X-Git-Url: http://git.shadowcat.co.uk/gitweb/gitweb.cgi?a=blobdiff_plain;f=numeric.c;h=ec93d6b48d294cb9224869278240fccdcec50bef;hb=23131aa47a1f039c7b6f6bb5dd48b8406773ecac;hp=a22f813e64fc7dbef40b3b7137eafdf54cc26778;hpb=98994639e4e0e9a0cf55f6cc04e86c3779f35e38;p=p5sagit%2Fp5-mst-13.2.git diff --git a/numeric.c b/numeric.c index a22f813..ec93d6b 100644 --- a/numeric.c +++ b/numeric.c @@ -350,166 +350,202 @@ Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send) Recognise (or not) a number. The type of the number is returned (0 if unrecognised), otherwise it is a bit-ORed combination of IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT, -IS_NUMBER_NEG, IS_NUMBER_INFINITY (defined in perl.h). If the value -of the number can fit an in UV, it is returned in the *valuep. +IS_NUMBER_NEG, IS_NUMBER_INFINITY (defined in perl.h). + +If the value of the number can fit an in UV, it is returned in the *valuep +IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV +will never be set unless *valuep is valid, but *valuep may have been assigned +to during processing even though IS_NUMBER_IN_UV is not set on return. +If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when +valuep is non-NULL, but no actual assignment (or SEGV) will occur. + +IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were +seen (in which case *valuep gives the true value truncated to an integer), and +IS_NUMBER_NEG if the number is negative (in which case *valuep holds the +absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the +number is larger than a UV. =cut */ int Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep) { - const char *s = pv; - const char *send = pv + len; - const UV max_div_10 = UV_MAX / 10; - const char max_mod_10 = UV_MAX % 10 + '0'; - int numtype = 0; - int sawinf = 0; - - while (isSPACE(*s)) - s++; - if (*s == '-') { - s++; - numtype = IS_NUMBER_NEG; - } - else if (*s == '+') - s++; + const char *s = pv; + const char *send = pv + len; + const UV max_div_10 = UV_MAX / 10; + const char max_mod_10 = UV_MAX % 10; + int numtype = 0; + int sawinf = 0; + + while (s < send && isSPACE(*s)) + s++; + if (s == send) { + return 0; + } else if (*s == '-') { + s++; + numtype = IS_NUMBER_NEG; + } + else if (*s == '+') + s++; - /* next must be digit or the radix separator or beginning of infinity */ - if (isDIGIT(*s)) { - /* UVs are at least 32 bits, so the first 9 decimal digits cannot - overflow. */ - UV value = *s - '0'; - /* This construction seems to be more optimiser friendly. - (without it gcc does the isDIGIT test and the *s - '0' separately) - With it gcc on arm is managing 6 instructions (6 cycles) per digit. - In theory the optimiser could deduce how far to unroll the loop - before checking for overflow. */ - int digit = *++s - '0'; - if (digit >= 0 && digit <= 9) { - value = value * 10 + digit; - digit = *++s - '0'; - if (digit >= 0 && digit <= 9) { - value = value * 10 + digit; - digit = *++s - '0'; - if (digit >= 0 && digit <= 9) { - value = value * 10 + digit; - digit = *++s - '0'; - if (digit >= 0 && digit <= 9) { - value = value * 10 + digit; - digit = *++s - '0'; - if (digit >= 0 && digit <= 9) { - value = value * 10 + digit; - digit = *++s - '0'; - if (digit >= 0 && digit <= 9) { - value = value * 10 + digit; - digit = *++s - '0'; - if (digit >= 0 && digit <= 9) { - value = value * 10 + digit; - digit = *++s - '0'; - if (digit >= 0 && digit <= 9) { - value = value * 10 + digit; - /* Now got 9 digits, so need to check - each time for overflow. */ - digit = *++s - '0'; - while (digit >= 0 && digit <= 9 - && (value < max_div_10 - || (value == max_div_10 - && *s <= max_mod_10))) { - value = value * 10 + digit; - digit = *++s - '0'; - } - if (digit >= 0 && digit <= 9) { - /* value overflowed. - skip the remaining digits, don't - worry about setting *valuep. */ - do { - s++; - } while (isDIGIT(*s)); - numtype |= - IS_NUMBER_GREATER_THAN_UV_MAX; - goto skip_value; - } - } + if (s == send) + return 0; + + /* next must be digit or the radix separator or beginning of infinity */ + if (isDIGIT(*s)) { + /* UVs are at least 32 bits, so the first 9 decimal digits cannot + overflow. */ + UV value = *s - '0'; + /* This construction seems to be more optimiser friendly. + (without it gcc does the isDIGIT test and the *s - '0' separately) + With it gcc on arm is managing 6 instructions (6 cycles) per digit. + In theory the optimiser could deduce how far to unroll the loop + before checking for overflow. */ + if (++s < send) { + int digit = *s - '0'; + if (digit >= 0 && digit <= 9) { + value = value * 10 + digit; + if (++s < send) { + digit = *s - '0'; + if (digit >= 0 && digit <= 9) { + value = value * 10 + digit; + if (++s < send) { + digit = *s - '0'; + if (digit >= 0 && digit <= 9) { + value = value * 10 + digit; + if (++s < send) { + digit = *s - '0'; + if (digit >= 0 && digit <= 9) { + value = value * 10 + digit; + if (++s < send) { + digit = *s - '0'; + if (digit >= 0 && digit <= 9) { + value = value * 10 + digit; + if (++s < send) { + digit = *s - '0'; + if (digit >= 0 && digit <= 9) { + value = value * 10 + digit; + if (++s < send) { + digit = *s - '0'; + if (digit >= 0 && digit <= 9) { + value = value * 10 + digit; + if (++s < send) { + digit = *s - '0'; + if (digit >= 0 && digit <= 9) { + value = value * 10 + digit; + if (++s < send) { + /* Now got 9 digits, so need to check + each time for overflow. */ + digit = *s - '0'; + while (digit >= 0 && digit <= 9 + && (value < max_div_10 + || (value == max_div_10 + && digit <= max_mod_10))) { + value = value * 10 + digit; + if (++s < send) + digit = *s - '0'; + else + break; + } + if (digit >= 0 && digit <= 9 + && (s < send)) { + /* value overflowed. + skip the remaining digits, don't + worry about setting *valuep. */ + do { + s++; + } while (s < send && isDIGIT(*s)); + numtype |= + IS_NUMBER_GREATER_THAN_UV_MAX; + goto skip_value; + } + } + } } - } - } - } - } - } - } - numtype |= IS_NUMBER_IN_UV; - if (valuep) - *valuep = value; - - skip_value: - if (GROK_NUMERIC_RADIX(&s, send)) { - numtype |= IS_NUMBER_NOT_INT; - while (isDIGIT(*s)) /* optional digits after the radix */ - s++; + } + } + } + } + } + } + } + } + } + } + } } + } } - else if (GROK_NUMERIC_RADIX(&s, send)) { - numtype |= IS_NUMBER_NOT_INT; - /* no digits before the radix means we need digits after it */ - if (isDIGIT(*s)) { - do { - s++; - } while (isDIGIT(*s)); - numtype |= IS_NUMBER_IN_UV; - if (valuep) { - /* integer approximation is valid - it's 0. */ - *valuep = 0; - } - } - else - return 0; + numtype |= IS_NUMBER_IN_UV; + if (valuep) + *valuep = value; + + skip_value: + if (GROK_NUMERIC_RADIX(&s, send)) { + numtype |= IS_NUMBER_NOT_INT; + while (s < send && isDIGIT(*s)) /* optional digits after the radix */ + s++; } - else if (*s == 'I' || *s == 'i') { - s++; if (*s != 'N' && *s != 'n') return 0; - s++; if (*s != 'F' && *s != 'f') return 0; - s++; if (*s == 'I' || *s == 'i') { - s++; if (*s != 'N' && *s != 'n') return 0; - s++; if (*s != 'I' && *s != 'i') return 0; - s++; if (*s != 'T' && *s != 't') return 0; - s++; if (*s != 'Y' && *s != 'y') return 0; - s++; - } - sawinf = 1; - } - else /* Add test for NaN here. */ - return 0; - - if (sawinf) { - numtype &= IS_NUMBER_NEG; /* Keep track of sign */ - numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT; - } else { - /* we can have an optional exponent part */ - if (*s == 'e' || *s == 'E') { - /* The only flag we keep is sign. Blow away any "it's UV" */ - numtype &= IS_NUMBER_NEG; - numtype |= IS_NUMBER_NOT_INT; - s++; - if (*s == '-' || *s == '+') - s++; - if (isDIGIT(*s)) { - do { - s++; - } while (isDIGIT(*s)); - } - else - return 0; - } + } + else if (GROK_NUMERIC_RADIX(&s, send)) { + numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */ + /* no digits before the radix means we need digits after it */ + if (s < send && isDIGIT(*s)) { + do { + s++; + } while (s < send && isDIGIT(*s)); + if (valuep) { + /* integer approximation is valid - it's 0. */ + *valuep = 0; + } } - while (isSPACE(*s)) - s++; - if (s >= send) - return numtype; - if (len == 10 && memEQ(pv, "0 but true", 10)) { - if (valuep) - *valuep = 0; - return IS_NUMBER_IN_UV; + else + return 0; + } else if (*s == 'I' || *s == 'i') { + s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; + s++; if (s == send || (*s != 'F' && *s != 'f')) return 0; + s++; if (s < send && (*s == 'I' || *s == 'i')) { + s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; + s++; if (s == send || (*s != 'I' && *s != 'i')) return 0; + s++; if (s == send || (*s != 'T' && *s != 't')) return 0; + s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0; + s++; } + sawinf = 1; + } else /* Add test for NaN here. */ return 0; + + if (sawinf) { + numtype &= IS_NUMBER_NEG; /* Keep track of sign */ + numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT; + } else if (s < send) { + /* we can have an optional exponent part */ + if (*s == 'e' || *s == 'E') { + /* The only flag we keep is sign. Blow away any "it's UV" */ + numtype &= IS_NUMBER_NEG; + numtype |= IS_NUMBER_NOT_INT; + s++; + if (s < send && (*s == '-' || *s == '+')) + s++; + if (s < send && isDIGIT(*s)) { + do { + s++; + } while (s < send && isDIGIT(*s)); + } + else + return 0; + } + } + while (s < send && isSPACE(*s)) + s++; + if (s >= send) + return numtype; + if (len == 10 && memEQ(pv, "0 but true", 10)) { + if (valuep) + *valuep = 0; + return IS_NUMBER_IN_UV; + } + return 0; } NV @@ -526,6 +562,14 @@ S_mulexp10(NV value, I32 exponent) negative = 1; exponent = -exponent; } +#ifdef __VAX /* avoid %SYSTEM-F-FLTOVF_F sans VAXC$ESTABLISH */ +# if defined(__DECC_VER) && __DECC_VER <= 50390006 + /* __F_FLT_MAX_10_EXP - 5 == 33 */ + if (!negative && + (log10(value) + exponent) >= (__F_FLT_MAX_10_EXP - 5)) + return NV_MAX; +# endif +#endif for (bit = 1; exponent; bit <<= 1) { if (exponent & bit) { exponent ^= bit;