[perl #40272] subroutine call with & in perlop example
[p5sagit/p5-mst-13.2.git] / lib / Math / Complex.pm
index 9812513..110e8b6 100644 (file)
@@ -7,9 +7,9 @@
 
 package Math::Complex;
 
-our($VERSION, @ISA, @EXPORT, %EXPORT_TAGS, $Inf);
+use vars qw($VERSION @ISA @EXPORT @EXPORT_OK %EXPORT_TAGS $Inf);
 
-$VERSION = 1.31;
+$VERSION = 1.36;
 
 BEGIN {
     unless ($^O eq 'unicosmk') {
@@ -37,6 +37,10 @@ use strict;
 my $i;
 my %LOGN;
 
+# Regular expression for floating point numbers.
+# These days we could use Scalar::Util::lln(), I guess.
+my $gre = qr'\s*([\+\-]?(?:(?:(?:\d+(?:_\d+)*(?:\.\d*(?:_\d+)*)?|\.\d+(?:_\d+)*)(?:[eE][\+\-]?\d+(?:_\d+)*)?))|inf)'i;
+
 require Exporter;
 
 @ISA = qw(Exporter);
@@ -58,23 +62,29 @@ my @trig = qw(
             sqrt log ln
             log10 logn cbrt root
             cplx cplxe
+            atan2
             ),
           @trig);
 
+my @pi = qw(pi pi2 pi4 pip2 pip4);
+
+@EXPORT_OK = @pi;
+
 %EXPORT_TAGS = (
     'trig' => [@trig],
+    'pi' => [@pi],
 );
 
 use overload
-       '+'     => \&plus,
-       '-'     => \&minus,
-       '*'     => \&multiply,
-       '/'     => \&divide,
-       '**'    => \&power,
-       '=='    => \&numeq,
-       '<=>'   => \&spaceship,
-       'neg'   => \&negate,
-       '~'     => \&conjugate,
+       '+'     => \&_plus,
+       '-'     => \&_minus,
+       '*'     => \&_multiply,
+       '/'     => \&_divide,
+       '**'    => \&_power,
+       '=='    => \&_numeq,
+       '<=>'   => \&_spaceship,
+       'neg'   => \&_negate,
+       '~'     => \&_conjugate,
        'abs'   => \&abs,
        'sqrt'  => \&sqrt,
        'exp'   => \&exp,
@@ -83,7 +93,7 @@ use overload
        'cos'   => \&cos,
        'tan'   => \&tan,
        'atan2' => \&atan2,
-       qw("" stringify);
+        '""'    => \&_stringify;
 
 #
 # Package "privates"
@@ -100,12 +110,60 @@ my $eps            = 1e-14;               # Epsilon
 #      c_dirty         cartesian form not up-to-date
 #      p_dirty         polar form not up-to-date
 #      display         display format (package's global when not set)
+#      bn_cartesian
+#       bnc_dirty
 #
 
 # Die on bad *make() arguments.
 
 sub _cannot_make {
-    die "@{[(caller(1))[3]]}: Cannot take $_[0] of $_[1].\n";
+    die "@{[(caller(1))[3]]}: Cannot take $_[0] of '$_[1]'.\n";
+}
+
+sub _make {
+    my $arg = shift;
+    my ($p, $q);
+
+    if ($arg =~ /^$gre$/) {
+       ($p, $q) = ($1, 0);
+    } elsif ($arg =~ /^(?:$gre)?$gre\s*i\s*$/) {
+       ($p, $q) = ($1 || 0, $2);
+    } elsif ($arg =~ /^\s*\(\s*$gre\s*(?:,\s*$gre\s*)?\)\s*$/) {
+       ($p, $q) = ($1, $2 || 0);
+    }
+
+    if (defined $p) {
+       $p =~ s/^\+//;
+       $p =~ s/^(-?)inf$/"${1}9**9**9"/e;
+       $q =~ s/^\+//;
+       $q =~ s/^(-?)inf$/"${1}9**9**9"/e;
+    }
+
+    return ($p, $q);
+}
+
+sub _emake {
+    my $arg = shift;
+    my ($p, $q);
+
+    if ($arg =~ /^\s*\[\s*$gre\s*(?:,\s*$gre\s*)?\]\s*$/) {
+       ($p, $q) = ($1, $2 || 0);
+    } elsif ($arg =~ m!^\s*\[\s*$gre\s*(?:,\s*([-+]?\d*\s*)?pi(?:/\s*(\d+))?\s*)?\]\s*$!) {
+       ($p, $q) = ($1, ($2 eq '-' ? -1 : ($2 || 1)) * pi() / ($3 || 1));
+    } elsif ($arg =~ /^\s*\[\s*$gre\s*\]\s*$/) {
+       ($p, $q) = ($1, 0);
+    } elsif ($arg =~ /^\s*$gre\s*$/) {
+       ($p, $q) = ($1, 0);
+    }
+
+    if (defined $p) {
+       $p =~ s/^\+//;
+       $q =~ s/^\+//;
+       $p =~ s/^(-?)inf$/"${1}9**9**9"/e;
+       $q =~ s/^(-?)inf$/"${1}9**9**9"/e;
+    }
+
+    return ($p, $q);
 }
 
