X-Git-Url: http://git.shadowcat.co.uk/gitweb/gitweb.cgi?a=blobdiff_plain;f=pages%2FSDL-Video.html-inc;h=d1de82186f9c8911ebf626e2c94fdf5d425caa42;hb=5da5649767979ede6f91b014e6f9e2d7dc729739;hp=56f99005029794338118097b587e797aa47af80d;hpb=3774ca11c8c51b4784c7ada3a5b536c38f45447a;p=sdlgit%2FSDL-Site.git diff --git a/pages/SDL-Video.html-inc b/pages/SDL-Video.html-inc index 56f9900..d1de821 100644 --- a/pages/SDL-Video.html-inc +++ b/pages/SDL-Video.html-inc @@ -5,60 +5,85 @@
-Video.png
+Video.pngVideo_lock_surface.png

NAME

Top

@@ -72,8 +97,8 @@

SYNOPSIS

Top

-
 use SDL;
- use SDL::Video;
+
 use SDL ':init';
+ use SDL::Video ':flags';
  use SDL::Surface;
  use SDL::Rect;
 
@@ -84,7 +109,7 @@
  SDL::init(SDL_INIT_VIDEO);
 
  # setting video mode
- my $screen_surface = SDL::Video::set_video_mode($screen_width, $screen_height, 32, SDL_SWSURFACE);
+ my $screen_surface = SDL::Video::set_video_mode($screen_width, $screen_height, 32, SDL_ANYFORMAT);
 
  # drawing something somewhere
  my $mapped_color   = SDL::Video::map_RGB($screen_surface->format(), 0, 0, 255); # blue
@@ -102,8 +127,78 @@
 
-

METHODS

Top

-
+

CONSTANTS

Top

+
+

Available flags for SDL::Video::set_video_mode:

+
+
SDL_ANYFORMAT
+
+

Allow any pixel-format *

+
+
SDL_HWPALETTE
+
+

Have an exclusive palette

+
+
SDL_DOUBLEBUF
+
+

Double buffered *

+
+
SDL_FULLSCREEN
+
+

Full screen surface *

+
+
SDL_OPENGL
+
+

Have an OpenGL context *

+
+
SDL_OPENGLBLIT
+
+

Support OpenGL blitting *. NOTE: This option is kept for compatibility only, and is not recommended for new code.

+
+
SDL_RESIZABLE
+
+

Resizable surface *

+
+
SDL_NOFRAME
+
+

No window caption or edge frame

+
+
+

Used internally

+
+
SDL_HWACCEL
+
+

Use hardware acceleration blit

+
+
SDL_SRCCOLORKEY
+
+

Use colorkey blitting

+
+
SDL_RLEACCELOK
+
+

Private flag

+
+
SDL_RLEACCEL
+
+

Accelerated colorkey blitting with RLE

+
+
SDL_SRCALPHA
+
+

Use alpha blending blit

+
+
SDL_PREALLOC
+
+

Use preallocated memory

+
+
+ + + + + +
+

Core Functions

Top

+

get_video_surface

@@ -111,7 +206,7 @@
 my $surface = SDL::Video::get_video_surface();
 
 
-

This function returns the current display SDL::Surface. If SDL is doing format conversion on the display surface, this +

This function returns the current display SDL::Surface. If SDL is doing format conversion on the display surface, this function returns the publicly visible surface, not the real video surface.

Example:

 # somewhere after you set the video mode
@@ -127,8 +222,8 @@ function returns the publicly visible surface, not the real video surface.

 my $video_info = SDL::Video::get_video_info();
 
 
-

This function returns a read-only SDL::VideoInfo containing information about the video hardware. If it is called before -SDL::Video::set_video_mode, the vfmt member of the returned structure will contain the pixel +

This function returns a read-only SDL::VideoInfo containing information about the video hardware. If it is called before +SDL::Video::set_video_mode, the vfmt member of the returned structure will contain the pixel format of the best video mode.

Example:

 use SDL;
@@ -168,8 +263,8 @@ word identifier like "x11", "windib"
 
 
-

list_modes(formats,flags)

-
+

list_modes

+
 my @modes = @{ SDL::Video::list_modes( $pixel_format, $flags ) };
 
 
@@ -206,13 +301,13 @@ or it return undef if no modes are available.

-

video_mode_ok(width,height,bpp,flags)

-
+

video_mode_ok

+
 my $bpp_ok = SDL::Video::video_mode_ok( $width, $height, $bpp, $flags );
 
 

This function is used to check whether the requested mode is supported by the current video device. The arguments passed to this function -are the same as those you would pass to SDL::Video::set_video_mode. +are the same as those you would pass to SDL::Video::set_video_mode. It returns 0 if the mode is not supported at all, otherwise the suggested bpp.

Example:

 use SDL;
@@ -224,24 +319,21 @@ It returns 0 if the mode is not supported at all, otherwise the sug
 
  unless($video_mode_ok)
  {
-     printf("this video mode ist not supported\n" );
+     printf( "this video mode is not supported\n" );
  }
 
  SDL::quit();
 
-
-
-
 
-

set_video_mode(width,height,bpp,flags)

-
+

set_video_mode

+
 my $surface = SDL::Video::set_video_mode( 800, 600, 32, SDL_SWSURFACE|SDL_DOUBLEBUF|SDL_FULLSCREEN);
 
 

Sets up a video mode with the specified width, height, bits-per-pixel and flags. -set_video_mode returns a SDL::Surface on success otherwise it returns undef on error, the error message is retrieved +set_video_mode returns a SDL::Surface on success otherwise it returns undef on error, the error message is retrieved using SDL::get_error.

@@ -272,11 +364,11 @@ Passing SDL_ANYFORMAT prevents this and causes SDL to use the video
SDL_DOUBLEBUF
-

Enable hardware double buffering; only valid with SDL_HWSURFACE. Calling SDL::Video::flip will flip the buffers and update +

Enable hardware double buffering; only valid with SDL_HWSURFACE. Calling SDL::Video::flip will flip the buffers and update the screen. All drawing will take place on the surface that is not displayed at the moment. -If double buffering could not be enabled then SDL::Video::flip will just perform a -SDL::Video::update_rect on the entire screen.

+If double buffering could not be enabled then SDL::Video::flip will just perform a +SDL::Video::update_rect on the entire screen.

SDL_FULLSCREEN
@@ -286,7 +378,7 @@ the next higher resolution will be used and the display window centered on a bla
SDL_OPENGL

Create an OpenGL rendering context. You should have previously set OpenGL video attributes with -SDL::Video::GL_set_attribute.

+SDL::Video::GL_set_attribute.

SDL_OPENGLBLIT
@@ -298,7 +390,7 @@ NOTE: This option is kept for compatibility only, and will be removed in next ve

Create a resizable window. When the window is resized by the user a SDL_VIDEORESIZE event is generated and -SDL::Video::set_video_mode can be called again with the new size.

+SDL::Video::set_video_mode can be called again with the new size.

SDL_NOFRAME
@@ -319,32 +411,407 @@ been set causes the application to simply ignore those attributes, while enablin

User note 2: Also note that, in Windows, setting the video mode resets the current OpenGL context. You must execute again the OpenGL initialization code (set the clear color or the shade model, or reload textures, for example) after calling SDL::set_video_mode. In Linux, however, it works fine, and the initialization code only needs to be executed after the first call to -SDL::Video::set_video_mode (although there is no harm in executing the initialization code after -each call to SDL::Video::set_video_mode, for example for a multiplatform application).

