rename this file so it is visible by metacpan et al
[catagits/fcgi2.git] / doc / fcgi-spec.html
index 2fce425..1c2b4ff 100644 (file)
-<html>
-<!--Copyright (c) 1996 Open Market, Inc.                                    -->
-<!--See the file "LICENSE.TERMS" for information on usage and redistribution-->
-<!--of this file, and for a DISCLAIMER OF ALL WARRANTIES.                   -->
-<head>
-<title>FastCGI Specification</title>
-</head>
-
-<body>
-<center>
-<h2>FastCGI Specification</h2>
-</center>
-
-<center>
-Mark R. Brown<br>
-Open Market, Inc.<br>
-<p>
-
-Document Version: 1.0<br>
-29 April 1996<br>
-</center>
-<p>
-
-<h5 align=center>
-Copyright &copy; 1996 Open Market, Inc.  245 First Street, Cambridge,
-  MA 02142 U.S.A.<br>
-Tel: 617-621-9500 Fax: 617-621-1703 URL:
-  <a href="http://www.openmarket.com/">http://www.openmarket.com/</a><br>
-<br>
-$Id: fcgi-spec.html,v 1.1 1997/09/16 15:36:26 stanleyg Exp $
-</h5>
-<hr>
-
-
-<ul type=square>
-    <li><a HREF = "#S1">1. Introduction</a>
-    <li><a HREF = "#S2">2. Initial Process State</a>
-    <ul type=square>
-        <li><a HREF = "#S2.1">2.1 Argument list</a>
-        <li><a HREF = "#S2.2">2.2 File descriptors</a>
-        <li><a HREF = "#S2.3">2.3 Environment variables</a>
-        <li><a HREF = "#S2.4">2.4 Other state</a>
-    </ul>
-    <li><a HREF = "#S3">3. Protocol Basics</a>
-    <ul type=square>
-        <li><a HREF = "#S3.1">3.1 Notation</a>
-        <li><a HREF = "#S3.2">3.2 Accepting Transport Connections</a>
-        <li><a HREF = "#S3.3">3.3 Records</a>
-        <li><a HREF = "#S3.4">3.4 Name-Value Pairs</a>
-        <li><a HREF = "#S3.5">3.5 Closing Transport Connections</a>
-    </ul>
-    <li><a HREF = "#S4">4. Management Record Types</a>
-    <ul type=square>
-        <li><a HREF = "#S4.1">4.1 <tt>FCGI_GET_VALUES, FCGI_GET_VALUES_RESULT</tt></a>
-        <li><a HREF = "#S4.2">4.2 <tt>FCGI_UNKNOWN_TYPE</tt></a>
-    </ul>
-    <li><a HREF = "#S5">5. Application Record Types</a>
-    <ul type=square>
-        <li><a HREF = "#S5.1">5.1 <tt>FCGI_BEGIN_REQUEST</tt></a>
-        <li><a HREF = "#S5.2">5.2 Name-Value Pair Streams: <tt>FCGI_PARAMS</tt>, <tt>FCGI_RESULTS</tt></a>
-        <li><a HREF = "#S5.3">5.3 Byte Streams: <tt>FCGI_STDIN</tt>, <tt>FCGI_DATA</tt>, <tt>FCGI_STDOUT</tt>, <tt>FCGI_STDERR</tt></a>
-        <li><a HREF = "#S5.4">5.4 <tt>FCGI_ABORT_REQUEST</tt></a>
-        <li><a HREF = "#S5.5">5.5 <tt>FCGI_END_REQUEST</tt></a>
-    </ul>
-    <li><a HREF = "#S6">6. Roles</a>
-    <ul type=square>
-        <li><a HREF = "#S6.1">6.1 Role Protocols</a>
-        <li><a HREF = "#S6.2">6.2 Responder</a>
-        <li><a HREF = "#S6.3">6.3 Authorizer</a>
-        <li><a HREF = "#S6.5">6.4 Filter</a>
-    </ul>
-    <li><a HREF = "#S7">7. Errors</a>
-    <li><a HREF = "#S8">8. Types and Constants</a>
-    <li><a HREF = "#S9">9. References</a>
-    <li><a HREF = "#SA">A. Table: Properties of the record types</a>
-    <li><a HREF = "#SB">B. Typical Protocol Message Flow</a>
-</ul>
-<p>
-
-<hr>
-
-
-<h3><a name = "S1">1. Introduction</a></h3>
-
-FastCGI is an open extension to CGI that provides high performance
-for all Internet applications without the penalties of Web server
-APIs.<p>
-
-This specification has narrow
-goal: to specify, from an application perspective, the
-interface between a FastCGI application and a Web server that supports
-FastCGI.  Many Web server features related to FastCGI,
-e.g. application management facilities, have nothing to do with the
-application to Web server interface, and are not described here.<p>
-
-This specification is for Unix (more precisely, for POSIX systems that support
-Berkeley Sockets).  The bulk of the specification is a simple
-communications protocol that is independent of byte ordering
-and will extend to other systems.<p>
-
-We'll introduce FastCGI by comparing it with conventional Unix
-implementations of CGI/1.1.
-
-FastCGI is designed to support long-lived application processes,
-i.e. <i>application servers</i>.  That's a major difference
-compared with conventional Unix implementations of CGI/1.1,
-which construct an application process, use
-it respond to one request, and have it exit.<p>
-
-The initial state of a FastCGI process is more spartan than the initial
-state of a CGI/1.1 process, because the FastCGI process doesn't begin life
-connected to anything.  It doesn't have the conventional open files
-<tt>stdin</tt>, <tt>stdout</tt>, and <tt>stderr</tt>, and it doesn't
-receive much information through environment variables.  The key
-piece of initial state in a FastCGI process is a listening
-socket, through which it accepts connections from a Web server.<p>
-
-After a FastCGI process accepts a connection on its listening socket,
-the process executes a simple protocol to receive and send data.  The
-protocol serves two purposes.  First, the protocol
-multiplexes a single transport connection between several independent
-FastCGI requests.  This supports applications that are able to process
-concurrent requests using event-driven or multi-threaded programming
-techniques.  Second, within each request the protocol provides several
-independent data streams in each direction.  This way, for instance,
-both <tt>stdout</tt> and <tt>stderr</tt> data pass over a single
-transport connection from the application to the Web server, rather
-than requiring separate pipes as with CGI/1.1.<p>
-
-A FastCGI application plays one of several well-defined <i>roles</i>.
-The most familiar is the <i>Responder</i> role, in which the
-application receives all the information associated with an HTTP
-request and generates an HTTP response; that's the role CGI/1.1
-programs play.  A second role is <i>Authorizer</i>, in which the
-application receives all the information associated with an HTTP
-request and generates an authorized/unauthorized decision.
-A third role is <i>Filter</i>, in which the
-application receives all the information associated with an HTTP
-request, plus an extra stream of data from a file stored on the Web
-server, and generates a "filtered" version of the data stream as
-an HTTP response.  The framework is extensible so that more FastCGI
-can be defined later.<p>
-
-In the remainder of this specification the terms "FastCGI
-application," "application process," or "application server" are
-abbreviated to "application" whenever that won't cause confusion.<p>
-
-
-
-<h3><a name = "S2">2. Initial Process State</a></h3>
-
-
-<h4><a name = "S2.1">2.1 Argument list</a></h4>
-
-By default the Web server creates an argument list containing a single
-element, the name of the application, taken to be the last component
-of the executable's path name.  The Web server may provide a way
-to specify a different application name, or a more elaborate argument
-list.<p>
-
-Note that the file executed by the Web server might be an interpreter
-file (a text file that starts with the characters <tt>#!</tt>), in
-which case the application's argument list is constructed as described
-in the <tt>execve</tt> manpage.<p>
-
-
-<h4><a name = "S2.2">2.2 File descriptors</a></h4>
-
-The Web server leaves a single file descriptor,
-<tt>FCGI_LISTENSOCK_FILENO</tt>, open when the application begins
-execution.  This descriptor refers to a listening socket created by
-the Web server.<p>
-
-<tt>FCGI_LISTENSOCK_FILENO</tt> equals <tt>STDIN_FILENO</tt>.
-The standard descriptors
-<tt>STDOUT_FILENO</tt> and <tt>STDERR_FILENO</tt> are closed when
-the application begins execution.  A reliable method for an application
-to determine whether it was invoked using CGI or FastCGI is to call
-<tt>getpeername(FCGI_LISTENSOCK_FILENO)</tt>, which returns
--1 with <tt>errno</tt> set to <tt>ENOTCONN</tt> for
-a FastCGI application.<p>
-
-The Web server's choice of reliable transport, Unix stream pipes
-(<tt>AF_UNIX</tt>) or TCP/IP (<tt>AF_INET</tt>), is implicit in the
-internal state of the <tt>FCGI_LISTENSOCK_FILENO</tt> socket.<p>
-
-
-<h4><a name = "S2.3">2.3 Environment variables</a></h4>
-
-The Web server may use environment variables to pass parameters
-to the application.  This specification defines one such
-variable, <tt>FCGI_WEB_SERVER_ADDRS</tt>; we expect more to
-be defined as the specification evolves.
-
-The Web server may provide a way to bind other environment
-variables, such as the <tt>PATH</tt> variable.<p>
-
-
-<h4><a name = "S2.4">2.4 Other state</a></h4>
-
-The Web server may provide a way to specify other components of an
-application's initial process state, such as the priority,
-user ID, group ID, root directory, and working directory of the
-process.<p>
-
-
-
-<h3><a name = "S3">3. Protocol Basics</a></h3>
-
-
-<h4><a name = "S3.1">3.1 Notation</a></h4>
-
-We use C language notation to define protocol message
-formats.  All structure elements are defined in terms
-of the <tt>unsigned char</tt> type, and are arranged
-so that an ISO C compiler lays them out in the obvious
-manner, with no padding.  The first byte defined in the
-structure is transmitted first, the second byte second, etc.<p>
-
-We use two conventions to abbreviate our definitions.<p>
-
-First, when two adjacent structure components are named identically
-except for the suffixes "<tt>B1</tt>" and "<tt>B0</tt>," it means that
-the two components may be viewed as a single number, computed as
-<tt>B1<<8 + B0</tt>.  The name of this single number is the name of
-the components, minus the suffixes.  This convention generalizes in an
-obvious way to handle numbers represented in more than two bytes.<p>
-
-Second, we extend C <tt>struct</tt>s to allow the form
-<pre>
+<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 3.2//EN">
+<HTML>
+   <!--Copyright (c) 1996 Open Market, Inc.                                    -->
+   <!--See the file "LICENSE" for information on usage and redistribution-->
+   <!--of this file, and for a DISCLAIMER OF ALL WARRANTIES.                   -->
+   <HEAD>
+      <TITLE>
+         FastCGI Specification
+      </TITLE>
+<STYLE TYPE="text/css">
+ h5.c2 {text-align: center}
+ div.c1 {text-align: center}
+</STYLE>
+   </HEAD>
+   <BODY>
+      <DIV CLASS="c1">
+         <H2>
+            FastCGI Specification
+         </H2>
+      </DIV>
+      <DIV CLASS="c1">
+         Mark R. Brown<BR>
+         Open Market, Inc.<BR>
+         <P>
+            Document Version: 1.0<BR>
+            29 April 1996<BR>
+         </P>
+      </DIV>
+      <P>
+      </P>
+      <H5 CLASS="c2">
+         Copyright &copy; 1996 Open Market, Inc. 245 First Street, Cambridge, MA 02142 U.S.A.<BR>
+         Tel: 617-621-9500 Fax: 617-621-1703 URL: <A HREF=
+         "http://www.openmarket.com/">http://www.openmarket.com/</A><BR>
+         <BR>
+         $Id: fcgi-spec.html,v 1.4 2002/02/25 00:42:59 robs Exp $
+      </H5>
+      <HR>
+      <UL TYPE="square">
+         <LI>
+            <A HREF="#S1">1. Introduction</A>
+         </LI>
+         <LI>
+            <A HREF="#S2">2. Initial Process State</A> 
+            <UL TYPE="square">
+               <LI>
+                  <A HREF="#S2.1">2.1 Argument list</A>
+               </LI>
+               <LI>
+                  <A HREF="#S2.2">2.2 File descriptors</A>
+               </LI>
+               <LI>
+                  <A HREF="#S2.3">2.3 Environment variables</A>
+               </LI>
+               <LI>
+                  <A HREF="#S2.4">2.4 Other state</A>
+               </LI>
+            </UL>
+         </LI>
+         <LI>
+            <A HREF="#S3">3. Protocol Basics</A> 
+            <UL TYPE="square">
+               <LI>
+                  <A HREF="#S3.1">3.1 Notation</A>
+               </LI>
+               <LI>
+                  <A HREF="#S3.2">3.2 Accepting Transport Connections</A>
+               </LI>
+               <LI>
+                  <A HREF="#S3.3">3.3 Records</A>
+               </LI>
+               <LI>
+                  <A HREF="#S3.4">3.4 Name-Value Pairs</A>
+               </LI>
+               <LI>
+                  <A HREF="#S3.5">3.5 Closing Transport Connections</A>
+               </LI>
+            </UL>
+         </LI>
+         <LI>
+            <A HREF="#S4">4. Management Record Types</A> 
+            <UL TYPE="square">
+               <LI>
+                  <A HREF="#S4.1">4.1 <TT>FCGI_GET_VALUES, FCGI_GET_VALUES_RESULT</TT></A>
+               </LI>
+               <LI>
+                  <A HREF="#S4.2">4.2 <TT>FCGI_UNKNOWN_TYPE</TT></A>
+               </LI>
+            </UL>
+         </LI>
+         <LI>
+            <A HREF="#S5">5. Application Record Types</A> 
+            <UL TYPE="square">
+               <LI>
+                  <A HREF="#S5.1">5.1 <TT>FCGI_BEGIN_REQUEST</TT></A>
+               </LI>
+               <LI>
+                  <A HREF="#S5.2">5.2 Name-Value Pair Streams: <TT>FCGI_PARAMS</TT>, <TT>FCGI_RESULTS</TT></A>
+               </LI>
+               <LI>
+                  <A HREF="#S5.3">5.3 Byte Streams: <TT>FCGI_STDIN</TT>, <TT>FCGI_DATA</TT>, <TT>FCGI_STDOUT</TT>,
+                  <TT>FCGI_STDERR</TT></A>
+               </LI>
+               <LI>
+                  <A HREF="#S5.4">5.4 <TT>FCGI_ABORT_REQUEST</TT></A>
+               </LI>
+               <LI>
+                  <A HREF="#S5.5">5.5 <TT>FCGI_END_REQUEST</TT></A>
+               </LI>
+            </UL>
+         </LI>
+         <LI>
+            <A HREF="#S6">6. Roles</A> 
+            <UL TYPE="square">
+               <LI>
+                  <A HREF="#S6.1">6.1 Role Protocols</A>
+               </LI>
+               <LI>
+                  <A HREF="#S6.2">6.2 Responder</A>
+               </LI>
+               <LI>
+                  <A HREF="#S6.3">6.3 Authorizer</A>
+               </LI>
+               <LI>
+                  <A HREF="#S6.4">6.4 Filter</A>
+               </LI>
+            </UL>
+         </LI>
+         <LI>
+            <A HREF="#S7">7. Errors</A>
+         </LI>
+         <LI>
+            <A HREF="#S8">8. Types and Constants</A>
+         </LI>
+         <LI>
+            <A HREF="#S9">9. References</A>
+         </LI>
+         <LI>
+            <A HREF="#SA">A. Table: Properties of the record types</A>
+         </LI>
+         <LI>
+            <A HREF="#SB">B. Typical Protocol Message Flow</A>
+         </LI>
+      </UL>
+      <P>
+      </P>
+      <HR>
+      <H3>
+         <A NAME="S1">1. Introduction</A>
+      </H3>
+      <P>
+         FastCGI is an open extension to CGI that provides high performance for all Internet applications without the
+         penalties of Web server APIs.