 #
@@ -114,29 +172,26 @@ sub _cannot_make {
 # Create a new complex number (cartesian form)
 #
 sub make {
-       my $self = bless {}, shift;
-       my ($re, $im) = @_;
-       my $rre = ref $re;
-       if ( $rre ) {
-           if ( $rre eq ref $self ) {
-               $re = Re($re);
-           } else {
-               _cannot_make("real part", $rre);
-           }
-       }
-       my $rim = ref $im;
-       if ( $rim ) {
-           if ( $rim eq ref $self ) {
-               $im = Im($im);
-           } else {
-               _cannot_make("imaginary part", $rim);
-           }
-       }
-       $self->{'cartesian'} = [ $re, $im ];
-       $self->{c_dirty} = 0;
-       $self->{p_dirty} = 1;
-       $self->display_format('cartesian');
-       return $self;
+    my $self = bless {}, shift;
+    my ($re, $im);
+    if (@_ == 0) {
+       ($re, $im) = (0, 0);
+    } elsif (@_ == 1) {
+       return (ref $self)->emake($_[0])
+           if ($_[0] =~ /^\s*\[/);
+       ($re, $im) = _make($_[0]);
+    } elsif (@_ == 2) {
+       ($re, $im) = @_;
+    }
+    if (defined $re) {
+       _cannot_make("real part",      $re) unless $re =~ /^$gre$/;
+    }
+    $im ||= 0;
+    _cannot_make("imaginary part", $im) unless $im =~ /^$gre$/;
+    $self->_set_cartesian([$re, $im ]);
+    $self->display_format('cartesian');
+
+    return $self;
 }
 
 #
@@ -145,33 +200,32 @@ sub make {
 # Create a new complex number (exponential form)
 #
 sub emake {
-       my $self = bless {}, shift;
-       my ($rho, $theta) = @_;
-       my $rrh = ref $rho;
-       if ( $rrh ) {
-           if ( $rrh eq ref $self ) {
-               $rho = rho($rho);
-           } else {
-               _cannot_make("rho", $rrh);
-           }
-       }
-       my $rth = ref $theta;
-       if ( $rth ) {
-           if ( $rth eq ref $self ) {
-               $theta = theta($theta);
-           } else {
-               _cannot_make("theta", $rth);
-           }
-       }
+    my $self = bless {}, shift;
+    my ($rho, $theta);
+    if (@_ == 0) {
+       ($rho, $theta) = (0, 0);
+    } elsif (@_ == 1) {
+       return (ref $self)->make($_[0])
+           if ($_[0] =~ /^\s*\(/ || $_[0] =~ /i\s*$/);
+       ($rho, $theta) = _emake($_[0]);
+    } elsif (@_ == 2) {
+       ($rho, $theta) = @_;
+    }
+    if (defined $rho && defined $theta) {
        if ($rho < 0) {
            $rho   = -$rho;
            $theta = ($theta <= 0) ? $theta + pi() : $theta - pi();
        }
-       $self->{'polar'} = [$rho, $theta];
-       $self->{p_dirty} = 0;
-       $self->{c_dirty} = 1;
-       $self->display_format('polar');
-       return $self;
+    }
+    if (defined $rho) {
+       _cannot_make("rho",   $rho)   unless $rho   =~ /^$gre$/;
+    }
+    $theta ||= 0;
+    _cannot_make("theta", $theta) unless $theta =~ /^$gre$/;
+    $self->_set_polar([$rho, $theta]);
+    $self->display_format('polar');
+
+    return $self;
 }
 
 sub new { &make }              # For backward compatibility only.
@@ -183,8 +237,7 @@ sub new { &make }           # For backward compatibility only.
 # This avoids the burden of writing Math::Complex->make(re, im).
 #
 sub cplx {
-       my ($re, $im) = @_;
-       return __PACKAGE__->make($re, defined $im ? $im : 0);
+       return __PACKAGE__->make(@_);
 }
 
 #
@@ -194,8 +247,7 @@ sub cplx {
 # This avoids the burden of writing Math::Complex->emake(rho, theta).
 #
 sub cplxe {
-       my ($rho, $theta) = @_;
-       return __PACKAGE__->emake($rho, defined $theta ? $theta : 0);
+       return __PACKAGE__->emake(@_);
 }
 
 #
@@ -206,11 +258,18 @@ sub cplxe {
 sub pi () { 4 * CORE::atan2(1, 1) }
 
 #
-# pit2
+# pi2
 #
 # The full circle
 #
-sub pit2 () { 2 * pi }
+sub pi2 () { 2 * pi }
+
+#
+# pi4
+#
+# The full circle twice.
+#
+sub pi4 () { 4 * pi }
 
 #
 # pip2
@@ -220,19 +279,18 @@ sub pit2 () { 2 * pi }
 sub pip2 () { pi / 2 }
 
 #
-# deg1
+# pip4
 #
-# One degree in radians, used in stringify_polar.
+# The eighth circle.
 #
-
-sub deg1 () { pi / 180 }
+sub pip4 () { pi / 4 }
 
 #
-# uplog10
+# _uplog10
 #
 # Used in log10().
 #
-sub uplog10 () { 1 / CORE::log(10) }
+sub _uplog10 () { 1 / CORE::log(10) }
 
 #
 # i
@@ -250,30 +308,32 @@ sub i () {
 }
 
 #
-# ip2
+# _ip2
 #
 # Half of i.
 #
-sub ip2 () { i / 2 }
+sub _ip2 () { i / 2 }
 
 #
 # Attribute access/set routines
 #
 
-sub cartesian {$_[0]->{c_dirty} ?
-                  $_[0]->update_cartesian : $_[0]->{'cartesian'}}
-sub polar     {$_[0]->{p_dirty} ?
-                  $_[0]->update_polar : $_[0]->{'polar'}}
+sub _cartesian {$_[0]->{c_dirty} ?
+                  $_[0]->_update_cartesian : $_[0]->{'cartesian'}}
+sub _polar     {$_[0]->{p_dirty} ?
+                  $_[0]->_update_polar : $_[0]->{'polar'}}
 