+SDL::Video::set_video_mode (although there is no harm in executing the initialization code after +each call to SDL::Video::set_video_mode, for example for a multiplatform application).

+ +
+

convert_surface

+
+
 $converted_surface = SDL::Video::convert_surface( $surface, $format, $flags );
+
+
+

Creates a new SDL::surface of the specified SDL::PixelFormat, and then copies and maps the given surface to it. +It is also useful for making a copy of a surface.

+

The flags parameter is passed to SDL::Surface->new and has those semantics. +This function is used internally by SDL::Video::display_format. +This function can only be called after SDL::init.

+

it returns a SDL::Surface on success or undef on error.

+ +
+

display_format

+
+
 $new_surface = SDL::Video::display_format( $surface );
+
+
+

This function takes a surface and copies it to a new surface of the pixel format and colors of the video framebuffer, suitable for fast +blitting onto the display surface. It calls SDL::Video::convert_surface.

+

If you want to take advantage of hardware colorkey or alpha blit acceleration, you should set the colorkey and alpha value before calling +this function.

+

If you want an alpha channel, see SDL::Video::display_format_alpha. +Return Value

+

Note: Remember to use a different variable for the returned surface, otherwise you have a memory leak, since the original surface isn't freed.

+ +
+

display_format_alpha

+
+
 $new_surface = SDL::Video::display_format_alpha( $surface );
+
+
+

This function takes a surface and copies it to a new surface of the pixel format and colors of the video framebuffer plus an alpha channel, +suitable for fast blitting onto the display surface. It calls SDL::Video::convert_surface.

+

If you want to take advantage of hardware colorkey or alpha blit acceleration, you should set the colorkey and alpha value before calling +this function.

+

This function can be used to convert a colorkey to an alpha channel, if the SDL_SRCCOLORKEY flag is set on the surface. The generated +surface will then be transparent (alpha=0) where the pixels match the colorkey, and opaque (alpha=255) elsewhere.

+

Note: The video surface must be initialised using SDL::Video::set_video_mode before this function is called, or it will +segfault.

+ +
+

load_BMP

+
+
 $surface = SDL::Video::load_BMP( $filename );
+
+
+

Loads a SDL::Surface from a named Windows BMP file. +SDL::Video::load_BMP returns a SDL::Surface on success or undef on error.

+

Note: When loading a 24-bit Windows BMP file, pixel data points are loaded as blue, green, red, and NOT red, green, blue (as one might expect).

+
 use SDL;
+ use SDL::Video;
+ use SDL::Rect;
+ use SDL::Surface;
+
+ my $screen_width  = 640;
+ my $screen_height = 480;
+
+ SDL::init(SDL_INIT_VIDEO);
+
+ my $screen  = SDL::Video::set_video_mode($screen_width, $screen_height, 32, SDL_SWSURFACE);
+
+ my $picture = SDL::Video::load_BMP('test.bmp');
+
+ die(SDL::get_error) unless $picture;
+
+ my $rect    = SDL::Rect->new(0, 0, $screen_width, $screen_height);
+
+ SDL::Video::blit_surface( $picture, SDL::Rect->new(0, 0, $picture->w, $picture->h), 
+                           $screen,  SDL::Rect->new(0, 0, $screen->w,  $screen->h) );
+
+ SDL::Video::update_rect( $screen, 0, 0, $screen_width, $screen_height );
+
+ sleep(2);
+
+ SDL::quit;
+
+
+ +
+

save_BMP

+
+
 $saved_BMP = SDL::Video::save_BMP( $surface, $filename );
+
+
+

Saves the given SDL::Surface as a Windows BMP file named filename. +it returns 0 on success or -1 on error.

+ +
+

set_color_key

+
+
 $set_color_key = SDL::Video::set_color_key( $surface, $flag, $key );
+
+
+

Sets the color key (transparent pixel) in a blittable surface and enables or disables RLE blit acceleration.

+

RLE acceleration can substantially speed up blitting of images with large horizontal runs of transparent pixels (i.e., pixels that match +the key value). +The key must be of the same pixel format as the surface, SDL::Video::map_RGB is often useful for obtaining an acceptable value. +If flag is SDL_SRCCOLORKEY then key is the transparent pixel value in the source image of a blit.

+

If flag is OR'd with SDL_RLEACCEL then the surface will be drawn using RLE acceleration when drawn with SDL::Blit_surface. +The surface will actually be encoded for RLE acceleration the first time SDL::Video::blit_surface or +SDL::Video::display_format|/display_format is called on the surface. +If flag is 0, this function clears any current color key.

+

SDL::Video::set_color_key returns 0 on success or -1 on error.

+ +
+

set_alpha

+
+
 $set_alpha = SDL::Video::set_alpha( $surface, $flag, $key );
+
+
+

set_alpha is used for setting the per-surface alpha value and/or enabling and disabling alpha blending.

+

The surface parameter specifies which SDL::surface whose alpha attributes you wish to adjust. +flags is used to specify whether alpha blending should be used ( SDL_SRCALPHA ) and whether the surface should use RLE acceleration for +blitting ( SDL_RLEACCEL ). +flags can be an OR'd combination of these two options, one of these options or 0. +If SDL_SRCALPHA is not passed as a flag then all alpha information is ignored when blitting the surface. +The alpha parameter is the per-surface alpha value; a surface need not have an alpha channel to use per-surface alpha and blitting can +still be accelerated with SDL_RLEACCEL.

+

Note: The per-surface alpha value of 128 is considered a special case and is optimised, so it's much faster than other per-surface values.

+

Alpha affects surface blitting in the following ways:

+
+
RGBA->RGB with SDL_SRCALPHA
+
+

The source is alpha-blended with the destination, using the alpha channel. +SDL_SRCCOLORKEY and the per-surface alpha are ignored.

+
+
RGBA->RGB without SDL_SRCALPHA
+
+

The RGB data is copied from the source. The source alpha channel and the per-surface alpha value are ignored. +If SDL_SRCCOLORKEY is set, only the pixels not matching the colorkey value are copied.

+
+
RGB->RGBA with SDL_SRCALPHA
+
+

The source is alpha-blended with the destination using the per-surface alpha value. +If SDL_SRCCOLORKEY is set, only the pixels not matching the colorkey value are copied. +The alpha channel of the copied pixels is set to opaque.

+
+
RGB->RGBA without SDL_SRCALPHA
+
+

The RGB data is copied from the source and the alpha value of the copied pixels is set to opaque. +If SDL_SRCCOLORKEY is set, only the pixels not matching the colorkey value are copied.

+
+
RGBA->RGBA with SDL_SRCALPHA
+
+

The source is alpha-blended with the destination using the source alpha channel. +The alpha channel in the destination surface is left untouched. SDL_SRCCOLORKEY is ignored.

+
+
RGBA->RGBA without SDL_SRCALPHA
+
+

The RGBA data is copied to the destination surface. +If SDL_SRCCOLORKEY is set, only the pixels not matching the colorkey value are copied.

+
+
RGB->RGB with SDL_SRCALPHA
+
+

The source is alpha-blended with the destination using the per-surface alpha value. +If SDL_SRCCOLORKEY is set, only the pixels not matching the colorkey value are copied.

+
+
RGB->RGB without SDL_SRCALPHA
+
+

The RGB data is copied from the source. +If SDL_SRCCOLORKEY is set, only the pixels not matching the colorkey value are copied.