+      </P>
+      <P>
+         This specification has narrow goal: to specify, from an application perspective, the interface between a
+         FastCGI application and a Web server that supports FastCGI. Many Web server features related to FastCGI, e.g.
+         application management facilities, have nothing to do with the application to Web server interface, and are
+         not described here.
+      </P>
+      <P>
+         This specification is for Unix (more precisely, for POSIX systems that support Berkeley Sockets). The bulk of
+         the specification is a simple communications protocol that is independent of byte ordering and will extend to
+         other systems.
+      </P>
+      <P>
+         We&#39;ll introduce FastCGI by comparing it with conventional Unix implementations of CGI/1.1. FastCGI is
+         designed to support long-lived application processes, i.e. <I>application servers</I>. That&#39;s a major
+         difference compared with conventional Unix implementations of CGI/1.1, which construct an application process,
+         use it respond to one request, and have it exit.
+      </P>
+      <P>
+         The initial state of a FastCGI process is more spartan than the initial state of a CGI/1.1 process, because
+         the FastCGI process doesn&#39;t begin life connected to anything. It doesn&#39;t have the conventional open
+         files <TT>stdin</TT>, <TT>stdout</TT>, and <TT>stderr</TT>, and it doesn&#39;t receive much information
+         through environment variables. The key piece of initial state in a FastCGI process is a listening socket,
+         through which it accepts connections from a Web server.
+      </P>
+      <P>
+         After a FastCGI process accepts a connection on its listening socket, the process executes a simple protocol
+         to receive and send data. The protocol serves two purposes. First, the protocol multiplexes a single transport
+         connection between several independent FastCGI requests. This supports applications that are able to process
+         concurrent requests using event-driven or multi-threaded programming techniques. Second, within each request
+         the protocol provides several independent data streams in each direction. This way, for instance, both
+         <TT>stdout</TT> and <TT>stderr</TT> data pass over a single transport connection from the application to the
+         Web server, rather than requiring separate pipes as with CGI/1.1.
+      </P>
+      <P>
+         A FastCGI application plays one of several well-defined <I>roles</I>. The most familiar is the
+         <I>Responder</I> role, in which the application receives all the information associated with an HTTP request
+         and generates an HTTP response; that&#39;s the role CGI/1.1 programs play. A second role is <I>Authorizer</I>,
+         in which the application receives all the information associated with an HTTP request and generates an
+         authorized/unauthorized decision. A third role is <I>Filter</I>, in which the application receives all the
+         information associated with an HTTP request, plus an extra stream of data from a file stored on the Web
+         server, and generates a &quot;filtered&quot; version of the data stream as an HTTP response. The framework is
+         extensible so that more FastCGI can be defined later.
+      </P>
+      <P>
+         In the remainder of this specification the terms &quot;FastCGI application,&quot; &quot;application
+         process,&quot; or &quot;application server&quot; are abbreviated to &quot;application&quot; whenever that
+         won&#39;t cause confusion.
+      </P>
+      <P>
+      </P>
+      <H3>
+         <A NAME="S2">2. Initial Process State</A>
+      </H3>
+      <H4>
+         <A NAME="S2.1">2.1 Argument list</A>
+      </H4>
+      <P>
+         By default the Web server creates an argument list containing a single element, the name of the application,
+         taken to be the last component of the executable&#39;s path name. The Web server may provide a way to specify
+         a different application name, or a more elaborate argument list.
+      </P>
+      <P>
+         Note that the file executed by the Web server might be an interpreter file (a text file that starts with the
+         characters <TT>#!</TT>), in which case the application&#39;s argument list is constructed as described in the
+         <TT>execve</TT> manpage.
+      </P>
+      <P>
+      </P>
+      <H4>
+         <A NAME="S2.2">2.2 File descriptors</A>
+      </H4>
+      <P>
+         The Web server leaves a single file descriptor, <TT>FCGI_LISTENSOCK_FILENO</TT>, open when the application
+         begins execution. This descriptor refers to a listening socket created by the Web server.
+      </P>
+      <P>
+         <TT>FCGI_LISTENSOCK_FILENO</TT> equals <TT>STDIN_FILENO</TT>. The standard descriptors <TT>STDOUT_FILENO</TT>
+         and <TT>STDERR_FILENO</TT> are closed when the application begins execution. A reliable method for an
+         application to determine whether it was invoked using CGI or FastCGI is to call
+         <TT>getpeername(FCGI_LISTENSOCK_FILENO)</TT>, which returns -1 with <TT>errno</TT> set to <TT>ENOTCONN</TT>
+         for a FastCGI application.
+      </P>
+      <P>
+         The Web server&#39;s choice of reliable transport, Unix stream pipes (<TT>AF_UNIX</TT>) or TCP/IP
+         (<TT>AF_INET</TT>), is implicit in the internal state of the <TT>FCGI_LISTENSOCK_FILENO</TT> socket.
+      </P>
+      <P>
+      </P>
+      <H4>
+         <A NAME="S2.3">2.3 Environment variables</A>
+      </H4>
+      <P>
+         The Web server may use environment variables to pass parameters to the application. This specification defines
+         one such variable, <TT>FCGI_WEB_SERVER_ADDRS</TT>; we expect more to be defined as the specification evolves.
+         The Web server may provide a way to bind other environment variables, such as the <TT>PATH</TT> variable.
+      </P>
+      <P>
+      </P>
+      <H4>
+         <A NAME="S2.4">2.4 Other state</A>
+      </H4>
+      <P>
+         The Web server may provide a way to specify other components of an application&#39;s initial process state,
+         such as the priority, user ID, group ID, root directory, and working directory of the process.
+      </P>
+      <P>
+      </P>
+      <H3>
+         <A NAME="S3">3. Protocol Basics</A>
+      </H3>
+      <H4>
+         <A NAME="S3.1">3.1 Notation</A>
+      </H4>
+      <P>
+         We use C language notation to define protocol message formats. All structure elements are defined in terms of
+         the <TT>unsigned char</TT> type, and are arranged so that an ISO C compiler lays them out in the obvious
+         manner, with no padding. The first byte defined in the structure is transmitted first, the second byte second,
+         etc.
+      </P>
+      <P>
+         We use two conventions to abbreviate our definitions.
+      </P>
+      <P>
+         First, when two adjacent structure components are named identically except for the suffixes
+         &quot;<TT>B1</TT>&quot; and &quot;<TT>B0</TT>,&quot; it means that the two components may be viewed as a
+         single number, computed as <TT>B1&lt;&lt;8 + B0</TT>. The name of this single number is the name of the
+         components, minus the suffixes. This convention generalizes in an obvious way to handle numbers represented in
+         more than two bytes.
+      </P>
+      <P>
+         Second, we extend C <TT>struct</TT>s to allow the form
+      </P>
+<PRE>
         struct {
             unsigned char mumbleLengthB1;
             unsigned char mumbleLengthB0;
             ... /* other stuff */
             unsigned char mumbleData[mumbleLength];
         };
-</pre>
-meaning a structure of varying length, where the length of
-a component is determined by the values of the indicated
-earlier component or components.<p>
-
-
-<h4><a name = "S3.2">3.2 Accepting Transport Connections</a></h4>
-
-A FastCGI application calls <tt>accept()</tt> on the socket referred to
-by file descriptor <tt>FCGI_LISTENSOCK_FILENO</tt> to accept a new
-transport connection.
-
-If the <tt>accept()</tt> succeeds, and the <tt>FCGI_WEB_SERVER_ADDRS</tt>
-environment variable is bound, the application
-application immediately performs the following
-special processing:<p>
-
-<ul type=square>
-    <li><tt>FCGI_WEB_SERVER_ADDRS</tt>:
-
-        The value is a list of valid IP addresses for the Web server.<p>
-
-        If <tt>FCGI_WEB_SERVER_ADDRS</tt>
-        was bound, the application checks the peer
-        IP address of the new connection for membership in the list.
-        If the check fails (including the possibility that the
-        connection didn't use TCP/IP transport), the application
-        responds by closing the connection.<p>
-
-        <tt>FCGI_WEB_SERVER_ADDRS</tt>
-        is expressed as a comma-separated list of IP
-        addresses.  Each IP address is written as four decimal numbers
-        in the range [0..255] separated by decimal points.  So one
-        legal binding for this variable is
-        <tt>FCGI_WEB_SERVER_ADDRS=199.170.183.28,199.170.183.71</tt>.<p>
-</ul>
-
-An application may accept several concurrent transport
-connections, but it need not do so.<p>
-
-
-<h4><a name = "S3.3">3.3 Records</a></h4>
-
-Applications execute requests from a Web server using a simple
-protocol.  Details of the protocol depend upon the application's role,
-but roughly speaking the Web server first sends parameters and other
-data to the application, then the application sends result data to the
-Web server, and finally the application sends the Web server an
-indication that the request is complete.<p>
-
-All data that flows over the transport connection is carried in
-<i>FastCGI records</i>.  FastCGI records accomplish two
-things.  First, records multiplex the transport connection between
-several independent FastCGI requests.  This multiplexing supports
-applications that are able to process concurrent requests using
-event-driven or multi-threaded programming techniques.  Second,
-records provide several independent data streams in each direction
-within a single request.  This way, for instance, both <tt>stdout</tt>
-and <tt>stderr</tt> data can pass over a single transport connection
-from the application to the Web server, rather than requiring separate
-connections.<p>
-
-<pre>
+</PRE>
+      <P>
+         meaning a structure of varying length, where the length of a component is determined by the values of the
+         indicated earlier component or components.