-sub set_cartesian { $_[0]->{p_dirty}++; $_[0]->{'cartesian'} = $_[1] }
-sub set_polar     { $_[0]->{c_dirty}++; $_[0]->{'polar'} = $_[1] }
+sub _set_cartesian { $_[0]->{p_dirty}++; $_[0]->{c_dirty} = 0;
+                    $_[0]->{'cartesian'} = $_[1] }
+sub _set_polar     { $_[0]->{c_dirty}++; $_[0]->{p_dirty} = 0;
+                    $_[0]->{'polar'} = $_[1] }
 
 #
-# ->update_cartesian
+# ->_update_cartesian
 #
 # Recompute and return the cartesian form, given accurate polar form.
 #
-sub update_cartesian {
+sub _update_cartesian {
        my $self = shift;
        my ($r, $t) = @{$self->{'polar'}};
        $self->{c_dirty} = 0;
@@ -282,11 +342,11 @@ sub update_cartesian {
 
 #
 #
-# ->update_polar
+# ->_update_polar
 #
 # Recompute and return the polar form, given accurate cartesian form.
 #
-sub update_polar {
+sub _update_polar {
        my $self = shift;
        my ($x, $y) = @{$self->{'cartesian'}};
        $self->{p_dirty} = 0;
@@ -296,34 +356,34 @@ sub update_polar {
 }
 
 #
-# (plus)
+# (_plus)
 #
 # Computes z1+z2.
 #
-sub plus {
+sub _plus {
        my ($z1, $z2, $regular) = @_;
-       my ($re1, $im1) = @{$z1->cartesian};
+       my ($re1, $im1) = @{$z1->_cartesian};
        $z2 = cplx($z2) unless ref $z2;
-       my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
+       my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
        unless (defined $regular) {
-               $z1->set_cartesian([$re1 + $re2, $im1 + $im2]);
+               $z1->_set_cartesian([$re1 + $re2, $im1 + $im2]);
                return $z1;
        }
        return (ref $z1)->make($re1 + $re2, $im1 + $im2);
 }
 
 #
-# (minus)
+# (_minus)
 #
 # Computes z1-z2.
 #
-sub minus {
+sub _minus {
        my ($z1, $z2, $inverted) = @_;
-       my ($re1, $im1) = @{$z1->cartesian};
+       my ($re1, $im1) = @{$z1->_cartesian};
        $z2 = cplx($z2) unless ref $z2;
-       my ($re2, $im2) = @{$z2->cartesian};
+       my ($re2, $im2) = @{$z2->_cartesian};
        unless (defined $inverted) {
-               $z1->set_cartesian([$re1 - $re2, $im1 - $im2]);
+               $z1->_set_cartesian([$re1 - $re2, $im1 - $im2]);
                return $z1;
        }
        return $inverted ?
@@ -333,28 +393,28 @@ sub minus {
 }
 
 #
-# (multiply)
+# (_multiply)
 #
 # Computes z1*z2.
 #
-sub multiply {
+sub _multiply {
         my ($z1, $z2, $regular) = @_;
        if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
            # if both polar better use polar to avoid rounding errors
-           my ($r1, $t1) = @{$z1->polar};
-           my ($r2, $t2) = @{$z2->polar};
+           my ($r1, $t1) = @{$z1->_polar};
+           my ($r2, $t2) = @{$z2->_polar};
            my $t = $t1 + $t2;
-           if    ($t >   pi()) { $t -= pit2 }
-           elsif ($t <= -pi()) { $t += pit2 }
+           if    ($t >   pi()) { $t -= pi2 }
+           elsif ($t <= -pi()) { $t += pi2 }
            unless (defined $regular) {
-               $z1->set_polar([$r1 * $r2, $t]);
+               $z1->_set_polar([$r1 * $r2, $t]);
                return $z1;
            }
            return (ref $z1)->emake($r1 * $r2, $t);
        } else {
-           my ($x1, $y1) = @{$z1->cartesian};
+           my ($x1, $y1) = @{$z1->_cartesian};
            if (ref $z2) {
-               my ($x2, $y2) = @{$z2->cartesian};
+               my ($x2, $y2) = @{$z2->_cartesian};
                return (ref $z1)->make($x1*$x2-$y1*$y2, $x1*$y2+$y1*$x2);
            } else {
                return (ref $z1)->make($x1*$z2, $y1*$z2);
@@ -384,41 +444,41 @@ sub _divbyzero {
 }
 
