ($t =~ /^NaN[QS]?$/i || $t =~ /^-?$Inf$/oi) {
+ $theta = $t;
+ } elsif ($t == pi) {
+ $theta = "pi";
+ } elsif ($r == 0 || $t == 0) {
+ $theta = defined $format ? sprintf($format, $t) : $t;
}
+ return "[$r,$theta]" if defined $theta;
+
#
- # Okay, number is not a real. Try to identify pi/n and friends...
+ # Try to identify pi/n and friends.
#
- $nt -= pit2 if $nt > pi;
-
- if ($format{polar_pretty_print} && CORE::abs($nt) >= deg1) {
- my ($n, $k, $kpi);
-
- for ($k = 1, $kpi = pi; $k < 10; $k++, $kpi += pi) {
- $n = int($kpi / $nt + ($nt > 0 ? 1 : -1) * 0.5);
- if (CORE::abs($kpi/$n - $nt) <= $eps) {
- $n = CORE::abs($n);
- my $gcd = gcd($k, $n);
- if ($gcd > 1) {
- $k /= $gcd;
- $n /= $gcd;
- }
- next if $n > 360;
- $theta = ($nt < 0 ? '-':'').
- ($k == 1 ? 'pi':"${k}pi");
- $theta .= '/'.$n if $n > 1;
+ $t -= int(CORE::abs($t) / pit2) * pit2;
+
+ if ($format{polar_pretty_print}) {
+ my ($a, $b);
+ for $a (2, 3, 4, 6, 8, 12, 16, 24, 30, 32, 36, 48, 60, 64, 72) {
+ $b = $t * $a / pi;
+ if (int($b) == $b) {
+ $b = $b < 0 ? "-" : "" if CORE::abs($b) == 1;
+ $theta = "${b}pi/$a";
last;
}
}
}
- $theta = $nt unless defined $theta;
-
- $r = int($r + ($r < 0 ? -1 : 1) * $eps)
- if int(CORE::abs($r)) != int(CORE::abs($r) + $eps);
- $theta = int($theta + ($theta < 0 ? -1 : 1) * $eps)
- if ($theta !~ m(^-?\d*pi/\d+$) and
- int(CORE::abs($theta)) != int(CORE::abs($theta) + $eps));
-
- my $format = $format{format};
if (defined $format) {
$r = sprintf($format, $r);
- $theta = sprintf($format, $theta);
+ $theta = sprintf($format, $theta) unless defined $theta;
+ } else {
+ $theta = $t unless defined $theta;
}
- return "\[$r,$theta\]";
+ return "[$r,$theta]";
}
1;