X-Git-Url: http://git.shadowcat.co.uk/gitweb/gitweb.cgi?a=blobdiff_plain;f=lib%2FDBIx%2FClass%2FResultSet.pm;h=1b12895e06d76f4ea47e0f1845babc2ed1b5df2c;hb=48580715af3072905f2c71dc27e7f70f21a11338;hp=0ac9ae7ba967c793df977f11c75532fb02add283;hpb=f0b87b2c979e37d607c819eb4ec13eff93dac573;p=dbsrgits%2FDBIx-Class.git diff --git a/lib/DBIx/Class/ResultSet.pm b/lib/DBIx/Class/ResultSet.pm index 0ac9ae7..1b12895 100644 --- a/lib/DBIx/Class/ResultSet.pm +++ b/lib/DBIx/Class/ResultSet.pm @@ -141,7 +141,7 @@ See: L, L, L, L, L. =head1 OVERLOADING If a resultset is used in a numeric context it returns the L. -However, if it is used in a booleand context it is always true. So if +However, if it is used in a boolean context it is always true. So if you want to check if a resultset has any results use C. C will always be true. @@ -291,14 +291,15 @@ sub search_rs { $rows = $self->get_cache; } - if (List::Util::first { exists $attrs->{$_} } qw{select as columns}) { - delete $our_attrs->{$_} for (qw{+select +as +columns}); + # reset the selector list + if (List::Util::first { exists $attrs->{$_} } qw{columns select as}) { + delete @{$our_attrs}{qw{select as columns +select +as +columns include_columns}}; } my $new_attrs = { %{$our_attrs}, %{$attrs} }; # merge new attrs into inherited - foreach my $key (qw/join prefetch +select +as +columns bind/) { + foreach my $key (qw/join prefetch +select +as +columns include_columns bind/) { next unless exists $attrs->{$key}; $new_attrs->{$key} = $self->_merge_attr($our_attrs->{$key}, $attrs->{$key}); } @@ -523,7 +524,7 @@ sub find { # in ::Relationship::Base::search_related (the row method), and furthermore # the relationship is of the 'single' type. This means that the condition # provided by the relationship (already attached to $self) is sufficient, - # as there can be only one row in the databse that would satisfy the + # as there can be only one row in the database that would satisfy the # relationship } else { @@ -638,7 +639,7 @@ sub search_related { =head2 search_related_rs This method works exactly the same as search_related, except that -it guarantees a restultset, even in list context. +it guarantees a resultset, even in list context. =cut @@ -696,7 +697,7 @@ L returned. =item B -As of 0.08100, this method enforces the assumption that the preceeding +As of 0.08100, this method enforces the assumption that the preceding query returns only one row. If more than one row is returned, you will receive a warning: @@ -1596,7 +1597,7 @@ Example: Assuming an Artist Class that has many CDs Classes relating: ], }, { artistid => 5, name => 'Angsty-Whiny Girl', cds => [ - { title => 'My parents sold me to a record company' ,year => 2005 }, + { title => 'My parents sold me to a record company', year => 2005 }, { title => 'Why Am I So Ugly?', year => 2006 }, { title => 'I Got Surgery and am now Popular', year => 2007 } ], @@ -1624,7 +1625,7 @@ example: [qw/artistid name/], [100, 'A Formally Unknown Singer'], [101, 'A singer that jumped the shark two albums ago'], - [102, 'An actually cool singer.'], + [102, 'An actually cool singer'], ]); Please note an important effect on your data when choosing between void and @@ -2131,7 +2132,7 @@ To create related objects, pass a hashref of related-object column values B. If the relationship is of type C (L) - pass an arrayref of hashrefs. The process will correctly identify columns holding foreign keys, and will -transparrently populate them from the keys of the corresponding relation. +transparently populate them from the keys of the corresponding relation. This can be applied recursively, and will work correctly for a structure with an arbitrary depth and width, as long as the relationships actually exists and the correct column data has been supplied. @@ -2469,6 +2470,23 @@ sub is_paged { return !!$self->{attrs}{page}; } +=head2 is_ordered + +=over 4 + +=item Arguments: none + +=item Return Value: true, if the resultset has been ordered with C. + +=back + +=cut + +sub is_ordered { + my ($self) = @_; + return scalar $self->result_source->storage->_parse_order_by($self->{attrs}{order_by}); +} + =head2 related_resultset =over 4 @@ -2592,6 +2610,68 @@ sub current_source_alias { return ($self->{attrs} || {})->{alias} || 'me'; } +=head2 as_subselect_rs + +=over 4 + +=item Arguments: none + +=item Return Value: $resultset + +=back + +Act as a barrier to SQL symbols. The resultset provided will be made into a +"virtual view" by including it as a subquery within the from clause. From this +point on, any joined tables are inaccessible to ->search on the resultset (as if +it were simply where-filtered without joins). For example: + + my $rs = $schema->resultset('Bar')->search({'x.name' => 'abc'},{ join => 'x' }); + + # 'x' now pollutes the query namespace + + # So the following works as expected + my $ok_rs = $rs->search({'x.other' => 1}); + + # But this doesn't: instead of finding a 'Bar' related to two x rows (abc and + # def) we look for one row with contradictory terms and join in another table + # (aliased 'x_2') which we never use + my $broken_rs = $rs->search({'x.name' => 'def'}); + + my $rs2 = $rs->as_subselect_rs; + + # doesn't work - 'x' is no longer accessible in $rs2, having been sealed away + my $not_joined_rs = $rs2->search({'x.other' => 1}); + + # works as expected: finds a 'table' row related to two x rows (abc and def) + my $correctly_joined_rs = $rs2->search({'x.name' => 'def'}); + +Another example of when one might use this would be to select a subset of +columns in a group by clause: + + my $rs = $schema->resultset('Bar')->search(undef, { + group_by => [qw{ id foo_id baz_id }], + })->as_subselect_rs->search(undef, { + columns => [qw{ id foo_id }] + }); + +In the above example normally columns would have to be equal to the group by, +but because we isolated the group by into a subselect the above works. + +=cut + +sub as_subselect_rs { + my $self = shift; + + return $self->result_source->resultset->search( undef, { + alias => $self->current_source_alias, + from => [{ + $self->current_source_alias => $self->as_query, + -alias => $self->current_source_alias, + -source_handle => $self->result_source->handle, + }] + }); +} + # This code is called by search_related, and makes sure there # is clear separation between the joins before, during, and # after the relationship. This information is needed later @@ -3249,7 +3329,7 @@ attempting to use the accessor in an C clause or similar will fail miserably. To get around this limitation, you can supply literal SQL to your -C attribute that contains the C text, e.g. select => [\'myfield AS alias'] @@ -3360,7 +3440,7 @@ for a C attribute in the above search. C can be used with the following relationship types: C, C (or if you're using C, any relationship declared with an accessor type of 'single' or 'filter'). A more complex example that -prefetches an artists cds, the tracks on those cds, and the tags associted +prefetches an artists cds, the tracks on those cds, and the tags associated with that artist is given below (assuming many-to-many from artists to tags): my $rs = $schema->resultset('Artist')->search( @@ -3439,7 +3519,7 @@ C on it. =back -Specifes the maximum number of rows for direct retrieval or the number of +Specifies the maximum number of rows for direct retrieval or the number of rows per page if the page attribute or method is used. =head2 offset