+      </P>
+      <P>
+      </P>
+      <H4>
+         <A NAME="S3.2">3.2 Accepting Transport Connections</A>
+      </H4>
+      <P>
+         A FastCGI application calls <TT>accept()</TT> on the socket referred to by file descriptor
+         <TT>FCGI_LISTENSOCK_FILENO</TT> to accept a new transport connection. If the <TT>accept()</TT> succeeds, and
+         the <TT>FCGI_WEB_SERVER_ADDRS</TT> environment variable is bound, the application application immediately
+         performs the following special processing:
+      </P>
+      <P>
+      </P>
+      <UL TYPE="square">
+         <LI>
+            <TT>FCGI_WEB_SERVER_ADDRS</TT>: The value is a list of valid IP addresses for the Web server.
+            <P>
+               If <TT>FCGI_WEB_SERVER_ADDRS</TT> was bound, the application checks the peer IP address of the new
+               connection for membership in the list. If the check fails (including the possibility that the connection
+               didn&#39;t use TCP/IP transport), the application responds by closing the connection.
+            </P>
+            <P>
+               <TT>FCGI_WEB_SERVER_ADDRS</TT> is expressed as a comma-separated list of IP addresses. Each IP address
+               is written as four decimal numbers in the range [0..255] separated by decimal points. So one legal
+               binding for this variable is <TT>FCGI_WEB_SERVER_ADDRS=199.170.183.28,199.170.183.71</TT>.
+            </P>
+            <BR>
+            <BR>
+         </LI>
+      </UL>
+      <P>
+         An application may accept several concurrent transport connections, but it need not do so.
+      </P>
+      <P>
+      </P>
+      <H4>
+         <A NAME="S3.3">3.3 Records</A>
+      </H4>
+      <P>
+         Applications execute requests from a Web server using a simple protocol. Details of the protocol depend upon
+         the application&#39;s role, but roughly speaking the Web server first sends parameters and other data to the
+         application, then the application sends result data to the Web server, and finally the application sends the
+         Web server an indication that the request is complete.
+      </P>
+      <P>
+         All data that flows over the transport connection is carried in <I>FastCGI records</I>. FastCGI records
+         accomplish two things. First, records multiplex the transport connection between several independent FastCGI
+         requests. This multiplexing supports applications that are able to process concurrent requests using
+         event-driven or multi-threaded programming techniques. Second, records provide several independent data
+         streams in each direction within a single request. This way, for instance, both <TT>stdout</TT> and
+         <TT>stderr</TT> data can pass over a single transport connection from the application to the Web server,
+         rather than requiring separate connections.
+      </P>
+      <P>
+      </P>
+<PRE>
         typedef struct {
             unsigned char version;
             unsigned char type;
@@ -309,388 +364,406 @@ connections.<p>
             unsigned char contentData[contentLength];
             unsigned char paddingData[paddingLength];
         } FCGI_Record;
-</pre>
-
-A FastCGI record consists of a fixed-length prefix followed by a
-variable number of content and padding bytes.  A record contains seven
-components:<p>
-
-<ul type=square>
-    <li><tt>version</tt>:
-
-        Identifies the FastCGI protocol version.  This specification
-        documents <tt>FCGI_VERSION_1</tt>.<p>
-
-    <li><tt>type</tt>:
-
-        Identifies the FastCGI record type, i.e. the general function
-        that the record performs.  Specific record types and their
-        functions are detailed in later sections.<p>
-
-    <li><tt>requestId</tt>:
-
-        Identifies the <i>FastCGI request</i> to which the record
-        belongs.<p>
-
-    <li><tt>contentLength</tt>:
-
-        The number of bytes in the <tt>contentData</tt> component of the
-        record.<p>
-
-    <li><tt>paddingLength</tt>:
-
-        The number of bytes in the <tt>paddingData</tt> component of the
-        record.<p>
-
-    <li><tt>contentData</tt>:
-
-        Between 0 and 65535 bytes of data, interpreted
-        according to the record type.<p>
-
-    <li><tt>paddingData</tt>:
-
-        Between 0 and 255 bytes of data, which are ignored.<p>
-</ul>
-
-We use a relaxed C <tt>struct</tt> initializer syntax to specify
-constant FastCGI records.  We omit the <tt>version</tt> component,
-ignore padding, and treat
-<tt>requestId</tt> as a number.  Thus <tt>{FCGI_END_REQUEST, 1,
-{FCGI_REQUEST_COMPLETE,0}}</tt> is a record with <tt>type ==
-FCGI_END_REQUEST</tt>, <tt>requestId == 1</tt>, and <tt>contentData ==
-{FCGI_REQUEST_COMPLETE,0}</tt>.<p>
-
-
-<h5>Padding</h5>
-
-The protocol allows senders to pad the records they send, and requires
-receivers to interpret the <tt>paddingLength</tt> and skip the
-<tt>paddingData</tt>.  Padding allows senders to keep data aligned
-for more efficient processing.  Experience with the X window
-system protocols shows the performance benefit of such alignment.<p>
-
-We recommend that records be placed on boundaries that are multiples
-of eight bytes.  The fixed-length portion of a <tt>FCGI_Record</tt>
-is eight bytes.<p>
-
-
-<h5>Managing Request IDs</h5>
-
-The Web server re-uses FastCGI request IDs; the application keeps
-track of the current state of each request ID on a given transport
-connection.  A request ID <tt>R</tt> becomes active when the application
-receives a record <tt>{FCGI_BEGIN_REQUEST, R, ...}</tt> and
-becomes inactive when the application sends a record
-<tt>{FCGI_END_REQUEST, R, ...}</tt> to the Web server.<p>
-
-While a request ID <tt>R</tt> is inactive, the application ignores
-records with <tt>requestId == R</tt>, except for <tt>FCGI_BEGIN_REQUEST</tt>
-records as just described.<p>
-
-The Web server attempts to keep FastCGI request IDs small.  That way
-the application can keep track of request ID states using a short
-array rather than a long array or a hash table.  An application
-also has the option of accepting only one request at a time.
-In this case the application simply checks incoming <tt>requestId</tt>
-values against the current request ID.<p>
-
-
-<h5>Types of Record Types</h5>
-
-There are two useful ways of classifying FastCGI record types.<p>
-
-The first distinction is between <i>management</i> records and
-<i>application</i> records.  A management record contains information
-that is not specific to any Web server request, such as information
-about the protocol capabilities of the application.
-An application record contains information
-about a particular request, identified by the <tt>requestId</tt>
-component.<p>
-
-Management records have a <tt>requestId</tt> value of zero,
-also called the <i>null request ID</i>.  Application
-records have a nonzero <tt>requestId</tt>.<p>
-
-The second distinction is between <i>discrete</i> and <i>stream</i>
-records.  A discrete record contains a meaningful unit of data all by
-itself.  A stream record is part of a <i>stream</i>, i.e. a series of
-zero or more non-empty records (<tt>length != 0</tt>) of the stream
-type, followed by an empty record (<tt>length == 0</tt>) of the stream
-type.  The <tt>contentData</tt> components of a stream's records, when
-concatenated, form a byte sequence; this byte sequence is the value of
-the stream.  Therefore the value of a stream is independent of how
-many records it contains or how its bytes are divided among the
-non-empty records.<p>
-
-These two classifications are independent.  Among the
-record types defined in this version of the FastCGI protocol,
-all management record types are also discrete record types,
-and nearly all application record types are stream record types.
-But three application record types are discrete, and nothing
-prevents defining a management record type that's a stream
-in some later version of the protocol.<p>
-
-
-<h4><a name = "S3.4">3.4 Name-Value Pairs</a></h4>
-
-In many of their roles, FastCGI applications need to read and write
-varying numbers of variable-length values.  So it is useful to adopt a
-standard format for encoding a name-value pair.<p>
-
-FastCGI  transmits a name-value pair as the length of the name,
-followed by the length of the value, followed by the name,
-followed by the value.  Lengths of 127 bytes and less can be encoded
-in one byte, while longer lengths are always encoded in four bytes:<p>
-
-<pre>
+</PRE>
+      <P>
+         A FastCGI record consists of a fixed-length prefix followed by a variable number of content and padding bytes.
+         A record contains seven components:
+      </P>
+      <P>
+      </P>
+      <UL TYPE="square">
+         <LI>
+            <TT>version</TT>: Identifies the FastCGI protocol version. This specification documents
+            <TT>FCGI_VERSION_1</TT>.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            <TT>type</TT>: Identifies the FastCGI record type, i.e. the general function that the record performs.
+            Specific record types and their functions are detailed in later sections.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            <TT>requestId</TT>: Identifies the <I>FastCGI request</I> to which the record belongs.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            <TT>contentLength</TT>: The number of bytes in the <TT>contentData</TT> component of the record.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            <TT>paddingLength</TT>: The number of bytes in the <TT>paddingData</TT> component of the record.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            <TT>contentData</TT>: Between 0 and 65535 bytes of data, interpreted according to the record type.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            <TT>paddingData</TT>: Between 0 and 255 bytes of data, which are ignored.<BR>
+            <BR>
+         </LI>
+      </UL>
+      <P>
+         We use a relaxed C <TT>struct</TT> initializer syntax to specify constant FastCGI records. We omit the
+         <TT>version</TT> component, ignore padding, and treat <TT>requestId</TT> as a number. Thus
+         <TT>{FCGI_END_REQUEST, 1, {FCGI_REQUEST_COMPLETE,0}}</TT> is a record with <TT>type == FCGI_END_REQUEST</TT>,
+         <TT>requestId == 1</TT>, and <TT>contentData == {FCGI_REQUEST_COMPLETE,0}</TT>.
+      </P>
+      <P>
+      </P>
+      <H5>
+         Padding
+      </H5>
+      <P>
+         The protocol allows senders to pad the records they send, and requires receivers to interpret the
+         <TT>paddingLength</TT> and skip the <TT>paddingData</TT>. Padding allows senders to keep data aligned for more
+         efficient processing. Experience with the X window system protocols shows the performance benefit of such
+         alignment.
+      </P>
+      <P>
+         We recommend that records be placed on boundaries that are multiples of eight bytes. The fixed-length portion
+         of a <TT>FCGI_Record</TT> is eight bytes.
+      </P>
+      <P>
+      </P>
+      <H5>
+         Managing Request IDs
+      </H5>
+      <P>
+         The Web server re-uses FastCGI request IDs; the application keeps track of the current state of each request
+         ID on a given transport connection. A request ID <TT>R</TT> becomes active when the application receives a
+         record <TT>{FCGI_BEGIN_REQUEST, R, ...}</TT> and becomes inactive when the application sends a record
+         <TT>{FCGI_END_REQUEST, R, ...}</TT> to the Web server.
+      </P>
+      <P>
+         While a request ID <TT>R</TT> is inactive, the application ignores records with <TT>requestId == R</TT>,
+         except for <TT>FCGI_BEGIN_REQUEST</TT> records as just described.
+      </P>
+      <P>
+         The Web server attempts to keep FastCGI request IDs small. That way the application can keep track of request
+         ID states using a short array rather than a long array or a hash table. An application also has the option of
+         accepting only one request at a time. In this case the application simply checks incoming <TT>requestId</TT>
+         values against the current request ID.
+      </P>
+      <P>
+      </P>
+      <H5>
+         Types of Record Types
+      </H5>
+      <P>
+         There are two useful ways of classifying FastCGI record types.
+      </P>
+      <P>
+         The first distinction is between <I>management</I> records and <I>application</I> records. A management record
+         contains information that is not specific to any Web server request, such as information about the protocol
+         capabilities of the application. An application record contains information about a particular request,
+         identified by the <TT>requestId</TT> component.
+      </P>
+      <P>
+         Management records have a <TT>requestId</TT> value of zero, also called the <I>null request ID</I>.
+         Application records have a nonzero <TT>requestId</TT>.
+      </P>
+      <P>
+         The second distinction is between <I>discrete</I> and <I>stream</I> records. A discrete record contains a
+         meaningful unit of data all by itself. A stream record is part of a <I>stream</I>, i.e. a series of zero or
+         more non-empty records (<TT>length != 0</TT>) of the stream type, followed by an empty record (<TT>length ==
+         0</TT>) of the stream type. The <TT>contentData</TT> components of a stream&#39;s records, when concatenated,
+         form a byte sequence; this byte sequence is the value of the stream. Therefore the value of a stream is
+         independent of how many records it contains or how its bytes are divided among the non-empty records.
