3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by Larry Wall
7 * You may distribute under the terms of either the GNU General Public
8 * License or the Artistic License, as specified in the README file.
13 * 'I wonder what the Entish is for "yes" and "no",' he thought.
16 * [p.480 of _The Lord of the Rings_, III/iv: "Treebeard"]
22 * This file contains the code that creates, manipulates and destroys
23 * scalar values (SVs). The other types (AV, HV, GV, etc.) reuse the
24 * structure of an SV, so their creation and destruction is handled
25 * here; higher-level functions are in av.c, hv.c, and so on. Opcode
26 * level functions (eg. substr, split, join) for each of the types are
38 /* Missing proto on LynxOS */
39 char *gconvert(double, int, int, char *);
42 #ifdef PERL_UTF8_CACHE_ASSERT
43 /* if adding more checks watch out for the following tests:
44 * t/op/index.t t/op/length.t t/op/pat.t t/op/substr.t
45 * lib/utf8.t lib/Unicode/Collate/t/index.t
48 # define ASSERT_UTF8_CACHE(cache) \
49 STMT_START { if (cache) { assert((cache)[0] <= (cache)[1]); \
50 assert((cache)[2] <= (cache)[3]); \
51 assert((cache)[3] <= (cache)[1]);} \
54 # define ASSERT_UTF8_CACHE(cache) NOOP
57 #ifdef PERL_OLD_COPY_ON_WRITE
58 #define SV_COW_NEXT_SV(sv) INT2PTR(SV *,SvUVX(sv))
59 #define SV_COW_NEXT_SV_SET(current,next) SvUV_set(current, PTR2UV(next))
60 /* This is a pessimistic view. Scalar must be purely a read-write PV to copy-
64 /* ============================================================================
66 =head1 Allocation and deallocation of SVs.
68 An SV (or AV, HV, etc.) is allocated in two parts: the head (struct
69 sv, av, hv...) contains type and reference count information, and for
70 many types, a pointer to the body (struct xrv, xpv, xpviv...), which
71 contains fields specific to each type. Some types store all they need
72 in the head, so don't have a body.
74 In all but the most memory-paranoid configuations (ex: PURIFY), heads
75 and bodies are allocated out of arenas, which by default are
76 approximately 4K chunks of memory parcelled up into N heads or bodies.
77 Sv-bodies are allocated by their sv-type, guaranteeing size
78 consistency needed to allocate safely from arrays.
80 For SV-heads, the first slot in each arena is reserved, and holds a
81 link to the next arena, some flags, and a note of the number of slots.
82 Snaked through each arena chain is a linked list of free items; when
83 this becomes empty, an extra arena is allocated and divided up into N
84 items which are threaded into the free list.
86 SV-bodies are similar, but they use arena-sets by default, which
87 separate the link and info from the arena itself, and reclaim the 1st
88 slot in the arena. SV-bodies are further described later.
90 The following global variables are associated with arenas:
92 PL_sv_arenaroot pointer to list of SV arenas
93 PL_sv_root pointer to list of free SV structures
95 PL_body_arenas head of linked-list of body arenas
96 PL_body_roots[] array of pointers to list of free bodies of svtype
97 arrays are indexed by the svtype needed
99 A few special SV heads are not allocated from an arena, but are
100 instead directly created in the interpreter structure, eg PL_sv_undef.
101 The size of arenas can be changed from the default by setting
102 PERL_ARENA_SIZE appropriately at compile time.
104 The SV arena serves the secondary purpose of allowing still-live SVs
105 to be located and destroyed during final cleanup.
107 At the lowest level, the macros new_SV() and del_SV() grab and free
108 an SV head. (If debugging with -DD, del_SV() calls the function S_del_sv()
109 to return the SV to the free list with error checking.) new_SV() calls
110 more_sv() / sv_add_arena() to add an extra arena if the free list is empty.
111 SVs in the free list have their SvTYPE field set to all ones.
113 At the time of very final cleanup, sv_free_arenas() is called from
114 perl_destruct() to physically free all the arenas allocated since the
115 start of the interpreter.
117 The function visit() scans the SV arenas list, and calls a specified
118 function for each SV it finds which is still live - ie which has an SvTYPE
119 other than all 1's, and a non-zero SvREFCNT. visit() is used by the
120 following functions (specified as [function that calls visit()] / [function
121 called by visit() for each SV]):
123 sv_report_used() / do_report_used()
124 dump all remaining SVs (debugging aid)
126 sv_clean_objs() / do_clean_objs(),do_clean_named_objs()
127 Attempt to free all objects pointed to by RVs,
128 and, unless DISABLE_DESTRUCTOR_KLUDGE is defined,
129 try to do the same for all objects indirectly
130 referenced by typeglobs too. Called once from
131 perl_destruct(), prior to calling sv_clean_all()
134 sv_clean_all() / do_clean_all()
135 SvREFCNT_dec(sv) each remaining SV, possibly
136 triggering an sv_free(). It also sets the
137 SVf_BREAK flag on the SV to indicate that the
138 refcnt has been artificially lowered, and thus
139 stopping sv_free() from giving spurious warnings
140 about SVs which unexpectedly have a refcnt
141 of zero. called repeatedly from perl_destruct()
142 until there are no SVs left.
144 =head2 Arena allocator API Summary
146 Private API to rest of sv.c
150 new_XIV(), del_XIV(),
151 new_XNV(), del_XNV(),
156 sv_report_used(), sv_clean_objs(), sv_clean_all(), sv_free_arenas()
160 * ========================================================================= */
163 * "A time to plant, and a time to uproot what was planted..."
167 Perl_offer_nice_chunk(pTHX_ void *const chunk, const U32 chunk_size)
173 PERL_ARGS_ASSERT_OFFER_NICE_CHUNK;
175 new_chunk = (void *)(chunk);
176 new_chunk_size = (chunk_size);
177 if (new_chunk_size > PL_nice_chunk_size) {
178 Safefree(PL_nice_chunk);
179 PL_nice_chunk = (char *) new_chunk;
180 PL_nice_chunk_size = new_chunk_size;
187 # define MEM_LOG_NEW_SV(sv, file, line, func) \
188 Perl_mem_log_new_sv(sv, file, line, func)
189 # define MEM_LOG_DEL_SV(sv, file, line, func) \
190 Perl_mem_log_del_sv(sv, file, line, func)
192 # define MEM_LOG_NEW_SV(sv, file, line, func) NOOP
193 # define MEM_LOG_DEL_SV(sv, file, line, func) NOOP
196 #ifdef DEBUG_LEAKING_SCALARS
197 # define FREE_SV_DEBUG_FILE(sv) Safefree((sv)->sv_debug_file)
198 # define DEBUG_SV_SERIAL(sv) \
199 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) del_SV\n", \
200 PTR2UV(sv), (long)(sv)->sv_debug_serial))
202 # define FREE_SV_DEBUG_FILE(sv)
203 # define DEBUG_SV_SERIAL(sv) NOOP
207 # define SvARENA_CHAIN(sv) ((sv)->sv_u.svu_rv)
208 # define SvARENA_CHAIN_SET(sv,val) (sv)->sv_u.svu_rv = MUTABLE_SV((val))
209 /* Whilst I'd love to do this, it seems that things like to check on
211 # define POSION_SV_HEAD(sv) PoisonNew(sv, 1, struct STRUCT_SV)
213 # define POSION_SV_HEAD(sv) PoisonNew(&SvANY(sv), 1, void *), \
214 PoisonNew(&SvREFCNT(sv), 1, U32)
216 # define SvARENA_CHAIN(sv) SvANY(sv)
217 # define SvARENA_CHAIN_SET(sv,val) SvANY(sv) = (void *)(val)
218 # define POSION_SV_HEAD(sv)
221 /* Mark an SV head as unused, and add to free list.
223 * If SVf_BREAK is set, skip adding it to the free list, as this SV had
224 * its refcount artificially decremented during global destruction, so
225 * there may be dangling pointers to it. The last thing we want in that
226 * case is for it to be reused. */
228 #define plant_SV(p) \
230 const U32 old_flags = SvFLAGS(p); \
231 MEM_LOG_DEL_SV(p, __FILE__, __LINE__, FUNCTION__); \
232 DEBUG_SV_SERIAL(p); \
233 FREE_SV_DEBUG_FILE(p); \
235 SvFLAGS(p) = SVTYPEMASK; \
236 if (!(old_flags & SVf_BREAK)) { \
237 SvARENA_CHAIN_SET(p, PL_sv_root); \
243 #define uproot_SV(p) \
246 PL_sv_root = MUTABLE_SV(SvARENA_CHAIN(p)); \
251 /* make some more SVs by adding another arena */
260 sv_add_arena(PL_nice_chunk, PL_nice_chunk_size, 0);
261 PL_nice_chunk = NULL;
262 PL_nice_chunk_size = 0;
265 char *chunk; /* must use New here to match call to */
266 Newx(chunk,PERL_ARENA_SIZE,char); /* Safefree() in sv_free_arenas() */
267 sv_add_arena(chunk, PERL_ARENA_SIZE, 0);
273 /* new_SV(): return a new, empty SV head */
275 #ifdef DEBUG_LEAKING_SCALARS
276 /* provide a real function for a debugger to play with */
278 S_new_SV(pTHX_ const char *file, int line, const char *func)
285 sv = S_more_sv(aTHX);
289 sv->sv_debug_optype = PL_op ? PL_op->op_type : 0;
290 sv->sv_debug_line = (U16) (PL_parser && PL_parser->copline != NOLINE
296 sv->sv_debug_inpad = 0;
297 sv->sv_debug_cloned = 0;
298 sv->sv_debug_file = PL_curcop ? savepv(CopFILE(PL_curcop)): NULL;
300 sv->sv_debug_serial = PL_sv_serial++;
302 MEM_LOG_NEW_SV(sv, file, line, func);
303 DEBUG_m(PerlIO_printf(Perl_debug_log, "0x%"UVxf": (%05ld) new_SV (from %s:%d [%s])\n",
304 PTR2UV(sv), (long)sv->sv_debug_serial, file, line, func));
308 # define new_SV(p) (p)=S_new_SV(aTHX_ __FILE__, __LINE__, FUNCTION__)
316 (p) = S_more_sv(aTHX); \
320 MEM_LOG_NEW_SV(p, __FILE__, __LINE__, FUNCTION__); \
325 /* del_SV(): return an empty SV head to the free list */
338 S_del_sv(pTHX_ SV *p)
342 PERL_ARGS_ASSERT_DEL_SV;
347 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
348 const SV * const sv = sva + 1;
349 const SV * const svend = &sva[SvREFCNT(sva)];
350 if (p >= sv && p < svend) {
356 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
357 "Attempt to free non-arena SV: 0x%"UVxf
358 pTHX__FORMAT, PTR2UV(p) pTHX__VALUE);
365 #else /* ! DEBUGGING */
367 #define del_SV(p) plant_SV(p)
369 #endif /* DEBUGGING */
373 =head1 SV Manipulation Functions
375 =for apidoc sv_add_arena
377 Given a chunk of memory, link it to the head of the list of arenas,
378 and split it into a list of free SVs.
384 S_sv_add_arena(pTHX_ char *const ptr, const U32 size, const U32 flags)
387 SV *const sva = MUTABLE_SV(ptr);
391 PERL_ARGS_ASSERT_SV_ADD_ARENA;
393 /* The first SV in an arena isn't an SV. */
394 SvANY(sva) = (void *) PL_sv_arenaroot; /* ptr to next arena */
395 SvREFCNT(sva) = size / sizeof(SV); /* number of SV slots */
396 SvFLAGS(sva) = flags; /* FAKE if not to be freed */
398 PL_sv_arenaroot = sva;
399 PL_sv_root = sva + 1;
401 svend = &sva[SvREFCNT(sva) - 1];
404 SvARENA_CHAIN_SET(sv, (sv + 1));
408 /* Must always set typemask because it's always checked in on cleanup
409 when the arenas are walked looking for objects. */
410 SvFLAGS(sv) = SVTYPEMASK;
413 SvARENA_CHAIN_SET(sv, 0);
417 SvFLAGS(sv) = SVTYPEMASK;
420 /* visit(): call the named function for each non-free SV in the arenas
421 * whose flags field matches the flags/mask args. */
424 S_visit(pTHX_ SVFUNC_t f, const U32 flags, const U32 mask)
430 PERL_ARGS_ASSERT_VISIT;
432 for (sva = PL_sv_arenaroot; sva; sva = MUTABLE_SV(SvANY(sva))) {
433 register const SV * const svend = &sva[SvREFCNT(sva)];
435 for (sv = sva + 1; sv < svend; ++sv) {
436 if (SvTYPE(sv) != SVTYPEMASK
437 && (sv->sv_flags & mask) == flags
450 /* called by sv_report_used() for each live SV */
453 do_report_used(pTHX_ SV *const sv)
455 if (SvTYPE(sv) != SVTYPEMASK) {
456 PerlIO_printf(Perl_debug_log, "****\n");
463 =for apidoc sv_report_used
465 Dump the contents of all SVs not yet freed. (Debugging aid).
471 Perl_sv_report_used(pTHX)
474 visit(do_report_used, 0, 0);
480 /* called by sv_clean_objs() for each live SV */
483 do_clean_objs(pTHX_ SV *const ref)
488 SV * const target = SvRV(ref);
489 if (SvOBJECT(target)) {
490 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning object ref:\n "), sv_dump(ref)));
491 if (SvWEAKREF(ref)) {
492 sv_del_backref(target, ref);
498 SvREFCNT_dec(target);
503 /* XXX Might want to check arrays, etc. */
506 /* called by sv_clean_objs() for each live SV */
508 #ifndef DISABLE_DESTRUCTOR_KLUDGE
510 do_clean_named_objs(pTHX_ SV *const sv)
513 assert(SvTYPE(sv) == SVt_PVGV);
514 assert(isGV_with_GP(sv));
517 #ifdef PERL_DONT_CREATE_GVSV
520 SvOBJECT(GvSV(sv))) ||
521 (GvAV(sv) && SvOBJECT(GvAV(sv))) ||
522 (GvHV(sv) && SvOBJECT(GvHV(sv))) ||
523 /* In certain rare cases GvIOp(sv) can be NULL, which would make SvOBJECT(GvIO(sv)) dereference NULL. */
524 (GvIO(sv) ? (SvFLAGS(GvIOp(sv)) & SVs_OBJECT) : 0) ||
525 (GvCV(sv) && SvOBJECT(GvCV(sv))) )
527 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning named glob object:\n "), sv_dump(sv)));
528 SvFLAGS(sv) |= SVf_BREAK;
536 =for apidoc sv_clean_objs
538 Attempt to destroy all objects not yet freed
544 Perl_sv_clean_objs(pTHX)
547 PL_in_clean_objs = TRUE;
548 visit(do_clean_objs, SVf_ROK, SVf_ROK);
549 #ifndef DISABLE_DESTRUCTOR_KLUDGE
550 /* some barnacles may yet remain, clinging to typeglobs */
551 visit(do_clean_named_objs, SVt_PVGV|SVpgv_GP, SVTYPEMASK|SVp_POK|SVpgv_GP);
553 PL_in_clean_objs = FALSE;
556 /* called by sv_clean_all() for each live SV */
559 do_clean_all(pTHX_ SV *const sv)
562 if (sv == (const SV *) PL_fdpid || sv == (const SV *)PL_strtab) {
563 /* don't clean pid table and strtab */
566 DEBUG_D((PerlIO_printf(Perl_debug_log, "Cleaning loops: SV at 0x%"UVxf"\n", PTR2UV(sv)) ));
567 SvFLAGS(sv) |= SVf_BREAK;
572 =for apidoc sv_clean_all
574 Decrement the refcnt of each remaining SV, possibly triggering a
575 cleanup. This function may have to be called multiple times to free
576 SVs which are in complex self-referential hierarchies.
582 Perl_sv_clean_all(pTHX)
586 PL_in_clean_all = TRUE;
587 cleaned = visit(do_clean_all, 0,0);
588 PL_in_clean_all = FALSE;
593 ARENASETS: a meta-arena implementation which separates arena-info
594 into struct arena_set, which contains an array of struct
595 arena_descs, each holding info for a single arena. By separating
596 the meta-info from the arena, we recover the 1st slot, formerly
597 borrowed for list management. The arena_set is about the size of an
598 arena, avoiding the needless malloc overhead of a naive linked-list.
600 The cost is 1 arena-set malloc per ~320 arena-mallocs, + the unused
601 memory in the last arena-set (1/2 on average). In trade, we get
602 back the 1st slot in each arena (ie 1.7% of a CV-arena, less for
603 smaller types). The recovery of the wasted space allows use of
604 small arenas for large, rare body types, by changing array* fields
605 in body_details_by_type[] below.
608 char *arena; /* the raw storage, allocated aligned */
609 size_t size; /* its size ~4k typ */
610 svtype utype; /* bodytype stored in arena */
615 /* Get the maximum number of elements in set[] such that struct arena_set
616 will fit within PERL_ARENA_SIZE, which is probably just under 4K, and
617 therefore likely to be 1 aligned memory page. */
619 #define ARENAS_PER_SET ((PERL_ARENA_SIZE - sizeof(struct arena_set*) \
620 - 2 * sizeof(int)) / sizeof (struct arena_desc))
623 struct arena_set* next;
624 unsigned int set_size; /* ie ARENAS_PER_SET */
625 unsigned int curr; /* index of next available arena-desc */
626 struct arena_desc set[ARENAS_PER_SET];
630 =for apidoc sv_free_arenas
632 Deallocate the memory used by all arenas. Note that all the individual SV
633 heads and bodies within the arenas must already have been freed.