+
+
+

Note: When blitting, the presence or absence of SDL_SRCALPHA is relevant only on the source surface, not the destination. +Note: Note that RGBA->RGBA blits (with SDL_SRCALPHA set) keep the alpha of the destination surface. This means that you cannot compose +two arbitrary RGBA surfaces this way and get the result you would expect from "overlaying" them; the destination alpha will work as a mask.

+

Note: Also note that per-pixel and per-surface alpha cannot be combined; the per-pixel alpha is always used if available.

+

SDL::Video::set_alpha returns 0 on success or -1 on error.

+ +
+

fill_rect

+
+
 $fill_rect = SDL::Video::fill_rect( $dest, $dest_rect, $pixel );
+
+
+

This function performs a fast fill of the given SDL::Rect with the given SDL::PixelFormat. If dest_rect is NULL, the whole surface +will be filled with color.

+

The color should be a pixel of the format used by the surface, and can be generated by the SDL::Video::map_RGB or +SDL::Video::map_RGBA|/map_RGBA functions. If the color value contains an alpha value then the destination is simply "filled" with that +alpha information, no blending takes place.

+

If there is a clip rectangle set on the destination (set via SDL::Video::set_clip_rect), then this function will clip based +on the intersection of the clip rectangle and the dstrect rectangle, and the dstrect rectangle will be modified to represent the area actually +filled.

+

If you call this on the video surface (ie: the value of SDL::Video::get_video_surface) you may have to update the video +surface to see the result. This can happen if you are using a shadowed surface that is not double buffered in Windows XP using build 1.2.9.

+

SDL::Video::fill_rect returns 0 on success or -1 on error.

+

for an example see SYNOPSIS.

+ +
+

Surface Locking and Unlocking

Top

+
+ +
+

lock_surface

+
+
 int SDL::Video::lock_surface( $surface );
+
+
+

SDL::Video::lock_surface sets up the given SDL::Surface for directly accessing the pixels. +Between calls to SDL::lock_surface and SDL::unlock_surface, you can write to ( surface-set_pixels>) and read from ( surface-get_pixels> ), +using the pixel format stored in surface-format>. +Once you are done accessing the surface, you should use SDL::Video::unlock_surface to release the lock.

+

Not all surfaces require locking. If SDL::Video::MUSTLOCK evaluates to 0, then reading and writing pixels to the surface can +be performed at any time, and the pixel format of the surface will not change. +No operating system or library calls should be made between the lock/unlock pairs, as critical system locks may be held during this time. +SDL::Video::lock_surface returns 0 on success or -1 on error.

+

Note: Since SDL 1.1.8, the surface locks are recursive. This means that you can lock a surface multiple times, but each lock must have +a matching unlock.

+
 use strict;
+ use warnings;
+ use Carp;
+
+ use SDL v2.3;
+ use SDL::Video;
+ use SDL::Event;
+ use SDL::Events;
+ use SDL::Surface;
+
+ my $screen;
+
+ sub putpixel
+ {
+     my($x, $y, $color) = @_;
+     my $lineoffset     = $y * ($screen->pitch / 4);
+     $screen->set_pixels( $lineoffset+ $x, $color);
+ }
+
+ sub render
+ {
+     if( SDL::Video::MUSTLOCK( $screen) )
+     {
+         return if (SDL::Video::lock_surface( $screen ) < 0)
+     }
+
+     my $ticks                = SDL::get_ticks();
+     my ($i, $y, $yofs, $ofs) = (0,0,0,0);
+     for ($i = 0; $i < 480; $i++)
+     {
+         for (my $j = 0, $ofs = $yofs; $j < 640; $j++, $ofs++)
+         {
+             $screen->set_pixels( $ofs, (  $i * $i + $j * $j + $ticks ) );
+         }
+         $yofs += $screen->pitch / 4;
+     }
+
+     putpixel(10, 10, 0xff0000);
+     putpixel(11, 10, 0xff0000);
+     putpixel(10, 11, 0xff0000);
+     putpixel(11, 11, 0xff0000);
+
+     SDL::Video::unlock_surface($screen) if (SDL::Video::MUSTLOCK($screen));
+
+     SDL::Video::update_rect($screen, 0, 0, 640, 480);    
+
+     return 0;
+ }
+
+ sub main
+ {
+     carp 'Unable to init SDL: '.SDL::get_error() if( SDL::init(SDL_INIT_VIDEO) < 0);
+
+     $screen = SDL::Video::set_video_mode( 640, 480, 32, SDL_SWSURFACE);
+
+     carp 'Unable to set 640x480x32 video' . SDL::get_error() if(!$screen);
+
+     while(1)
+     {
+         render();
+
+         my $event = SDL::Event->new();
+
+         while( SDL::Events::poll_event($event) )
+         {
+             my $type = $event->type;
+             return 0 if( $type == SDL_KEYDOWN || $type == SDL_QUIT);
+         }
+         SDL::Events::pump_events();
+     }
+ }
+
+ main();
+
+ SDL::quit;
+
+
+ +
+

unlock_surface

+
+
 SDL::Video::unlock_surface( $surface );
+
+
+

Surfaces that were previously locked using SDL::Video::lock_surface must be unlocked with SDL::Video::unlock_surface. +Surfaces should be unlocked as soon as possible. +SDL::Video::unlock_surface doesn't return anything.

+

Note: Since 1.1.8, the surface locks are recursive. See SDL::Video::lock_surface for more information.

+ +
+

MUSTLOCK

+
+
 int SDL::Video::MUSTLOCK( $surface );
+
+
+

MUSTLOCK returns 0 if the surface does not have to be locked during pixel operations, otherwise 1.

-

update_rect(surface,x,y,width,height)

-
+

Screen Updating Functions

Top

+
+ +
+

set_clip_rect

+
+
 SDL::Video::set_clip_rect( $surface, $rect );
+
+
+

Sets the clipping rectangle for the given SDL::Surface. When this surface is the destination of a blit, only the area within the clip +rectangle will be drawn into. +The rectangle pointed to by rect will be clipped to the edges of the surface so that the clip rectangle for a surface can never fall +outside the edges of the surface. +If rect is NULL the clipping rectangle will be set to the full size of the surface. +SDL::Video::set_clip_rect doesn't returns anything.

+ +
+

get_clip_rect

+
+
 SDL::Video::get_clip_rect( $surface, $rect );
+
+
+

Gets the clipping rectangle for the given SDL::Surface. When this surface is the destination of a blit, only the area within the clip +rectangle is drawn into. +The rectangle pointed to by rect will be filled with the clipping rectangle of the surface. +SDL::Video::get_clip_rect doesn't returns anything;

+
 use SDL;
+ use SDL::Video;
+ use SDL::Rect;
+ use SDL::Surface;
+
+ my $screen_width  = 640;
+ my $screen_height = 480;
+
+ SDL::init(SDL_INIT_VIDEO);
+
+ my $screen  = SDL::Video::set_video_mode($screen_width, $screen_height, 32, SDL_SWSURFACE);
+
+ my $rect = SDL::Rect->new(0, 0, 0, 0);
+
+ SDL::Video::get_clip_rect($screen, $rect);
+
+ printf( "rect is %d, %d, %d, %d\n", $rect->x, $rect->y, $rect->w, $rect->h);
+
+ SDL::quit;
+
+
+ +
+

blit_surface

+
+
 SDL::Video::blit_surface( $src_surface, $src_rect, $dest_surface, $dest_rect );
+
+
+

This performs a fast blit from the given source SDL::Surface to the given destination SDL::Surface. +The width and height in src_surface determine the size of the copied rectangle. Only the position is used in the dst_rect +(the width and height are ignored). Blits with negative dst_rect coordinates will be clipped properly. +If src_rect is NULL, the entire surface is copied. If dst_rect is NULL, then the destination position (upper left corner) is (0, 0). +The final blit rectangle is saved in dst_rect after all clipping is performed (src_rect is not modified). +The blit function should not be called on a locked surface. I.e. when you use your own drawing functions you may need to lock a surface, +but this is not the case with SDL::Video::blit_surface. Like most surface manipulation functions in SDL, it should not be used together +with OpenGL.