+      </P>
+      <P>
+         These two classifications are independent. Among the record types defined in this version of the FastCGI
+         protocol, all management record types are also discrete record types, and nearly all application record types
+         are stream record types. But three application record types are discrete, and nothing prevents defining a
+         management record type that&#39;s a stream in some later version of the protocol.
+      </P>
+      <P>
+      </P>
+      <H4>
+         <A NAME="S3.4">3.4 Name-Value Pairs</A>
+      </H4>
+      <P>
+         In many of their roles, FastCGI applications need to read and write varying numbers of variable-length values.
+         So it is useful to adopt a standard format for encoding a name-value pair.
+      </P>
+      <P>
+         FastCGI transmits a name-value pair as the length of the name, followed by the length of the value, followed
+         by the name, followed by the value. Lengths of 127 bytes and less can be encoded in one byte, while longer
+         lengths are always encoded in four bytes:
+      </P>
+      <P>
+      </P>
+<PRE>
         typedef struct {
-            unsigned char nameLengthB0;  /* nameLengthB0  >> 7 == 0 */
-            unsigned char valueLengthB0; /* valueLengthB0 >> 7 == 0 */
+            unsigned char nameLengthB0;  /* nameLengthB0  &gt;&gt; 7 == 0 */
+            unsigned char valueLengthB0; /* valueLengthB0 &gt;&gt; 7 == 0 */
             unsigned char nameData[nameLength];
             unsigned char valueData[valueLength];
         } FCGI_NameValuePair11;
 
         typedef struct {
-            unsigned char nameLengthB0;  /* nameLengthB0  >> 7 == 0 */
-            unsigned char valueLengthB3; /* valueLengthB3 >> 7 == 1 */
+            unsigned char nameLengthB0;  /* nameLengthB0  &gt;&gt; 7 == 0 */
+            unsigned char valueLengthB3; /* valueLengthB3 &gt;&gt; 7 == 1 */
             unsigned char valueLengthB2;
             unsigned char valueLengthB1;
             unsigned char valueLengthB0;
             unsigned char nameData[nameLength];
             unsigned char valueData[valueLength
-                    ((B3 & 0x7f) << 24) + (B2 << 16) + (B1 << 8) + B0];
+                    ((B3 &amp; 0x7f) &lt;&lt; 24) + (B2 &lt;&lt; 16) + (B1 &lt;&lt; 8) + B0];
         } FCGI_NameValuePair14;
 
         typedef struct {
-            unsigned char nameLengthB3;  /* nameLengthB3  >> 7 == 1 */
+            unsigned char nameLengthB3;  /* nameLengthB3  &gt;&gt; 7 == 1 */
             unsigned char nameLengthB2;
             unsigned char nameLengthB1;
             unsigned char nameLengthB0;
-            unsigned char valueLengthB0; /* valueLengthB0 >> 7 == 0 */
+            unsigned char valueLengthB0; /* valueLengthB0 &gt;&gt; 7 == 0 */
             unsigned char nameData[nameLength
-                    ((B3 & 0x7f) << 24) + (B2 << 16) + (B1 << 8) + B0];
+                    ((B3 &amp; 0x7f) &lt;&lt; 24) + (B2 &lt;&lt; 16) + (B1 &lt;&lt; 8) + B0];
             unsigned char valueData[valueLength];
         } FCGI_NameValuePair41;
 
         typedef struct {
-            unsigned char nameLengthB3;  /* nameLengthB3  >> 7 == 1 */
+            unsigned char nameLengthB3;  /* nameLengthB3  &gt;&gt; 7 == 1 */
             unsigned char nameLengthB2;
             unsigned char nameLengthB1;
             unsigned char nameLengthB0;
-            unsigned char valueLengthB3; /* valueLengthB3 >> 7 == 1 */
+            unsigned char valueLengthB3; /* valueLengthB3 &gt;&gt; 7 == 1 */
             unsigned char valueLengthB2;
             unsigned char valueLengthB1;
             unsigned char valueLengthB0;
             unsigned char nameData[nameLength
-                    ((B3 & 0x7f) << 24) + (B2 << 16) + (B1 << 8) + B0];
+                    ((B3 &amp; 0x7f) &lt;&lt; 24) + (B2 &lt;&lt; 16) + (B1 &lt;&lt; 8) + B0];
             unsigned char valueData[valueLength
-                    ((B3 & 0x7f) << 24) + (B2 << 16) + (B1 << 8) + B0];
+                    ((B3 &amp; 0x7f) &lt;&lt; 24) + (B2 &lt;&lt; 16) + (B1 &lt;&lt; 8) + B0];
         } FCGI_NameValuePair44;
-</pre>
-
-The high-order bit of the first byte of a length indicates the length's
-encoding.  A high-order zero implies a one-byte encoding, a one a four-byte
-encoding.<p>
-
-This name-value pair format allows the sender to transmit binary values
-without additional encoding, and enables the receiver to allocate the correct
-amount of storage immediately even for large values.<p>
-
-
-<h4><a name = "S3.5">3.5 Closing Transport Connections</a></h4>
-
-The Web server controls the lifetime of transport connections.
-The Web server can close a connection when no requests are active.
-Or the Web server can delegate close authority to the application
-(see <tt>FCGI_BEGIN_REQUEST</tt>).
-In this case the application closes the connection at the end of
-a specified request.<p>
-
-This flexibility accommodates a variety of application styles.
-Simple applications will process one request at a time and
-accept a new transport connection for each request.  More
-complex applications
-will process concurrent requests, over one or multiple transport
-connections, and will keep transport connections open for long
-periods of time.<p>
-
-A simple application gets a significant performance boost by
-closing the transport connection when it has finished writing its
-response.  The Web server needs to control the connection lifetime
-for long-lived connections.<p>
-
-When an application closes a connection or finds that a connection
-has closed, the application initiates a new connection.<p>
-
-
-
-<h3><a name = "S4">4. Management Record Types</a></h3>
-
-
-<h4><a name = "S4.1">4.1 <tt>FCGI_GET_VALUES, FCGI_GET_VALUES_RESULT</tt></a></h4>
-
-The Web server can query specific variables within the application.
-The server will typically perform a query on application startup
-in order to to automate certain aspects of system configuration.<p>
-
-The application receives a query as a record <tt>{FCGI_GET_VALUES, 0,
-...}</tt>.  The <tt>contentData</tt> portion of a <tt>FCGI_GET_VALUES</tt>
-record contains a sequence of name-value pairs with empty values.<p>
-
-The application responds by sending a record
-<tt>{FCGI_GET_VALUES_RESULT, 0, ...}</tt> with the values supplied.  If the
-application doesn't understand a variable name that was
-included in the query, it omits that name from the
-response.<p>
-
-<tt>FCGI_GET_VALUES</tt> is designed to allow an open-ended
-set of variables.  The initial set provides information to help
-the server perform application and connection management:<p>
-
-<ul type=square>
-    <li><tt>FCGI_MAX_CONNS</tt>:
-        The maximum number of concurrent transport connections this
-        application will accept, e.g.
-        <tt>"1"</tt> or <tt>"10"</tt>.<p>
-
-    <li><tt>FCGI_MAX_REQS</tt>:
-        The maximum number of concurrent requests this application
-        will accept, e.g.
-        <tt>"1"</tt> or <tt>"50"</tt>.<p>
-
-    <li><tt>FCGI_MPXS_CONNS</tt>:
-        <tt>"0"</tt> if this application does not multiplex
-        connections (i.e. handle concurrent requests over each
-        connection), <tt>"1"</tt> otherwise.<p>
-</ul>
-
-An application may receive a <tt>FCGI_GET_VALUES</tt> record at any
-time.  The application's response should not involve the application
-proper but only the FastCGI library.<p>
-
-
-<h4><a name = "S4.2">4.2 <tt>FCGI_UNKNOWN_TYPE</tt></a></h4>
-
-The set of management record types is likely to grow in future versions
-of this protocol.  To provide for this evolution, the protocol
-includes the <tt>FCGI_UNKNOWN_TYPE</tt> management record.
-When an application receives a management record whose type <tt>T</tt>
-it does not understand, the application responds with
-<tt>{FCGI_UNKNOWN_TYPE, 0, {T}}</tt>.<p>
-
-The <tt>contentData</tt> component of a <tt>FCGI_UNKNOWN_TYPE</tt> record
-has the form:
-<pre>
+</PRE>
+      <P>
+         The high-order bit of the first byte of a length indicates the length&#39;s encoding. A high-order zero
+         implies a one-byte encoding, a one a four-byte encoding.
+      </P>
+      <P>
+         This name-value pair format allows the sender to transmit binary values without additional encoding, and
+         enables the receiver to allocate the correct amount of storage immediately even for large values.
+      </P>
+      <P>
+      </P>
+      <H4>
+         <A NAME="S3.5">3.5 Closing Transport Connections</A>
+      </H4>
+      <P>
+         The Web server controls the lifetime of transport connections. The Web server can close a connection when no
+         requests are active. Or the Web server can delegate close authority to the application (see
+         <TT>FCGI_BEGIN_REQUEST</TT>). In this case the application closes the connection at the end of a specified
+         request.
+      </P>
+      <P>
+         This flexibility accommodates a variety of application styles. Simple applications will process one request at
+         a time and accept a new transport connection for each request. More complex applications will process
+         concurrent requests, over one or multiple transport connections, and will keep transport connections open for
+         long periods of time.
+      </P>
+      <P>
+         A simple application gets a significant performance boost by closing the transport connection when it has
+         finished writing its response. The Web server needs to control the connection lifetime for long-lived
+         connections.
+      </P>
+      <P>
+         When an application closes a connection or finds that a connection has closed, the application initiates a new
+         connection.
+      </P>
+      <P>
+      </P>
+      <H3>
+         <A NAME="S4">4. Management Record Types</A>
+      </H3>
+      <H4>
+         <A NAME="S4.1">4.1 <TT>FCGI_GET_VALUES, FCGI_GET_VALUES_RESULT</TT></A>
+      </H4>
+      <P>
+         The Web server can query specific variables within the application. The server will typically perform a query
+         on application startup in order to to automate certain aspects of system configuration.
+      </P>
+      <P>
+         The application receives a query as a record <TT>{FCGI_GET_VALUES, 0, ...}</TT>. The <TT>contentData</TT>
+         portion of a <TT>FCGI_GET_VALUES</TT> record contains a sequence of name-value pairs with empty values.
+      </P>
+      <P>
+         The application responds by sending a record <TT>{FCGI_GET_VALUES_RESULT, 0, ...}</TT> with the values
+         supplied. If the application doesn&#39;t understand a variable name that was included in the query, it omits
+         that name from the response.
+      </P>
+      <P>
+         <TT>FCGI_GET_VALUES</TT> is designed to allow an open-ended set of variables. The initial set provides
+         information to help the server perform application and connection management:
+      </P>
+      <P>
+      </P>
+      <UL TYPE="square">
+         <LI>
+            <TT>FCGI_MAX_CONNS</TT>: The maximum number of concurrent transport connections this application will
+            accept, e.g. <TT>&quot;1&quot;</TT> or <TT>&quot;10&quot;</TT>.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            <TT>FCGI_MAX_REQS</TT>: The maximum number of concurrent requests this application will accept, e.g.
+            <TT>&quot;1&quot;</TT> or <TT>&quot;50&quot;</TT>.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            <TT>FCGI_MPXS_CONNS</TT>: <TT>&quot;0&quot;</TT> if this application does not multiplex connections (i.e.
+            handle concurrent requests over each connection), <TT>&quot;1&quot;</TT> otherwise.<BR>
+            <BR>
+         </LI>
+      </UL>
+      <P>
+         An application may receive a <TT>FCGI_GET_VALUES</TT> record at any time. The application&#39;s response
+         should not involve the application proper but only the FastCGI library.
+      </P>
+      <P>
+      </P>
+      <H4>
+         <A NAME="S4.2">4.2 <TT>FCGI_UNKNOWN_TYPE</TT></A>
+      </H4>
+      <P>
+         The set of management record types is likely to grow in future versions of this protocol. To provide for this
+         evolution, the protocol includes the <TT>FCGI_UNKNOWN_TYPE</TT> management record. When an application
+         receives a management record whose type <TT>T</TT> it does not understand, the application responds with
+         <TT>{FCGI_UNKNOWN_TYPE, 0, {T}}</TT>.