638 Perl_sv_free_arenas(pTHX)
645 /* Free arenas here, but be careful about fake ones. (We assume
646 contiguity of the fake ones with the corresponding real ones.) */
648 for (sva = PL_sv_arenaroot; sva; sva = svanext) {
649 svanext = MUTABLE_SV(SvANY(sva));
650 while (svanext && SvFAKE(svanext))
651 svanext = MUTABLE_SV(SvANY(svanext));
658 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
661 struct arena_set *current = aroot;
664 assert(aroot->set[i].arena);
665 Safefree(aroot->set[i].arena);
673 i = PERL_ARENA_ROOTS_SIZE;
675 PL_body_roots[i] = 0;
677 Safefree(PL_nice_chunk);
678 PL_nice_chunk = NULL;
679 PL_nice_chunk_size = 0;
685 Here are mid-level routines that manage the allocation of bodies out
686 of the various arenas. There are 5 kinds of arenas:
688 1. SV-head arenas, which are discussed and handled above
689 2. regular body arenas
690 3. arenas for reduced-size bodies
693 Arena types 2 & 3 are chained by body-type off an array of
694 arena-root pointers, which is indexed by svtype. Some of the
695 larger/less used body types are malloced singly, since a large
696 unused block of them is wasteful. Also, several svtypes dont have
697 bodies; the data fits into the sv-head itself. The arena-root
698 pointer thus has a few unused root-pointers (which may be hijacked
699 later for arena types 4,5)
701 3 differs from 2 as an optimization; some body types have several
702 unused fields in the front of the structure (which are kept in-place
703 for consistency). These bodies can be allocated in smaller chunks,
704 because the leading fields arent accessed. Pointers to such bodies
705 are decremented to point at the unused 'ghost' memory, knowing that
706 the pointers are used with offsets to the real memory.
708 HE, HEK arenas are managed separately, with separate code, but may
709 be merge-able later..
712 /* get_arena(size): this creates custom-sized arenas
713 TBD: export properly for hv.c: S_more_he().
716 Perl_get_arena(pTHX_ const size_t arena_size, const svtype bodytype)
719 struct arena_desc* adesc;
720 struct arena_set *aroot = (struct arena_set*) PL_body_arenas;
723 /* shouldnt need this
724 if (!arena_size) arena_size = PERL_ARENA_SIZE;
727 /* may need new arena-set to hold new arena */
728 if (!aroot || aroot->curr >= aroot->set_size) {
729 struct arena_set *newroot;
730 Newxz(newroot, 1, struct arena_set);
731 newroot->set_size = ARENAS_PER_SET;
732 newroot->next = aroot;
734 PL_body_arenas = (void *) newroot;
735 DEBUG_m(PerlIO_printf(Perl_debug_log, "new arenaset %p\n", (void*)aroot));
738 /* ok, now have arena-set with at least 1 empty/available arena-desc */
739 curr = aroot->curr++;
740 adesc = &(aroot->set[curr]);
741 assert(!adesc->arena);
743 Newx(adesc->arena, arena_size, char);
744 adesc->size = arena_size;
745 adesc->utype = bodytype;
746 DEBUG_m(PerlIO_printf(Perl_debug_log, "arena %d added: %p size %"UVuf"\n",
747 curr, (void*)adesc->arena, (UV)arena_size));
753 /* return a thing to the free list */
755 #define del_body(thing, root) \
757 void ** const thing_copy = (void **)thing;\
758 *thing_copy = *root; \
759 *root = (void*)thing_copy; \
764 =head1 SV-Body Allocation
766 Allocation of SV-bodies is similar to SV-heads, differing as follows;
767 the allocation mechanism is used for many body types, so is somewhat
768 more complicated, it uses arena-sets, and has no need for still-live
771 At the outermost level, (new|del)_X*V macros return bodies of the
772 appropriate type. These macros call either (new|del)_body_type or
773 (new|del)_body_allocated macro pairs, depending on specifics of the
774 type. Most body types use the former pair, the latter pair is used to
775 allocate body types with "ghost fields".
777 "ghost fields" are fields that are unused in certain types, and
778 consequently don't need to actually exist. They are declared because
779 they're part of a "base type", which allows use of functions as
780 methods. The simplest examples are AVs and HVs, 2 aggregate types
781 which don't use the fields which support SCALAR semantics.
783 For these types, the arenas are carved up into appropriately sized
784 chunks, we thus avoid wasted memory for those unaccessed members.
785 When bodies are allocated, we adjust the pointer back in memory by the
786 size of the part not allocated, so it's as if we allocated the full
787 structure. (But things will all go boom if you write to the part that
788 is "not there", because you'll be overwriting the last members of the
789 preceding structure in memory.)
791 We calculate the correction using the STRUCT_OFFSET macro on the first
792 member present. If the allocated structure is smaller (no initial NV
793 actually allocated) then the net effect is to subtract the size of the NV
794 from the pointer, to return a new pointer as if an initial NV were actually
795 allocated. (We were using structures named *_allocated for this, but
796 this turned out to be a subtle bug, because a structure without an NV
797 could have a lower alignment constraint, but the compiler is allowed to
798 optimised accesses based on the alignment constraint of the actual pointer
799 to the full structure, for example, using a single 64 bit load instruction
800 because it "knows" that two adjacent 32 bit members will be 8-byte aligned.)
802 This is the same trick as was used for NV and IV bodies. Ironically it
803 doesn't need to be used for NV bodies any more, because NV is now at
804 the start of the structure. IV bodies don't need it either, because
805 they are no longer allocated.
807 In turn, the new_body_* allocators call S_new_body(), which invokes
808 new_body_inline macro, which takes a lock, and takes a body off the
809 linked list at PL_body_roots[sv_type], calling S_more_bodies() if
810 necessary to refresh an empty list. Then the lock is released, and
811 the body is returned.
813 S_more_bodies calls get_arena(), and carves it up into an array of N
814 bodies, which it strings into a linked list. It looks up arena-size
815 and body-size from the body_details table described below, thus
816 supporting the multiple body-types.
818 If PURIFY is defined, or PERL_ARENA_SIZE=0, arenas are not used, and
819 the (new|del)_X*V macros are mapped directly to malloc/free.
825 For each sv-type, struct body_details bodies_by_type[] carries
826 parameters which control these aspects of SV handling:
828 Arena_size determines whether arenas are used for this body type, and if
829 so, how big they are. PURIFY or PERL_ARENA_SIZE=0 set this field to
830 zero, forcing individual mallocs and frees.
832 Body_size determines how big a body is, and therefore how many fit into
833 each arena. Offset carries the body-pointer adjustment needed for
834 "ghost fields", and is used in *_allocated macros.
836 But its main purpose is to parameterize info needed in
837 Perl_sv_upgrade(). The info here dramatically simplifies the function
838 vs the implementation in 5.8.8, making it table-driven. All fields
839 are used for this, except for arena_size.
841 For the sv-types that have no bodies, arenas are not used, so those
842 PL_body_roots[sv_type] are unused, and can be overloaded. In
843 something of a special case, SVt_NULL is borrowed for HE arenas;
844 PL_body_roots[HE_SVSLOT=SVt_NULL] is filled by S_more_he, but the
845 bodies_by_type[SVt_NULL] slot is not used, as the table is not
850 struct body_details {
851 U8 body_size; /* Size to allocate */
852 U8 copy; /* Size of structure to copy (may be shorter) */
854 unsigned int type : 4; /* We have space for a sanity check. */
855 unsigned int cant_upgrade : 1; /* Cannot upgrade this type */
856 unsigned int zero_nv : 1; /* zero the NV when upgrading from this */
857 unsigned int arena : 1; /* Allocated from an arena */
858 size_t arena_size; /* Size of arena to allocate */
866 /* With -DPURFIY we allocate everything directly, and don't use arenas.
867 This seems a rather elegant way to simplify some of the code below. */
868 #define HASARENA FALSE
870 #define HASARENA TRUE
872 #define NOARENA FALSE
874 /* Size the arenas to exactly fit a given number of bodies. A count
875 of 0 fits the max number bodies into a PERL_ARENA_SIZE.block,
876 simplifying the default. If count > 0, the arena is sized to fit
877 only that many bodies, allowing arenas to be used for large, rare
878 bodies (XPVFM, XPVIO) without undue waste. The arena size is
879 limited by PERL_ARENA_SIZE, so we can safely oversize the
882 #define FIT_ARENA0(body_size) \
883 ((size_t)(PERL_ARENA_SIZE / body_size) * body_size)
884 #define FIT_ARENAn(count,body_size) \
885 ( count * body_size <= PERL_ARENA_SIZE) \
886 ? count * body_size \
887 : FIT_ARENA0 (body_size)
888 #define FIT_ARENA(count,body_size) \
890 ? FIT_ARENAn (count, body_size) \
891 : FIT_ARENA0 (body_size)
893 /* Calculate the length to copy. Specifically work out the length less any
894 final padding the compiler needed to add. See the comment in sv_upgrade
895 for why copying the padding proved to be a bug. */
897 #define copy_length(type, last_member) \
898 STRUCT_OFFSET(type, last_member) \
899 + sizeof (((type*)SvANY((const SV *)0))->last_member)
901 static const struct body_details bodies_by_type[] = {
902 { sizeof(HE), 0, 0, SVt_NULL,
903 FALSE, NONV, NOARENA, FIT_ARENA(0, sizeof(HE)) },
905 /* The bind placeholder pretends to be an RV for now.
906 Also it's marked as "can't upgrade" to stop anyone using it before it's
908 { 0, 0, 0, SVt_BIND, TRUE, NONV, NOARENA, 0 },
910 /* IVs are in the head, so the allocation size is 0. */
912 sizeof(IV), /* This is used to copy out the IV body. */
913 STRUCT_OFFSET(XPVIV, xiv_iv), SVt_IV, FALSE, NONV,
914 NOARENA /* IVS don't need an arena */, 0
917 /* 8 bytes on most ILP32 with IEEE doubles */
918 { sizeof(NV), sizeof(NV),
919 STRUCT_OFFSET(XPVNV, xnv_u),
920 SVt_NV, FALSE, HADNV, HASARENA, FIT_ARENA(0, sizeof(NV)) },
922 /* 8 bytes on most ILP32 with IEEE doubles */
924 copy_length(XPV, xpv_len) - STRUCT_OFFSET(XPV, xpv_cur),
925 + STRUCT_OFFSET(XPV, xpv_cur),
926 SVt_PV, FALSE, NONV, HASARENA,
927 FIT_ARENA(0, sizeof(XPV) - STRUCT_OFFSET(XPV, xpv_cur)) },
929 #if 2 *PTRSIZE <= IVSIZE
932 copy_length(XPVIV, xiv_u) - STRUCT_OFFSET(XPV, xpv_cur),
933 + STRUCT_OFFSET(XPV, xpv_cur),
934 SVt_PVIV, FALSE, NONV, HASARENA,
935 FIT_ARENA(0, sizeof(XPVIV) - STRUCT_OFFSET(XPV, xpv_cur)) },
939 copy_length(XPVIV, xiv_u),
941 SVt_PVIV, FALSE, NONV, HASARENA,
942 FIT_ARENA(0, sizeof(XPVIV)) },
945 #if (2 *PTRSIZE <= IVSIZE) && (2 *PTRSIZE <= NVSIZE)
948 copy_length(XPVNV, xnv_u) - STRUCT_OFFSET(XPV, xpv_cur),
949 + STRUCT_OFFSET(XPV, xpv_cur),
950 SVt_PVNV, FALSE, HADNV, HASARENA,
951 FIT_ARENA(0, sizeof(XPVNV) - STRUCT_OFFSET(XPV, xpv_cur)) },
954 { sizeof(XPVNV), copy_length(XPVNV, xnv_u), 0, SVt_PVNV, FALSE, HADNV,
955 HASARENA, FIT_ARENA(0, sizeof(XPVNV)) },
959 { sizeof(XPVMG), copy_length(XPVMG, xnv_u), 0, SVt_PVMG, FALSE, HADNV,
960 HASARENA, FIT_ARENA(0, sizeof(XPVMG)) },
966 SVt_REGEXP, FALSE, NONV, HASARENA,
967 FIT_ARENA(0, sizeof(regexp) - STRUCT_OFFSET(regexp, xpv_cur))
971 { sizeof(XPVGV), sizeof(XPVGV), 0, SVt_PVGV, TRUE, HADNV,
972 HASARENA, FIT_ARENA(0, sizeof(XPVGV)) },
975 { sizeof(XPVLV), sizeof(XPVLV), 0, SVt_PVLV, TRUE, HADNV,
976 HASARENA, FIT_ARENA(0, sizeof(XPVLV)) },
979 copy_length(XPVAV, xav_alloc),
981 SVt_PVAV, TRUE, NONV, HASARENA,
982 FIT_ARENA(0, sizeof(XPVAV)) },
985 copy_length(XPVHV, xhv_max),
987 SVt_PVHV, TRUE, NONV, HASARENA,
988 FIT_ARENA(0, sizeof(XPVHV)) },
994 SVt_PVCV, TRUE, NONV, HASARENA,
995 FIT_ARENA(0, sizeof(XPVCV)) },
1000 SVt_PVFM, TRUE, NONV, NOARENA,
1001 FIT_ARENA(20, sizeof(XPVFM)) },
1003 /* XPVIO is 84 bytes, fits 48x */
1007 SVt_PVIO, TRUE, NONV, HASARENA,
1008 FIT_ARENA(24, sizeof(XPVIO)) },
1011 #define new_body_allocated(sv_type) \
1012 (void *)((char *)S_new_body(aTHX_ sv_type) \
1013 - bodies_by_type[sv_type].offset)
1015 #define del_body_allocated(p, sv_type) \
1016 del_body(p + bodies_by_type[sv_type].offset, &PL_body_roots[sv_type])
1019 #define my_safemalloc(s) (void*)safemalloc(s)
1020 #define my_safecalloc(s) (void*)safecalloc(s, 1)
1021 #define my_safefree(p) safefree((char*)p)
1025 #define new_XNV() my_safemalloc(sizeof(XPVNV))
1026 #define del_XNV(p) my_safefree(p)
1028 #define new_XPVNV() my_safemalloc(sizeof(XPVNV))
1029 #define del_XPVNV(p) my_safefree(p)
1031 #define new_XPVAV() my_safemalloc(sizeof(XPVAV))
1032 #define del_XPVAV(p) my_safefree(p)
1034 #define new_XPVHV() my_safemalloc(sizeof(XPVHV))
1035 #define del_XPVHV(p) my_safefree(p)
1037 #define new_XPVMG() my_safemalloc(sizeof(XPVMG))
1038 #define del_XPVMG(p) my_safefree(p)
1040 #define new_XPVGV() my_safemalloc(sizeof(XPVGV))
1041 #define del_XPVGV(p) my_safefree(p)
1045 #define new_XNV() new_body_allocated(SVt_NV)
1046 #define del_XNV(p) del_body_allocated(p, SVt_NV)
1048 #define new_XPVNV() new_body_allocated(SVt_PVNV)
1049 #define del_XPVNV(p) del_body_allocated(p, SVt_PVNV)
1051 #define new_XPVAV() new_body_allocated(SVt_PVAV)
1052 #define del_XPVAV(p) del_body_allocated(p, SVt_PVAV)
1054 #define new_XPVHV() new_body_allocated(SVt_PVHV)
1055 #define del_XPVHV(p) del_body_allocated(p, SVt_PVHV)
1057 #define new_XPVMG() new_body_allocated(SVt_PVMG)
1058 #define del_XPVMG(p) del_body_allocated(p, SVt_PVMG)
1060 #define new_XPVGV() new_body_allocated(SVt_PVGV)
1061 #define del_XPVGV(p) del_body_allocated(p, SVt_PVGV)
1065 /* no arena for you! */
1067 #define new_NOARENA(details) \
1068 my_safemalloc((details)->body_size + (details)->offset)
1069 #define new_NOARENAZ(details) \
1070 my_safecalloc((details)->body_size + (details)->offset)
1073 S_more_bodies (pTHX_ const svtype sv_type)
1076 void ** const root = &PL_body_roots[sv_type];
1077 const struct body_details * const bdp = &bodies_by_type[sv_type];
1078 const size_t body_size = bdp->body_size;
1081 const size_t arena_size = Perl_malloc_good_size(bdp->arena_size);
1082 #if defined(DEBUGGING) && !defined(PERL_GLOBAL_STRUCT_PRIVATE)
1083 static bool done_sanity_check;
1085 /* PERL_GLOBAL_STRUCT_PRIVATE cannot coexist with global
1086 * variables like done_sanity_check. */
1087 if (!done_sanity_check) {
1088 unsigned int i = SVt_LAST;
1090 done_sanity_check = TRUE;
1093 assert (bodies_by_type[i].type == i);
1097 assert(bdp->arena_size);
1099 start = (char*) Perl_get_arena(aTHX_ arena_size, sv_type);
1101 end = start + arena_size - 2 * body_size;
1103 /* computed count doesnt reflect the 1st slot reservation */
1104 #if defined(MYMALLOC) || defined(HAS_MALLOC_GOOD_SIZE)
1105 DEBUG_m(PerlIO_printf(Perl_debug_log,
1106 "arena %p end %p arena-size %d (from %d) type %d "
1108 (void*)start, (void*)end, (int)arena_size,
1109 (int)bdp->arena_size, sv_type, (int)body_size,
1110 (int)arena_size / (int)body_size));
1112 DEBUG_m(PerlIO_printf(Perl_debug_log,
1113 "arena %p end %p arena-size %d type %d size %d ct %d\n",
1114 (void*)start, (void*)end,
1115 (int)bdp->arena_size, sv_type, (int)body_size,
1116 (int)bdp->arena_size / (int)body_size));
1118 *root = (void *)start;
1120 while (start <= end) {
1121 char * const next = start + body_size;
1122 *(void**) start = (void *)next;
1125 *(void **)start = 0;
1130 /* grab a new thing from the free list, allocating more if necessary.
1131 The inline version is used for speed in hot routines, and the
1132 function using it serves the rest (unless PURIFY).