+

The results of blitting operations vary greatly depending on whether SDL_SRCALPHA is set or not. See SDL::Video::set_alpha +for an explanation of how this affects your results. Colorkeying and alpha attributes also interact with surface blitting. +SDL::Video::blit_surface doesn't returns anything.

+

For an example see SDL::Video::load_BMP.

+ +
+

update_rect

+
 update_rect( $surface, $left, $top, $width, $height );
 
 

Makes sure the given area is updated on the given screen. The rectangle must be confined within the screen boundaries because there's no clipping. update_rect doesn't returns any value.

-

Note: This function should not be called while screen is locked by SDL::Video::lock_surface

+

Note: This function should not be called while screen is locked by SDL::Video::lock_surface

Note2: If x, y, width and height are all equal to 0, update_rect will update the entire screen.

For an example see SYNOPSIS

-

update_rects(surface,rects)

-
+

update_rects

+
 update_rects( $surface, @rects );
 
 

Makes sure the given list of rectangles is updated on the given screen. The rectangle must be confined within the screen boundaries because there's no clipping. update_rects doesn't returns any value.

-

Note: This function should not be called while screen is locked by SDL::Video::lock_surface.

+

Note: This function should not be called while screen is locked by SDL::Video::lock_surface.

Example:

 use SDL;
  use SDL::Video;
@@ -380,8 +847,8 @@ The rectangle must be confined within the screen boundaries because there's no c
 
-

flip(surface)

-
+

flip

+
 $flip = SDL::Video::flip( $screen_surface );
 
 
@@ -392,10 +859,11 @@ On hardware that doesn't support double-buffering or if SDL_SWSURFACEA software screen surface is also updated automatically when parts of a SDL window are redrawn, caused by overlapping windows or by restoring from an iconified state. As a result there is no proper double buffer behavior in windowed mode for a software screen, in contrast to a full screen software mode.

-

The SDL_DOUBLEBUF flag must have been passed to SDL::Video::set_video_mode, when setting the video mode for this function to -perform hardware flipping.

+

The SDL_DOUBLEBUF flag must have been passed to SDL::Video::set_video_mode, when setting the video mode for this function +to perform hardware flipping.

flip returns 0 on success or -1 on error.

-

Note: If you want to swap the buffers of an initialized OpenGL context, use the function SDL::Video::GL_swap_buffers instead.

+

Note: If you want to swap the buffers of an initialized OpenGL context, use the function SDL::Video::GL_swap_buffers +instead.

Example:

 use SDL;
  use SDL::Video;
@@ -423,49 +891,53 @@ perform hardware flipping.

-

set_colors(surface,start,colors)

-
+

Palette, Color and Pixel Functions

Top

+
+ +
+

set_colors

+
 $set_colors = SDL::Video::set_colors( $surface, $start, $color1, $color2, ... )
 
 

Sets a portion of the colormap for the given 8-bit surface.

When surface is the surface associated with the current display, the display colormap will be updated with the requested colors. -If SDL_HWPALETTE was set in SDL::Video::set_video_mode flags, SDL::Video::set_colors will always return 1, and the palette is -guaranteed to be set the way you desire, even if the window colormap has to be warped or run under emulation. -The color components of a SDL::Color structure are 8-bits in size, giving you a total of 2563 = 16777216 colors. +If SDL_HWPALETTE was set in SDL::Video::set_video_mode flags, SDL::Video::set_colors will always return 1, and the +palette is guaranteed to be set the way you desire, even if the window colormap has to be warped or run under emulation. +The color components of a SDL::Color structure are 8-bits in size, giving you a total of 2563 = 16777216 colors. Palettized (8-bit) screen surfaces with the SDL_HWPALETTE flag have two palettes, a logical palette that is used for mapping blits to/from the surface and a physical palette (that determines how the hardware will map the colors to the display). -SDL::Video::set_colors modifies both palettes (if present), and is equivalent to calling SDL::Video::set_palette with the flags set to -( SDL_LOGPAL | SDL_PHYSPAL ).

+SDL::Video::set_colors modifies both palettes (if present), and is equivalent to calling SDL::Video::set_palette with the +flags set to ( SDL_LOGPAL | SDL_PHYSPAL ).

If surface is not a palettized surface, this function does nothing, returning 0. If all of the colors were set as passed to SDL::Video::set_colors, it will return 1. If not all the color entries were set exactly as given, it will return 0, and you should look at the surface palette to determine the actual color palette.

-

set_palette(surface,flags,start,colors)

-
+

set_palette

+
 $set_palette = set_palette( $surface, $flags, $start, $color1, $color2, ... );
 
 

Sets a portion of the palette for the given 8-bit surface.

Palettized (8-bit) screen surfaces with the SDL_HWPALETTE flag have two palettes, a logical palette that is used for mapping blits to/from the surface and a physical palette (that determines how the hardware will map the colors to the display). -Non screen surfaces have a logical palette only. SDL::Video::blit always uses the logical palette when blitting surfaces (if it has to +Non screen surfaces have a logical palette only. SDL::Video::blit always uses the logical palette when blitting surfaces (if it has to convert between surface pixel formats). Because of this, it is often useful to modify only one or the other palette to achieve various special color effects (e.g., screen fading, color flashes, screen dimming).

This function can modify either the logical or physical palette by specifying SDL_LOGPAL or SDL_PHYSPAL the in the flags parameter.

When surface is the surface associated with the current display, the display colormap will be updated with the requested colors. -If SDL_HWPALETTE was set in SDL::Video::set_video_mode flags, SDL::Video::set_palette will always return 1, and the palette is -guaranteed to be set the way you desire, even if the window colormap has to be warped or run under emulation. +If SDL_HWPALETTE was set in SDL::Video::set_video_mode flags, SDL::Video::set_palette will always return 1, and the +palette is guaranteed to be set the way you desire, even if the window colormap has to be warped or run under emulation. The color components of a SDL::Color structure are 8-bits in size, giving you a total of 2563 = 16777216 colors.

If surface is not a palettized surface, this function does nothing, returning 0. If all of the colors were set as passed to set_palette, it will return 1. If not all the color entries were set exactly as given, it will return 0, and you should look at the surface palette to determine the actual color palette.

-

set_gamma(r,g,b)

-
+

set_gamma

+
 $set_gamma = SDL::Video::set_gamma( $red_gamma, $green_gamma, $blue_gamma );
 
 
@@ -524,13 +996,13 @@ with SDL::set_gamma_ramp.

-

get_gamma_ramp(rt,gt,bt)

-
+

get_gamma_ramp

+
 $get_gamma_ramp = SDL::Video::get_gamma_ramp( \@red_table, \@green_table, \@blue_table );
 
 

Gets the gamma translation lookup tables currently used by the display. Each table is an array of 256 Uint16 values. -SDL::get_gamma_ramp returns -1 on error.