+      </P>
+      <P>
+         The <TT>contentData</TT> component of a <TT>FCGI_UNKNOWN_TYPE</TT> record has the form:
+      </P>
+<PRE>
         typedef struct {
             unsigned char type;    
             unsigned char reserved[7];
         } FCGI_UnknownTypeBody;
-</pre>
-<p>
-
-The <tt>type</tt> component is the type of the unrecognized management
-record.<p>
-
-
-
-<h3><a name = "S5">5. Application Record Types</a></h3>
-
-
-<h4><a name = "S5.1">5.1 <tt>FCGI_BEGIN_REQUEST</tt></a></h4>
-
-The Web server sends a <tt>FCGI_BEGIN_REQUEST</tt> record
-to start a request.<p>
-
-The <tt>contentData</tt> component of a <tt>FCGI_BEGIN_REQUEST</tt> record
-has the form:
-<pre>
+</PRE>
+      <P>
+         The <TT>type</TT> component is the type of the unrecognized management record.
+      </P>
+      <P>
+      </P>
+      <H3>
+         <A NAME="S5">5. Application Record Types</A>
+      </H3>
+      <H4>
+         <A NAME="S5.1">5.1 <TT>FCGI_BEGIN_REQUEST</TT></A>
+      </H4>
+      <P>
+         The Web server sends a <TT>FCGI_BEGIN_REQUEST</TT> record to start a request.
+      </P>
+      <P>
+         The <TT>contentData</TT> component of a <TT>FCGI_BEGIN_REQUEST</TT> record has the form:
+      </P>
+<PRE>
         typedef struct {
             unsigned char roleB1;
             unsigned char roleB0;
             unsigned char flags;
             unsigned char reserved[5];
         } FCGI_BeginRequestBody;
-</pre>
-<p>
-
-The <tt>role</tt> component sets the role the Web server expects
-the application to play.  The currently-defined roles are:<p>
-
-<ul type=square>
-    <li><tt>FCGI_RESPONDER</tt>
-    <li><tt>FCGI_AUTHORIZER</tt>
-    <li><tt>FCGI_FILTER</tt>
-</ul>
-
-Roles are described in more detail in
-<a href = "#S6">Section 6</a> below.<p>
-
-The <tt>flags</tt> component contains a bit that
-controls connection shutdown:<p>
-
-<ul type=square>
-    <li><tt>flags & FCGI_KEEP_CONN</tt>:
-        If zero, the application closes the connection after responding to
-        this request.  If not zero, the application does not close
-        the connection after responding to this request; the Web server
-        retains responsibility for the connection.<p>
-</ul>
-
-
-<h4><a name = "S5.2">5.2 Name-Value Pair Stream: <tt>FCGI_PARAMS</tt></a></h4>
-
-<tt>FCGI_PARAMS</tt> is a stream record type used in sending
-name-value pairs from the Web server to the application.
-The name-value pairs are sent down the stream one after the other,
-in no specified order.<p>
-
-
-<h4><a name = "S5.3">5.3 Byte Streams: <tt>FCGI_STDIN</tt>, <tt>FCGI_DATA</tt>, <tt>FCGI_STDOUT</tt>, <tt>FCGI_STDERR</tt></a></h4>
-
-<tt>FCGI_STDIN</tt> is a stream record type used in sending arbitrary
-data from the Web server to the application.  <tt>FCGI_DATA</tt>
-is a second stream record type used to send additional
-data to the application.<p>
-
-<tt>FCGI_STDOUT</tt> and <tt>FCGI_STDERR</tt> are stream record types
-for sending arbitrary data and error data respectively from the
-application to the Web server.<p>
-
-
-<h4><a name = "S5.4">5.4 <tt>FCGI_ABORT_REQUEST</tt></a></h4>
-
-The Web server sends a <tt>FCGI_ABORT_REQUEST</tt> record to
-abort a request.  After receiving <tt>{FCGI_ABORT_REQUEST, R}</tt>,
-the application responds as soon as possible with
-<tt>{FCGI_END_REQUEST, R, {FCGI_REQUEST_COMPLETE, appStatus}}</tt>.
-This is truly a response from the application, not a low-level
-acknowledgement from the FastCGI library.<p>
-
-A Web server aborts a FastCGI request when an HTTP client closes its
-transport connection while the FastCGI request is running on behalf of
-that client.  The situation may seem unlikely; most FastCGI
-requests will have short response times, with the Web server providing
-output buffering if the client is slow.  But the FastCGI application
-may be delayed communicating with another system, or performing a
-server push.<p>
-
-When a Web server is not multiplexing requests over a transport
-connection, the Web server can abort a request by closing the request's
-transport connection.  But with multiplexed requests, closing the
-transport connection has the unfortunate effect of aborting <i>all</i>
-the requests on the connection.<p>
-
-
-<h4><a name = "S5.5">5.5 <tt>FCGI_END_REQUEST</tt></a></h4>
-
-The application sends a <tt>FCGI_END_REQUEST</tt> record
-to terminate a request, either because the application
-has processed the request or because the application has rejected
-the request.<p>
-
-The <tt>contentData</tt> component of a <tt>FCGI_END_REQUEST</tt> record
-has the form:
-<pre>
+</PRE>
+      <P>
+         The <TT>role</TT> component sets the role the Web server expects the application to play. The
+         currently-defined roles are:
+      </P>
+      <P>
+      </P>
+      <UL TYPE="square">
+         <LI>
+            <TT>FCGI_RESPONDER</TT>
+         </LI>
+         <LI>
+            <TT>FCGI_AUTHORIZER</TT>
+         </LI>
+         <LI>
+            <TT>FCGI_FILTER</TT>
+         </LI>
+      </UL>
+      <P>
+         Roles are described in more detail in <A HREF="#S6">Section 6</A> below.
+      </P>
+      <P>
+         The <TT>flags</TT> component contains a bit that controls connection shutdown:
+      </P>
+      <P>
+      </P>
+      <UL TYPE="square">
+         <LI>
+            <TT>flags &amp; FCGI_KEEP_CONN</TT>: If zero, the application closes the connection after responding to
+            this request. If not zero, the application does not close the connection after responding to this request;
+            the Web server retains responsibility for the connection.<BR>
+            <BR>
+         </LI>
+      </UL>
+      <H4>
+         <A NAME="S5.2">5.2 Name-Value Pair Stream: <TT>FCGI_PARAMS</TT></A>
+      </H4>
+      <TT>FCGI_PARAMS</TT>
+      <P>
+         is a stream record type used in sending name-value pairs from the Web server to the application. The
+         name-value pairs are sent down the stream one after the other, in no specified order.
+      </P>
+      <P>
+      </P>
+      <H4>
+         <A NAME="S5.3">5.3 Byte Streams: <TT>FCGI_STDIN</TT>, <TT>FCGI_DATA</TT>, <TT>FCGI_STDOUT</TT>,
+         <TT>FCGI_STDERR</TT></A>
+      </H4>
+      <TT>FCGI_STDIN</TT>
+      <P>
+         is a stream record type used in sending arbitrary data from the Web server to the application.
+         <TT>FCGI_DATA</TT> is a second stream record type used to send additional data to the application.
+      </P>
+      <P>
+         <TT>FCGI_STDOUT</TT> and <TT>FCGI_STDERR</TT> are stream record types for sending arbitrary data and error
+         data respectively from the application to the Web server.
+      </P>
+      <P>
+      </P>
+      <H4>
+         <A NAME="S5.4">5.4 <TT>FCGI_ABORT_REQUEST</TT></A>
+      </H4>
+      <P>
+         The Web server sends a <TT>FCGI_ABORT_REQUEST</TT> record to abort a request. After receiving
+         <TT>{FCGI_ABORT_REQUEST, R}</TT>, the application responds as soon as possible with <TT>{FCGI_END_REQUEST, R,
+         {FCGI_REQUEST_COMPLETE, appStatus}}</TT>. This is truly a response from the application, not a low-level
+         acknowledgement from the FastCGI library.
+      </P>
+      <P>
+         A Web server aborts a FastCGI request when an HTTP client closes its transport connection while the FastCGI
+         request is running on behalf of that client. The situation may seem unlikely; most FastCGI requests will have
+         short response times, with the Web server providing output buffering if the client is slow. But the FastCGI
+         application may be delayed communicating with another system, or performing a server push.
+      </P>
+      <P>
+         When a Web server is not multiplexing requests over a transport connection, the Web server can abort a request
+         by closing the request&#39;s transport connection. But with multiplexed requests, closing the transport
+         connection has the unfortunate effect of aborting <I>all</I> the requests on the connection.
+      </P>
+      <P>
+      </P>
+      <H4>
+         <A NAME="S5.5">5.5 <TT>FCGI_END_REQUEST</TT></A>
+      </H4>
+      <P>
+         The application sends a <TT>FCGI_END_REQUEST</TT> record to terminate a request, either because the
+         application has processed the request or because the application has rejected the request.
+      </P>
+      <P>
+         The <TT>contentData</TT> component of a <TT>FCGI_END_REQUEST</TT> record has the form:
+      </P>
+<PRE>
         typedef struct {
             unsigned char appStatusB3;
             unsigned char appStatusB2;
@@ -699,298 +772,299 @@ has the form:
             unsigned char protocolStatus;
             unsigned char reserved[3];
         } FCGI_EndRequestBody;
-</pre>
-<p>
-
-The <tt>appStatus</tt> component is an application-level status code.
-Each role documents its usage of <tt>appStatus</tt>.<p>
-
-The <tt>protocolStatus</tt> component is a protocol-level status code;
-the possible <tt>protocolStatus</tt> values are:<p>
-
-<ul type=square>
-    <li><tt>FCGI_REQUEST_COMPLETE</tt>:
-        normal end of request.<p>
-
-    <li><tt>FCGI_CANT_MPX_CONN</tt>:
-        rejecting a new request.  This happens when a Web server sends
-        concurrent requests over one connection to an application that
-        is designed to process one request at a time per
-        connection.<p>
-
-    <li><tt>FCGI_OVERLOADED</tt>:
-        rejecting a new request.  This happens when the application
-        runs out of some resource, e.g. database connections.<p>
-
-    <li><tt>FCGI_UNKNOWN_ROLE</tt>:
-        rejecting a new request.  This happens when the Web server
-        has specified a role that is unknown to the application.<p>
-</ul>
-
-
-
-<h3><a name = "S6">6. Roles</a></h3>
-
-
-<h4><a name = "S6.1">6.1 Role Protocols</a></h4>
-
-Role protocols only include records with application record
-types.  They transfer essentially all data using streams.<p>
-
-To make the protocols reliable and to simplify application
-programming, role protocols are designed to use <i>nearly sequential
-marshalling</i>.  In a protocol with strictly sequential marshalling,
-the application receives its first input, then its second, etc. until
-it has received them all.  Similarly, the application sends its first
-output, then its second, etc. until it has sent them all.  Inputs are
-not interleaved with each other, and outputs are not interleaved with
-each other.<p>
-
-The sequential marshalling rule is too restrictive for some
-FastCGI roles, because CGI programs can write to both <tt>stdout</tt>
-and <tt>stderr</tt> without timing restrictions.  So role
-protocols that use both <tt>FCGI_STDOUT</tt> and <tt>FCGI_STDERR</tt>
-allow these two streams to be interleaved.<p>
-
-All role protocols use the <tt>FCGI_STDERR</tt> stream just the way
-<tt>stderr</tt> is used in conventional applications programming: to
-report application-level errors in an intelligible way.  Use of the
-<tt>FCGI_STDERR</tt> stream is always optional.  If an application has
-no errors to report, it sends either no <tt>FCGI_STDERR</tt> records or
-one zero-length <tt>FCGI_STDERR</tt> record.<p>
-
-When a role protocol calls for transmitting a stream other than
-<tt>FCGI_STDERR</tt>, at least one record of the stream type is always
-transmitted, even if the stream is empty.<p>
-
-Again in the interests of reliable protocols and simplified application
-programming, role protocols are designed to be <i>nearly
-request-response</i>.  In a truly request-response protocol, the
-application receives all of its input records before sending its first
-output record.  Request-response protocols don't allow pipelining.<p>
-
-The request-response rule is too restrictive for some FastCGI roles;
-after all, CGI programs aren't restricted to read all of
-<tt>stdin</tt> before starting to write <tt>stdout</tt>.  So some role
-protocols allow that specific possibility.  First the application
-receives all of its inputs except for a final stream input.  As the
-application begins to receive the final stream input, it can
-begin writing its output.<p>
-
-When a role protocol uses <tt>FCGI_PARAMS</tt> to transmit textual
-values, such as the values that CGI programs obtain from environment
-variables, the length of the value does not include the terminating
-null byte, and the value itself does not include a null byte.  An
-application that needs to provide <tt>environ(7)</tt> format
-name-value pairs must insert an equal sign between the name and value
-and append a null byte after the value.<p>
-
-Role protocols do not support the non-parsed header feature
-of CGI.  FastCGI applications set response status using
-the <tt>Status</tt> and <tt>Location</tt> CGI headers.<p>
-
-
-<h4><a name = "S6.2">6.2 Responder</a></h4>
-
-A Responder FastCGI application has the same purpose as a CGI/1.1 program:
-It receives all the information associated with an HTTP request and
-generates an HTTP response.<p>
-
-It suffices to explain how each element of CGI/1.1 is emulated by a
-Responder:<p>
-<ul type=square>
-    <li>
-        The Responder application receives CGI/1.1 environment variables from
-        the Web server over <tt>FCGI_PARAMS</tt>.<p>
-    <li>
-        Next the Responder application receives CGI/1.1
-        <tt>stdin</tt> data from
-        the Web server over <tt>FCGI_STDIN</tt>.  The application receives
-        at most <tt>CONTENT_LENGTH</tt> bytes from this stream before
-        receiving the end-of-stream indication.  (The application
-        receives less than <tt>CONTENT_LENGTH</tt> bytes only if the
-        HTTP client fails to provide them, e.g. because the client
-        crashed.)<p>
-    <li>
-        The Responder application sends CGI/1.1
-        <tt>stdout</tt> data to the Web
-        server over <tt>FCGI_STDOUT</tt>, and CGI/1.1 <tt>stderr</tt> data
-        over <tt>FCGI_STDERR</tt>.  The application sends these
-        concurrently, not one after the other.  The application must
-        wait to finish reading <tt>FCGI_PARAMS</tt> before it begins
-        writing <tt>FCGI_STDOUT</tt> and <tt>FCGI_STDERR</tt>, but
-        it needn't finish reading from <tt>FCGI_STDIN</tt> before it
-        begins writing these two streams.<p>
-    <li>
-        After sending all its <tt>stdout</tt> and <tt>stderr</tt> data,
-        the Responder application sends a <tt>FCGI_END_REQUEST</tt> record.