 #
-# (divide)
+# (_divide)
 #
 # Computes z1/z2.
 #
-sub divide {
+sub _divide {
        my ($z1, $z2, $inverted) = @_;
        if ($z1->{p_dirty} == 0 and ref $z2 and $z2->{p_dirty} == 0) {
            # if both polar better use polar to avoid rounding errors
-           my ($r1, $t1) = @{$z1->polar};
-           my ($r2, $t2) = @{$z2->polar};
+           my ($r1, $t1) = @{$z1->_polar};
+           my ($r2, $t2) = @{$z2->_polar};
            my $t;
            if ($inverted) {
                _divbyzero "$z2/0" if ($r1 == 0);
                $t = $t2 - $t1;
-               if    ($t >   pi()) { $t -= pit2 }
-               elsif ($t <= -pi()) { $t += pit2 }
+               if    ($t >   pi()) { $t -= pi2 }
+               elsif ($t <= -pi()) { $t += pi2 }
                return (ref $z1)->emake($r2 / $r1, $t);
            } else {
                _divbyzero "$z1/0" if ($r2 == 0);
                $t = $t1 - $t2;
-               if    ($t >   pi()) { $t -= pit2 }
-               elsif ($t <= -pi()) { $t += pit2 }
+               if    ($t >   pi()) { $t -= pi2 }
+               elsif ($t <= -pi()) { $t += pi2 }
                return (ref $z1)->emake($r1 / $r2, $t);
            }
        } else {
            my ($d, $x2, $y2);
            if ($inverted) {
-               ($x2, $y2) = @{$z1->cartesian};
+               ($x2, $y2) = @{$z1->_cartesian};
                $d = $x2*$x2 + $y2*$y2;
                _divbyzero "$z2/0" if $d == 0;
                return (ref $z1)->make(($x2*$z2)/$d, -($y2*$z2)/$d);
            } else {
-               my ($x1, $y1) = @{$z1->cartesian};
+               my ($x1, $y1) = @{$z1->_cartesian};
                if (ref $z2) {
-                   ($x2, $y2) = @{$z2->cartesian};
+                   ($x2, $y2) = @{$z2->_cartesian};
                    $d = $x2*$x2 + $y2*$y2;
                    _divbyzero "$z1/0" if $d == 0;
                    my $u = ($x1*$x2 + $y1*$y2)/$d;
@@ -433,11 +493,11 @@ sub divide {
 }
 
 #
-# (power)
+# (_power)
 #
 # Computes z1**z2 = exp(z2 * log z1)).
 #
-sub power {
+sub _power {
        my ($z1, $z2, $inverted) = @_;
        if ($inverted) {
            return 1 if $z1 == 0 || $z2 == 1;
@@ -451,65 +511,65 @@ sub power {
        # If both arguments cartesian, return cartesian, else polar.
        return $z1->{c_dirty} == 0 &&
               (not ref $z2 or $z2->{c_dirty} == 0) ?
-              cplx(@{$w->cartesian}) : $w;
+              cplx(@{$w->_cartesian}) : $w;
 }
 
 #
-# (spaceship)
+# (_spaceship)
 #
 # Computes z1 <=> z2.
 # Sorts on the real part first, then on the imaginary part. Thus 2-4i < 3+8i.
 #
-sub spaceship {
+sub _spaceship {
        my ($z1, $z2, $inverted) = @_;
-       my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0);
-       my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
+       my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
+       my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
        my $sgn = $inverted ? -1 : 1;
        return $sgn * ($re1 <=> $re2) if $re1 != $re2;
        return $sgn * ($im1 <=> $im2);
 }
 
 #
-# (numeq)
+# (_numeq)
 #
 # Computes z1 == z2.
 #
-# (Required in addition to spaceship() because of NaNs.)
-sub numeq {
+# (Required in addition to _spaceship() because of NaNs.)
+sub _numeq {
        my ($z1, $z2, $inverted) = @_;
-       my ($re1, $im1) = ref $z1 ? @{$z1->cartesian} : ($z1, 0);
-       my ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
+       my ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
+       my ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
        return $re1 == $re2 && $im1 == $im2 ? 1 : 0;
 }
 
 #
-# (negate)
+# (_negate)
 #
 # Computes -z.
 #
-sub negate {
+sub _negate {
        my ($z) = @_;
        if ($z->{c_dirty}) {
-               my ($r, $t) = @{$z->polar};
+               my ($r, $t) = @{$z->_polar};
                $t = ($t <= 0) ? $t + pi : $t - pi;
                return (ref $z)->emake($r, $t);
        }
-       my ($re, $im) = @{$z->cartesian};
+       my ($re, $im) = @{$z->_cartesian};
        return (ref $z)->make(-$re, -$im);
 }
 
 #
-# (conjugate)
+# (_conjugate)
 #
-# Compute complex's conjugate.
+# Compute complex's _conjugate.
 #
-sub conjugate {
+sub _conjugate {
        my ($z) = @_;
        if ($z->{c_dirty}) {
-               my ($r, $t) = @{$z->polar};
+               my ($r, $t) = @{$z->_polar};
                return (ref $z)->emake($r, -$t);
        }
-       my ($re, $im) = @{$z->cartesian};
+       my ($re, $im) = @{$z->_cartesian};
        return (ref $z)->make($re, -$im);
 }
 
@@ -528,20 +588,20 @@ sub abs {
            }
        }
        if (defined $rho) {
-           $z->{'polar'} = [ $rho, ${$z->polar}[1] ];
+           $z->{'polar'} = [ $rho, ${$z->_polar}[1] ];
            $z->{p_dirty} = 0;
            $z->{c_dirty} = 1;
            return $rho;
        } else {
-           return ${$z->polar}[0];
+           return ${$z->_polar}[0];
        }
 }
 
 sub _theta {
     my $theta = $_[0];
 
-    if    ($$theta >   pi()) { $$theta -= pit2 }
-    elsif ($$theta <= -pi()) { $$theta += pit2 }
+    if    ($$theta >   pi()) { $$theta -= pi2 }
+    elsif ($$theta <= -pi()) { $$theta += pi2 }
 }
 