+SDL::Video::get_gamma_ramp returns -1 on error.

 use SDL;
  use SDL::Video;
 
@@ -556,8 +1028,8 @@ SDL::get_gamma_ramp returns -1 on error.

-

set_gamma_ramp(rt,gt,bt)

-
+

set_gamma_ramp

+
 $set_gamma_ramp = SDL::Video::set_gamma_ramp( \@red_table, \@green_table, \@blue_table );
 
 
@@ -566,7 +1038,7 @@ mapping between the input and output for that channel. The input is the index into the array, and the output is the 16-bit gamma value at that index, scaled to the output color precision. You may pass NULL to any of the channels to leave them unchanged.

This function adjusts the gamma based on lookup tables, you can also have the gamma calculated based on a "gamma function" parameter -with SDL::Video::set_gamma.

+with SDL::Video::set_gamma.

Not all display hardware is able to change gamma. SDL::Video::set_gamma_ramp returns -1 on error (or if gamma adjustment is not supported).

Example:

@@ -601,16 +1073,16 @@ with SDL::Video::set_gamma.

-

map_RGB(pixel_format,r,g,b)

-
+

map_RGB

+
 $pixel = SDL::Video::map_RGB( $pixel_format, $r, $g, $b );
 
 
-

Maps the RGB color value to the specified SDL::PixelFormat and returns the pixel value as a 32-bit int. +

Maps the RGB color value to the specified SDL::PixelFormat and returns the pixel value as a 32-bit int. If the format has a palette (8-bit) the index of the closest matching color in the palette will be returned. If the specified pixel format has an alpha component it will be returned as all 1 bits (fully opaque).

SDL::Video::map_RGB returns a pixel value best approximating the given RGB color value for a given pixel format. -If the SDL::PixelFormat's bpp (color depth) is less than 32-bpp then the unused upper bits of the return value can safely be ignored +If the SDL::PixelFormat's bpp (color depth) is less than 32-bpp then the unused upper bits of the return value can safely be ignored (e.g., with a 16-bpp format the return value can be assigned to a Uint16, and similarly a Uint8 for an 8-bpp format).

 use SDL;
  use SDL::Video;
@@ -631,23 +1103,24 @@ If the SDL::PixelFormat's  bpp (color depth)
  my $_16bit = SDL::Video::map_RGB( $screen_surface->format, $r, $g, $b );
 
  # 16bpp is 5 bits red, 6 bits green and 5 bits blue
- # we will obtain the values for each color and calculating them back to 24bit color system
- $r = (($_16bit & 0b1111100000000000) >> 11) / 0b11111  * 0b11111111;
- $g = (($_16bit & 0b0000011111100000) >>  5) / 0b111111 * 0b11111111;
- $b =  ($_16bit & 0b0000000000011111)        / 0b11111  * 0b11111111;
+ # we will obtain the values for each color and calculating them back to 24/32bit color system
+ ($r, $g, $b) = @{ SDL::Video::get_RGB( $screen_surface->format, $_16bit ) };
 
  printf( "for 16bpp it is: 0x%02X 0x%02X 0x%02X\n", $r, $g, $b );
 
- # so color #9CDC67 becomes #9CDE62
+ # so color #9CDC67 becomes #9CDF63
 
  SDL::quit();
 
 
-

map_RGBA(pixel_format,r,g,b,a)

-
-

Maps the RGBA color value to the specified SDL::pixel_format and returns the pixel value as a 32-bit int. +

map_RGBA

+
+
 $pixel = SDL::Video::map_RGB( $pixel_format, $r, $g, $b, $a );
+
+
+

Maps the RGBA color value to the specified SDL::PixelFormat and returns the pixel value as a 32-bit int. If the format has a palette (8-bit) the index of the closest matching color in the palette will be returned. If the specified pixel format has no alpha component the alpha value will be ignored (as it will be in formats with a palette).

A pixel value best approximating the given RGBA color value for a given pixel format. @@ -655,335 +1128,309 @@ If the pixel format bpp (color depth) is less than 32-bpp then the unused upper with a 16-bpp format the return value can be assigned to a Uint16, and similarly a Uint8 for an 8-bpp format).

-

get_RGB(pixel_format,pixel)

-
-

Returns RGB values from a pixel in the specified pixel format. +

get_RGB

+
+
 $rgb_array_ref = SDL::Video::get_RGB( $pixel_format, $pixel );
+
+
+

Returns RGB values from a pixel in the specified pixel format. The pixel is an integer (e.g. 16bit RGB565, 24/32bit RGB888). This function uses the entire 8-bit [0..255] range when converting color components from pixel formats with less than 8-bits per RGB component (e.g., a completely white pixel in 16-bit RGB565 format would return [0xff, 0xff, 0xff] not [0xf8, 0xfc, 0xf8]).

+

For an example see SDL::Video::map_RGB.

-

get_RGBA(pixel_format,pixel)

-
+

get_RGBA

+
+
 $rgba_array_ref = SDL::Video::get_RGBA( $pixel_format, $pixel );
+
+

Gets RGBA values from a pixel in the specified pixel format. This function uses the entire 8-bit [0..255] range when converting color components from pixel formats with less than 8-bits per RGB component (e.g., a completely white pixel in 16-bit RGB565 format would return [0xff, 0xff, 0xff] not [0xf8, 0xfc, 0xf8]).

If the surface has no alpha component, the alpha will be returned as 0xff (100% opaque).

-

create_RGB_surface_from ***

-
-

Creates an empty SDL::Surface from pixel data -Allocate an empty surface (must be called after SDL::set_video_mode) -If bitsPerPixel is 8 an empty palette is allocated for the surface, otherwise a 'packed-pixel' SDL::pixel_format is created using the -[RGBA]mask's provided (see SDL::pixel_format). The flags specifies the type of surface that should be created, it is an OR'd combination -of the following possible values.

-
-
SDL_SWSURFACE
-
-

SDL will create the surface in system memory. -This improves the performance of pixel level access, however you may not be able to take advantage of some types of hardware blitting.

-
-
SDL_HWSURFACE
-
-

SDL will attempt to create the surface in video memory. -This will allow SDL to take advantage of Video->Video blits (which are often accelerated).

-
-
SDL_SRCCOLORKEY
-
-

This flag turns on color keying for blits from this surface. -If SDL_HWSURFACE is also specified and color keyed blits are hardware-accelerated, then SDL will attempt to place the surface in video memory. -If the screen is a hardware surface and color keyed blits are hardware-accelerated then the SDL_HWSURFACE flag will be set. -Use SDL_SetColorKey to set or clear this flag after surface creation.

-
-
SDL_SRCALPHA
-
-

This flag turns on alpha-blending for blits from this surface. -If SDL_HWSURFACE is also specified and alpha-blending blits are hardware-accelerated, -then the surface will be placed in video memory if possible. -If the screen is a hardware surface and alpha-blending blits are hardware-accelerated then the SDL_HWSURFACE flag will be set. -Use SDL_SetAlpha to set or clear this flag after surface creation.

-
-
+

GL Methods

Top

+
+
+

GL_load_library

+
+
 $gl_load_lib = SDL::Video::GL_load_library( 'path/to/static/glfunctions.dll' );
 
+
+

If you wish, you may load the OpenGL library from the given path at runtime, this must be done before +SDL::Video::set_video_mode is called. You must then use SDL::Video::GL_get_proc_address to retrieve +function pointers to GL functions.

