use 5.005;
use strict;
-use Math::Complex 1.54;
+use Math::Complex 1.55;
use Math::Complex qw(:trig :pi);
use vars qw($VERSION $PACKAGE @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);
@ISA = qw(Exporter);
-$VERSION = 1.18;
+$VERSION = 1.19;
my @angcnv = qw(rad2deg rad2grad
deg2rad deg2grad
sub great_circle_direction {
my ( $theta0, $phi0, $theta1, $phi1 ) = @_;
- my $distance = &great_circle_distance;
+ my $distance = great_circle_distance($theta0, $phi0, $theta1, $phi1);
my $lat0 = pip2 - $phi0;
my $lat1 = pip2 - $phi1;
and expect C to be B, because the bearing constantly changes when
going from A to B (except in some special case like the meridians or
the circles of latitudes) and in great_circle_destination() one gives
-a constant bearing to follow.
+a B<constant> bearing to follow.
=head2 CAVEAT FOR GREAT CIRCLE FORMULAS