 #
@@ -554,11 +614,11 @@ sub arg {
        return $z unless ref $z;
        if (defined $theta) {
            _theta(\$theta);
-           $z->{'polar'} = [ ${$z->polar}[0], $theta ];
+           $z->{'polar'} = [ ${$z->_polar}[0], $theta ];
            $z->{p_dirty} = 0;
            $z->{c_dirty} = 1;
        } else {
-           $theta = ${$z->polar}[1];
+           $theta = ${$z->_polar}[1];
            _theta(\$theta);
        }
        return $theta;
@@ -581,10 +641,10 @@ sub arg {
 #
 sub sqrt {
        my ($z) = @_;
-       my ($re, $im) = ref $z ? @{$z->cartesian} : ($z, 0);
+       my ($re, $im) = ref $z ? @{$z->_cartesian} : ($z, 0);
        return $re < 0 ? cplx(0, CORE::sqrt(-$re)) : CORE::sqrt($re)
            if $im == 0;
-       my ($r, $t) = @{$z->polar};
+       my ($r, $t) = @{$z->_polar};
        return (ref $z)->emake(CORE::sqrt($r), $t/2);
 }
 
@@ -601,7 +661,7 @@ sub cbrt {
            -CORE::exp(CORE::log(-$z)/3) :
                ($z > 0 ? CORE::exp(CORE::log($z)/3): 0)
            unless ref $z;
-       my ($r, $t) = @{$z->polar};
+       my ($r, $t) = @{$z->_polar};
        return 0 if $r == 0;
        return (ref $z)->emake(CORE::exp(CORE::log($r)/3), $t/3);
 }
@@ -612,7 +672,7 @@ sub cbrt {
 # Die on bad root.
 #
 sub _rootbad {
-    my $mess = "Root $_[0] illegal, root rank must be positive integer.\n";
+    my $mess = "Root '$_[0]' illegal, root rank must be positive integer.\n";
 
     my @up = caller(1);
 
@@ -632,22 +692,27 @@ sub _rootbad {
 # z^(1/n) = r^(1/n) (cos ((t+2 k pi)/n) + i sin ((t+2 k pi)/n))
 #
 sub root {
-       my ($z, $n) = @_;
+       my ($z, $n, $k) = @_;
        _rootbad($n) if ($n < 1 or int($n) != $n);
        my ($r, $t) = ref $z ?
-           @{$z->polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);
-       my @root;
-       my $k;
-       my $theta_inc = pit2 / $n;
+           @{$z->_polar} : (CORE::abs($z), $z >= 0 ? 0 : pi);
+       my $theta_inc = pi2 / $n;
        my $rho = $r ** (1/$n);
-       my $theta;
        my $cartesian = ref $z && $z->{c_dirty} == 0;
-       for ($k = 0, $theta = $t / $n; $k < $n; $k++, $theta += $theta_inc) {
-           my $w = cplxe($rho, $theta);
-           # Yes, $cartesian is loop invariant.
-           push @root, $cartesian ? cplx(@{$w->cartesian}) : $w;
+       if (@_ == 2) {
+           my @root;
+           for (my $i = 0, my $theta = $t / $n;
+                $i < $n;
+                $i++, $theta += $theta_inc) {
+               my $w = cplxe($rho, $theta);
+               # Yes, $cartesian is loop invariant.
+               push @root, $cartesian ? cplx(@{$w->_cartesian}) : $w;
+           }
+           return @root;
+       } elsif (@_ == 3) {
+           my $w = cplxe($rho, $t / $n + $k * $theta_inc);
+           return $cartesian ? cplx(@{$w->_cartesian}) : $w;
        }
-       return @root;
 }
 
 #
@@ -659,11 +724,11 @@ sub Re {
        my ($z, $Re) = @_;
        return $z unless ref $z;
        if (defined $Re) {
-           $z->{'cartesian'} = [ $Re, ${$z->cartesian}[1] ];
+           $z->{'cartesian'} = [ $Re, ${$z->_cartesian}[1] ];
            $z->{c_dirty} = 0;
            $z->{p_dirty} = 1;
        } else {
-           return ${$z->cartesian}[0];
+           return ${$z->_cartesian}[0];
        }
 }
 
@@ -676,11 +741,11 @@ sub Im {
        my ($z, $Im) = @_;
        return 0 unless ref $z;
        if (defined $Im) {
-           $z->{'cartesian'} = [ ${$z->cartesian}[0], $Im ];
+           $z->{'cartesian'} = [ ${$z->_cartesian}[0], $Im ];
            $z->{c_dirty} = 0;
            $z->{p_dirty} = 1;
        } else {
-           return ${$z->cartesian}[1];
+           return ${$z->_cartesian}[1];
        }
 }
 
@@ -709,7 +774,7 @@ sub theta {
 #
 sub exp {
        my ($z) = @_;
-       my ($x, $y) = @{$z->cartesian};
+       my ($x, $y) = @{$z->_cartesian};
        return (ref $z)->emake(CORE::exp($x), $y);
 }
 
@@ -745,10 +810,10 @@ sub log {
            _logofzero("log") if $z == 0;
            return $z > 0 ? CORE::log($z) : cplx(CORE::log(-$z), pi);
        }
-       my ($r, $t) = @{$z->polar};
+       my ($r, $t) = @{$z->_polar};
        _logofzero("log") if $r == 0;
-       if    ($t >   pi()) { $t -= pit2 }
-       elsif ($t <= -pi()) { $t += pit2 }
+       if    ($t >   pi()) { $t -= pi2 }
+       elsif ($t <= -pi()) { $t += pi2 }
        return (ref $z)->make(CORE::log($r), $t);
 }
 