1134 #define new_body_inline(xpv, sv_type) \
1136 void ** const r3wt = &PL_body_roots[sv_type]; \
1137 xpv = (PTR_TBL_ENT_t*) (*((void **)(r3wt)) \
1138 ? *((void **)(r3wt)) : more_bodies(sv_type)); \
1139 *(r3wt) = *(void**)(xpv); \
1145 S_new_body(pTHX_ const svtype sv_type)
1149 new_body_inline(xpv, sv_type);
1155 static const struct body_details fake_rv =
1156 { 0, 0, 0, SVt_IV, FALSE, NONV, NOARENA, 0 };
1159 =for apidoc sv_upgrade
1161 Upgrade an SV to a more complex form. Generally adds a new body type to the
1162 SV, then copies across as much information as possible from the old body.
1163 You generally want to use the C<SvUPGRADE> macro wrapper. See also C<svtype>.
1169 Perl_sv_upgrade(pTHX_ register SV *const sv, svtype new_type)
1174 const svtype old_type = SvTYPE(sv);
1175 const struct body_details *new_type_details;
1176 const struct body_details *old_type_details
1177 = bodies_by_type + old_type;
1178 SV *referant = NULL;
1180 PERL_ARGS_ASSERT_SV_UPGRADE;
1182 if (old_type == new_type)
1185 /* This clause was purposefully added ahead of the early return above to
1186 the shared string hackery for (sort {$a <=> $b} keys %hash), with the
1187 inference by Nick I-S that it would fix other troublesome cases. See
1188 changes 7162, 7163 (f130fd4589cf5fbb24149cd4db4137c8326f49c1 and parent)
1190 Given that shared hash key scalars are no longer PVIV, but PV, there is
1191 no longer need to unshare so as to free up the IVX slot for its proper
1192 purpose. So it's safe to move the early return earlier. */
1194 if (new_type != SVt_PV && SvIsCOW(sv)) {
1195 sv_force_normal_flags(sv, 0);
1198 old_body = SvANY(sv);
1200 /* Copying structures onto other structures that have been neatly zeroed
1201 has a subtle gotcha. Consider XPVMG
1203 +------+------+------+------+------+-------+-------+
1204 | NV | CUR | LEN | IV | MAGIC | STASH |
1205 +------+------+------+------+------+-------+-------+
1206 0 4 8 12 16 20 24 28
1208 where NVs are aligned to 8 bytes, so that sizeof that structure is
1209 actually 32 bytes long, with 4 bytes of padding at the end:
1211 +------+------+------+------+------+-------+-------+------+
1212 | NV | CUR | LEN | IV | MAGIC | STASH | ??? |
1213 +------+------+------+------+------+-------+-------+------+
1214 0 4 8 12 16 20 24 28 32
1216 so what happens if you allocate memory for this structure:
1218 +------+------+------+------+------+-------+-------+------+------+...
1219 | NV | CUR | LEN | IV | MAGIC | STASH | GP | NAME |
1220 +------+------+------+------+------+-------+-------+------+------+...
1221 0 4 8 12 16 20 24 28 32 36
1223 zero it, then copy sizeof(XPVMG) bytes on top of it? Not quite what you
1224 expect, because you copy the area marked ??? onto GP. Now, ??? may have
1225 started out as zero once, but it's quite possible that it isn't. So now,
1226 rather than a nicely zeroed GP, you have it pointing somewhere random.
1229 (In fact, GP ends up pointing at a previous GP structure, because the
1230 principle cause of the padding in XPVMG getting garbage is a copy of
1231 sizeof(XPVMG) bytes from a XPVGV structure in sv_unglob. Right now
1232 this happens to be moot because XPVGV has been re-ordered, with GP
1233 no longer after STASH)
1235 So we are careful and work out the size of used parts of all the
1243 referant = SvRV(sv);
1244 old_type_details = &fake_rv;
1245 if (new_type == SVt_NV)
1246 new_type = SVt_PVNV;
1248 if (new_type < SVt_PVIV) {
1249 new_type = (new_type == SVt_NV)
1250 ? SVt_PVNV : SVt_PVIV;
1255 if (new_type < SVt_PVNV) {
1256 new_type = SVt_PVNV;
1260 assert(new_type > SVt_PV);
1261 assert(SVt_IV < SVt_PV);
1262 assert(SVt_NV < SVt_PV);
1269 /* Because the XPVMG of PL_mess_sv isn't allocated from the arena,
1270 there's no way that it can be safely upgraded, because perl.c
1271 expects to Safefree(SvANY(PL_mess_sv)) */
1272 assert(sv != PL_mess_sv);
1273 /* This flag bit is used to mean other things in other scalar types.
1274 Given that it only has meaning inside the pad, it shouldn't be set
1275 on anything that can get upgraded. */
1276 assert(!SvPAD_TYPED(sv));
1279 if (old_type_details->cant_upgrade)
1280 Perl_croak(aTHX_ "Can't upgrade %s (%" UVuf ") to %" UVuf,
1281 sv_reftype(sv, 0), (UV) old_type, (UV) new_type);
1284 if (old_type > new_type)
1285 Perl_croak(aTHX_ "sv_upgrade from type %d down to type %d",
1286 (int)old_type, (int)new_type);
1288 new_type_details = bodies_by_type + new_type;
1290 SvFLAGS(sv) &= ~SVTYPEMASK;
1291 SvFLAGS(sv) |= new_type;
1293 /* This can't happen, as SVt_NULL is <= all values of new_type, so one of
1294 the return statements above will have triggered. */
1295 assert (new_type != SVt_NULL);
1298 assert(old_type == SVt_NULL);
1299 SvANY(sv) = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
1303 assert(old_type == SVt_NULL);
1304 SvANY(sv) = new_XNV();
1309 assert(new_type_details->body_size);
1312 assert(new_type_details->arena);
1313 assert(new_type_details->arena_size);
1314 /* This points to the start of the allocated area. */
1315 new_body_inline(new_body, new_type);
1316 Zero(new_body, new_type_details->body_size, char);
1317 new_body = ((char *)new_body) - new_type_details->offset;
1319 /* We always allocated the full length item with PURIFY. To do this
1320 we fake things so that arena is false for all 16 types.. */
1321 new_body = new_NOARENAZ(new_type_details);
1323 SvANY(sv) = new_body;
1324 if (new_type == SVt_PVAV) {
1328 if (old_type_details->body_size) {
1331 /* It will have been zeroed when the new body was allocated.
1332 Lets not write to it, in case it confuses a write-back
1338 #ifndef NODEFAULT_SHAREKEYS
1339 HvSHAREKEYS_on(sv); /* key-sharing on by default */
1341 HvMAX(sv) = 7; /* (start with 8 buckets) */
1344 /* SVt_NULL isn't the only thing upgraded to AV or HV.
1345 The target created by newSVrv also is, and it can have magic.
1346 However, it never has SvPVX set.
1348 if (old_type == SVt_IV) {
1350 } else if (old_type >= SVt_PV) {
1351 assert(SvPVX_const(sv) == 0);
1354 if (old_type >= SVt_PVMG) {
1355 SvMAGIC_set(sv, ((XPVMG*)old_body)->xmg_u.xmg_magic);
1356 SvSTASH_set(sv, ((XPVMG*)old_body)->xmg_stash);
1358 sv->sv_u.svu_array = NULL; /* or svu_hash */
1364 /* This ensures that SvTHINKFIRST(sv) is true, and hence that
1365 sv_force_normal_flags(sv) is called. */
1368 /* XXX Is this still needed? Was it ever needed? Surely as there is
1369 no route from NV to PVIV, NOK can never be true */
1370 assert(!SvNOKp(sv));
1381 assert(new_type_details->body_size);
1382 /* We always allocated the full length item with PURIFY. To do this
1383 we fake things so that arena is false for all 16 types.. */
1384 if(new_type_details->arena) {
1385 /* This points to the start of the allocated area. */
1386 new_body_inline(new_body, new_type);
1387 Zero(new_body, new_type_details->body_size, char);
1388 new_body = ((char *)new_body) - new_type_details->offset;
1390 new_body = new_NOARENAZ(new_type_details);
1392 SvANY(sv) = new_body;
1394 if (old_type_details->copy) {
1395 /* There is now the potential for an upgrade from something without
1396 an offset (PVNV or PVMG) to something with one (PVCV, PVFM) */
1397 int offset = old_type_details->offset;
1398 int length = old_type_details->copy;
1400 if (new_type_details->offset > old_type_details->offset) {
1401 const int difference
1402 = new_type_details->offset - old_type_details->offset;
1403 offset += difference;
1404 length -= difference;
1406 assert (length >= 0);
1408 Copy((char *)old_body + offset, (char *)new_body + offset, length,
1412 #ifndef NV_ZERO_IS_ALLBITS_ZERO
1413 /* If NV 0.0 is stores as all bits 0 then Zero() already creates a
1414 * correct 0.0 for us. Otherwise, if the old body didn't have an
1415 * NV slot, but the new one does, then we need to initialise the
1416 * freshly created NV slot with whatever the correct bit pattern is
1418 if (old_type_details->zero_nv && !new_type_details->zero_nv
1419 && !isGV_with_GP(sv))
1423 if (new_type == SVt_PVIO) {
1424 IO * const io = MUTABLE_IO(sv);
1425 GV *iogv = gv_fetchpvs("IO::File::", GV_ADD, SVt_PVHV);
1428 /* Clear the stashcache because a new IO could overrule a package
1430 hv_clear(PL_stashcache);
1432 SvSTASH_set(io, MUTABLE_HV(SvREFCNT_inc(GvHV(iogv))));
1433 IoPAGE_LEN(sv) = 60;
1435 if (old_type < SVt_PV) {
1436 /* referant will be NULL unless the old type was SVt_IV emulating
1438 sv->sv_u.svu_rv = referant;
1442 Perl_croak(aTHX_ "panic: sv_upgrade to unknown type %lu",
1443 (unsigned long)new_type);
1446 if (old_type > SVt_IV) {
1448 my_safefree(old_body);
1450 /* Note that there is an assumption that all bodies of types that
1451 can be upgraded came from arenas. Only the more complex non-
1452 upgradable types are allowed to be directly malloc()ed. */
1453 assert(old_type_details->arena);
1454 del_body((void*)((char*)old_body + old_type_details->offset),
1455 &PL_body_roots[old_type]);
1461 =for apidoc sv_backoff
1463 Remove any string offset. You should normally use the C<SvOOK_off> macro
1470 Perl_sv_backoff(pTHX_ register SV *const sv)
1473 const char * const s = SvPVX_const(sv);
1475 PERL_ARGS_ASSERT_SV_BACKOFF;
1476 PERL_UNUSED_CONTEXT;
1479 assert(SvTYPE(sv) != SVt_PVHV);
1480 assert(SvTYPE(sv) != SVt_PVAV);
1482 SvOOK_offset(sv, delta);
1484 SvLEN_set(sv, SvLEN(sv) + delta);
1485 SvPV_set(sv, SvPVX(sv) - delta);
1486 Move(s, SvPVX(sv), SvCUR(sv)+1, char);
1487 SvFLAGS(sv) &= ~SVf_OOK;
1494 Expands the character buffer in the SV. If necessary, uses C<sv_unref> and
1495 upgrades the SV to C<SVt_PV>. Returns a pointer to the character buffer.
1496 Use the C<SvGROW> wrapper instead.
1502 Perl_sv_grow(pTHX_ register SV *const sv, register STRLEN newlen)
1506 PERL_ARGS_ASSERT_SV_GROW;
1508 if (PL_madskills && newlen >= 0x100000) {
1509 PerlIO_printf(Perl_debug_log,
1510 "Allocation too large: %"UVxf"\n", (UV)newlen);
1512 #ifdef HAS_64K_LIMIT
1513 if (newlen >= 0x10000) {
1514 PerlIO_printf(Perl_debug_log,
1515 "Allocation too large: %"UVxf"\n", (UV)newlen);
1518 #endif /* HAS_64K_LIMIT */
1521 if (SvTYPE(sv) < SVt_PV) {
1522 sv_upgrade(sv, SVt_PV);
1523 s = SvPVX_mutable(sv);
1525 else if (SvOOK(sv)) { /* pv is offset? */
1527 s = SvPVX_mutable(sv);
1528 if (newlen > SvLEN(sv))
1529 newlen += 10 * (newlen - SvCUR(sv)); /* avoid copy each time */
1530 #ifdef HAS_64K_LIMIT
1531 if (newlen >= 0x10000)
1536 s = SvPVX_mutable(sv);
1538 if (newlen > SvLEN(sv)) { /* need more room? */
1539 #ifndef Perl_safesysmalloc_size
1540 newlen = PERL_STRLEN_ROUNDUP(newlen);
1542 if (SvLEN(sv) && s) {
1543 s = (char*)saferealloc(s, newlen);
1546 s = (char*)safemalloc(newlen);
1547 if (SvPVX_const(sv) && SvCUR(sv)) {
1548 Move(SvPVX_const(sv), s, (newlen < SvCUR(sv)) ? newlen : SvCUR(sv), char);
1552 #ifdef Perl_safesysmalloc_size
1553 /* Do this here, do it once, do it right, and then we will never get
1554 called back into sv_grow() unless there really is some growing
1556 SvLEN_set(sv, Perl_safesysmalloc_size(s));
1558 SvLEN_set(sv, newlen);
1565 =for apidoc sv_setiv
1567 Copies an integer into the given SV, upgrading first if necessary.
1568 Does not handle 'set' magic. See also C<sv_setiv_mg>.
1574 Perl_sv_setiv(pTHX_ register SV *const sv, const IV i)
1578 PERL_ARGS_ASSERT_SV_SETIV;
1580 SV_CHECK_THINKFIRST_COW_DROP(sv);
1581 switch (SvTYPE(sv)) {
1584 sv_upgrade(sv, SVt_IV);
1587 sv_upgrade(sv, SVt_PVIV);
1591 if (!isGV_with_GP(sv))
1598 Perl_croak(aTHX_ "Can't coerce %s to integer in %s", sv_reftype(sv,0),
1602 (void)SvIOK_only(sv); /* validate number */
1608 =for apidoc sv_setiv_mg
1610 Like C<sv_setiv>, but also handles 'set' magic.
1616 Perl_sv_setiv_mg(pTHX_ register SV *const sv, const IV i)
1618 PERL_ARGS_ASSERT_SV_SETIV_MG;
1625 =for apidoc sv_setuv
1627 Copies an unsigned integer into the given SV, upgrading first if necessary.
1628 Does not handle 'set' magic. See also C<sv_setuv_mg>.
1634 Perl_sv_setuv(pTHX_ register SV *const sv, const UV u)
1636 PERL_ARGS_ASSERT_SV_SETUV;
1638 /* With these two if statements:
1639 u=1.49 s=0.52 cu=72.49 cs=10.64 scripts=270 tests=20865
1642 u=1.35 s=0.47 cu=73.45 cs=11.43 scripts=270 tests=20865
1644 If you wish to remove them, please benchmark to see what the effect is
1646 if (u <= (UV)IV_MAX) {
1647 sv_setiv(sv, (IV)u);
1656 =for apidoc sv_setuv_mg
1658 Like C<sv_setuv>, but also handles 'set' magic.
1664 Perl_sv_setuv_mg(pTHX_ register SV *const sv, const UV u)
1666 PERL_ARGS_ASSERT_SV_SETUV_MG;
1673 =for apidoc sv_setnv
1675 Copies a double into the given SV, upgrading first if necessary.
1676 Does not handle 'set' magic. See also C<sv_setnv_mg>.
1682 Perl_sv_setnv(pTHX_ register SV *const sv, const NV num)
1686 PERL_ARGS_ASSERT_SV_SETNV;
1688 SV_CHECK_THINKFIRST_COW_DROP(sv);
1689 switch (SvTYPE(sv)) {
1692 sv_upgrade(sv, SVt_NV);
1696 sv_upgrade(sv, SVt_PVNV);
1700 if (!isGV_with_GP(sv))
1707 Perl_croak(aTHX_ "Can't coerce %s to number in %s", sv_reftype(sv,0),
1712 (void)SvNOK_only(sv); /* validate number */
1717 =for apidoc sv_setnv_mg
1719 Like C<sv_setnv>, but also handles 'set' magic.
1725 Perl_sv_setnv_mg(pTHX_ register SV *const sv, const NV num)
1727 PERL_ARGS_ASSERT_SV_SETNV_MG;
1733 /* Print an "isn't numeric" warning, using a cleaned-up,
1734 * printable version of the offending string
1738 S_not_a_number(pTHX_ SV *const sv)
1745 PERL_ARGS_ASSERT_NOT_A_NUMBER;
1748 dsv = newSVpvs_flags("", SVs_TEMP);
1749 pv = sv_uni_display(dsv, sv, 10, 0);
1752 const char * const limit = tmpbuf + sizeof(tmpbuf) - 8;
1753 /* each *s can expand to 4 chars + "...\0",
1754 i.e. need room for 8 chars */
1756 const char *s = SvPVX_const(sv);
1757 const char * const end = s + SvCUR(sv);
1758 for ( ; s < end && d < limit; s++ ) {
1760 if (ch & 128 && !isPRINT_LC(ch)) {
1769 else if (ch == '\r') {
1773 else if (ch == '\f') {
1777 else if (ch == '\\') {
1781 else if (ch == '\0') {
1785 else if (isPRINT_LC(ch))
1802 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1803 "Argument \"%s\" isn't numeric in %s", pv,
1806 Perl_warner(aTHX_ packWARN(WARN_NUMERIC),
1807 "Argument \"%s\" isn't numeric", pv);
1811 =for apidoc looks_like_number
1813 Test if the content of an SV looks like a number (or is a number).
1814 C<Inf> and C<Infinity> are treated as numbers (so will not issue a
1815 non-numeric warning), even if your atof() doesn't grok them.
1821 Perl_looks_like_number(pTHX_ SV *const sv)
1823 register const char *sbegin;
1826 PERL_ARGS_ASSERT_LOOKS_LIKE_NUMBER;
1829 sbegin = SvPVX_const(sv);
1832 else if (SvPOKp(sv))
1833 sbegin = SvPV_const(sv, len);
1835 return SvFLAGS(sv) & (SVf_NOK|SVp_NOK|SVf_IOK|SVp_IOK);
1836 return grok_number(sbegin, len, NULL);
1840 S_glob_2number(pTHX_ GV * const gv)
1842 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
1843 SV *const buffer = sv_newmortal();
1845 PERL_ARGS_ASSERT_GLOB_2NUMBER;
1847 /* FAKE globs can get coerced, so need to turn this off temporarily if it
1850 gv_efullname3(buffer, gv, "*");
1851 SvFLAGS(gv) |= wasfake;
1853 /* We know that all GVs stringify to something that is not-a-number,
1854 so no need to test that. */
1855 if (ckWARN(WARN_NUMERIC))
1856 not_a_number(buffer);
1857 /* We just want something true to return, so that S_sv_2iuv_common
1858 can tail call us and return true. */
1862 /* Actually, ISO C leaves conversion of UV to IV undefined, but
1863 until proven guilty, assume that things are not that bad... */
1868 As 64 bit platforms often have an NV that doesn't preserve all bits of
1869 an IV (an assumption perl has been based on to date) it becomes necessary
1870 to remove the assumption that the NV always carries enough precision to
1871 recreate the IV whenever needed, and that the NV is the canonical form.