-        The application sets the <tt>protocolStatus</tt> component to
-        <tt>FCGI_REQUEST_COMPLETE</tt> and the <tt>appStatus</tt> component
-        to the status code that the CGI program would have returned
-        via the <tt>exit</tt> system call.<p>
-</ul>
-
-A Responder performing an update, e.g. implementing a <tt>POST</tt>
-method, should compare the number of bytes received on <tt>FCGI_STDIN</tt>
-with <tt>CONTENT_LENGTH</tt> and abort the update if the two numbers
-are not equal.<p>
-
-
-<h4><a name = "S6.3">6.3 Authorizer</a></h4>
-
-An Authorizer FastCGI application receives all the information
-associated with an HTTP request and generates an
-authorized/unauthorized decision.  In case of an authorized
-decision the Authorizer can also associate name-value pairs
-with the HTTP request; when giving an unauthorized
-decision the Authorizer sends a complete response to the HTTP client.
-<p>
-
-Since CGI/1.1 defines a perfectly good way to represent the information
-associated with an HTTP request, Authorizers use the same
-representation:<p>
-
-<ul type=square>
-    <li>
-        The Authorizer application receives
-        HTTP request information from the Web
-        server on the <tt>FCGI_PARAMS</tt> stream,
-        in the same format as a Responder.  The Web server does not
-        send <tt>CONTENT_LENGTH</tt>,
-        <tt>PATH_INFO</tt>, <tt>PATH_TRANSLATED</tt>, and
-        <tt>SCRIPT_NAME</tt> headers.<p>
-    <li>
-       The Authorizer application sends
-        <tt>stdout</tt> and <tt>stderr</tt> data in
-       the same manner as a Responder.  The CGI/1.1 response
-       status specifies the disposition of the request.  If the
-        application sends status 200 (OK), the Web server allows
-        access.  Depending upon its configuration the Web server
-        may proceed with other access checks, including requests to other
-        Authorizers.<p>
-
-        An Authorizer application's 200 response may include headers
-        whose names are prefixed with <tt>Variable-</tt>.  These
-        headers communicate name-value pairs from the
-        application to the Web server.  For instance, the response header
-<pre>
+</PRE>
+      <P>
+         The <TT>appStatus</TT> component is an application-level status code. Each role documents its usage of
+         <TT>appStatus</TT>.
+      </P>
+      <P>
+         The <TT>protocolStatus</TT> component is a protocol-level status code; the possible <TT>protocolStatus</TT>
+         values are:
+      </P>
+      <P>
+      </P>
+      <UL TYPE="square">
+         <LI>
+            <TT>FCGI_REQUEST_COMPLETE</TT>: normal end of request.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            <TT>FCGI_CANT_MPX_CONN</TT>: rejecting a new request. This happens when a Web server sends concurrent
+            requests over one connection to an application that is designed to process one request at a time per
+            connection.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            <TT>FCGI_OVERLOADED</TT>: rejecting a new request. This happens when the application runs out of some
+            resource, e.g. database connections.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            <TT>FCGI_UNKNOWN_ROLE</TT>: rejecting a new request. This happens when the Web server has specified a role
+            that is unknown to the application.<BR>
+            <BR>
+         </LI>
+      </UL>
+      <H3>
+         <A NAME="S6">6. Roles</A>
+      </H3>
+      <H4>
+         <A NAME="S6.1">6.1 Role Protocols</A>
+      </H4>
+      <P>
+         Role protocols only include records with application record types. They transfer essentially all data using
+         streams.
+      </P>
+      <P>
+         To make the protocols reliable and to simplify application programming, role protocols are designed to use
+         <I>nearly sequential marshalling</I>. In a protocol with strictly sequential marshalling, the application
+         receives its first input, then its second, etc. until it has received them all. Similarly, the application
+         sends its first output, then its second, etc. until it has sent them all. Inputs are not interleaved with each
+         other, and outputs are not interleaved with each other.
+      </P>
+      <P>
+         The sequential marshalling rule is too restrictive for some FastCGI roles, because CGI programs can write to
+         both <TT>stdout</TT> and <TT>stderr</TT> without timing restrictions. So role protocols that use both
+         <TT>FCGI_STDOUT</TT> and <TT>FCGI_STDERR</TT> allow these two streams to be interleaved.
+      </P>
+      <P>
+         All role protocols use the <TT>FCGI_STDERR</TT> stream just the way <TT>stderr</TT> is used in conventional
+         applications programming: to report application-level errors in an intelligible way. Use of the
+         <TT>FCGI_STDERR</TT> stream is always optional. If an application has no errors to report, it sends either no
+         <TT>FCGI_STDERR</TT> records or one zero-length <TT>FCGI_STDERR</TT> record.
+      </P>
+      <P>
+         When a role protocol calls for transmitting a stream other than <TT>FCGI_STDERR</TT>, at least one record of
+         the stream type is always transmitted, even if the stream is empty.
+      </P>
+      <P>
+         Again in the interests of reliable protocols and simplified application programming, role protocols are
+         designed to be <I>nearly request-response</I>. In a truly request-response protocol, the application receives
+         all of its input records before sending its first output record. Request-response protocols don&#39;t allow
+         pipelining.
+      </P>
+      <P>
+         The request-response rule is too restrictive for some FastCGI roles; after all, CGI programs aren&#39;t
+         restricted to read all of <TT>stdin</TT> before starting to write <TT>stdout</TT>. So some role protocols
+         allow that specific possibility. First the application receives all of its inputs except for a final stream
+         input. As the application begins to receive the final stream input, it can begin writing its output.
+      </P>
+      <P>
+         When a role protocol uses <TT>FCGI_PARAMS</TT> to transmit textual values, such as the values that CGI
+         programs obtain from environment variables, the length of the value does not include the terminating null
+         byte, and the value itself does not include a null byte. An application that needs to provide
+         <TT>environ(7)</TT> format name-value pairs must insert an equal sign between the name and value and append a
+         null byte after the value.
+      </P>
+      <P>
+         Role protocols do not support the non-parsed header feature of CGI. FastCGI applications set response status
+         using the <TT>Status</TT> and <TT>Location</TT> CGI headers.
+      </P>
+      <P>
+      </P>
+      <H4>
+         <A NAME="S6.2">6.2 Responder</A>
+      </H4>
+      <P>
+         A Responder FastCGI application has the same purpose as a CGI/1.1 program: It receives all the information
+         associated with an HTTP request and generates an HTTP response.
+      </P>
+      <P>
+         It suffices to explain how each element of CGI/1.1 is emulated by a Responder:
+      </P>
+      <BR>
+      <BR>
+      <UL TYPE="square">
+         <LI>
+            The Responder application receives CGI/1.1 environment variables from the Web server over
+            <TT>FCGI_PARAMS</TT>.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            Next the Responder application receives CGI/1.1 <TT>stdin</TT> data from the Web server over
+            <TT>FCGI_STDIN</TT>. The application receives at most <TT>CONTENT_LENGTH</TT> bytes from this stream before
+            receiving the end-of-stream indication. (The application receives less than <TT>CONTENT_LENGTH</TT> bytes
+            only if the HTTP client fails to provide them, e.g. because the client crashed.)
+            <P>
+            </P>
+         </LI>
+         <LI>
+            The Responder application sends CGI/1.1 <TT>stdout</TT> data to the Web server over <TT>FCGI_STDOUT</TT>,
+            and CGI/1.1 <TT>stderr</TT> data over <TT>FCGI_STDERR</TT>. The application sends these concurrently, not
+            one after the other. The application must wait to finish reading <TT>FCGI_PARAMS</TT> before it begins
+            writing <TT>FCGI_STDOUT</TT> and <TT>FCGI_STDERR</TT>, but it needn&#39;t finish reading from
+            <TT>FCGI_STDIN</TT> before it begins writing these two streams.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            After sending all its <TT>stdout</TT> and <TT>stderr</TT> data, the Responder application sends a
+            <TT>FCGI_END_REQUEST</TT> record. The application sets the <TT>protocolStatus</TT> component to
+            <TT>FCGI_REQUEST_COMPLETE</TT> and the <TT>appStatus</TT> component to the status code that the CGI program
+            would have returned via the <TT>exit</TT> system call.<BR>
+            <BR>
+         </LI>
+      </UL>
+      <P>
+         A Responder performing an update, e.g. implementing a <TT>POST</TT> method, should compare the number of bytes
+         received on <TT>FCGI_STDIN</TT> with <TT>CONTENT_LENGTH</TT> and abort the update if the two numbers are not
+         equal.
+      </P>
+      <P>
+      </P>
+      <H4>
+         <A NAME="S6.3">6.3 Authorizer</A>
+      </H4>
+      <P>
+         An Authorizer FastCGI application receives all the information associated with an HTTP request and generates
+         an authorized/unauthorized decision. In case of an authorized decision the Authorizer can also associate
+         name-value pairs with the HTTP request; when giving an unauthorized decision the Authorizer sends a complete
+         response to the HTTP client.
+      </P>
+      <P>
+         Since CGI/1.1 defines a perfectly good way to represent the information associated with an HTTP request,
+         Authorizers use the same representation:
+      </P>
+      <P>
+      </P>
+      <UL TYPE="square">
+         <LI>
+            The Authorizer application receives HTTP request information from the Web server on the
+            <TT>FCGI_PARAMS</TT> stream, in the same format as a Responder. The Web server does not send
+            <TT>CONTENT_LENGTH</TT>, <TT>PATH_INFO</TT>, <TT>PATH_TRANSLATED</TT>, and <TT>SCRIPT_NAME</TT> headers.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            The Authorizer application sends <TT>stdout</TT> and <TT>stderr</TT> data in the same manner as a
+            Responder. The CGI/1.1 response status specifies the disposition of the request. If the application sends
+            status 200 (OK), the Web server allows access. Depending upon its configuration the Web server may proceed
+            with other access checks, including requests to other Authorizers.
+            <P>
+               An Authorizer application&#39;s 200 response may include headers whose names are prefixed with
+               <TT>Variable-</TT>. These headers communicate name-value pairs from the application to the Web server.