@@ -766,7 +831,7 @@ sub ln { Math::Complex::log(@_) }
 #
 
 sub log10 {
-       return Math::Complex::log($_[0]) * uplog10;
+       return Math::Complex::log($_[0]) * _uplog10;
 }
 
 #
@@ -790,7 +855,7 @@ sub logn {
 sub cos {
        my ($z) = @_;
        return CORE::cos($z) unless ref $z;
-       my ($x, $y) = @{$z->cartesian};
+       my ($x, $y) = @{$z->_cartesian};
        my $ey = CORE::exp($y);
        my $sx = CORE::sin($x);
        my $cx = CORE::cos($x);
@@ -807,7 +872,7 @@ sub cos {
 sub sin {
        my ($z) = @_;
        return CORE::sin($z) unless ref $z;
-       my ($x, $y) = @{$z->cartesian};
+       my ($x, $y) = @{$z->_cartesian};
        my $ey = CORE::exp($y);
        my $sx = CORE::sin($x);
        my $cx = CORE::cos($x);
@@ -888,7 +953,7 @@ sub acos {
        return CORE::atan2(CORE::sqrt(1-$z*$z), $z)
            if (! ref $z) && CORE::abs($z) <= 1;
        $z = cplx($z, 0) unless ref $z;
-       my ($x, $y) = @{$z->cartesian};
+       my ($x, $y) = @{$z->_cartesian};
        return 0 if $x == 1 && $y == 0;
        my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
        my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
@@ -913,7 +978,7 @@ sub asin {
        return CORE::atan2($z, CORE::sqrt(1-$z*$z))
            if (! ref $z) && CORE::abs($z) <= 1;
        $z = cplx($z, 0) unless ref $z;
-       my ($x, $y) = @{$z->cartesian};
+       my ($x, $y) = @{$z->_cartesian};
        return 0 if $x == 0 && $y == 0;
        my $t1 = CORE::sqrt(($x+1)*($x+1) + $y*$y);
        my $t2 = CORE::sqrt(($x-1)*($x-1) + $y*$y);
@@ -936,12 +1001,12 @@ sub asin {
 sub atan {
        my ($z) = @_;
        return CORE::atan2($z, 1) unless ref $z;
-       my ($x, $y) = ref $z ? @{$z->cartesian} : ($z, 0);
+       my ($x, $y) = ref $z ? @{$z->_cartesian} : ($z, 0);
        return 0 if $x == 0 && $y == 0;
        _divbyzero "atan(i)"  if ( $z == i);
        _logofzero "atan(-i)" if (-$z == i); # -i is a bad file test...
        my $log = &log((i + $z) / (i - $z));
-       return ip2 * $log;
+       return _ip2 * $log;
 }
 
 #
@@ -1007,7 +1072,7 @@ sub cosh {
            $ex = CORE::exp($z);
            return $ex ? ($ex + 1/$ex)/2 : $Inf;
        }
-       my ($x, $y) = @{$z->cartesian};
+       my ($x, $y) = @{$z->_cartesian};
        $ex = CORE::exp($x);
        my $ex_1 = $ex ? 1 / $ex : $Inf;
        return (ref $z)->make(CORE::cos($y) * ($ex + $ex_1)/2,
@@ -1027,7 +1092,7 @@ sub sinh {
            $ex = CORE::exp($z);
            return $ex ? ($ex - 1/$ex)/2 : "-$Inf";
        }
-       my ($x, $y) = @{$z->cartesian};
+       my ($x, $y) = @{$z->_cartesian};
        my $cy = CORE::cos($y);
        my $sy = CORE::sin($y);
        $ex = CORE::exp($x);
@@ -1108,7 +1173,7 @@ sub acosh {
        unless (ref $z) {
            $z = cplx($z, 0);
        }
-       my ($re, $im) = @{$z->cartesian};
+       my ($re, $im) = @{$z->_cartesian};
        if ($im == 0) {
            return CORE::log($re + CORE::sqrt($re*$re - 1))
                if $re >= 1;
@@ -1218,27 +1283,30 @@ sub acotanh { Math::Complex::acoth(@_) }
 #
 # (atan2)
 #
-# Compute atan(z1/z2).
+# Compute atan(z1/z2), minding the right quadrant.
 #
 sub atan2 {
        my ($z1, $z2, $inverted) = @_;
        my ($re1, $im1, $re2, $im2);
        if ($inverted) {
-           ($re1, $im1) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
-           ($re2, $im2) = @{$z1->cartesian};
+           ($re1, $im1) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
+           ($re2, $im2) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
        } else {
-           ($re1, $im1) = @{$z1->cartesian};
-           ($re2, $im2) = ref $z2 ? @{$z2->cartesian} : ($z2, 0);
+           ($re1, $im1) = ref $z1 ? @{$z1->_cartesian} : ($z1, 0);
+           ($re2, $im2) = ref $z2 ? @{$z2->_cartesian} : ($z2, 0);
        }
-       if ($im2 == 0) {
-           return CORE::atan2($re1, $re2) if $im1 == 0;
-           return ($im1<=>0) * pip2 if $re2 == 0;
+       if ($im1 || $im2) {
+           # In MATLAB the imaginary parts are ignored.
+           # warn "atan2: Imaginary parts ignored";
+           # http://documents.wolfram.com/mathematica/functions/ArcTan
+           # NOTE: Mathematica ArcTan[x,y] while atan2(y,x)
+           my $s = $z1 * $z1 + $z2 * $z2;
+           _divbyzero("atan2") if $s == 0;
+           my $i = &i;
+           my $r = $z2 + $z1 * $i;
+           return -$i * &log($r / &sqrt( $s ));
        }
-       my $w = atan($z1/$z2);
-       my ($u, $v) = ref $w ? @{$w->cartesian} : ($w, 0);
-       $u += pi   if $re2 < 0;
-       $u -= pit2 if $u > pi;
-       return cplx($u, $v);
+       return CORE::atan2($re1, $re2);
 }
 