1872 Instead, IV/UV and NV need to be given equal rights. So as to not lose
1873 precision as a side effect of conversion (which would lead to insanity
1874 and the dragon(s) in t/op/numconvert.t getting very angry) the intent is
1875 1) to distinguish between IV/UV/NV slots that have cached a valid
1876 conversion where precision was lost and IV/UV/NV slots that have a
1877 valid conversion which has lost no precision
1878 2) to ensure that if a numeric conversion to one form is requested that
1879 would lose precision, the precise conversion (or differently
1880 imprecise conversion) is also performed and cached, to prevent
1881 requests for different numeric formats on the same SV causing
1882 lossy conversion chains. (lossless conversion chains are perfectly
1887 SvIOKp is true if the IV slot contains a valid value
1888 SvIOK is true only if the IV value is accurate (UV if SvIOK_UV true)
1889 SvNOKp is true if the NV slot contains a valid value
1890 SvNOK is true only if the NV value is accurate
1893 while converting from PV to NV, check to see if converting that NV to an
1894 IV(or UV) would lose accuracy over a direct conversion from PV to
1895 IV(or UV). If it would, cache both conversions, return NV, but mark
1896 SV as IOK NOKp (ie not NOK).
1898 While converting from PV to IV, check to see if converting that IV to an
1899 NV would lose accuracy over a direct conversion from PV to NV. If it
1900 would, cache both conversions, flag similarly.
1902 Before, the SV value "3.2" could become NV=3.2 IV=3 NOK, IOK quite
1903 correctly because if IV & NV were set NV *always* overruled.
1904 Now, "3.2" will become NV=3.2 IV=3 NOK, IOKp, because the flag's meaning
1905 changes - now IV and NV together means that the two are interchangeable:
1906 SvIVX == (IV) SvNVX && SvNVX == (NV) SvIVX;
1908 The benefit of this is that operations such as pp_add know that if
1909 SvIOK is true for both left and right operands, then integer addition
1910 can be used instead of floating point (for cases where the result won't
1911 overflow). Before, floating point was always used, which could lead to
1912 loss of precision compared with integer addition.
1914 * making IV and NV equal status should make maths accurate on 64 bit
1916 * may speed up maths somewhat if pp_add and friends start to use
1917 integers when possible instead of fp. (Hopefully the overhead in
1918 looking for SvIOK and checking for overflow will not outweigh the
1919 fp to integer speedup)
1920 * will slow down integer operations (callers of SvIV) on "inaccurate"
1921 values, as the change from SvIOK to SvIOKp will cause a call into
1922 sv_2iv each time rather than a macro access direct to the IV slot
1923 * should speed up number->string conversion on integers as IV is
1924 favoured when IV and NV are equally accurate
1926 ####################################################################
1927 You had better be using SvIOK_notUV if you want an IV for arithmetic:
1928 SvIOK is true if (IV or UV), so you might be getting (IV)SvUV.
1929 On the other hand, SvUOK is true iff UV.
1930 ####################################################################
1932 Your mileage will vary depending your CPU's relative fp to integer
1936 #ifndef NV_PRESERVES_UV
1937 # define IS_NUMBER_UNDERFLOW_IV 1
1938 # define IS_NUMBER_UNDERFLOW_UV 2
1939 # define IS_NUMBER_IV_AND_UV 2
1940 # define IS_NUMBER_OVERFLOW_IV 4
1941 # define IS_NUMBER_OVERFLOW_UV 5
1943 /* sv_2iuv_non_preserve(): private routine for use by sv_2iv() and sv_2uv() */
1945 /* For sv_2nv these three cases are "SvNOK and don't bother casting" */
1947 S_sv_2iuv_non_preserve(pTHX_ register SV *const sv
1955 PERL_ARGS_ASSERT_SV_2IUV_NON_PRESERVE;
1957 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_2iuv_non '%s', IV=0x%"UVxf" NV=%"NVgf" inttype=%"UVXf"\n", SvPVX_const(sv), SvIVX(sv), SvNVX(sv), (UV)numtype));
1958 if (SvNVX(sv) < (NV)IV_MIN) {
1959 (void)SvIOKp_on(sv);
1961 SvIV_set(sv, IV_MIN);
1962 return IS_NUMBER_UNDERFLOW_IV;
1964 if (SvNVX(sv) > (NV)UV_MAX) {
1965 (void)SvIOKp_on(sv);
1968 SvUV_set(sv, UV_MAX);
1969 return IS_NUMBER_OVERFLOW_UV;
1971 (void)SvIOKp_on(sv);
1973 /* Can't use strtol etc to convert this string. (See truth table in
1975 if (SvNVX(sv) <= (UV)IV_MAX) {
1976 SvIV_set(sv, I_V(SvNVX(sv)));
1977 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
1978 SvIOK_on(sv); /* Integer is precise. NOK, IOK */
1980 /* Integer is imprecise. NOK, IOKp */
1982 return SvNVX(sv) < 0 ? IS_NUMBER_UNDERFLOW_UV : IS_NUMBER_IV_AND_UV;
1985 SvUV_set(sv, U_V(SvNVX(sv)));
1986 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
1987 if (SvUVX(sv) == UV_MAX) {
1988 /* As we know that NVs don't preserve UVs, UV_MAX cannot
1989 possibly be preserved by NV. Hence, it must be overflow.
1991 return IS_NUMBER_OVERFLOW_UV;
1993 SvIOK_on(sv); /* Integer is precise. NOK, UOK */
1995 /* Integer is imprecise. NOK, IOKp */
1997 return IS_NUMBER_OVERFLOW_IV;
1999 #endif /* !NV_PRESERVES_UV*/
2002 S_sv_2iuv_common(pTHX_ SV *const sv)
2006 PERL_ARGS_ASSERT_SV_2IUV_COMMON;
2009 /* erm. not sure. *should* never get NOKp (without NOK) from sv_2nv
2010 * without also getting a cached IV/UV from it at the same time
2011 * (ie PV->NV conversion should detect loss of accuracy and cache
2012 * IV or UV at same time to avoid this. */
2013 /* IV-over-UV optimisation - choose to cache IV if possible */
2015 if (SvTYPE(sv) == SVt_NV)
2016 sv_upgrade(sv, SVt_PVNV);
2018 (void)SvIOKp_on(sv); /* Must do this first, to clear any SvOOK */
2019 /* < not <= as for NV doesn't preserve UV, ((NV)IV_MAX+1) will almost
2020 certainly cast into the IV range at IV_MAX, whereas the correct
2021 answer is the UV IV_MAX +1. Hence < ensures that dodgy boundary
2023 #if defined(NAN_COMPARE_BROKEN) && defined(Perl_isnan)
2024 if (Perl_isnan(SvNVX(sv))) {
2030 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2031 SvIV_set(sv, I_V(SvNVX(sv)));
2032 if (SvNVX(sv) == (NV) SvIVX(sv)
2033 #ifndef NV_PRESERVES_UV
2034 && (((UV)1 << NV_PRESERVES_UV_BITS) >
2035 (UV)(SvIVX(sv) > 0 ? SvIVX(sv) : -SvIVX(sv)))
2036 /* Don't flag it as "accurately an integer" if the number
2037 came from a (by definition imprecise) NV operation, and
2038 we're outside the range of NV integer precision */
2042 SvIOK_on(sv); /* Can this go wrong with rounding? NWC */
2044 /* scalar has trailing garbage, eg "42a" */
2046 DEBUG_c(PerlIO_printf(Perl_debug_log,
2047 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (precise)\n",
2053 /* IV not precise. No need to convert from PV, as NV
2054 conversion would already have cached IV if it detected
2055 that PV->IV would be better than PV->NV->IV
2056 flags already correct - don't set public IOK. */
2057 DEBUG_c(PerlIO_printf(Perl_debug_log,
2058 "0x%"UVxf" iv(%"NVgf" => %"IVdf") (imprecise)\n",
2063 /* Can the above go wrong if SvIVX == IV_MIN and SvNVX < IV_MIN,
2064 but the cast (NV)IV_MIN rounds to a the value less (more
2065 negative) than IV_MIN which happens to be equal to SvNVX ??
2066 Analogous to 0xFFFFFFFFFFFFFFFF rounding up to NV (2**64) and
2067 NV rounding back to 0xFFFFFFFFFFFFFFFF, so UVX == UV(NVX) and
2068 (NV)UVX == NVX are both true, but the values differ. :-(
2069 Hopefully for 2s complement IV_MIN is something like
2070 0x8000000000000000 which will be exact. NWC */
2073 SvUV_set(sv, U_V(SvNVX(sv)));
2075 (SvNVX(sv) == (NV) SvUVX(sv))
2076 #ifndef NV_PRESERVES_UV
2077 /* Make sure it's not 0xFFFFFFFFFFFFFFFF */
2078 /*&& (SvUVX(sv) != UV_MAX) irrelevant with code below */
2079 && (((UV)1 << NV_PRESERVES_UV_BITS) > SvUVX(sv))
2080 /* Don't flag it as "accurately an integer" if the number
2081 came from a (by definition imprecise) NV operation, and
2082 we're outside the range of NV integer precision */
2088 DEBUG_c(PerlIO_printf(Perl_debug_log,
2089 "0x%"UVxf" 2iv(%"UVuf" => %"IVdf") (as unsigned)\n",
2095 else if (SvPOKp(sv) && SvLEN(sv)) {
2097 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2098 /* We want to avoid a possible problem when we cache an IV/ a UV which
2099 may be later translated to an NV, and the resulting NV is not
2100 the same as the direct translation of the initial string
2101 (eg 123.456 can shortcut to the IV 123 with atol(), but we must
2102 be careful to ensure that the value with the .456 is around if the
2103 NV value is requested in the future).
2105 This means that if we cache such an IV/a UV, we need to cache the
2106 NV as well. Moreover, we trade speed for space, and do not
2107 cache the NV if we are sure it's not needed.
2110 /* SVt_PVNV is one higher than SVt_PVIV, hence this order */
2111 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2112 == IS_NUMBER_IN_UV) {
2113 /* It's definitely an integer, only upgrade to PVIV */
2114 if (SvTYPE(sv) < SVt_PVIV)
2115 sv_upgrade(sv, SVt_PVIV);
2117 } else if (SvTYPE(sv) < SVt_PVNV)
2118 sv_upgrade(sv, SVt_PVNV);
2120 /* If NVs preserve UVs then we only use the UV value if we know that
2121 we aren't going to call atof() below. If NVs don't preserve UVs
2122 then the value returned may have more precision than atof() will
2123 return, even though value isn't perfectly accurate. */
2124 if ((numtype & (IS_NUMBER_IN_UV
2125 #ifdef NV_PRESERVES_UV
2128 )) == IS_NUMBER_IN_UV) {
2129 /* This won't turn off the public IOK flag if it was set above */
2130 (void)SvIOKp_on(sv);
2132 if (!(numtype & IS_NUMBER_NEG)) {
2134 if (value <= (UV)IV_MAX) {
2135 SvIV_set(sv, (IV)value);
2137 /* it didn't overflow, and it was positive. */
2138 SvUV_set(sv, value);
2142 /* 2s complement assumption */
2143 if (value <= (UV)IV_MIN) {
2144 SvIV_set(sv, -(IV)value);
2146 /* Too negative for an IV. This is a double upgrade, but
2147 I'm assuming it will be rare. */
2148 if (SvTYPE(sv) < SVt_PVNV)
2149 sv_upgrade(sv, SVt_PVNV);
2153 SvNV_set(sv, -(NV)value);
2154 SvIV_set(sv, IV_MIN);
2158 /* For !NV_PRESERVES_UV and IS_NUMBER_IN_UV and IS_NUMBER_NOT_INT we
2159 will be in the previous block to set the IV slot, and the next
2160 block to set the NV slot. So no else here. */
2162 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2163 != IS_NUMBER_IN_UV) {
2164 /* It wasn't an (integer that doesn't overflow the UV). */
2165 SvNV_set(sv, Atof(SvPVX_const(sv)));
2167 if (! numtype && ckWARN(WARN_NUMERIC))
2170 #if defined(USE_LONG_DOUBLE)
2171 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%" PERL_PRIgldbl ")\n",
2172 PTR2UV(sv), SvNVX(sv)));
2174 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"NVgf")\n",
2175 PTR2UV(sv), SvNVX(sv)));
2178 #ifdef NV_PRESERVES_UV
2179 (void)SvIOKp_on(sv);
2181 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2182 SvIV_set(sv, I_V(SvNVX(sv)));
2183 if ((NV)(SvIVX(sv)) == SvNVX(sv)) {
2186 NOOP; /* Integer is imprecise. NOK, IOKp */
2188 /* UV will not work better than IV */
2190 if (SvNVX(sv) > (NV)UV_MAX) {
2192 /* Integer is inaccurate. NOK, IOKp, is UV */
2193 SvUV_set(sv, UV_MAX);
2195 SvUV_set(sv, U_V(SvNVX(sv)));
2196 /* 0xFFFFFFFFFFFFFFFF not an issue in here, NVs
2197 NV preservse UV so can do correct comparison. */
2198 if ((NV)(SvUVX(sv)) == SvNVX(sv)) {
2201 NOOP; /* Integer is imprecise. NOK, IOKp, is UV */
2206 #else /* NV_PRESERVES_UV */
2207 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2208 == (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT)) {
2209 /* The IV/UV slot will have been set from value returned by
2210 grok_number above. The NV slot has just been set using
2213 assert (SvIOKp(sv));
2215 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2216 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2217 /* Small enough to preserve all bits. */
2218 (void)SvIOKp_on(sv);
2220 SvIV_set(sv, I_V(SvNVX(sv)));
2221 if ((NV)(SvIVX(sv)) == SvNVX(sv))
2223 /* Assumption: first non-preserved integer is < IV_MAX,
2224 this NV is in the preserved range, therefore: */
2225 if (!(U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))
2227 Perl_croak(aTHX_ "sv_2iv assumed (U_V(fabs((double)SvNVX(sv))) < (UV)IV_MAX) but SvNVX(sv)=%"NVgf" U_V is 0x%"UVxf", IV_MAX is 0x%"UVxf"\n", SvNVX(sv), U_V(SvNVX(sv)), (UV)IV_MAX);
2231 0 0 already failed to read UV.
2232 0 1 already failed to read UV.
2233 1 0 you won't get here in this case. IV/UV
2234 slot set, public IOK, Atof() unneeded.
2235 1 1 already read UV.
2236 so there's no point in sv_2iuv_non_preserve() attempting
2237 to use atol, strtol, strtoul etc. */
2239 sv_2iuv_non_preserve (sv, numtype);
2241 sv_2iuv_non_preserve (sv);
2245 #endif /* NV_PRESERVES_UV */
2246 /* It might be more code efficient to go through the entire logic above
2247 and conditionally set with SvIOKp_on() rather than SvIOK(), but it
2248 gets complex and potentially buggy, so more programmer efficient
2249 to do it this way, by turning off the public flags: */
2251 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2255 if (isGV_with_GP(sv))
2256 return glob_2number(MUTABLE_GV(sv));
2258 if (!(SvFLAGS(sv) & SVs_PADTMP)) {
2259 if (!PL_localizing && ckWARN(WARN_UNINITIALIZED))
2262 if (SvTYPE(sv) < SVt_IV)
2263 /* Typically the caller expects that sv_any is not NULL now. */
2264 sv_upgrade(sv, SVt_IV);
2265 /* Return 0 from the caller. */
2272 =for apidoc sv_2iv_flags
2274 Return the integer value of an SV, doing any necessary string
2275 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2276 Normally used via the C<SvIV(sv)> and C<SvIVx(sv)> macros.
2282 Perl_sv_2iv_flags(pTHX_ register SV *const sv, const I32 flags)
2287 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2288 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2289 cache IVs just in case. In practice it seems that they never
2290 actually anywhere accessible by user Perl code, let alone get used
2291 in anything other than a string context. */
2292 if (flags & SV_GMAGIC)
2297 return I_V(SvNVX(sv));
2299 if (SvPOKp(sv) && SvLEN(sv)) {
2302 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2304 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2305 == IS_NUMBER_IN_UV) {
2306 /* It's definitely an integer */
2307 if (numtype & IS_NUMBER_NEG) {
2308 if (value < (UV)IV_MIN)
2311 if (value < (UV)IV_MAX)
2316 if (ckWARN(WARN_NUMERIC))
2319 return I_V(Atof(SvPVX_const(sv)));
2324 assert(SvTYPE(sv) >= SVt_PVMG);
2325 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2326 } else if (SvTHINKFIRST(sv)) {
2331 if (flags & SV_SKIP_OVERLOAD)
2333 tmpstr=AMG_CALLun(sv,numer);
2334 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2335 return SvIV(tmpstr);
2338 return PTR2IV(SvRV(sv));
2341 sv_force_normal_flags(sv, 0);
2343 if (SvREADONLY(sv) && !SvOK(sv)) {
2344 if (ckWARN(WARN_UNINITIALIZED))
2350 if (S_sv_2iuv_common(aTHX_ sv))
2353 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2iv(%"IVdf")\n",
2354 PTR2UV(sv),SvIVX(sv)));
2355 return SvIsUV(sv) ? (IV)SvUVX(sv) : SvIVX(sv);
2359 =for apidoc sv_2uv_flags
2361 Return the unsigned integer value of an SV, doing any necessary string
2362 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2363 Normally used via the C<SvUV(sv)> and C<SvUVx(sv)> macros.
2369 Perl_sv_2uv_flags(pTHX_ register SV *const sv, const I32 flags)
2374 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2375 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2376 cache IVs just in case. */
2377 if (flags & SV_GMAGIC)
2382 return U_V(SvNVX(sv));
2383 if (SvPOKp(sv) && SvLEN(sv)) {
2386 = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2388 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2389 == IS_NUMBER_IN_UV) {
2390 /* It's definitely an integer */
2391 if (!(numtype & IS_NUMBER_NEG))
2395 if (ckWARN(WARN_NUMERIC))
2398 return U_V(Atof(SvPVX_const(sv)));
2403 assert(SvTYPE(sv) >= SVt_PVMG);
2404 /* This falls through to the report_uninit inside S_sv_2iuv_common. */
2405 } else if (SvTHINKFIRST(sv)) {
2410 if (flags & SV_SKIP_OVERLOAD)
2412 tmpstr = AMG_CALLun(sv,numer);
2413 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2414 return SvUV(tmpstr);
2417 return PTR2UV(SvRV(sv));
2420 sv_force_normal_flags(sv, 0);
2422 if (SvREADONLY(sv) && !SvOK(sv)) {
2423 if (ckWARN(WARN_UNINITIALIZED))
2429 if (S_sv_2iuv_common(aTHX_ sv))
2433 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2uv(%"UVuf")\n",
2434 PTR2UV(sv),SvUVX(sv)));
2435 return SvIsUV(sv) ? SvUVX(sv) : (UV)SvIVX(sv);
2441 Return the num value of an SV, doing any necessary string or integer
2442 conversion. If flags includes SV_GMAGIC, does an mg_get() first.