+

GL_load_library returns 0 on success or -1 or error.

+
+

GL_get_proc_address

+
+
 $proc_address = SDL::Video::GL_get_proc_address( $proc );
 
-

[RGBA]mask are the bitmasks used to extract that colour from a pixel. -For instance, Rmask being FF000000 means the red data is stored in the most significant byte. -Using zeros for the RGB masks sets a default value, based on the depth. (e.g. SDL::create_RGB_surface(flags,w,h,32,0,0,0,0);). -However, using zero for the Amask results in an Amask of 0. -It returns a SDL::Surface on success or undef on error. -Notes: If an alpha-channel is specified (that is, if Amask is nonzero), then the SDL_SRCALPHA flag is automatically set. -You may remove this flag by calling SDL::set_alpha after surface creation. -Also, if the SDL_HWSURFACE flag is set on the returned surface, its format might not match the requested format.

-

Notes: Sometimes specifying an Alpha mask value could cause strange results. -This can be worked around by setting the Amask parameter to 0, but still including the SDL_SRCALPHA flag, and then using SDL::set_alpha, -also with the SDL_SRCALPHA flag.

+
+

Returns the address of the GL function proc, or NULL if the function is not found. If the GL library is loaded at runtime, with +SDL::Video::GL_load_library, then all GL functions must be retrieved this way. Usually this is used to retrieve function +pointers to OpenGL extensions. Note that this function needs an OpenGL context to function properly, so it should be called after +SDL::Video::set_video_mode has been called (with the SDL_OPENGL flag).

+

It returns undef if the function is not found.

+

Example:

+
 my $has_multitexture = 1;
 
-
-

lock_surface(surface)

-
-

SDL::lock_surface sets up the given SDL::surface for directly accessing the pixels. -Between calls to SDL::lock_surface and SDL::unlock_surface, you can write to and read from surface->pixels, using the pixel format stored -in surface->format. -Once you are done accessing the surface, you should use SDL::unlock_surface to release the lock.

-

Not all surfaces require locking. If SDL::MUSTLOCK(surface) evaluates to 0, then reading and writing pixels to the surface can be performed -at any time, and the pixel format of the surface will not change. -No operating system or library calls should be made between the lock/unlock pairs, as critical system locks may be held during this time. -SDL::lock_surface returns 0 on success or -1 on error.

-

Note : Since SDL 1.1.8, the surface locks are recursive. This means that you can lock a surface multiple times, but each lock must have -a matching unlock.

+ # Get function pointer + $gl_active_texture_ARB_ptr = SDL::Video::GL_get_proc_address("glActiveTextureARB"); -
-

unlock_surface(surface)

-
-

Surfaces that were previously locked using SDL::lock_surface must be unlocked with SDL::unlock_surface. Surfaces should be unlocked as -soon as possible. -SDL::unlock_surface doesn't return anything.

-

Note : Since 1.1.8, the surface locks are recursive. See SDL::lock_surface for more information.

+ # Check for a valid function ptr + unless($gl_active_texture_ARB_ptr) + { + printf( STDERR "Multitexture Extensions not present.\n" ); + $has_multitexture = 0; + } -
-

convert_surface(surface,format,flags)

-
-

Creates a new SDL::surface of the specified SDL::pixel_format, and then copies and maps the given surface to it. -It is also useful for making a copy of a surface.

-

The flags parameter is passed to SDL::create_RGB_surface and has those semantics. -This function is used internally by SDL::display_format. -This function can only be called after SDL::init.

-

it returns a SDL::surface on success or undef on error.

+ $gl_active_texture_ARB_ptr(GL_TEXTURE0_ARB) if $has_multitexture; -
-

display_format

-
-

Converts a surface to the display format

+
-

display_format_alpha

-
-

Converts a surface to the display format

+

GL_get_attribute

+
+
 $value = SDL::Video::GL_get_attribute( $attr );
 
-
-

load_BMP(filename)

-
-

Loads a SDL::surface from a named Windows BMP file. -SDL::load_BMP returns a SDL::surface on success or undef on error.

-

Note: When loading a 24-bit Windows BMP file, pixel data points are loaded as blue, green, red, and NOT red, green, blue (as one might expect).

+ +

It returns SDL/OpenGL attribute attr. This is useful after a call to SDL::Video::set_video_mode to check whether your +attributes have been set as you expected. +SDL::Video::GL_get_attribute returns undef if the attribute is not found.

+

Example:

+
 print( SDL::Video::GL_set_attribute(SDL_GL_RED_SIZE) );
 
+
+
+

GL_set_attribute

+
+
 $set_attr = SDL::Video::GL_set_attribute( $attr, $value );
 
+
+

This function sets the given OpenGL attribute attr to value. The requested attributes will take effect after a call to +SDL::Video::set_video_mode. +You should use SDL::Video::GL_get_attribute|/GL_get_attribute to check the values after a SDL::Video::set_video_mode call, +since the values obtained can differ from the requested ones.

+

Available attributes:

+
    +
  • SDL_GL_RED_SIZE
  • +
  • SDL_GL_GREEN_SIZE
  • +
  • SDL_GL_BLUE_SIZE
  • +
  • SDL_GL_ALPHA_SIZE
  • +
  • SDL_GL_BUFFER_SIZE
  • +
  • SDL_GL_DOUBLEBUFFER
  • +
  • SDL_GL_DEPTH_SIZE
  • +
  • SDL_GL_STENCIL_SIZE
  • +
  • SDL_GL_ACCUM_RED_SIZE
  • +
  • SDL_GL_ACCUM_GREEN_SIZE
  • +
  • SDL_GL_ACCUM_BLUE_SIZE
  • +
  • SDL_GL_ACCUM_ALPHA_SIZE
  • +
  • SDL_GL_STEREO
  • +
  • SDL_GL_MULTISAMPLEBUFFERS
  • +
  • SDL_GL_MULTISAMPLESAMPLES
  • +
  • SDL_GL_ACCELERATED_VISUAL
  • +
  • SDL_GL_SWAP_CONTROL
  • +
+

GL_set_attribute returns 0 on success or -1 on error.

+

Note: The SDL_DOUBLEBUF flag is not required to enable double buffering when setting an OpenGL video mode. Double buffering is enabled +or disabled using the SDL_GL_DOUBLEBUFFER attribute.

+

Example:

+
 SDL::Video::GL_set_attribute(SDL_GL_RED_SIZE, 5);
 
+
+
+

GL_swap_buffers

+
+
 SDL::Video::GL_swap_buffers();
 
+
+

Swap the OpenGL buffers, if double-buffering is supported. +SDL::Video::GL_swap_buffers doesn't returns any value.

-

save_BMP(surface,filename)

-
-

Saves the given SDL::Surface surface as a Windows BMP file named filename. -it returns 0 on success or -1 on error.

+

Video Overlay Functions

Top

+ -

set_color_key(surface,flag,key)

-
-

Sets the color key (transparent pixel) in a blittable surface and enables or disables RLE blit acceleration.

-

RLE acceleration can substantially speed up blitting of images with large horizontal runs of transparent pixels (i.e., pixels that match -the key value). -The key must be of the same pixel format as the surface, SDL::map_RGB is often useful for obtaining an acceptable value. -If flag is SDL_SRCCOLORKEY then key is the transparent pixel value in the source image of a blit.