 #
@@ -1288,7 +1356,7 @@ sub display_format {
 }
 
 #
-# (stringify)
+# (_stringify)
 #
 # Show nicely formatted complex number under its cartesian or polar form,
 # depending on the current display format:
@@ -1297,25 +1365,25 @@ sub display_format {
 # . Otherwise, use the generic current default for all complex numbers,
 #   which is a package global variable.
 #
-sub stringify {
+sub _stringify {
        my ($z) = shift;
 
        my $style = $z->display_format;
 
        $style = $DISPLAY_FORMAT{style} unless defined $style;
 
-       return $z->stringify_polar if $style =~ /^p/i;
-       return $z->stringify_cartesian;
+       return $z->_stringify_polar if $style =~ /^p/i;
+       return $z->_stringify_cartesian;
 }
 
 #
-# ->stringify_cartesian
+# ->_stringify_cartesian
 #
 # Stringify as a cartesian representation 'a+bi'.
 #
-sub stringify_cartesian {
+sub _stringify_cartesian {
        my $z  = shift;
-       my ($x, $y) = @{$z->cartesian};
+       my ($x, $y) = @{$z->_cartesian};
        my ($re, $im);
 
        my %format = $z->display_format;
@@ -1371,13 +1439,13 @@ sub stringify_cartesian {
 
 
 #
-# ->stringify_polar
+# ->_stringify_polar
 #
 # Stringify as a polar representation '[r,t]'.
 #
-sub stringify_polar {
+sub _stringify_polar {
        my $z  = shift;
-       my ($r, $t) = @{$z->polar};
+       my ($r, $t) = @{$z->_polar};
        my $theta;
 
        my %format = $z->display_format;
@@ -1397,7 +1465,7 @@ sub stringify_polar {
        # Try to identify pi/n and friends.
        #
 
-       $t -= int(CORE::abs($t) / pit2) * pit2;
+       $t -= int(CORE::abs($t) / pi2) * pi2;
 
        if ($format{polar_pretty_print} && $t) {
            my ($a, $b);
@@ -1514,14 +1582,14 @@ which is also expressed by this formula:
 
 In other words, it's the projection of the vector onto the I<x> and I<y>
 axes. Mathematicians call I<rho> the I<norm> or I<modulus> and I<theta>
-the I<argument> of the complex number. The I<norm> of C<z> will be
-noted C<abs(z)>.
+the I<argument> of the complex number. The I<norm> of C<z> is
+marked here as C<abs(z)>.
 
-The polar notation (also known as the trigonometric
-representation) is much more handy for performing multiplications and
-divisions of complex numbers, whilst the cartesian notation is better
-suited for additions and subtractions. Real numbers are on the I<x>
-axis, and therefore I<theta> is zero or I<pi>.
+The polar notation (also known as the trigonometric representation) is
+much more handy for performing multiplications and divisions of
+complex numbers, whilst the cartesian notation is better suited for
+additions and subtractions. Real numbers are on the I<x> axis, and
+therefore I<y> or I<theta> is zero or I<pi>.
 
 All the common operations that can be performed on a real number have
 been defined to work on complex numbers as well, and are merely
@@ -1561,7 +1629,7 @@ be called an extension, would it?).
 
 A I<new> operation possible on a complex number that is
 the identity for real numbers is called the I<conjugate>, and is noted
-with an horizontal bar above the number, or C<~z> here.
+with a horizontal bar above the number, or C<~z> here.
 
         z = a + bi
        ~z = a - bi
@@ -1612,7 +1680,13 @@ the following (overloaded) operations are supported on complex numbers:
        log(z) = log(r1) + i*t
        sin(z) = 1/2i (exp(i * z1) - exp(-i * z))
        cos(z) = 1/2 (exp(i * z1) + exp(-i * z))
-       atan2(z1, z2) = atan(z1/z2)
+       atan2(y, x) = atan(y / x) # Minding the right quadrant, note the order.
+
+The definition used for complex arguments of atan2() is
+
+       -i log((x + iy)/sqrt(x*x+y*y))
+
+Note that atan2(0, 0) is not well-defined.
 
 The following extra operations are supported on both real and complex
 numbers:
@@ -1660,7 +1734,7 @@ I<arg>, I<abs>, I<log>, I<csc>, I<cot>, I<acsc>, I<acot>, I<csch>,
 I<coth>, I<acosech>, I<acotanh>, have aliases I<rho>, I<theta>, I<ln>,
 I<cosec>, I<cotan>, I<acosec>, I<acotan>, I<cosech>, I<cotanh>,
 I<acosech>, I<acotanh>, respectively.  C<Re>, C<Im>, C<arg>, C<abs>,
-C<rho>, and C<theta> can be used also also mutators.  The C<cbrt>
+C<rho>, and C<theta> can be used also as mutators.  The C<cbrt>
 returns only one of the solutions: if you want all three, use the
 C<root> function.
 