2443 Normally used via the C<SvNV(sv)> and C<SvNVx(sv)> macros.
2449 Perl_sv_2nv_flags(pTHX_ register SV *const sv, const I32 flags)
2454 if (SvGMAGICAL(sv) || (SvTYPE(sv) == SVt_PVGV && SvVALID(sv))) {
2455 /* FBMs use the same flag bit as SVf_IVisUV, so must let them
2456 cache IVs just in case. */
2457 if (flags & SV_GMAGIC)
2461 if ((SvPOKp(sv) && SvLEN(sv)) && !SvIOKp(sv)) {
2462 if (!SvIOKp(sv) && ckWARN(WARN_NUMERIC) &&
2463 !grok_number(SvPVX_const(sv), SvCUR(sv), NULL))
2465 return Atof(SvPVX_const(sv));
2469 return (NV)SvUVX(sv);
2471 return (NV)SvIVX(sv);
2476 assert(SvTYPE(sv) >= SVt_PVMG);
2477 /* This falls through to the report_uninit near the end of the
2479 } else if (SvTHINKFIRST(sv)) {
2484 if (flags & SV_SKIP_OVERLOAD)
2486 tmpstr = AMG_CALLun(sv,numer);
2487 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2488 return SvNV(tmpstr);
2491 return PTR2NV(SvRV(sv));
2494 sv_force_normal_flags(sv, 0);
2496 if (SvREADONLY(sv) && !SvOK(sv)) {
2497 if (ckWARN(WARN_UNINITIALIZED))
2502 if (SvTYPE(sv) < SVt_NV) {
2503 /* The logic to use SVt_PVNV if necessary is in sv_upgrade. */
2504 sv_upgrade(sv, SVt_NV);
2505 #ifdef USE_LONG_DOUBLE
2507 STORE_NUMERIC_LOCAL_SET_STANDARD();
2508 PerlIO_printf(Perl_debug_log,
2509 "0x%"UVxf" num(%" PERL_PRIgldbl ")\n",
2510 PTR2UV(sv), SvNVX(sv));
2511 RESTORE_NUMERIC_LOCAL();
2515 STORE_NUMERIC_LOCAL_SET_STANDARD();
2516 PerlIO_printf(Perl_debug_log, "0x%"UVxf" num(%"NVgf")\n",
2517 PTR2UV(sv), SvNVX(sv));
2518 RESTORE_NUMERIC_LOCAL();
2522 else if (SvTYPE(sv) < SVt_PVNV)
2523 sv_upgrade(sv, SVt_PVNV);
2528 SvNV_set(sv, SvIsUV(sv) ? (NV)SvUVX(sv) : (NV)SvIVX(sv));
2529 #ifdef NV_PRESERVES_UV
2535 /* Only set the public NV OK flag if this NV preserves the IV */
2536 /* Check it's not 0xFFFFFFFFFFFFFFFF */
2538 SvIsUV(sv) ? ((SvUVX(sv) != UV_MAX)&&(SvUVX(sv) == U_V(SvNVX(sv))))
2539 : (SvIVX(sv) == I_V(SvNVX(sv))))
2545 else if (SvPOKp(sv) && SvLEN(sv)) {
2547 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), &value);
2548 if (!SvIOKp(sv) && !numtype && ckWARN(WARN_NUMERIC))
2550 #ifdef NV_PRESERVES_UV
2551 if ((numtype & (IS_NUMBER_IN_UV | IS_NUMBER_NOT_INT))
2552 == IS_NUMBER_IN_UV) {
2553 /* It's definitely an integer */
2554 SvNV_set(sv, (numtype & IS_NUMBER_NEG) ? -(NV)value : (NV)value);
2556 SvNV_set(sv, Atof(SvPVX_const(sv)));
2562 SvNV_set(sv, Atof(SvPVX_const(sv)));
2563 /* Only set the public NV OK flag if this NV preserves the value in
2564 the PV at least as well as an IV/UV would.
2565 Not sure how to do this 100% reliably. */
2566 /* if that shift count is out of range then Configure's test is
2567 wonky. We shouldn't be in here with NV_PRESERVES_UV_BITS ==
2569 if (((UV)1 << NV_PRESERVES_UV_BITS) >
2570 U_V(SvNVX(sv) > 0 ? SvNVX(sv) : -SvNVX(sv))) {
2571 SvNOK_on(sv); /* Definitely small enough to preserve all bits */
2572 } else if (!(numtype & IS_NUMBER_IN_UV)) {
2573 /* Can't use strtol etc to convert this string, so don't try.
2574 sv_2iv and sv_2uv will use the NV to convert, not the PV. */
2577 /* value has been set. It may not be precise. */
2578 if ((numtype & IS_NUMBER_NEG) && (value > (UV)IV_MIN)) {
2579 /* 2s complement assumption for (UV)IV_MIN */
2580 SvNOK_on(sv); /* Integer is too negative. */
2585 if (numtype & IS_NUMBER_NEG) {
2586 SvIV_set(sv, -(IV)value);
2587 } else if (value <= (UV)IV_MAX) {
2588 SvIV_set(sv, (IV)value);
2590 SvUV_set(sv, value);
2594 if (numtype & IS_NUMBER_NOT_INT) {
2595 /* I believe that even if the original PV had decimals,
2596 they are lost beyond the limit of the FP precision.
2597 However, neither is canonical, so both only get p
2598 flags. NWC, 2000/11/25 */
2599 /* Both already have p flags, so do nothing */
2601 const NV nv = SvNVX(sv);
2602 if (SvNVX(sv) < (NV)IV_MAX + 0.5) {
2603 if (SvIVX(sv) == I_V(nv)) {
2606 /* It had no "." so it must be integer. */
2610 /* between IV_MAX and NV(UV_MAX).
2611 Could be slightly > UV_MAX */
2613 if (numtype & IS_NUMBER_NOT_INT) {
2614 /* UV and NV both imprecise. */
2616 const UV nv_as_uv = U_V(nv);
2618 if (value == nv_as_uv && SvUVX(sv) != UV_MAX) {
2627 /* It might be more code efficient to go through the entire logic above
2628 and conditionally set with SvNOKp_on() rather than SvNOK(), but it
2629 gets complex and potentially buggy, so more programmer efficient
2630 to do it this way, by turning off the public flags: */
2632 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK);
2633 #endif /* NV_PRESERVES_UV */
2636 if (isGV_with_GP(sv)) {
2637 glob_2number(MUTABLE_GV(sv));
2641 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
2643 assert (SvTYPE(sv) >= SVt_NV);
2644 /* Typically the caller expects that sv_any is not NULL now. */
2645 /* XXX Ilya implies that this is a bug in callers that assume this
2646 and ideally should be fixed. */
2649 #if defined(USE_LONG_DOUBLE)
2651 STORE_NUMERIC_LOCAL_SET_STANDARD();
2652 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2nv(%" PERL_PRIgldbl ")\n",
2653 PTR2UV(sv), SvNVX(sv));
2654 RESTORE_NUMERIC_LOCAL();
2658 STORE_NUMERIC_LOCAL_SET_STANDARD();
2659 PerlIO_printf(Perl_debug_log, "0x%"UVxf" 1nv(%"NVgf")\n",
2660 PTR2UV(sv), SvNVX(sv));
2661 RESTORE_NUMERIC_LOCAL();
2670 Return an SV with the numeric value of the source SV, doing any necessary
2671 reference or overload conversion. You must use the C<SvNUM(sv)> macro to
2672 access this function.
2678 Perl_sv_2num(pTHX_ register SV *const sv)
2680 PERL_ARGS_ASSERT_SV_2NUM;
2685 SV * const tmpsv = AMG_CALLun(sv,numer);
2686 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
2687 return sv_2num(tmpsv);
2689 return sv_2mortal(newSVuv(PTR2UV(SvRV(sv))));
2692 /* uiv_2buf(): private routine for use by sv_2pv_flags(): print an IV or
2693 * UV as a string towards the end of buf, and return pointers to start and
2696 * We assume that buf is at least TYPE_CHARS(UV) long.
2700 S_uiv_2buf(char *const buf, const IV iv, UV uv, const int is_uv, char **const peob)
2702 char *ptr = buf + TYPE_CHARS(UV);
2703 char * const ebuf = ptr;
2706 PERL_ARGS_ASSERT_UIV_2BUF;
2718 *--ptr = '0' + (char)(uv % 10);
2727 =for apidoc sv_2pv_flags
2729 Returns a pointer to the string value of an SV, and sets *lp to its length.
2730 If flags includes SV_GMAGIC, does an mg_get() first. Coerces sv to a string
2732 Normally invoked via the C<SvPV_flags> macro. C<sv_2pv()> and C<sv_2pv_nomg>
2733 usually end up here too.
2739 Perl_sv_2pv_flags(pTHX_ register SV *const sv, STRLEN *const lp, const I32 flags)
2749 if (SvGMAGICAL(sv)) {
2750 if (flags & SV_GMAGIC)
2755 if (flags & SV_MUTABLE_RETURN)
2756 return SvPVX_mutable(sv);
2757 if (flags & SV_CONST_RETURN)
2758 return (char *)SvPVX_const(sv);
2761 if (SvIOKp(sv) || SvNOKp(sv)) {
2762 char tbuf[64]; /* Must fit sprintf/Gconvert of longest IV/NV */
2767 ? my_snprintf(tbuf, sizeof(tbuf), "%"UVuf, (UV)SvUVX(sv))
2768 : my_snprintf(tbuf, sizeof(tbuf), "%"IVdf, (IV)SvIVX(sv));
2770 Gconvert(SvNVX(sv), NV_DIG, 0, tbuf);
2777 #ifdef FIXNEGATIVEZERO
2778 if (len == 2 && tbuf[0] == '-' && tbuf[1] == '0') {
2784 SvUPGRADE(sv, SVt_PV);
2787 s = SvGROW_mutable(sv, len + 1);
2790 return (char*)memcpy(s, tbuf, len + 1);
2796 assert(SvTYPE(sv) >= SVt_PVMG);
2797 /* This falls through to the report_uninit near the end of the
2799 } else if (SvTHINKFIRST(sv)) {
2804 if (flags & SV_SKIP_OVERLOAD)
2806 tmpstr = AMG_CALLun(sv,string);
2807 if (tmpstr && (!SvROK(tmpstr) || (SvRV(tmpstr) != SvRV(sv)))) {
2809 /* char *pv = lp ? SvPV(tmpstr, *lp) : SvPV_nolen(tmpstr);
2813 if ((SvFLAGS(tmpstr) & (SVf_POK)) == SVf_POK) {
2814 if (flags & SV_CONST_RETURN) {
2815 pv = (char *) SvPVX_const(tmpstr);
2817 pv = (flags & SV_MUTABLE_RETURN)
2818 ? SvPVX_mutable(tmpstr) : SvPVX(tmpstr);
2821 *lp = SvCUR(tmpstr);
2823 pv = sv_2pv_flags(tmpstr, lp, flags);
2836 SV *const referent = SvRV(sv);
2840 retval = buffer = savepvn("NULLREF", len);
2841 } else if (SvTYPE(referent) == SVt_REGEXP) {
2842 REGEXP * const re = (REGEXP *)MUTABLE_PTR(referent);
2847 /* If the regex is UTF-8 we want the containing scalar to
2848 have an UTF-8 flag too */
2854 if ((seen_evals = RX_SEEN_EVALS(re)))
2855 PL_reginterp_cnt += seen_evals;
2858 *lp = RX_WRAPLEN(re);
2860 return RX_WRAPPED(re);
2862 const char *const typestr = sv_reftype(referent, 0);
2863 const STRLEN typelen = strlen(typestr);
2864 UV addr = PTR2UV(referent);
2865 const char *stashname = NULL;
2866 STRLEN stashnamelen = 0; /* hush, gcc */
2867 const char *buffer_end;
2869 if (SvOBJECT(referent)) {
2870 const HEK *const name = HvNAME_HEK(SvSTASH(referent));
2873 stashname = HEK_KEY(name);
2874 stashnamelen = HEK_LEN(name);
2876 if (HEK_UTF8(name)) {
2882 stashname = "__ANON__";
2885 len = stashnamelen + 1 /* = */ + typelen + 3 /* (0x */
2886 + 2 * sizeof(UV) + 2 /* )\0 */;
2888 len = typelen + 3 /* (0x */
2889 + 2 * sizeof(UV) + 2 /* )\0 */;
2892 Newx(buffer, len, char);
2893 buffer_end = retval = buffer + len;
2895 /* Working backwards */
2899 *--retval = PL_hexdigit[addr & 15];
2900 } while (addr >>= 4);
2906 memcpy(retval, typestr, typelen);
2910 retval -= stashnamelen;
2911 memcpy(retval, stashname, stashnamelen);
2913 /* retval may not neccesarily have reached the start of the
2915 assert (retval >= buffer);
2917 len = buffer_end - retval - 1; /* -1 for that \0 */
2925 if (SvREADONLY(sv) && !SvOK(sv)) {
2928 if (flags & SV_UNDEF_RETURNS_NULL)
2930 if (ckWARN(WARN_UNINITIALIZED))
2935 if (SvIOK(sv) || ((SvIOKp(sv) && !SvNOKp(sv)))) {
2936 /* I'm assuming that if both IV and NV are equally valid then
2937 converting the IV is going to be more efficient */
2938 const U32 isUIOK = SvIsUV(sv);
2939 char buf[TYPE_CHARS(UV)];
2943 if (SvTYPE(sv) < SVt_PVIV)
2944 sv_upgrade(sv, SVt_PVIV);
2945 ptr = uiv_2buf(buf, SvIVX(sv), SvUVX(sv), isUIOK, &ebuf);
2947 /* inlined from sv_setpvn */
2948 s = SvGROW_mutable(sv, len + 1);
2949 Move(ptr, s, len, char);
2953 else if (SvNOKp(sv)) {
2955 if (SvTYPE(sv) < SVt_PVNV)
2956 sv_upgrade(sv, SVt_PVNV);
2957 /* The +20 is pure guesswork. Configure test needed. --jhi */
2958 s = SvGROW_mutable(sv, NV_DIG + 20);
2959 /* some Xenix systems wipe out errno here */
2961 if (SvNVX(sv) == 0.0)
2962 my_strlcpy(s, "0", SvLEN(sv));
2966 Gconvert(SvNVX(sv), NV_DIG, 0, s);
2969 #ifdef FIXNEGATIVEZERO
2970 if (*s == '-' && s[1] == '0' && !s[2]) {
2982 if (isGV_with_GP(sv)) {
2983 GV *const gv = MUTABLE_GV(sv);
2984 const U32 wasfake = SvFLAGS(gv) & SVf_FAKE;
2985 SV *const buffer = sv_newmortal();
2987 /* FAKE globs can get coerced, so need to turn this off temporarily
2990 gv_efullname3(buffer, gv, "*");
2991 SvFLAGS(gv) |= wasfake;
2993 if (SvPOK(buffer)) {
2995 *lp = SvCUR(buffer);
2997 return SvPVX(buffer);
3008 if (flags & SV_UNDEF_RETURNS_NULL)
3010 if (!PL_localizing && !(SvFLAGS(sv) & SVs_PADTMP) && ckWARN(WARN_UNINITIALIZED))
3012 if (SvTYPE(sv) < SVt_PV)
3013 /* Typically the caller expects that sv_any is not NULL now. */
3014 sv_upgrade(sv, SVt_PV);
3018 const STRLEN len = s - SvPVX_const(sv);
3024 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
3025 PTR2UV(sv),SvPVX_const(sv)));
3026 if (flags & SV_CONST_RETURN)
3027 return (char *)SvPVX_const(sv);
3028 if (flags & SV_MUTABLE_RETURN)
3029 return SvPVX_mutable(sv);
3034 =for apidoc sv_copypv
3036 Copies a stringified representation of the source SV into the
3037 destination SV. Automatically performs any necessary mg_get and
3038 coercion of numeric values into strings. Guaranteed to preserve
3039 UTF8 flag even from overloaded objects. Similar in nature to
3040 sv_2pv[_flags] but operates directly on an SV instead of just the
3041 string. Mostly uses sv_2pv_flags to do its work, except when that
3042 would lose the UTF-8'ness of the PV.
3048 Perl_sv_copypv(pTHX_ SV *const dsv, register SV *const ssv)
3051 const char * const s = SvPV_const(ssv,len);
3053 PERL_ARGS_ASSERT_SV_COPYPV;
3055 sv_setpvn(dsv,s,len);
3063 =for apidoc sv_2pvbyte
3065 Return a pointer to the byte-encoded representation of the SV, and set *lp
3066 to its length. May cause the SV to be downgraded from UTF-8 as a
3069 Usually accessed via the C<SvPVbyte> macro.
3075 Perl_sv_2pvbyte(pTHX_ register SV *const sv, STRLEN *const lp)
3077 PERL_ARGS_ASSERT_SV_2PVBYTE;
3079 sv_utf8_downgrade(sv,0);
3080 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3084 =for apidoc sv_2pvutf8
3086 Return a pointer to the UTF-8-encoded representation of the SV, and set *lp
3087 to its length. May cause the SV to be upgraded to UTF-8 as a side-effect.
3089 Usually accessed via the C<SvPVutf8> macro.
3095 Perl_sv_2pvutf8(pTHX_ register SV *const sv, STRLEN *const lp)
3097 PERL_ARGS_ASSERT_SV_2PVUTF8;
3099 sv_utf8_upgrade(sv);
3100 return lp ? SvPV(sv,*lp) : SvPV_nolen(sv);
3105 =for apidoc sv_2bool
3107 This function is only called on magical items, and is only used by
3108 sv_true() or its macro equivalent.
3114 Perl_sv_2bool(pTHX_ register SV *const sv)
3118 PERL_ARGS_ASSERT_SV_2BOOL;
3126 SV * const tmpsv = AMG_CALLun(sv,bool_);
3127 if (tmpsv && (!SvROK(tmpsv) || (SvRV(tmpsv) != SvRV(sv))))
3128 return cBOOL(SvTRUE(tmpsv));
3130 return SvRV(sv) != 0;
3133 register XPV* const Xpvtmp = (XPV*)SvANY(sv);
3135 (*sv->sv_u.svu_pv > '0' ||
3136 Xpvtmp->xpv_cur > 1 ||
3137 (Xpvtmp->xpv_cur && *sv->sv_u.svu_pv != '0')))
3144 return SvIVX(sv) != 0;
3147 return SvNVX(sv) != 0.0;
3149 if (isGV_with_GP(sv))
3159 =for apidoc sv_utf8_upgrade
3161 Converts the PV of an SV to its UTF-8-encoded form.
3162 Forces the SV to string form if it is not already.
3163 Will C<mg_get> on C<sv> if appropriate.
3164 Always sets the SvUTF8 flag to avoid future validity checks even
3165 if the whole string is the same in UTF-8 as not.
