X-Git-Url: http://git.shadowcat.co.uk/gitweb/gitweb.cgi?a=blobdiff_plain;f=t%2Fop%2Farith.t;h=4af49c505d10f7bedb7f86d85544a68467ac9553;hb=397cf4b72b64bab2d81c27006b39549ca667b5a8;hp=8b8e2bce2bc205dbc43307002c9809f146f90c57;hpb=96a05aee450e24b2d5686c50a7e95ce03114af79;p=p5sagit%2Fp5-mst-13.2.git diff --git a/t/op/arith.t b/t/op/arith.t index 8b8e2bc..4af49c5 100755 --- a/t/op/arith.t +++ b/t/op/arith.t @@ -1,6 +1,13 @@ #!./perl -w -print "1..113\n"; +BEGIN { + chdir 't' if -d 't'; + @INC = '../lib'; +} + +use Config; + +print "1..134\n"; sub try ($$) { print +($_[1] ? "ok" : "not ok"), " $_[0]\n"; @@ -12,6 +19,18 @@ sub tryeq ($$$) { print "not ok $_[0] # $_[1] != $_[2]\n"; } } +sub tryeq_sloppy ($$$) { + if ($_[1] == $_[2]) { + print "ok $_[0]\n"; + } else { + my $error = abs ($_[1] - $_[2]) / $_[1]; + if ($error < 1e-9) { + print "ok $_[0] # $_[1] is close to $_[2], \$^O eq $^O\n"; + } else { + print "not ok $_[0] # $_[1] != $_[2]\n"; + } + } +} tryeq 1, 13 % 4, 1; tryeq 2, -13 % 4, 3; @@ -211,3 +230,75 @@ tryeq 110, 1 + " 1", 2; tryeq 111, 3 + " -1", 2; tryeq 112, 1.2, " 1.2"; tryeq 113, -1.2, " -1.2"; + +# divide + +tryeq 114, 28/14, 2; +tryeq 115, 28/-7, -4; +tryeq 116, -28/4, -7; +tryeq 117, -28/-2, 14; + +tryeq 118, 0x80000000/1, 0x80000000; +tryeq 119, 0x80000000/-1, -0x80000000; +tryeq 120, -0x80000000/1, -0x80000000; +tryeq 121, -0x80000000/-1, 0x80000000; + +# The example for sloppy divide, rigged to avoid the peephole optimiser. +tryeq_sloppy 122, "20." / "5.", 4; + +tryeq 123, 2.5 / 2, 1.25; +tryeq 124, 3.5 / -2, -1.75; +tryeq 125, -4.5 / 2, -2.25; +tryeq 126, -5.5 / -2, 2.75; + +# Bluuurg if your floating point can't accurately cope with powers of 2 +# [I suspect this is parsing string->float problems, not actual arith] +tryeq_sloppy 127, 18446744073709551616/1, 18446744073709551616; # Bluuurg +tryeq_sloppy 128, 18446744073709551616/2, 9223372036854775808; +tryeq_sloppy 129, 18446744073709551616/4294967296, 4294967296; +tryeq_sloppy 130, 18446744073709551616/9223372036854775808, 2; + +{ + # The peephole optimiser is wrong to think that it can substitute intops + # in place of regular ops, because i_multiply can overflow. + # Bug reported by "Sisyphus" + my $n = 1127; + + my $float = ($n % 1000) * 167772160.0; + tryeq_sloppy 131, $float, 21307064320; + + # On a 32 bit machine, if the i_multiply op is used, you will probably get + # -167772160. It's actually undefined behaviour, so anything may happen. + my $int = ($n % 1000) * 167772160; + tryeq 132, $int, 21307064320; + + my $t = time; + my $t1000 = time() * 1000; + try 133, abs($t1000 -1000 * $t) <= 2000; +} + +if ($^O eq 'vos') { + print "not ok 134 # TODO VOS raises SIGFPE instead of producing infinity.\n"; +} +elsif (($^O eq 'VMS') && !defined($Config{useieee})) { + print "ok 134 # SKIP -- the IEEE infinity model is unavailable in this configuration.\n"; +} +else { + # The computation of $v should overflow and produce "infinity" + # on any system whose max exponent is less than 10**1506. + # The exact string used to represent infinity varies by OS, + # so we don't test for it; all we care is that we don't die. + # + # Perl considers it to be an error if SIGFPE is raised. + # Chances are the interpreter will die, since it doesn't set + # up a handler for SIGFPE. That's why this test is last; to + # minimize the number of test failures. --PG + + my $n = 5000; + my $v = 2; + while (--$n) + { + $v *= 2; + } + print "ok 134\n"; +}