+               For instance, the response header
+            </P>
+<PRE>
         Variable-AUTH_METHOD: database lookup
-</pre>
-        transmits the value <tt>"database lookup"</tt> with name
-        <tt>AUTH-METHOD</tt>.  The server associates such name-value
-        pairs with the HTTP request and includes them in subsequent
-        CGI or FastCGI requests performed in processing the HTTP
-        request.  When the application gives a 200 response, the
-        server ignores response headers whose names aren't prefixed
-        with <tt>Variable-</tt> prefix, and ignores any response
-        content.<p>
-
-       For Authorizer response status values other than "200" (OK), the
-        Web server denies access and sends
-       the response status, headers, and content
-        back to the HTTP client.<p>
-</ul>
-
-
-<h4><a name = "S6.4">6.4 Filter</a></h4>
-
-A Filter FastCGI application receives all the information associated
-with an HTTP request, plus an extra stream of data from a file stored
-on the Web server, and generates a "filtered" version of the data
-stream as an HTTP response.<p>
-
-A Filter is similar in functionality to a Responder that takes a data
-file as a parameter.  The difference is that with a Filter, both the
-data file and the Filter itself can be access controlled using the Web
-server's access control mechanisms, while a Responder that takes the
-name of a data file as a parameter must perform its own access control
-checks on the data file.<p>
-
-The steps taken by a Filter are similar to those of a Responder.
-The server presents the Filter with environment variables first,
-then standard input (normally form <tt>POST</tt> data), finally
-the data file input:<p>
-<ul type=square>
-    <li>
-        Like a Responder, the Filter application receives name-value
-        pairs from the Web server over <tt>FCGI_PARAMS</tt>.
-        Filter applications receive two Filter-specific variables:
-        <tt>FCGI_DATA_LAST_MOD</tt> and <tt>FCGI_DATA_LENGTH</tt>.<p>
-    <li>
-        Next the Filter application receives CGI/1.1 <tt>stdin</tt> data from
-        the Web server over <tt>FCGI_STDIN</tt>.  The application receives
-        at most <tt>CONTENT_LENGTH</tt> bytes from this stream before
-        receiving the end-of-stream indication.  (The application
-        receives less than <tt>CONTENT_LENGTH</tt> bytes only if the
-        HTTP client fails to provide them, e.g. because the client
-        crashed.)<p>
-    <li>
-        Next the Filter application receives the file data from the
-        Web server over <tt>FCGI_DATA</tt>.  This file's last
-        modification time (expressed as an integer number of seconds
-        since the epoch January 1, 1970 UTC) is
-        <tt>FCGI_DATA_LAST_MOD</tt>; the application may consult
-        this variable and respond from a cache without reading
-        the file data.  The application
-        reads at most <tt>FCGI_DATA_LENGTH</tt> bytes from this stream
-        before receiving the end-of-stream indication.<p>
-    <li>
-        The Filter application sends CGI/1.1 <tt>stdout</tt> data to the Web
-        server over <tt>FCGI_STDOUT</tt>, and CGI/1.1 <tt>stderr</tt> data
-        over <tt>FCGI_STDERR</tt>.  The application sends these
-        concurrently, not one after the other.  The application must
-        wait to finish reading <tt>FCGI_STDIN</tt> before it begins
-        writing <tt>FCGI_STDOUT</tt> and <tt>FCGI_STDERR</tt>, but
-        it needn't finish reading from <tt>FCGI_DATA</tt> before it
-        begins writing these two streams.<p>
-    <li>
-        After sending all its <tt>stdout</tt> and <tt>stderr</tt> data,
-        the application sends a <tt>FCGI_END_REQUEST</tt> record.
-        The application sets the <tt>protocolStatus</tt> component to
-        <tt>FCGI_REQUEST_COMPLETE</tt> and the <tt>appStatus</tt> component
-        to the status code that a similar CGI program would have returned
-        via the <tt>exit</tt> system call.<p>
-</ul>
-
-A Filter should compare the number of bytes received on <tt>FCGI_STDIN</tt>
-with <tt>CONTENT_LENGTH</tt> and on <tt>FCGI_DATA</tt>
-with <tt>FCGI_DATA_LENGTH</tt>.  If the numbers don't match
-and the Filter is a query, the Filter
-response should provide an indication that data is missing.
-If the numbers don't match and the Filter is an update, the Filter
-should abort the update.<p>
-
-
-
-<h3><a name = "S7">7. Errors</a></h3>
-
-A FastCGI application exits with zero status to indicate that it
-terminated on purpose, e.g. in order to perform a crude form of
-garbage collection.  A FastCGI application that exits with nonzero
-status is assumed to have crashed.  How a Web server or other
-application manager responds to
-applications that exit with zero or nonzero status is outside the
-scope of this specification.<p>
-
-A Web server can request that a FastCGI application exit by sending it
-<tt>SIGTERM</tt>.  If the application ignores <tt>SIGTERM</tt> the Web
-server can resort to <tt>SIGKILL</tt>.<p>
-
-FastCGI applications report application-level errors with the
-<tt>FCGI_STDERR</tt> stream and the <tt>appStatus</tt> component of
-the <tt>FCGI_END_REQUEST</tt> record.  In many cases an error will be
-reported directly to the user via the <tt>FCGI_STDOUT</tt> stream.<p>
-
-On Unix, applications report lower-level errors, including
-FastCGI protocol errors and syntax errors in FastCGI environment
-variables, to <tt>syslog</tt>.  Depending upon the severity
-of the error, the application may either continue or
-exit with nonzero status.<p>
-
-
-
-<h3><a name = "S8">8. Types and Constants</a></h3>
-<pre>
+</PRE>
+            transmits the value <TT>&quot;database lookup&quot;</TT> with name <TT>AUTH-METHOD</TT>. The server
+            associates such name-value pairs with the HTTP request and includes them in subsequent CGI or FastCGI
+            requests performed in processing the HTTP request. When the application gives a 200 response, the server
+            ignores response headers whose names aren&#39;t prefixed with <TT>Variable-</TT> prefix, and ignores any
+            response content.
+            <P>
+               For Authorizer response status values other than &quot;200&quot; (OK), the Web server denies access and
+               sends the response status, headers, and content back to the HTTP client.
+            </P>
+            <BR>
+            <BR>
+         </LI>
+      </UL>
+      <H4>
+         <A NAME="S6.4">6.4 Filter</A>
+      </H4>
+      <P>
+         A Filter FastCGI application receives all the information associated with an HTTP request, plus an extra
+         stream of data from a file stored on the Web server, and generates a &quot;filtered&quot; version of the data
+         stream as an HTTP response.
+      </P>
+      <P>
+         A Filter is similar in functionality to a Responder that takes a data file as a parameter. The difference is
+         that with a Filter, both the data file and the Filter itself can be access controlled using the Web
+         server&#39;s access control mechanisms, while a Responder that takes the name of a data file as a parameter
+         must perform its own access control checks on the data file.
+      </P>
+      <P>
+         The steps taken by a Filter are similar to those of a Responder. The server presents the Filter with
+         environment variables first, then standard input (normally form <TT>POST</TT> data), finally the data file
+         input:
+      </P>
+      <BR>
+      <BR>
+      <UL TYPE="square">
+         <LI>
+            Like a Responder, the Filter application receives name-value pairs from the Web server over
+            <TT>FCGI_PARAMS</TT>. Filter applications receive two Filter-specific variables:
+            <TT>FCGI_DATA_LAST_MOD</TT> and <TT>FCGI_DATA_LENGTH</TT>.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            Next the Filter application receives CGI/1.1 <TT>stdin</TT> data from the Web server over
+            <TT>FCGI_STDIN</TT>. The application receives at most <TT>CONTENT_LENGTH</TT> bytes from this stream before
+            receiving the end-of-stream indication. (The application receives less than <TT>CONTENT_LENGTH</TT> bytes
+            only if the HTTP client fails to provide them, e.g. because the client crashed.)
+            <P>
+            </P>
+         </LI>
+         <LI>
+            Next the Filter application receives the file data from the Web server over <TT>FCGI_DATA</TT>. This
+            file&#39;s last modification time (expressed as an integer number of seconds since the epoch January 1,
+            1970 UTC) is <TT>FCGI_DATA_LAST_MOD</TT>; the application may consult this variable and respond from a
+            cache without reading the file data. The application reads at most <TT>FCGI_DATA_LENGTH</TT> bytes from
+            this stream before receiving the end-of-stream indication.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            The Filter application sends CGI/1.1 <TT>stdout</TT> data to the Web server over <TT>FCGI_STDOUT</TT>, and
+            CGI/1.1 <TT>stderr</TT> data over <TT>FCGI_STDERR</TT>. The application sends these concurrently, not one
+            after the other. The application must wait to finish reading <TT>FCGI_STDIN</TT> before it begins writing
+            <TT>FCGI_STDOUT</TT> and <TT>FCGI_STDERR</TT>, but it needn&#39;t finish reading from <TT>FCGI_DATA</TT>
+            before it begins writing these two streams.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            After sending all its <TT>stdout</TT> and <TT>stderr</TT> data, the application sends a
+            <TT>FCGI_END_REQUEST</TT> record. The application sets the <TT>protocolStatus</TT> component to
+            <TT>FCGI_REQUEST_COMPLETE</TT> and the <TT>appStatus</TT> component to the status code that a similar CGI
+            program would have returned via the <TT>exit</TT> system call.<BR>
+            <BR>
+         </LI>
+      </UL>
+      <P>
+         A Filter should compare the number of bytes received on <TT>FCGI_STDIN</TT> with <TT>CONTENT_LENGTH</TT> and
+         on <TT>FCGI_DATA</TT> with <TT>FCGI_DATA_LENGTH</TT>. If the numbers don&#39;t match and the Filter is a
+         query, the Filter response should provide an indication that data is missing. If the numbers don&#39;t match
+         and the Filter is an update, the Filter should abort the update.
+      </P>
+      <P>
+      </P>
+      <H3>
+         <A NAME="S7">7. Errors</A>
+      </H3>
+      <P>
+         A FastCGI application exits with zero status to indicate that it terminated on purpose, e.g. in order to
+         perform a crude form of garbage collection. A FastCGI application that exits with nonzero status is assumed to
+         have crashed. How a Web server or other application manager responds to applications that exit with zero or
+         nonzero status is outside the scope of this specification.
+      </P>
+      <P>
+         A Web server can request that a FastCGI application exit by sending it <TT>SIGTERM</TT>. If the application
+         ignores <TT>SIGTERM</TT> the Web server can resort to <TT>SIGKILL</TT>.
+      </P>
+      <P>
+         FastCGI applications report application-level errors with the <TT>FCGI_STDERR</TT> stream and the
+         <TT>appStatus</TT> component of the <TT>FCGI_END_REQUEST</TT> record. In many cases an error will be reported
+         directly to the user via the <TT>FCGI_STDOUT</TT> stream.
+      </P>
+      <P>
+         On Unix, applications report lower-level errors, including FastCGI protocol errors and syntax errors in
+         FastCGI environment variables, to <TT>syslog</TT>. Depending upon the severity of the error, the application
+         may either continue or exit with nonzero status.
+      </P>
+      <P>
+      </P>
+      <H3>
+         <A NAME="S8">8. Types and Constants</A>
+      </H3>
+<PRE>
 /*
  * Listening socket file number
  */
@@ -1088,9 +1162,9 @@ typedef struct {
 /*
  * Variable names for FCGI_GET_VALUES / FCGI_GET_VALUES_RESULT records
  */
-#define FCGI_MAX_CONNS  "FCGI_MAX_CONNS"
-#define FCGI_MAX_REQS   "FCGI_MAX_REQS"
-#define FCGI_MPXS_CONNS "FCGI_MPXS_CONNS"
+#define FCGI_MAX_CONNS  &quot;FCGI_MAX_CONNS&quot;
+#define FCGI_MAX_REQS   &quot;FCGI_MAX_REQS&quot;
+#define FCGI_MPXS_CONNS &quot;FCGI_MPXS_CONNS&quot;
 
 typedef struct {
     unsigned char type;    
@@ -1101,46 +1175,52 @@ typedef struct {
     FCGI_Header header;
     FCGI_UnknownTypeBody body;
 } FCGI_UnknownTypeRecord;
-</pre>
-<p>
-
-
-
-<h3><a name = "S9">9. References</a></h3>
-
-
-National Center for Supercomputer Applications,
-<a href = "http://hoohoo.ncsa.uiuc.edu/cgi/">The Common Gateway Interface</a>,
-version CGI/1.1.<p>
-
-D.R.T. Robinson,
-<a href = "http://ds.internic.net/internet-drafts/draft-robinson-www-interface-01.txt">The WWW Common Gateway Interface Version 1.1</a>, Internet-Draft, 15 February 1996.<p>
-
-
-
-<h3><a name = "SA">A. Table: Properties of the record types</a></h3>
-
-The following chart lists all of the record types and
-indicates these properties of each:<p>
-
-<ul type=square>
-    <li><tt>WS->App</tt>:
-        records of this type can only be sent by the Web server to the
-        application.  Records of other types can only be sent by the
-        application to the Web server.<p>
-    <li><tt>management</tt>:
-        records of this type contain information that is not specific
-        to a Web server request, and use the null request ID.  Records
-        of other types contain request-specific information, and cannot
-        use the null request ID.<p>
-    <li><tt>stream</tt>:
-        records of this type form a stream, terminated by a
-        record with empty <tt>contentData</tt>.  Records of other types
-        are discrete; each carries a meaningful unit of data.<p>
-</ul>
-<pre>
-
-                               WS->App   management  stream
+</PRE>
+      <P>
+      </P>
+      <H3>
+         <A NAME="S9">9. References</A>
+      </H3>
+      <P>
+         National Center for Supercomputer Applications, <A HREF="http://hoohoo.ncsa.uiuc.edu/cgi/">The Common Gateway
+         Interface</A>, version CGI/1.1.