3166 Returns the number of bytes in the converted string
3168 This is not as a general purpose byte encoding to Unicode interface:
3169 use the Encode extension for that.
3171 =for apidoc sv_utf8_upgrade_nomg
3173 Like sv_utf8_upgrade, but doesn't do magic on C<sv>
3175 =for apidoc sv_utf8_upgrade_flags
3177 Converts the PV of an SV to its UTF-8-encoded form.
3178 Forces the SV to string form if it is not already.
3179 Always sets the SvUTF8 flag to avoid future validity checks even
3180 if all the bytes are invariant in UTF-8. If C<flags> has C<SV_GMAGIC> bit set,
3181 will C<mg_get> on C<sv> if appropriate, else not.
3182 Returns the number of bytes in the converted string
3183 C<sv_utf8_upgrade> and
3184 C<sv_utf8_upgrade_nomg> are implemented in terms of this function.
3186 This is not as a general purpose byte encoding to Unicode interface:
3187 use the Encode extension for that.
3191 The grow version is currently not externally documented. It adds a parameter,
3192 extra, which is the number of unused bytes the string of 'sv' is guaranteed to
3193 have free after it upon return. This allows the caller to reserve extra space
3194 that it intends to fill, to avoid extra grows.
3196 Also externally undocumented for the moment is the flag SV_FORCE_UTF8_UPGRADE,
3197 which can be used to tell this function to not first check to see if there are
3198 any characters that are different in UTF-8 (variant characters) which would
3199 force it to allocate a new string to sv, but to assume there are. Typically
3200 this flag is used by a routine that has already parsed the string to find that
3201 there are such characters, and passes this information on so that the work
3202 doesn't have to be repeated.
3204 (One might think that the calling routine could pass in the position of the
3205 first such variant, so it wouldn't have to be found again. But that is not the
3206 case, because typically when the caller is likely to use this flag, it won't be
3207 calling this routine unless it finds something that won't fit into a byte.
3208 Otherwise it tries to not upgrade and just use bytes. But some things that
3209 do fit into a byte are variants in utf8, and the caller may not have been
3210 keeping track of these.)
3212 If the routine itself changes the string, it adds a trailing NUL. Such a NUL
3213 isn't guaranteed due to having other routines do the work in some input cases,
3214 or if the input is already flagged as being in utf8.
3216 The speed of this could perhaps be improved for many cases if someone wanted to
3217 write a fast function that counts the number of variant characters in a string,
3218 especially if it could return the position of the first one.
3223 Perl_sv_utf8_upgrade_flags_grow(pTHX_ register SV *const sv, const I32 flags, STRLEN extra)
3227 PERL_ARGS_ASSERT_SV_UTF8_UPGRADE_FLAGS_GROW;
3229 if (sv == &PL_sv_undef)
3233 if (SvREADONLY(sv) && (SvPOKp(sv) || SvIOKp(sv) || SvNOKp(sv))) {
3234 (void) sv_2pv_flags(sv,&len, flags);
3236 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3240 (void) SvPV_force(sv,len);
3245 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3250 sv_force_normal_flags(sv, 0);
3253 if (PL_encoding && !(flags & SV_UTF8_NO_ENCODING)) {
3254 sv_recode_to_utf8(sv, PL_encoding);
3255 if (extra) SvGROW(sv, SvCUR(sv) + extra);
3259 if (SvCUR(sv) == 0) {
3260 if (extra) SvGROW(sv, extra);
3261 } else { /* Assume Latin-1/EBCDIC */
3262 /* This function could be much more efficient if we
3263 * had a FLAG in SVs to signal if there are any variant
3264 * chars in the PV. Given that there isn't such a flag
3265 * make the loop as fast as possible (although there are certainly ways
3266 * to speed this up, eg. through vectorization) */
3267 U8 * s = (U8 *) SvPVX_const(sv);
3268 U8 * e = (U8 *) SvEND(sv);
3270 STRLEN two_byte_count = 0;
3272 if (flags & SV_FORCE_UTF8_UPGRADE) goto must_be_utf8;
3274 /* See if really will need to convert to utf8. We mustn't rely on our
3275 * incoming SV being well formed and having a trailing '\0', as certain
3276 * code in pp_formline can send us partially built SVs. */
3280 if (NATIVE_IS_INVARIANT(ch)) continue;
3282 t--; /* t already incremented; re-point to first variant */
3287 /* utf8 conversion not needed because all are invariants. Mark as
3288 * UTF-8 even if no variant - saves scanning loop */
3294 /* Here, the string should be converted to utf8, either because of an
3295 * input flag (two_byte_count = 0), or because a character that
3296 * requires 2 bytes was found (two_byte_count = 1). t points either to
3297 * the beginning of the string (if we didn't examine anything), or to
3298 * the first variant. In either case, everything from s to t - 1 will
3299 * occupy only 1 byte each on output.
3301 * There are two main ways to convert. One is to create a new string
3302 * and go through the input starting from the beginning, appending each
3303 * converted value onto the new string as we go along. It's probably
3304 * best to allocate enough space in the string for the worst possible
3305 * case rather than possibly running out of space and having to
3306 * reallocate and then copy what we've done so far. Since everything
3307 * from s to t - 1 is invariant, the destination can be initialized
3308 * with these using a fast memory copy
3310 * The other way is to figure out exactly how big the string should be
3311 * by parsing the entire input. Then you don't have to make it big
3312 * enough to handle the worst possible case, and more importantly, if
3313 * the string you already have is large enough, you don't have to
3314 * allocate a new string, you can copy the last character in the input
3315 * string to the final position(s) that will be occupied by the
3316 * converted string and go backwards, stopping at t, since everything
3317 * before that is invariant.
3319 * There are advantages and disadvantages to each method.
3321 * In the first method, we can allocate a new string, do the memory
3322 * copy from the s to t - 1, and then proceed through the rest of the
3323 * string byte-by-byte.
3325 * In the second method, we proceed through the rest of the input
3326 * string just calculating how big the converted string will be. Then
3327 * there are two cases:
3328 * 1) if the string has enough extra space to handle the converted
3329 * value. We go backwards through the string, converting until we
3330 * get to the position we are at now, and then stop. If this
3331 * position is far enough along in the string, this method is
3332 * faster than the other method. If the memory copy were the same
3333 * speed as the byte-by-byte loop, that position would be about
3334 * half-way, as at the half-way mark, parsing to the end and back
3335 * is one complete string's parse, the same amount as starting
3336 * over and going all the way through. Actually, it would be
3337 * somewhat less than half-way, as it's faster to just count bytes
3338 * than to also copy, and we don't have the overhead of allocating
3339 * a new string, changing the scalar to use it, and freeing the
3340 * existing one. But if the memory copy is fast, the break-even
3341 * point is somewhere after half way. The counting loop could be
3342 * sped up by vectorization, etc, to move the break-even point
3343 * further towards the beginning.
3344 * 2) if the string doesn't have enough space to handle the converted
3345 * value. A new string will have to be allocated, and one might
3346 * as well, given that, start from the beginning doing the first
3347 * method. We've spent extra time parsing the string and in
3348 * exchange all we've gotten is that we know precisely how big to
3349 * make the new one. Perl is more optimized for time than space,
3350 * so this case is a loser.
3351 * So what I've decided to do is not use the 2nd method unless it is
3352 * guaranteed that a new string won't have to be allocated, assuming
3353 * the worst case. I also decided not to put any more conditions on it
3354 * than this, for now. It seems likely that, since the worst case is
3355 * twice as big as the unknown portion of the string (plus 1), we won't
3356 * be guaranteed enough space, causing us to go to the first method,
3357 * unless the string is short, or the first variant character is near
3358 * the end of it. In either of these cases, it seems best to use the
3359 * 2nd method. The only circumstance I can think of where this would
3360 * be really slower is if the string had once had much more data in it
3361 * than it does now, but there is still a substantial amount in it */
3364 STRLEN invariant_head = t - s;
3365 STRLEN size = invariant_head + (e - t) * 2 + 1 + extra;
3366 if (SvLEN(sv) < size) {
3368 /* Here, have decided to allocate a new string */
3373 Newx(dst, size, U8);
3375 /* If no known invariants at the beginning of the input string,
3376 * set so starts from there. Otherwise, can use memory copy to
3377 * get up to where we are now, and then start from here */
3379 if (invariant_head <= 0) {
3382 Copy(s, dst, invariant_head, char);
3383 d = dst + invariant_head;
3387 const UV uv = NATIVE8_TO_UNI(*t++);
3388 if (UNI_IS_INVARIANT(uv))
3389 *d++ = (U8)UNI_TO_NATIVE(uv);
3391 *d++ = (U8)UTF8_EIGHT_BIT_HI(uv);
3392 *d++ = (U8)UTF8_EIGHT_BIT_LO(uv);
3396 SvPV_free(sv); /* No longer using pre-existing string */
3397 SvPV_set(sv, (char*)dst);
3398 SvCUR_set(sv, d - dst);
3399 SvLEN_set(sv, size);
3402 /* Here, have decided to get the exact size of the string.
3403 * Currently this happens only when we know that there is
3404 * guaranteed enough space to fit the converted string, so
3405 * don't have to worry about growing. If two_byte_count is 0,
3406 * then t points to the first byte of the string which hasn't
3407 * been examined yet. Otherwise two_byte_count is 1, and t
3408 * points to the first byte in the string that will expand to
3409 * two. Depending on this, start examining at t or 1 after t.
3412 U8 *d = t + two_byte_count;
3415 /* Count up the remaining bytes that expand to two */
3418 const U8 chr = *d++;
3419 if (! NATIVE_IS_INVARIANT(chr)) two_byte_count++;
3422 /* The string will expand by just the number of bytes that
3423 * occupy two positions. But we are one afterwards because of
3424 * the increment just above. This is the place to put the
3425 * trailing NUL, and to set the length before we decrement */
3427 d += two_byte_count;
3428 SvCUR_set(sv, d - s);
3432 /* Having decremented d, it points to the position to put the
3433 * very last byte of the expanded string. Go backwards through
3434 * the string, copying and expanding as we go, stopping when we
3435 * get to the part that is invariant the rest of the way down */
3439 const U8 ch = NATIVE8_TO_UNI(*e--);
3440 if (UNI_IS_INVARIANT(ch)) {
3441 *d-- = UNI_TO_NATIVE(ch);
3443 *d-- = (U8)UTF8_EIGHT_BIT_LO(ch);
3444 *d-- = (U8)UTF8_EIGHT_BIT_HI(ch);
3451 /* Mark as UTF-8 even if no variant - saves scanning loop */
3457 =for apidoc sv_utf8_downgrade
3459 Attempts to convert the PV of an SV from characters to bytes.
3460 If the PV contains a character that cannot fit
3461 in a byte, this conversion will fail;
3462 in this case, either returns false or, if C<fail_ok> is not
3465 This is not as a general purpose Unicode to byte encoding interface:
3466 use the Encode extension for that.
3472 Perl_sv_utf8_downgrade(pTHX_ register SV *const sv, const bool fail_ok)
3476 PERL_ARGS_ASSERT_SV_UTF8_DOWNGRADE;
3478 if (SvPOKp(sv) && SvUTF8(sv)) {
3484 sv_force_normal_flags(sv, 0);
3486 s = (U8 *) SvPV(sv, len);
3487 if (!utf8_to_bytes(s, &len)) {
3492 Perl_croak(aTHX_ "Wide character in %s",
3495 Perl_croak(aTHX_ "Wide character");
3506 =for apidoc sv_utf8_encode
3508 Converts the PV of an SV to UTF-8, but then turns the C<SvUTF8>
3509 flag off so that it looks like octets again.
3515 Perl_sv_utf8_encode(pTHX_ register SV *const sv)
3517 PERL_ARGS_ASSERT_SV_UTF8_ENCODE;
3520 sv_force_normal_flags(sv, 0);
3522 if (SvREADONLY(sv)) {
3523 Perl_croak(aTHX_ "%s", PL_no_modify);
3525 (void) sv_utf8_upgrade(sv);
3530 =for apidoc sv_utf8_decode
3532 If the PV of the SV is an octet sequence in UTF-8
3533 and contains a multiple-byte character, the C<SvUTF8> flag is turned on
3534 so that it looks like a character. If the PV contains only single-byte
3535 characters, the C<SvUTF8> flag stays being off.
3536 Scans PV for validity and returns false if the PV is invalid UTF-8.
3542 Perl_sv_utf8_decode(pTHX_ register SV *const sv)
3544 PERL_ARGS_ASSERT_SV_UTF8_DECODE;
3550 /* The octets may have got themselves encoded - get them back as
3553 if (!sv_utf8_downgrade(sv, TRUE))
3556 /* it is actually just a matter of turning the utf8 flag on, but
3557 * we want to make sure everything inside is valid utf8 first.
3559 c = (const U8 *) SvPVX_const(sv);
3560 if (!is_utf8_string(c, SvCUR(sv)+1))
3562 e = (const U8 *) SvEND(sv);
3565 if (!UTF8_IS_INVARIANT(ch)) {
3575 =for apidoc sv_setsv
3577 Copies the contents of the source SV C<ssv> into the destination SV
3578 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3579 function if the source SV needs to be reused. Does not handle 'set' magic.
3580 Loosely speaking, it performs a copy-by-value, obliterating any previous
3581 content of the destination.
3583 You probably want to use one of the assortment of wrappers, such as
3584 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3585 C<SvSetMagicSV_nosteal>.
3587 =for apidoc sv_setsv_flags
3589 Copies the contents of the source SV C<ssv> into the destination SV
3590 C<dsv>. The source SV may be destroyed if it is mortal, so don't use this
3591 function if the source SV needs to be reused. Does not handle 'set' magic.
3592 Loosely speaking, it performs a copy-by-value, obliterating any previous
3593 content of the destination.
3594 If the C<flags> parameter has the C<SV_GMAGIC> bit set, will C<mg_get> on
3595 C<ssv> if appropriate, else not. If the C<flags> parameter has the
3596 C<NOSTEAL> bit set then the buffers of temps will not be stolen. <sv_setsv>
3597 and C<sv_setsv_nomg> are implemented in terms of this function.
3599 You probably want to use one of the assortment of wrappers, such as
3600 C<SvSetSV>, C<SvSetSV_nosteal>, C<SvSetMagicSV> and
3601 C<SvSetMagicSV_nosteal>.
3603 This is the primary function for copying scalars, and most other
3604 copy-ish functions and macros use this underneath.
3610 S_glob_assign_glob(pTHX_ SV *const dstr, SV *const sstr, const int dtype)
3612 I32 mro_changes = 0; /* 1 = method, 2 = isa */
3614 PERL_ARGS_ASSERT_GLOB_ASSIGN_GLOB;
3616 if (dtype != SVt_PVGV) {
3617 const char * const name = GvNAME(sstr);
3618 const STRLEN len = GvNAMELEN(sstr);
3620 if (dtype >= SVt_PV) {
3626 SvUPGRADE(dstr, SVt_PVGV);
3627 (void)SvOK_off(dstr);
3628 /* FIXME - why are we doing this, then turning it off and on again
3630 isGV_with_GP_on(dstr);
3632 GvSTASH(dstr) = GvSTASH(sstr);
3634 Perl_sv_add_backref(aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr);
3635 gv_name_set(MUTABLE_GV(dstr), name, len, GV_ADD);
3636 SvFAKE_on(dstr); /* can coerce to non-glob */
3639 if(GvGP(MUTABLE_GV(sstr))) {
3640 /* If source has method cache entry, clear it */
3642 SvREFCNT_dec(GvCV(sstr));
3646 /* If source has a real method, then a method is
3648 else if(GvCV((const GV *)sstr)) {
3653 /* If dest already had a real method, that's a change as well */
3654 if(!mro_changes && GvGP(MUTABLE_GV(dstr)) && GvCVu((const GV *)dstr)) {
3658 if(strEQ(GvNAME((const GV *)dstr),"ISA"))
3661 gp_free(MUTABLE_GV(dstr));
3662 isGV_with_GP_off(dstr);
3663 (void)SvOK_off(dstr);
3664 isGV_with_GP_on(dstr);
3665 GvINTRO_off(dstr); /* one-shot flag */
3666 GvGP(dstr) = gp_ref(GvGP(sstr));
3667 if (SvTAINTED(sstr))
3669 if (GvIMPORTED(dstr) != GVf_IMPORTED
3670 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3672 GvIMPORTED_on(dstr);
3675 if(mro_changes == 2) mro_isa_changed_in(GvSTASH(dstr));
3676 else if(mro_changes) mro_method_changed_in(GvSTASH(dstr));
3681 S_glob_assign_ref(pTHX_ SV *const dstr, SV *const sstr)
3683 SV * const sref = SvREFCNT_inc(SvRV(sstr));
3685 const int intro = GvINTRO(dstr);
3688 const U32 stype = SvTYPE(sref);
3690 PERL_ARGS_ASSERT_GLOB_ASSIGN_REF;
3693 GvINTRO_off(dstr); /* one-shot flag */
3694 GvLINE(dstr) = CopLINE(PL_curcop);
3695 GvEGV(dstr) = MUTABLE_GV(dstr);
3700 location = (SV **) &GvCV(dstr);
3701 import_flag = GVf_IMPORTED_CV;
3704 location = (SV **) &GvHV(dstr);
3705 import_flag = GVf_IMPORTED_HV;
3708 location = (SV **) &GvAV(dstr);
3709 import_flag = GVf_IMPORTED_AV;
3712 location = (SV **) &GvIOp(dstr);
3715 location = (SV **) &GvFORM(dstr);
3718 location = &GvSV(dstr);
3719 import_flag = GVf_IMPORTED_SV;
3722 if (stype == SVt_PVCV) {
3723 /*if (GvCVGEN(dstr) && (GvCV(dstr) != (const CV *)sref || GvCVGEN(dstr))) {*/
3724 if (GvCVGEN(dstr)) {
3725 SvREFCNT_dec(GvCV(dstr));
3727 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3730 SAVEGENERICSV(*location);
3734 if (stype == SVt_PVCV && (*location != sref || GvCVGEN(dstr))) {
3735 CV* const cv = MUTABLE_CV(*location);
3737 if (!GvCVGEN((const GV *)dstr) &&
3738 (CvROOT(cv) || CvXSUB(cv)))
3740 /* Redefining a sub - warning is mandatory if
3741 it was a const and its value changed. */
3742 if (CvCONST(cv) && CvCONST((const CV *)sref)
3744 == cv_const_sv((const CV *)sref)) {
3746 /* They are 2 constant subroutines generated from
3747 the same constant. This probably means that
3748 they are really the "same" proxy subroutine
3749 instantiated in 2 places. Most likely this is
3750 when a constant is exported twice. Don't warn.