-

If flag is OR'd with SDL_RLEACCEL then the surface will be drawn using RLE acceleration when drawn with SDL::Blit_surface. -The surface will actually be encoded for RLE acceleration the first time SDL::blit_surface or SDL::display_format is called on the surface. -If flag is 0, this function clears any current color key.

-

SDL::set_color_key returns 0 on success or -1 on error.

- +

lock_YUV_overlay

+
+
 $lock_overlay = SDL::Video::lock_YUV_overlay( $overlay );
 
+
+

Much the same as SDL::Video::lock_surface, lock_YUV_overlay locks the overlay for direct access to pixel data. +It returns 0 on success or -1 on error.

+
+

unlock_YUV_overlay

+
+
 SDL::Video::unlock_YUV_overlay( $overlay );
 
+
+

The opposite to SDL::Video::lock_YUV_overlay. Unlocks a previously locked overlay. An overlay must be unlocked before it +can be displayed. unlock_YUV_overlay does not return anything.

-

set_alpha(surface,flag,key)

-
-

SDL::set_alpha is used for setting the per-surface alpha value and/or enabling and disabling alpha blending.

-

The surface parameter specifies which SDL::surface whose alpha attributes you wish to adjust. -flags is used to specify whether alpha blending should be used (SDL_SRCALPHA) and whether the surface should use RLE acceleration for -blitting (SDL_RLEACCEL). -flags can be an OR'd combination of these two options, one of these options or 0. -If SDL_SRCALPHA is not passed as a flag then all alpha information is ignored when blitting the surface. -The alpha parameter is the per-surface alpha value; a surface need not have an alpha channel to use per-surface alpha and blitting can -still be accelerated with SDL_RLEACCEL.

-

Note: The per-surface alpha value of 128 is considered a special case and is optimised, so it's much faster than other per-surface values.

-

Alpha affects surface blitting in the following ways:

-
-
RGBA->RGB with SDL_SRCALPHA
-
-

The source is alpha-blended with the destination, using the alpha channel. -SDL_SRCCOLORKEY and the per-surface alpha are ignored.

-
-
RGBA->RGB without SDL_SRCALPHA
-
-

The RGB data is copied from the source. The source alpha channel and the per-surface alpha value are ignored. -If SDL_SRCCOLORKEY is set, only the pixels not matching the colorkey value are copied.

-
-
RGB->RGBA with SDL_SRCALPHA
-
-

The source is alpha-blended with the destination using the per-surface alpha value. -If SDL_SRCCOLORKEY is set, only the pixels not matching the colorkey value are copied. -The alpha channel of the copied pixels is set to opaque.

-
-
RGB->RGBA without SDL_SRCALPHA
-
-

The RGB data is copied from the source and the alpha value of the copied pixels is set to opaque. -If SDL_SRCCOLORKEY is set, only the pixels not matching the colorkey value are copied.

-
-
RGBA->RGBA with SDL_SRCALPHA
-
-

The source is alpha-blended with the destination using the source alpha channel. -The alpha channel in the destination surface is left untouched. SDL_SRCCOLORKEY is ignored.

-
-
RGBA->RGBA without SDL_SRCALPHA
-
-

The RGBA data is copied to the destination surface. -If SDL_SRCCOLORKEY is set, only the pixels not matching the colorkey value are copied.

-
-
RGB->RGB with SDL_SRCALPHA
-
-

The source is alpha-blended with the destination using the per-surface alpha value. -If SDL_SRCCOLORKEY is set, only the pixels not matching the colorkey value are copied.

-
-
RGB->RGB without SDL_SRCALPHA
-
-

The RGB data is copied from the source. -If SDL_SRCCOLORKEY is set, only the pixels not matching the colorkey value are copied.

-
-
-

Note: When blitting, the presence or absence of SDL_SRCALPHA is relevant only on the source surface, not the destination. -Note: Note that RGBA->RGBA blits (with SDL_SRCALPHA set) keep the alpha of the destination surface. This means that you cannot compose -two arbitrary RGBA surfaces this way and get the result you would expect from "overlaying" them; the destination alpha will work as a mask.

-

Note: Also note that per-pixel and per-surface alpha cannot be combined; the per-pixel alpha is always used if available.

-

SDL::set_alpha returns 0 on success or -1 on error.

+

display_YUV_overlay

+
+
 $display_overlay = SDL::Video::display_YUV_overlay( $overlay, $dstrect );
+
+
+

Blit the overlay to the display surface specified when the overlay was created. The SDL::Rect structure, dstrect, specifies a rectangle +on the display where the overlay is drawn. The x and y fields of dstrect specify the upper left location in display coordinates. +The overlay is scaled (independently in x and y dimensions) to the size specified by dstrect, and is optimized for 2x scaling

+

It returns 0 on success or -1 on error.

-

set_clip_rect(surface,rect)

-
-

Sets the clipping rectangle for the given SDL::surface. When this surface is the destination of a blit, only the area within the clip -rectangle will be drawn into. -The rectangle pointed to by rect will be clipped to the edges of the surface so that the clip rectangle for a surface can never fall -outside the edges of the surface. -If rect is NULL the clipping rectangle will be set to the full size of the surface. -SDL::set_clip_rect doesn't returns anything.

+

Window Management Functions

Top

+
-

get_clip_rect(surface,rect)

-
-

Gets the clipping rectangle for the given SDL::surface. When this surface is the destination of a blit, only the area within the clip -rectangle is drawn into. -The rectangle pointed to by rect will be filled with the clipping rectangle of the surface. -SDL::get_clip_rect doesn't returns anything;

+

wm_set_caption

+
+
 SDL::Video::wm_set_caption( $title, $icon );
 
+
+

Sets the title-bar and icon name of the display window.

+

title is a UTF-8 encoded null-terminated string which will serve as the window title (the text at the top of the window). The function +does not change the string. You may free the string after the function returns.

+

icon is a UTF-8 encoded null-terminated string which will serve as the iconified window title (the text which is displayed in the menu +bar or desktop when the window is minimized). As with title this string may be freed after the function returns.

+

Example:

+
 use SDL;
+ use SDL::Video;
+ use SDL::Surface;
 
+ SDL::init(SDL_INIT_VIDEO);
 
+ my $screen  = SDL::Video::set_video_mode(640, 480, 32, SDL_SWSURFACE);
 
+ SDL::Video::wm_set_caption( 'maximized title', 'minimized title' );
 
-
-

blit_surface(src,src_rect,dest,dest_rect)

-
-

This performs a fast blit from the given source SDL::surface to the given destination SDL::surface. -The width and height in srcrect determine the size of the copied rectangle. Only the position is used in the dstrect (the width and height -are ignored). Blits with negative dstrect coordinates will be clipped properly. -If srcrect is NULL, the entire surface is copied. If dstrect is NULL, then the destination position (upper left corner) is (0, 0). -The final blit rectangle is saved in dstrect after all clipping is performed (srcrect is not modified). -The blit function should not be called on a locked surface. I.e. when you use your own drawing functions you may need to lock a surface, -but this is not the case with SDL::blit_surface. Like most surface manipulation functions in SDL, it should not be used together with OpenGL.

-

The results of blitting operations vary greatly depending on whether SDL_SRCALPHA is set or not. See SDL::set_alpha for an explanation of -how this affects your results. Colorkeying and alpha attributes also interact with surface blitting. -SDL::blit_surface doesn't returns anything.

+ sleep(2); -
-

fill_rect(dest,dest_rect,pixel)

-
-

This function performs a fast fill of the given SDL::rectangle with the given SDL::pixel_format. If dstrect is NULL, the whole surface -will be filled with color.