+      </P>
+      <P>
+         D.R.T. Robinson, <A HREF="http://cgi-spec.golux.com/">The WWW
+         Common Gateway Interface Version 1.1</A>, Internet-Draft, 15 February 1996.
+      </P>
+      <P>
+      </P>
+      <H3>
+         <A NAME="SA">A. Table: Properties of the record types</A>
+      </H3>
+      <P>
+         The following chart lists all of the record types and indicates these properties of each:
+      </P>
+      <P>
+      </P>
+      <UL TYPE="square">
+         <LI>
+            <TT>WS-&gt;App</TT>: records of this type can only be sent by the Web server to the application. Records of
+            other types can only be sent by the application to the Web server.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            <TT>management</TT>: records of this type contain information that is not specific to a Web server request,
+            and use the null request ID. Records of other types contain request-specific information, and cannot use
+            the null request ID.
+            <P>
+            </P>
+         </LI>
+         <LI>
+            <TT>stream</TT>: records of this type form a stream, terminated by a record with empty
+            <TT>contentData</TT>. Records of other types are discrete; each carries a meaningful unit of data.<BR>
+            <BR>
+         </LI>
+      </UL>
+<PRE>
+                               WS-&gt;App   management  stream
 
         FCGI_GET_VALUES           x          x
         FCGI_GET_VALUES_RESULT               x
@@ -1156,104 +1236,105 @@ indicates these properties of each:<p>
         FCGI_STDERR                                    x     
 
 
-</pre>
-<p>
-
-
-
-<h3><a name = "SB">B. Typical Protocol Message Flow</a></h3>
-
-Additional notational conventions for the examples:
-
-<ul>
-    <li>The <tt>contentData</tt> of stream records (<tt>FCGI_PARAMS</tt>,
-        <tt>FCGI_STDIN</tt>, <tt>FCGI_STDOUT</tt>, and <tt>FCGI_STDERR</tt>)
-        is represented as a character string.  A string ending in
-        <tt>" ... "</tt> is too long to display, so only a prefix is shown.
-
-    <li>Messages sent to the Web server are indented
-        with respect to messages received from the Web server.
-
-    <li>Messages are shown in the time sequence experienced
-        by the application.
-</ul>
-
-1. A simple request with no data on <tt>stdin</tt>, and a successful response:
-<pre>
+</PRE>
+      <P>
+      </P>
+      <H3>
+         <A NAME="SB">B. Typical Protocol Message Flow</A>
+      </H3>
+      <P>
+         Additional notational conventions for the examples:
+      </P>
+      <UL>
+         <LI>
+            The <TT>contentData</TT> of stream records (<TT>FCGI_PARAMS</TT>, <TT>FCGI_STDIN</TT>,
+            <TT>FCGI_STDOUT</TT>, and <TT>FCGI_STDERR</TT>) is represented as a character string. A string ending in
+            <TT>&quot; ... &quot;</TT> is too long to display, so only a prefix is shown.
+         </LI>
+         <LI>
+            Messages sent to the Web server are indented with respect to messages received from the Web server.
+         </LI>
+         <LI>
+            Messages are shown in the time sequence experienced by the application.
+         </LI>
+      </UL>
+      <P>
+         1. A simple request with no data on <TT>stdin</TT>, and a successful response:
+      </P>
+<PRE>
 {FCGI_BEGIN_REQUEST,   1, {FCGI_RESPONDER, 0}}
-{FCGI_PARAMS,          1, "\013\002SERVER_PORT80\013\016SERVER_ADDR199.170.183.42 ... "}
-{FCGI_PARAMS,          1, ""}
-{FCGI_STDIN,           1, ""}
+{FCGI_PARAMS,          1, &quot;\013\002SERVER_PORT80\013\016SERVER_ADDR199.170.183.42 ... &quot;}
+{FCGI_PARAMS,          1, &quot;&quot;}
+{FCGI_STDIN,           1, &quot;&quot;}
 
-    {FCGI_STDOUT,      1, "Content-type: text/html\r\n\r\n&lt;html&gt;\n&lt;head&gt; ... "}
-    {FCGI_STDOUT,      1, ""}
+    {FCGI_STDOUT,      1, &quot;Content-type: text/html\r\n\r\n&lt;html&gt;\n&lt;head&gt; ... &quot;}
+    {FCGI_STDOUT,      1, &quot;&quot;}
     {FCGI_END_REQUEST, 1, {0, FCGI_REQUEST_COMPLETE}}
-</pre><p>
-
-2. Similar to example 1, but this time with data on <tt>stdin</tt>.
-The Web server chooses to send the
-parameters using more <tt>FCGI_PARAMS</tt> records than before:
-<pre>
+</PRE>
+      <P>
+         2. Similar to example 1, but this time with data on <TT>stdin</TT>. The Web server chooses to send the
+         parameters using more <TT>FCGI_PARAMS</TT> records than before:
+      </P>
+<PRE>
 {FCGI_BEGIN_REQUEST,   1, {FCGI_RESPONDER, 0}}
-{FCGI_PARAMS,          1, "\013\002SERVER_PORT80\013\016SER"}
-{FCGI_PARAMS,          1, "VER_ADDR199.170.183.42 ... "}
-{FCGI_PARAMS,          1, ""}
-{FCGI_STDIN,           1, "quantity=100&amp;item=3047936"}
-{FCGI_STDIN,           1, ""}
-
-    {FCGI_STDOUT,      1, "Content-type: text/html\r\n\r\n&lt;html&gt;\n&lt;head&gt; ... "}
-    {FCGI_STDOUT,      1, ""}
+{FCGI_PARAMS,          1, &quot;\013\002SERVER_PORT80\013\016SER&quot;}
+{FCGI_PARAMS,          1, &quot;VER_ADDR199.170.183.42 ... &quot;}
+{FCGI_PARAMS,          1, &quot;&quot;}
+{FCGI_STDIN,           1, &quot;quantity=100&amp;item=3047936&quot;}
+{FCGI_STDIN,           1, &quot;&quot;}
+
+    {FCGI_STDOUT,      1, &quot;Content-type: text/html\r\n\r\n&lt;html&gt;\n&lt;head&gt; ... &quot;}
+    {FCGI_STDOUT,      1, &quot;&quot;}
     {FCGI_END_REQUEST, 1, {0, FCGI_REQUEST_COMPLETE}}
-</pre><p>
-
-3. Similar to example 1, but this time the application detects an error.
-The application logs a message to
-<tt>stderr</tt>, returns a page to the client, and returns
-non-zero exit status to the Web server.  The application
-chooses to send the page using more <tt>FCGI_STDOUT</tt> records:
-<pre>
+</PRE>
+      <P>
+         3. Similar to example 1, but this time the application detects an error. The application logs a message to
+         <TT>stderr</TT>, returns a page to the client, and returns non-zero exit status to the Web server. The
+         application chooses to send the page using more <TT>FCGI_STDOUT</TT> records:
+      </P>
+<PRE>
 {FCGI_BEGIN_REQUEST,   1, {FCGI_RESPONDER, 0}}
-{FCGI_PARAMS,          1, "\013\002SERVER_PORT80\013\016SERVER_ADDR199.170.183.42 ... "}
-{FCGI_PARAMS,          1, ""}
-{FCGI_STDIN,           1, ""}
-
-    {FCGI_STDOUT,      1, "Content-type: text/html\r\n\r\n&lt;ht"}
-    {FCGI_STDERR,      1, "config error: missing SI_UID\n"}
-    {FCGI_STDOUT,      1, "ml&gt;\n&lt;head&gt; ... "}
-    {FCGI_STDOUT,      1, ""}
-    {FCGI_STDERR,      1, ""}
+{FCGI_PARAMS,          1, &quot;\013\002SERVER_PORT80\013\016SERVER_ADDR199.170.183.42 ... &quot;}
+{FCGI_PARAMS,          1, &quot;&quot;}
+{FCGI_STDIN,           1, &quot;&quot;}
+
+    {FCGI_STDOUT,      1, &quot;Content-type: text/html\r\n\r\n&lt;ht&quot;}
+    {FCGI_STDERR,      1, &quot;config error: missing SI_UID\n&quot;}
+    {FCGI_STDOUT,      1, &quot;ml&gt;\n&lt;head&gt; ... &quot;}
+    {FCGI_STDOUT,      1, &quot;&quot;}
+    {FCGI_STDERR,      1, &quot;&quot;}
     {FCGI_END_REQUEST, 1, {938, FCGI_REQUEST_COMPLETE}}
-</pre><p>
-
-4. Two instances of example 1, multiplexed onto a single connection.
-The first request is more difficult than the second, so the
-application finishes the requests out of order:
-<pre>
+</PRE>
+      <P>
+         4. Two instances of example 1, multiplexed onto a single connection. The first request is more difficult than
+         the second, so the application finishes the requests out of order:
+      </P>
+<PRE>
 {FCGI_BEGIN_REQUEST,   1, {FCGI_RESPONDER, FCGI_KEEP_CONN}}
-{FCGI_PARAMS,          1, "\013\002SERVER_PORT80\013\016SERVER_ADDR199.170.183.42 ... "}
-{FCGI_PARAMS,          1, ""}
+{FCGI_PARAMS,          1, &quot;\013\002SERVER_PORT80\013\016SERVER_ADDR199.170.183.42 ... &quot;}
+{FCGI_PARAMS,          1, &quot;&quot;}
 {FCGI_BEGIN_REQUEST,   2, {FCGI_RESPONDER, FCGI_KEEP_CONN}}
-{FCGI_PARAMS,          2, "\013\002SERVER_PORT80\013\016SERVER_ADDR199.170.183.42 ... "}
-{FCGI_STDIN,           1, ""}
+{FCGI_PARAMS,          2, &quot;\013\002SERVER_PORT80\013\016SERVER_ADDR199.170.183.42 ... &quot;}
+{FCGI_STDIN,           1, &quot;&quot;}
 
-    {FCGI_STDOUT,      1, "Content-type: text/html\r\n\r\n"}
+    {FCGI_STDOUT,      1, &quot;Content-type: text/html\r\n\r\n&quot;}
 
-{FCGI_PARAMS,          2, ""}
-{FCGI_STDIN,           2, ""}
+{FCGI_PARAMS,          2, &quot;&quot;}
+{FCGI_STDIN,           2, &quot;&quot;}
 
-    {FCGI_STDOUT,      2, "Content-type: text/html\r\n\r\n&lt;html&gt;\n&lt;head&gt; ... "}
-    {FCGI_STDOUT,      2, ""}
+    {FCGI_STDOUT,      2, &quot;Content-type: text/html\r\n\r\n&lt;html&gt;\n&lt;head&gt; ... &quot;}
+    {FCGI_STDOUT,      2, &quot;&quot;}
     {FCGI_END_REQUEST, 2, {0, FCGI_REQUEST_COMPLETE}}
-    {FCGI_STDOUT,      1, "&lt;html&gt;\n&lt;head&gt; ... "}
-    {FCGI_STDOUT,      1, ""}
+    {FCGI_STDOUT,      1, &quot;&lt;html&gt;\n&lt;head&gt; ... &quot;}
+    {FCGI_STDOUT,      1, &quot;&quot;}
     {FCGI_END_REQUEST, 1, {0, FCGI_REQUEST_COMPLETE}}
-</pre><p>
-
-<hr>
-
-<address>
-&#169 1995, 1996 Open Market, Inc. / mbrown@openmarket.com
-</address>
+</PRE>
+      <P>
+      </P>
+      <HR>
+      <ADDRESS>
+         &copy; 1995, 1996 Open Market, Inc. / mbrown@openmarket.com
+      </ADDRESS>
+   </BODY>
+</HTML>
 
-</body>
-</html>