3753 else if (ckWARN(WARN_REDEFINE)
3755 && (!CvCONST((const CV *)sref)
3756 || sv_cmp(cv_const_sv(cv),
3757 cv_const_sv((const CV *)
3759 Perl_warner(aTHX_ packWARN(WARN_REDEFINE),
3762 ? "Constant subroutine %s::%s redefined"
3763 : "Subroutine %s::%s redefined"),
3764 HvNAME_get(GvSTASH((const GV *)dstr)),
3765 GvENAME(MUTABLE_GV(dstr)));
3769 cv_ckproto_len(cv, (const GV *)dstr,
3770 SvPOK(sref) ? SvPVX_const(sref) : NULL,
3771 SvPOK(sref) ? SvCUR(sref) : 0);
3773 GvCVGEN(dstr) = 0; /* Switch off cacheness. */
3774 GvASSUMECV_on(dstr);
3775 if(GvSTASH(dstr)) mro_method_changed_in(GvSTASH(dstr)); /* sub foo { 1 } sub bar { 2 } *bar = \&foo */
3778 if (import_flag && !(GvFLAGS(dstr) & import_flag)
3779 && CopSTASH_ne(PL_curcop, GvSTASH(dstr))) {
3780 GvFLAGS(dstr) |= import_flag;
3782 if (stype == SVt_PVAV && strEQ(GvNAME((GV*)dstr), "ISA")) {
3783 sv_magic(sref, dstr, PERL_MAGIC_isa, NULL, 0);
3784 mro_isa_changed_in(GvSTASH(dstr));
3789 if (SvTAINTED(sstr))
3795 Perl_sv_setsv_flags(pTHX_ SV *dstr, register SV* sstr, const I32 flags)
3798 register U32 sflags;
3800 register svtype stype;
3802 PERL_ARGS_ASSERT_SV_SETSV_FLAGS;
3807 if (SvIS_FREED(dstr)) {
3808 Perl_croak(aTHX_ "panic: attempt to copy value %" SVf
3809 " to a freed scalar %p", SVfARG(sstr), (void *)dstr);
3811 SV_CHECK_THINKFIRST_COW_DROP(dstr);
3813 sstr = &PL_sv_undef;
3814 if (SvIS_FREED(sstr)) {
3815 Perl_croak(aTHX_ "panic: attempt to copy freed scalar %p to %p",
3816 (void*)sstr, (void*)dstr);
3818 stype = SvTYPE(sstr);
3819 dtype = SvTYPE(dstr);
3821 (void)SvAMAGIC_off(dstr);
3824 /* need to nuke the magic */
3828 /* There's a lot of redundancy below but we're going for speed here */
3833 if (dtype != SVt_PVGV) {
3834 (void)SvOK_off(dstr);
3842 sv_upgrade(dstr, SVt_IV);
3846 sv_upgrade(dstr, SVt_PVIV);
3849 goto end_of_first_switch;
3851 (void)SvIOK_only(dstr);
3852 SvIV_set(dstr, SvIVX(sstr));
3855 /* SvTAINTED can only be true if the SV has taint magic, which in
3856 turn means that the SV type is PVMG (or greater). This is the
3857 case statement for SVt_IV, so this cannot be true (whatever gcov
3859 assert(!SvTAINTED(sstr));
3864 if (dtype < SVt_PV && dtype != SVt_IV)
3865 sv_upgrade(dstr, SVt_IV);
3873 sv_upgrade(dstr, SVt_NV);
3877 sv_upgrade(dstr, SVt_PVNV);
3880 goto end_of_first_switch;
3882 SvNV_set(dstr, SvNVX(sstr));
3883 (void)SvNOK_only(dstr);
3884 /* SvTAINTED can only be true if the SV has taint magic, which in
3885 turn means that the SV type is PVMG (or greater). This is the
3886 case statement for SVt_NV, so this cannot be true (whatever gcov
3888 assert(!SvTAINTED(sstr));
3894 #ifdef PERL_OLD_COPY_ON_WRITE
3895 if ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS) {
3896 if (dtype < SVt_PVIV)
3897 sv_upgrade(dstr, SVt_PVIV);
3904 sv_upgrade(dstr, SVt_PV);
3907 if (dtype < SVt_PVIV)
3908 sv_upgrade(dstr, SVt_PVIV);
3911 if (dtype < SVt_PVNV)
3912 sv_upgrade(dstr, SVt_PVNV);
3916 const char * const type = sv_reftype(sstr,0);
3918 Perl_croak(aTHX_ "Bizarre copy of %s in %s", type, OP_DESC(PL_op));
3920 Perl_croak(aTHX_ "Bizarre copy of %s", type);
3925 if (dtype < SVt_REGEXP)
3926 sv_upgrade(dstr, SVt_REGEXP);
3929 /* case SVt_BIND: */
3932 if (isGV_with_GP(sstr) && dtype <= SVt_PVGV) {
3933 glob_assign_glob(dstr, sstr, dtype);
3936 /* SvVALID means that this PVGV is playing at being an FBM. */
3940 if (SvGMAGICAL(sstr) && (flags & SV_GMAGIC)) {
3942 if (SvTYPE(sstr) != stype) {
3943 stype = SvTYPE(sstr);
3944 if (isGV_with_GP(sstr) && stype == SVt_PVGV && dtype <= SVt_PVGV) {
3945 glob_assign_glob(dstr, sstr, dtype);
3950 if (stype == SVt_PVLV)
3951 SvUPGRADE(dstr, SVt_PVNV);
3953 SvUPGRADE(dstr, (svtype)stype);
3955 end_of_first_switch:
3957 /* dstr may have been upgraded. */
3958 dtype = SvTYPE(dstr);
3959 sflags = SvFLAGS(sstr);
3961 if (dtype == SVt_PVCV || dtype == SVt_PVFM) {
3962 /* Assigning to a subroutine sets the prototype. */
3965 const char *const ptr = SvPV_const(sstr, len);
3967 SvGROW(dstr, len + 1);
3968 Copy(ptr, SvPVX(dstr), len + 1, char);
3969 SvCUR_set(dstr, len);
3971 SvFLAGS(dstr) |= sflags & SVf_UTF8;
3975 } else if (dtype == SVt_PVAV || dtype == SVt_PVHV) {
3976 const char * const type = sv_reftype(dstr,0);
3978 Perl_croak(aTHX_ "Cannot copy to %s in %s", type, OP_DESC(PL_op));
3980 Perl_croak(aTHX_ "Cannot copy to %s", type);
3981 } else if (sflags & SVf_ROK) {
3982 if (isGV_with_GP(dstr) && dtype == SVt_PVGV
3983 && SvTYPE(SvRV(sstr)) == SVt_PVGV && isGV_with_GP(SvRV(sstr))) {
3986 if (GvIMPORTED(dstr) != GVf_IMPORTED
3987 && CopSTASH_ne(PL_curcop, GvSTASH(dstr)))
3989 GvIMPORTED_on(dstr);
3994 glob_assign_glob(dstr, sstr, dtype);
3998 if (dtype >= SVt_PV) {
3999 if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
4000 glob_assign_ref(dstr, sstr);
4003 if (SvPVX_const(dstr)) {
4009 (void)SvOK_off(dstr);
4010 SvRV_set(dstr, SvREFCNT_inc(SvRV(sstr)));
4011 SvFLAGS(dstr) |= sflags & SVf_ROK;
4012 assert(!(sflags & SVp_NOK));
4013 assert(!(sflags & SVp_IOK));
4014 assert(!(sflags & SVf_NOK));
4015 assert(!(sflags & SVf_IOK));
4017 else if (dtype == SVt_PVGV && isGV_with_GP(dstr)) {
4018 if (!(sflags & SVf_OK)) {
4019 Perl_ck_warner(aTHX_ packWARN(WARN_MISC),
4020 "Undefined value assigned to typeglob");
4023 GV *gv = gv_fetchsv(sstr, GV_ADD, SVt_PVGV);
4024 if (dstr != (const SV *)gv) {
4026 gp_free(MUTABLE_GV(dstr));
4027 GvGP(dstr) = gp_ref(GvGP(gv));
4031 else if (dtype == SVt_REGEXP && stype == SVt_REGEXP) {
4032 reg_temp_copy((REGEXP*)dstr, (REGEXP*)sstr);
4034 else if (sflags & SVp_POK) {
4038 * Check to see if we can just swipe the string. If so, it's a
4039 * possible small lose on short strings, but a big win on long ones.
4040 * It might even be a win on short strings if SvPVX_const(dstr)
4041 * has to be allocated and SvPVX_const(sstr) has to be freed.
4042 * Likewise if we can set up COW rather than doing an actual copy, we
4043 * drop to the else clause, as the swipe code and the COW setup code
4044 * have much in common.
4047 /* Whichever path we take through the next code, we want this true,
4048 and doing it now facilitates the COW check. */
4049 (void)SvPOK_only(dstr);
4052 /* If we're already COW then this clause is not true, and if COW
4053 is allowed then we drop down to the else and make dest COW
4054 with us. If caller hasn't said that we're allowed to COW
4055 shared hash keys then we don't do the COW setup, even if the
4056 source scalar is a shared hash key scalar. */
4057 (((flags & SV_COW_SHARED_HASH_KEYS)
4058 ? (sflags & (SVf_FAKE|SVf_READONLY)) != (SVf_FAKE|SVf_READONLY)
4059 : 1 /* If making a COW copy is forbidden then the behaviour we
4060 desire is as if the source SV isn't actually already
4061 COW, even if it is. So we act as if the source flags
4062 are not COW, rather than actually testing them. */
4064 #ifndef PERL_OLD_COPY_ON_WRITE
4065 /* The change that added SV_COW_SHARED_HASH_KEYS makes the logic
4066 when PERL_OLD_COPY_ON_WRITE is defined a little wrong.
4067 Conceptually PERL_OLD_COPY_ON_WRITE being defined should
4068 override SV_COW_SHARED_HASH_KEYS, because it means "always COW"
4069 but in turn, it's somewhat dead code, never expected to go
4070 live, but more kept as a placeholder on how to do it better
4071 in a newer implementation. */
4072 /* If we are COW and dstr is a suitable target then we drop down
4073 into the else and make dest a COW of us. */
4074 || (SvFLAGS(dstr) & CAN_COW_MASK) != CAN_COW_FLAGS
4079 (sflags & SVs_TEMP) && /* slated for free anyway? */
4080 !(sflags & SVf_OOK) && /* and not involved in OOK hack? */
4081 (!(flags & SV_NOSTEAL)) &&
4082 /* and we're allowed to steal temps */
4083 SvREFCNT(sstr) == 1 && /* and no other references to it? */
4084 SvLEN(sstr)) /* and really is a string */
4085 #ifdef PERL_OLD_COPY_ON_WRITE
4086 && ((flags & SV_COW_SHARED_HASH_KEYS)
4087 ? (!((sflags & CAN_COW_MASK) == CAN_COW_FLAGS
4088 && (SvFLAGS(dstr) & CAN_COW_MASK) == CAN_COW_FLAGS
4089 && SvTYPE(sstr) >= SVt_PVIV && SvTYPE(sstr) != SVt_PVFM))
4093 /* Failed the swipe test, and it's not a shared hash key either.
4094 Have to copy the string. */
4095 STRLEN len = SvCUR(sstr);
4096 SvGROW(dstr, len + 1); /* inlined from sv_setpvn */
4097 Move(SvPVX_const(sstr),SvPVX(dstr),len,char);
4098 SvCUR_set(dstr, len);
4099 *SvEND(dstr) = '\0';
4101 /* If PERL_OLD_COPY_ON_WRITE is not defined, then isSwipe will always
4103 /* Either it's a shared hash key, or it's suitable for
4104 copy-on-write or we can swipe the string. */
4106 PerlIO_printf(Perl_debug_log, "Copy on write: sstr --> dstr\n");
4110 #ifdef PERL_OLD_COPY_ON_WRITE
4112 if ((sflags & (SVf_FAKE | SVf_READONLY))
4113 != (SVf_FAKE | SVf_READONLY)) {
4114 SvREADONLY_on(sstr);
4116 /* Make the source SV into a loop of 1.
4117 (about to become 2) */
4118 SV_COW_NEXT_SV_SET(sstr, sstr);
4122 /* Initial code is common. */
4123 if (SvPVX_const(dstr)) { /* we know that dtype >= SVt_PV */
4128 /* making another shared SV. */
4129 STRLEN cur = SvCUR(sstr);
4130 STRLEN len = SvLEN(sstr);
4131 #ifdef PERL_OLD_COPY_ON_WRITE
4133 assert (SvTYPE(dstr) >= SVt_PVIV);
4134 /* SvIsCOW_normal */
4135 /* splice us in between source and next-after-source. */
4136 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4137 SV_COW_NEXT_SV_SET(sstr, dstr);
4138 SvPV_set(dstr, SvPVX_mutable(sstr));
4142 /* SvIsCOW_shared_hash */
4143 DEBUG_C(PerlIO_printf(Perl_debug_log,
4144 "Copy on write: Sharing hash\n"));
4146 assert (SvTYPE(dstr) >= SVt_PV);
4148 HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)))));
4150 SvLEN_set(dstr, len);
4151 SvCUR_set(dstr, cur);
4152 SvREADONLY_on(dstr);
4156 { /* Passes the swipe test. */
4157 SvPV_set(dstr, SvPVX_mutable(sstr));
4158 SvLEN_set(dstr, SvLEN(sstr));
4159 SvCUR_set(dstr, SvCUR(sstr));
4162 (void)SvOK_off(sstr); /* NOTE: nukes most SvFLAGS on sstr */
4163 SvPV_set(sstr, NULL);
4169 if (sflags & SVp_NOK) {
4170 SvNV_set(dstr, SvNVX(sstr));
4172 if (sflags & SVp_IOK) {
4173 SvIV_set(dstr, SvIVX(sstr));
4174 /* Must do this otherwise some other overloaded use of 0x80000000
4175 gets confused. I guess SVpbm_VALID */
4176 if (sflags & SVf_IVisUV)
4179 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_NOK|SVp_NOK|SVf_UTF8);
4181 const MAGIC * const smg = SvVSTRING_mg(sstr);
4183 sv_magic(dstr, NULL, PERL_MAGIC_vstring,
4184 smg->mg_ptr, smg->mg_len);
4185 SvRMAGICAL_on(dstr);
4189 else if (sflags & (SVp_IOK|SVp_NOK)) {
4190 (void)SvOK_off(dstr);
4191 SvFLAGS(dstr) |= sflags & (SVf_IOK|SVp_IOK|SVf_IVisUV|SVf_NOK|SVp_NOK);
4192 if (sflags & SVp_IOK) {
4193 /* XXXX Do we want to set IsUV for IV(ROK)? Be extra safe... */
4194 SvIV_set(dstr, SvIVX(sstr));
4196 if (sflags & SVp_NOK) {
4197 SvNV_set(dstr, SvNVX(sstr));
4201 if (isGV_with_GP(sstr)) {
4202 /* This stringification rule for globs is spread in 3 places.
4203 This feels bad. FIXME. */
4204 const U32 wasfake = sflags & SVf_FAKE;
4206 /* FAKE globs can get coerced, so need to turn this off
4207 temporarily if it is on. */
4209 gv_efullname3(dstr, MUTABLE_GV(sstr), "*");
4210 SvFLAGS(sstr) |= wasfake;
4213 (void)SvOK_off(dstr);
4215 if (SvTAINTED(sstr))
4220 =for apidoc sv_setsv_mg
4222 Like C<sv_setsv>, but also handles 'set' magic.
4228 Perl_sv_setsv_mg(pTHX_ SV *const dstr, register SV *const sstr)
4230 PERL_ARGS_ASSERT_SV_SETSV_MG;
4232 sv_setsv(dstr,sstr);
4236 #ifdef PERL_OLD_COPY_ON_WRITE
4238 Perl_sv_setsv_cow(pTHX_ SV *dstr, SV *sstr)
4240 STRLEN cur = SvCUR(sstr);
4241 STRLEN len = SvLEN(sstr);
4242 register char *new_pv;
4244 PERL_ARGS_ASSERT_SV_SETSV_COW;
4247 PerlIO_printf(Perl_debug_log, "Fast copy on write: %p -> %p\n",
4248 (void*)sstr, (void*)dstr);
4255 if (SvTHINKFIRST(dstr))
4256 sv_force_normal_flags(dstr, SV_COW_DROP_PV);
4257 else if (SvPVX_const(dstr))
4258 Safefree(SvPVX_const(dstr));
4262 SvUPGRADE(dstr, SVt_PVIV);
4264 assert (SvPOK(sstr));
4265 assert (SvPOKp(sstr));
4266 assert (!SvIOK(sstr));
4267 assert (!SvIOKp(sstr));
4268 assert (!SvNOK(sstr));
4269 assert (!SvNOKp(sstr));
4271 if (SvIsCOW(sstr)) {
4273 if (SvLEN(sstr) == 0) {
4274 /* source is a COW shared hash key. */
4275 DEBUG_C(PerlIO_printf(Perl_debug_log,
4276 "Fast copy on write: Sharing hash\n"));
4277 new_pv = HEK_KEY(share_hek_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr))));
4280 SV_COW_NEXT_SV_SET(dstr, SV_COW_NEXT_SV(sstr));
4282 assert ((SvFLAGS(sstr) & CAN_COW_MASK) == CAN_COW_FLAGS);
4283 SvUPGRADE(sstr, SVt_PVIV);
4284 SvREADONLY_on(sstr);
4286 DEBUG_C(PerlIO_printf(Perl_debug_log,
4287 "Fast copy on write: Converting sstr to COW\n"));
4288 SV_COW_NEXT_SV_SET(dstr, sstr);
4290 SV_COW_NEXT_SV_SET(sstr, dstr);
4291 new_pv = SvPVX_mutable(sstr);
4294 SvPV_set(dstr, new_pv);
4295 SvFLAGS(dstr) = (SVt_PVIV|SVf_POK|SVp_POK|SVf_FAKE|SVf_READONLY);
4298 SvLEN_set(dstr, len);
4299 SvCUR_set(dstr, cur);
4308 =for apidoc sv_setpvn
4310 Copies a string into an SV. The C<len> parameter indicates the number of
4311 bytes to be copied. If the C<ptr> argument is NULL the SV will become
4312 undefined. Does not handle 'set' magic. See C<sv_setpvn_mg>.