@@ -1679,6 +1753,9 @@ The I<k>th root for C<z = [r,t]> is given by:
 
        (root(z, n))[k] = r**(1/n) * exp(i * (t + 2*k*pi)/n)
 
+You can return the I<k>th root directly by C<root(z, n, k)>,
+indexing starting from I<zero> and ending at I<n - 1>.
+
 The I<spaceship> comparison operator, E<lt>=E<gt>, is also defined. In
 order to ensure its restriction to real numbers is conform to what you
 would expect, the comparison is run on the real part of the complex
@@ -1713,18 +1790,35 @@ but that will be silently converted into C<[3,-3pi/4]>, since the
 modulus must be non-negative (it represents the distance to the origin
 in the complex plane).
 
-It is also possible to have a complex number as either argument of
-either the C<make> or C<emake>: the appropriate component of
+It is also possible to have a complex number as either argument of the
+C<make>, C<emake>, C<cplx>, and C<cplxe>: the appropriate component of
 the argument will be used.
 
        $z1 = cplx(-2,  1);
        $z2 = cplx($z1, 4);
 
-=head1 STRINGIFICATION
+The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
+understand a single (string) argument of the forms
+
+       2-3i
+       -3i
+       [2,3]
+       [2,-3pi/4]
+       [2]
+
+in which case the appropriate cartesian and exponential components
+will be parsed from the string and used to create new complex numbers.
+The imaginary component and the theta, respectively, will default to zero.
+
+The C<new>, C<make>, C<emake>, C<cplx>, and C<cplxe> will also
+understand the case of no arguments: this means plain zero or (0, 0).
+
+=head1 DISPLAYING
 
 When printed, a complex number is usually shown under its cartesian
 style I<a+bi>, but there are legitimate cases where the polar style
-I<[r,t]> is more appropriate.
+I<[r,t]> is more appropriate.  The process of converting the complex
+number into a string that can be displayed is known as I<stringification>.
 
 By calling the class method C<Math::Complex::display_format> and
 supplying either C<"polar"> or C<"cartesian"> as an argument, you
@@ -1750,6 +1844,8 @@ The polar style attempts to emphasize arguments like I<k*pi/n>
 (where I<n> is a positive integer and I<k> an integer within [-9, +9]),
 this is called I<polar pretty-printing>.
 
+For the reverse of stringifying, see the C<make> and C<emake>.
+
 =head2 CHANGED IN PERL 5.6
 
 The C<display_format> class method and the corresponding
@@ -1812,6 +1908,15 @@ Here are some examples:
        $j->arg(2);                     # (the last two aka rho, theta)
                                        # can be used also as mutators.
 
+=head2 PI
+
+The constant C<pi> and some handy multiples of it (pi2, pi4,
+and pip2 (pi/2) and pip4 (pi/4)) are also available if separately
+exported:
+
+    use Math::Complex ':pi'; 
+    $third_of_circle = pi2 / 3;
+
 =head1 ERRORS DUE TO DIVISION BY ZERO OR LOGARITHM OF ZERO
 
 The division (/) and the following functions
@@ -1836,14 +1941,15 @@ or
        Died at...
 
 For the C<csc>, C<cot>, C<asec>, C<acsc>, C<acot>, C<csch>, C<coth>,
-C<asech>, C<acsch>, the argument cannot be C<0> (zero).  For the the
+C<asech>, C<acsch>, the argument cannot be C<0> (zero).  For the
 logarithmic functions and the C<atanh>, C<acoth>, the argument cannot
 be C<1> (one).  For the C<atanh>, C<acoth>, the argument cannot be
 C<-1> (minus one).  For the C<atan>, C<acot>, the argument cannot be
 C<i> (the imaginary unit).  For the C<atan>, C<acoth>, the argument
 cannot be C<-i> (the negative imaginary unit).  For the C<tan>,
 C<sec>, C<tanh>, the argument cannot be I<pi/2 + k * pi>, where I<k>
-is any integer.
+is any integer.  atan2(0, 0) is undefined, and if the complex arguments
+are used for atan2(), a division by zero will happen if z1**2+z2**2 == 0.
 
 Note that because we are operating on approximations of real numbers,
 these errors can happen when merely `too close' to the singularities
@@ -1863,7 +1969,7 @@ messages like the following
 =head1 BUGS
 
 Saying C<use Math::Complex;> exports many mathematical routines in the
-caller environment and even overrides some (C<sqrt>, C<log>).
+caller environment and even overrides some (C<sqrt>, C<log>, C<atan2>).
 This is construed as a feature by the Authors, actually... ;-)
 
 All routines expect to be given real or complex numbers. Don't attempt to
@@ -1877,10 +1983,9 @@ Whatever it is, it does not manifest itself anywhere else where Perl runs.
 
 =head1 AUTHORS
 
-Raphael Manfredi <F<Raphael_Manfredi@pobox.com>> and
-Jarkko Hietaniemi <F<jhi@iki.fi>>.
-
-Extensive patches by Daniel S. Lewart <F<d-lewart@uiuc.edu>>.
+Daniel S. Lewart <F<lewart!at!uiuc.edu>>
+Jarkko Hietaniemi <F<jhi!at!iki.fi>>
+Raphael Manfredi <F<Raphael_Manfredi!at!pobox.com>>
 
 =cut