-

The color should be a pixel of the format used by the surface, and can be generated by the SDL::MapRGB or SDL::map_RGBA functions. -If the color value contains an alpha value then the destination is simply "filled" with that alpha information, no blending takes place.

-

If there is a clip rectangle set on the destination (set via SDL::set_clip_rect), then this function will clip based on the intersection -of the clip rectangle and the dstrect rectangle, and the dstrect rectangle will be modified to represent the area actually filled.

-

If you call this on the video surface (ie: the value of SDL::get_video_surface()) you may have to update the video surface to see the -result. This can happen if you are using a shadowed surface that is not double buffered in Windows XP using build 1.2.9.

-

SDL::fill_rect returns 0 on success or -1 on error.

+ SDL::quit; -
-

GL_load_library(path)

-
-

If you wish, you may load the OpenGL library from the given path at runtime, this must be done before SDL::set_video_mode is called. -The path of the GL library is passed to SDL::GL_load_library and it returns 0 on success, or -1 on an error. You must then use -SDL::GL_get_proc_address to retrieve function pointers to GL functions.

-

SDL::GL_load_library returns 0 on success or -1 or error.

+
-

GL_get_proc_address(proc)

-
-

Returns the address of the GL function proc, or NULL if the function is not found. If the GL library is loaded at runtime, with -SDL::GL_load_library, then all GL functions must be retrieved this way. Usually this is used to retrieve function pointers to OpenGL -extensions. Note that this function needs an OpenGL context to function properly, so it should be called after SDL::set_video_mode -has been called (with the SDL_OPENGL flag).

-

OpenGL function pointers must be declared APIENTRY . This will ensure the proper calling convention is followed on platforms where this -matters (Win32) thereby avoiding stack corruption. In a Win32 build environment, APIENTRY should be defined as __stdcall.

-

it returns undef if the function is not found.

+

wm_get_caption

+
+
 SDL::Video::wm_get_caption( $title, $icon );
 
-
-

GL_get_attribute(attr)

-
-

It returns SDL/OpenGL attribute attr . This is useful after a call to SDL::set_video_mode to check whether your attributes have been set -as you expected. -SDL::GL_get_attribute returns undef if the attribute is not found.

+ +

Retrieves the title-bar and icon name of the display window.

+

Example:

+
 use SDL;
+ use SDL::Video;
+ use SDL::Surface;
 
-
-

GL_set_attribute(attr,value)

-
-

This function sets the given OpenGL attribute attr to value. The requested attributes will take effect after a call to SDL::set_video_mode. -You should use SDL::GL_get_attribute to check the values after a SDL::set_video_mode call, since the values obtained can differ from the -requested ones. -See SDL_GLattr for the full list of available attributes. -SDL::GL_set_attribute returns 0 on success or -1 on error.

-

Note : The SDL_DOUBLEBUF flag is not required to enable double buffering when setting an OpenGL video mode. Double buffering is enabled -or disabled using the SDL_GL_DOUBLEBUFFER attribute.

+ SDL::init(SDL_INIT_VIDEO); -
-

GL_swap_buffers

-
-

Swap the OpenGL buffers, if double-buffering is supported. -SDL::GL_swap_buffers doesn't returns any value.

+ my $screen = SDL::Video::set_video_mode(640, 480, 32, SDL_SWSURFACE); -
-

GL_attr *** to be coded

-
+ SDL::Video::wm_set_caption( 'maximized title', 'minimized title' ); + my ($title, $icon) = @{ SDL::Video::wm_get_caption() }; + printf( "title is '%s' and icon is '%s'\n", $title, $icon ); + SDL::quit; +
-

lock_YUV_overlay(overlay)

-
-

Much the same as SDL::lock_surface, SDL::lock_YUV_overlay locks the overlay for direct access to pixel data. -It returns 0 on success or -1 on error.

+

wm_set_icon

+
+
 SDL::Video::wm_set_icon( $icon );
+
+
+

Sets the icon for the display window. Win32 icons must be 32x32.

+

This function must be called before the first call to SDL::Video::set_video_mode. Note that this means SDL::Image +cannot be used.

+

The shape is determined by the colorkey or alpha channel of the icon, if any. If neither of those are present, the icon is made opaque +(no transparency).

+

Example:

+
 SDL::Video::wm_set_icon(SDL::Video::load_BMP("icon.bmp"));
+
+
+

Another option, if your icon image does not have a colorkey set, is to use the SDL::Video::set_color_key to set the transparency.

+

Example:

+
 my $image = SDL::Video::load_BMP("icon.bmp");
+
+ my colorkey = SDL::Video::map_RGB($image->format, 255, 0, 255); # specify the color that will be transparent
+
+ SDL::Video::set_color_key($image, SDL_SRCCOLORKEY, $colorkey);              
+
+ SDL::Video::wm_set_icon($image);
+
+
-

unlock_YUV_overlay(overlay)

-
-

The opposite to SDL::lock_YUV_overlay. Unlocks a previously locked overlay. An overlay must be unlocked before it can be displayed. -It returns 0 on success or -1 on error.

+

wm_grab_input

+
+
 $grab_mode = SDL::Video::wm_grab_input($mode);
+
+
+

Grabbing means that the mouse is confined to the application window, and nearly all keyboard input is passed directly to the application, +and not interpreted by a window manager, if any.

+

When mode is SDL_GRAB_QUERY the grab mode is not changed, but the current grab mode is returned.

+

mode and the return value of wm_grab_input can be one of the following:

+
    +
  • SDL_GRAB_QUERY
  • +
  • SDL_GRAB_OFF
  • +
  • SDL_GRAB_ON
  • +
+
-

display_YUV_overlay(overlay,dstrect)

-
-

Blit the overlay to the display surface specified when the overlay was created. The SDL::rect structure, dstrect, specifies a rectangle -on the display where the overlay is drawn. The .x and .y fields of dstrect specify the upper left location in display coordinates. -The overlay is scaled (independently in x and y dimensions) to the size specified by dstrect, and is optimized for 2x scaling

-

It returns 0 on success or -1 on error.

+

wm_iconify_window

+
+
 $iconify_window = SDL::Video::wm_iconify_window();
 
+
+

If the application is running in a window managed environment SDL attempts to iconify/minimise it. If wm_iconify_window is successful, +the application will receive a SDL_APPACTIVE loss event (see Application visibility events at SDL::Event).

+

Returns non-zero on success or 0 if iconification is not supported or was refused by the window manager.

+

Example:

+
 use SDL;
+ use SDL::Video;
+ use SDL::Surface;
 
+ SDL::init(SDL_INIT_VIDEO);
 
+ my $screen  = SDL::Video::set_video_mode(640, 480, 32, SDL_SWSURFACE);
 
+ sleep(2);
+
+ SDL::Video::wm_iconify_window();
+
+ sleep(2); 
+
+ SDL::quit;
+
+
+ +
+

wm_toggle_fullscreen

+
+
 $toggle = SDL::Video::wm_toggle_fullscreen( $surface );
+
+
+

Toggles the application between windowed and fullscreen mode, if supported. (X11 is the only target currently supported, BeOS support +is experimental).

+ +
+

AUTHOR

Top

+
+

magnet, Tobias Leich (FROGGS)

SEE ALSO

Top

@@ -992,9 +1439,9 @@ The overlay is scaled (independently in x and y dimensions) to the size specifie

Category Objects

\ No newline at end of file