4318 Perl_sv_setpvn(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4321 register char *dptr;
4323 PERL_ARGS_ASSERT_SV_SETPVN;
4325 SV_CHECK_THINKFIRST_COW_DROP(sv);
4331 /* len is STRLEN which is unsigned, need to copy to signed */
4334 Perl_croak(aTHX_ "panic: sv_setpvn called with negative strlen");
4336 SvUPGRADE(sv, SVt_PV);
4338 dptr = SvGROW(sv, len + 1);
4339 Move(ptr,dptr,len,char);
4342 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4347 =for apidoc sv_setpvn_mg
4349 Like C<sv_setpvn>, but also handles 'set' magic.
4355 Perl_sv_setpvn_mg(pTHX_ register SV *const sv, register const char *const ptr, register const STRLEN len)
4357 PERL_ARGS_ASSERT_SV_SETPVN_MG;
4359 sv_setpvn(sv,ptr,len);
4364 =for apidoc sv_setpv
4366 Copies a string into an SV. The string must be null-terminated. Does not
4367 handle 'set' magic. See C<sv_setpv_mg>.
4373 Perl_sv_setpv(pTHX_ register SV *const sv, register const char *const ptr)
4376 register STRLEN len;
4378 PERL_ARGS_ASSERT_SV_SETPV;
4380 SV_CHECK_THINKFIRST_COW_DROP(sv);
4386 SvUPGRADE(sv, SVt_PV);
4388 SvGROW(sv, len + 1);
4389 Move(ptr,SvPVX(sv),len+1,char);
4391 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4396 =for apidoc sv_setpv_mg
4398 Like C<sv_setpv>, but also handles 'set' magic.
4404 Perl_sv_setpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4406 PERL_ARGS_ASSERT_SV_SETPV_MG;
4413 =for apidoc sv_usepvn_flags
4415 Tells an SV to use C<ptr> to find its string value. Normally the
4416 string is stored inside the SV but sv_usepvn allows the SV to use an
4417 outside string. The C<ptr> should point to memory that was allocated
4418 by C<malloc>. The string length, C<len>, must be supplied. By default
4419 this function will realloc (i.e. move) the memory pointed to by C<ptr>,
4420 so that pointer should not be freed or used by the programmer after
4421 giving it to sv_usepvn, and neither should any pointers from "behind"
4422 that pointer (e.g. ptr + 1) be used.
4424 If C<flags> & SV_SMAGIC is true, will call SvSETMAGIC. If C<flags> &
4425 SV_HAS_TRAILING_NUL is true, then C<ptr[len]> must be NUL, and the realloc
4426 will be skipped. (i.e. the buffer is actually at least 1 byte longer than
4427 C<len>, and already meets the requirements for storing in C<SvPVX>)
4433 Perl_sv_usepvn_flags(pTHX_ SV *const sv, char *ptr, const STRLEN len, const U32 flags)
4438 PERL_ARGS_ASSERT_SV_USEPVN_FLAGS;
4440 SV_CHECK_THINKFIRST_COW_DROP(sv);
4441 SvUPGRADE(sv, SVt_PV);
4444 if (flags & SV_SMAGIC)
4448 if (SvPVX_const(sv))
4452 if (flags & SV_HAS_TRAILING_NUL)
4453 assert(ptr[len] == '\0');
4456 allocate = (flags & SV_HAS_TRAILING_NUL)
4458 #ifdef Perl_safesysmalloc_size
4461 PERL_STRLEN_ROUNDUP(len + 1);
4463 if (flags & SV_HAS_TRAILING_NUL) {
4464 /* It's long enough - do nothing.
4465 Specfically Perl_newCONSTSUB is relying on this. */
4468 /* Force a move to shake out bugs in callers. */
4469 char *new_ptr = (char*)safemalloc(allocate);
4470 Copy(ptr, new_ptr, len, char);
4471 PoisonFree(ptr,len,char);
4475 ptr = (char*) saferealloc (ptr, allocate);
4478 #ifdef Perl_safesysmalloc_size
4479 SvLEN_set(sv, Perl_safesysmalloc_size(ptr));
4481 SvLEN_set(sv, allocate);
4485 if (!(flags & SV_HAS_TRAILING_NUL)) {
4488 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4490 if (flags & SV_SMAGIC)
4494 #ifdef PERL_OLD_COPY_ON_WRITE
4495 /* Need to do this *after* making the SV normal, as we need the buffer
4496 pointer to remain valid until after we've copied it. If we let go too early,
4497 another thread could invalidate it by unsharing last of the same hash key
4498 (which it can do by means other than releasing copy-on-write Svs)
4499 or by changing the other copy-on-write SVs in the loop. */
4501 S_sv_release_COW(pTHX_ register SV *sv, const char *pvx, SV *after)
4503 PERL_ARGS_ASSERT_SV_RELEASE_COW;
4505 { /* this SV was SvIsCOW_normal(sv) */
4506 /* we need to find the SV pointing to us. */
4507 SV *current = SV_COW_NEXT_SV(after);
4509 if (current == sv) {
4510 /* The SV we point to points back to us (there were only two of us
4512 Hence other SV is no longer copy on write either. */
4514 SvREADONLY_off(after);
4516 /* We need to follow the pointers around the loop. */
4518 while ((next = SV_COW_NEXT_SV(current)) != sv) {
4521 /* don't loop forever if the structure is bust, and we have
4522 a pointer into a closed loop. */
4523 assert (current != after);
4524 assert (SvPVX_const(current) == pvx);
4526 /* Make the SV before us point to the SV after us. */
4527 SV_COW_NEXT_SV_SET(current, after);
4533 =for apidoc sv_force_normal_flags
4535 Undo various types of fakery on an SV: if the PV is a shared string, make
4536 a private copy; if we're a ref, stop refing; if we're a glob, downgrade to
4537 an xpvmg; if we're a copy-on-write scalar, this is the on-write time when
4538 we do the copy, and is also used locally. If C<SV_COW_DROP_PV> is set
4539 then a copy-on-write scalar drops its PV buffer (if any) and becomes
4540 SvPOK_off rather than making a copy. (Used where this scalar is about to be
4541 set to some other value.) In addition, the C<flags> parameter gets passed to
4542 C<sv_unref_flags()> when unrefing. C<sv_force_normal> calls this function
4543 with flags set to 0.
4549 Perl_sv_force_normal_flags(pTHX_ register SV *const sv, const U32 flags)
4553 PERL_ARGS_ASSERT_SV_FORCE_NORMAL_FLAGS;
4555 #ifdef PERL_OLD_COPY_ON_WRITE
4556 if (SvREADONLY(sv)) {
4558 const char * const pvx = SvPVX_const(sv);
4559 const STRLEN len = SvLEN(sv);
4560 const STRLEN cur = SvCUR(sv);
4561 /* next COW sv in the loop. If len is 0 then this is a shared-hash
4562 key scalar, so we mustn't attempt to call SV_COW_NEXT_SV(), as
4563 we'll fail an assertion. */
4564 SV * const next = len ? SV_COW_NEXT_SV(sv) : 0;
4567 PerlIO_printf(Perl_debug_log,
4568 "Copy on write: Force normal %ld\n",
4574 /* This SV doesn't own the buffer, so need to Newx() a new one: */
4577 if (flags & SV_COW_DROP_PV) {
4578 /* OK, so we don't need to copy our buffer. */
4581 SvGROW(sv, cur + 1);
4582 Move(pvx,SvPVX(sv),cur,char);
4587 sv_release_COW(sv, pvx, next);
4589 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4595 else if (IN_PERL_RUNTIME)
4596 Perl_croak(aTHX_ "%s", PL_no_modify);
4599 if (SvREADONLY(sv)) {
4601 const char * const pvx = SvPVX_const(sv);
4602 const STRLEN len = SvCUR(sv);
4607 SvGROW(sv, len + 1);
4608 Move(pvx,SvPVX(sv),len,char);
4610 unshare_hek(SvSHARED_HEK_FROM_PV(pvx));
4612 else if (IN_PERL_RUNTIME)
4613 Perl_croak(aTHX_ "%s", PL_no_modify);
4617 sv_unref_flags(sv, flags);
4618 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_PVGV)
4620 else if (SvFAKE(sv) && SvTYPE(sv) == SVt_REGEXP) {
4621 /* Need to downgrade the REGEXP to a simple(r) scalar. This is analagous
4622 to sv_unglob. We only need it here, so inline it. */
4623 const svtype new_type = SvMAGIC(sv) || SvSTASH(sv) ? SVt_PVMG : SVt_PV;
4624 SV *const temp = newSV_type(new_type);
4625 void *const temp_p = SvANY(sv);
4627 if (new_type == SVt_PVMG) {
4628 SvMAGIC_set(temp, SvMAGIC(sv));
4629 SvMAGIC_set(sv, NULL);
4630 SvSTASH_set(temp, SvSTASH(sv));
4631 SvSTASH_set(sv, NULL);
4633 SvCUR_set(temp, SvCUR(sv));
4634 /* Remember that SvPVX is in the head, not the body. */
4636 SvLEN_set(temp, SvLEN(sv));
4637 /* This signals "buffer is owned by someone else" in sv_clear,
4638 which is the least effort way to stop it freeing the buffer.
4640 SvLEN_set(sv, SvLEN(sv)+1);
4642 /* Their buffer is already owned by someone else. */
4643 SvPVX(sv) = savepvn(SvPVX(sv), SvCUR(sv));
4644 SvLEN_set(temp, SvCUR(sv)+1);
4647 /* Now swap the rest of the bodies. */
4649 SvFLAGS(sv) &= ~(SVf_FAKE|SVTYPEMASK);
4650 SvFLAGS(sv) |= new_type;
4651 SvANY(sv) = SvANY(temp);
4653 SvFLAGS(temp) &= ~(SVTYPEMASK);
4654 SvFLAGS(temp) |= SVt_REGEXP|SVf_FAKE;
4655 SvANY(temp) = temp_p;
4664 Efficient removal of characters from the beginning of the string buffer.
4665 SvPOK(sv) must be true and the C<ptr> must be a pointer to somewhere inside
4666 the string buffer. The C<ptr> becomes the first character of the adjusted
4667 string. Uses the "OOK hack".
4668 Beware: after this function returns, C<ptr> and SvPVX_const(sv) may no longer
4669 refer to the same chunk of data.
4675 Perl_sv_chop(pTHX_ register SV *const sv, register const char *const ptr)
4681 const U8 *real_start;
4685 PERL_ARGS_ASSERT_SV_CHOP;
4687 if (!ptr || !SvPOKp(sv))
4689 delta = ptr - SvPVX_const(sv);
4691 /* Nothing to do. */
4694 /* SvPVX(sv) may move in SV_CHECK_THINKFIRST(sv), but after this line,
4695 nothing uses the value of ptr any more. */
4696 max_delta = SvLEN(sv) ? SvLEN(sv) : SvCUR(sv);
4697 if (ptr <= SvPVX_const(sv))
4698 Perl_croak(aTHX_ "panic: sv_chop ptr=%p, start=%p, end=%p",
4699 ptr, SvPVX_const(sv), SvPVX_const(sv) + max_delta);
4700 SV_CHECK_THINKFIRST(sv);
4701 if (delta > max_delta)
4702 Perl_croak(aTHX_ "panic: sv_chop ptr=%p (was %p), start=%p, end=%p",
4703 SvPVX_const(sv) + delta, ptr, SvPVX_const(sv),
4704 SvPVX_const(sv) + max_delta);
4707 if (!SvLEN(sv)) { /* make copy of shared string */
4708 const char *pvx = SvPVX_const(sv);
4709 const STRLEN len = SvCUR(sv);
4710 SvGROW(sv, len + 1);
4711 Move(pvx,SvPVX(sv),len,char);
4714 SvFLAGS(sv) |= SVf_OOK;
4717 SvOOK_offset(sv, old_delta);
4719 SvLEN_set(sv, SvLEN(sv) - delta);
4720 SvCUR_set(sv, SvCUR(sv) - delta);
4721 SvPV_set(sv, SvPVX(sv) + delta);
4723 p = (U8 *)SvPVX_const(sv);
4728 real_start = p - delta;
4732 if (delta < 0x100) {
4736 p -= sizeof(STRLEN);
4737 Copy((U8*)&delta, p, sizeof(STRLEN), U8);
4741 /* Fill the preceding buffer with sentinals to verify that no-one is
4743 while (p > real_start) {
4751 =for apidoc sv_catpvn
4753 Concatenates the string onto the end of the string which is in the SV. The
4754 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4755 status set, then the bytes appended should be valid UTF-8.
4756 Handles 'get' magic, but not 'set' magic. See C<sv_catpvn_mg>.
4758 =for apidoc sv_catpvn_flags
4760 Concatenates the string onto the end of the string which is in the SV. The
4761 C<len> indicates number of bytes to copy. If the SV has the UTF-8
4762 status set, then the bytes appended should be valid UTF-8.
4763 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<dsv> if
4764 appropriate, else not. C<sv_catpvn> and C<sv_catpvn_nomg> are implemented
4765 in terms of this function.
4771 Perl_sv_catpvn_flags(pTHX_ register SV *const dsv, register const char *sstr, register const STRLEN slen, const I32 flags)
4775 const char * const dstr = SvPV_force_flags(dsv, dlen, flags);
4777 PERL_ARGS_ASSERT_SV_CATPVN_FLAGS;
4779 SvGROW(dsv, dlen + slen + 1);
4781 sstr = SvPVX_const(dsv);
4782 Move(sstr, SvPVX(dsv) + dlen, slen, char);
4783 SvCUR_set(dsv, SvCUR(dsv) + slen);
4785 (void)SvPOK_only_UTF8(dsv); /* validate pointer */
4787 if (flags & SV_SMAGIC)
4792 =for apidoc sv_catsv
4794 Concatenates the string from SV C<ssv> onto the end of the string in
4795 SV C<dsv>. Modifies C<dsv> but not C<ssv>. Handles 'get' magic, but
4796 not 'set' magic. See C<sv_catsv_mg>.
4798 =for apidoc sv_catsv_flags
4800 Concatenates the string from SV C<ssv> onto the end of the string in
4801 SV C<dsv>. Modifies C<dsv> but not C<ssv>. If C<flags> has C<SV_GMAGIC>
4802 bit set, will C<mg_get> on the SVs if appropriate, else not. C<sv_catsv>
4803 and C<sv_catsv_nomg> are implemented in terms of this function.
4808 Perl_sv_catsv_flags(pTHX_ SV *const dsv, register SV *const ssv, const I32 flags)
4812 PERL_ARGS_ASSERT_SV_CATSV_FLAGS;
4816 const char *spv = SvPV_const(ssv, slen);
4818 /* sutf8 and dutf8 were type bool, but under USE_ITHREADS,
4819 gcc version 2.95.2 20000220 (Debian GNU/Linux) for
4820 Linux xxx 2.2.17 on sparc64 with gcc -O2, we erroneously
4821 get dutf8 = 0x20000000, (i.e. SVf_UTF8) even though
4822 dsv->sv_flags doesn't have that bit set.
4823 Andy Dougherty 12 Oct 2001
4825 const I32 sutf8 = DO_UTF8(ssv);
4828 if (SvGMAGICAL(dsv) && (flags & SV_GMAGIC))
4830 dutf8 = DO_UTF8(dsv);
4832 if (dutf8 != sutf8) {
4834 /* Not modifying source SV, so taking a temporary copy. */
4835 SV* const csv = newSVpvn_flags(spv, slen, SVs_TEMP);
4837 sv_utf8_upgrade(csv);
4838 spv = SvPV_const(csv, slen);
4841 /* Leave enough space for the cat that's about to happen */
4842 sv_utf8_upgrade_flags_grow(dsv, 0, slen);
4844 sv_catpvn_nomg(dsv, spv, slen);
4847 if (flags & SV_SMAGIC)
4852 =for apidoc sv_catpv
4854 Concatenates the string onto the end of the string which is in the SV.
4855 If the SV has the UTF-8 status set, then the bytes appended should be
4856 valid UTF-8. Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
4861 Perl_sv_catpv(pTHX_ register SV *const sv, register const char *ptr)
4864 register STRLEN len;
4868 PERL_ARGS_ASSERT_SV_CATPV;
4872 junk = SvPV_force(sv, tlen);
4874 SvGROW(sv, tlen + len + 1);
4876 ptr = SvPVX_const(sv);
4877 Move(ptr,SvPVX(sv)+tlen,len+1,char);
4878 SvCUR_set(sv, SvCUR(sv) + len);
4879 (void)SvPOK_only_UTF8(sv); /* validate pointer */
4884 =for apidoc sv_catpv_mg
4886 Like C<sv_catpv>, but also handles 'set' magic.
4892 Perl_sv_catpv_mg(pTHX_ register SV *const sv, register const char *const ptr)
4894 PERL_ARGS_ASSERT_SV_CATPV_MG;
4903 Creates a new SV. A non-zero C<len> parameter indicates the number of
4904 bytes of preallocated string space the SV should have. An extra byte for a
4905 trailing NUL is also reserved. (SvPOK is not set for the SV even if string
4906 space is allocated.) The reference count for the new SV is set to 1.
4908 In 5.9.3, newSV() replaces the older NEWSV() API, and drops the first
4909 parameter, I<x>, a debug aid which allowed callers to identify themselves.
4910 This aid has been superseded by a new build option, PERL_MEM_LOG (see
4911 L<perlhack/PERL_MEM_LOG>). The older API is still there for use in XS
4912 modules supporting older perls.
4918 Perl_newSV(pTHX_ const STRLEN len)
4925 sv_upgrade(sv, SVt_PV);
4926 SvGROW(sv, len + 1);
4931 =for apidoc sv_magicext
4933 Adds magic to an SV, upgrading it if necessary. Applies the
4934 supplied vtable and returns a pointer to the magic added.
4936 Note that C<sv_magicext> will allow things that C<sv_magic> will not.
4937 In particular, you can add magic to SvREADONLY SVs, and add more than
4938 one instance of the same 'how'.
4940 If C<namlen> is greater than zero then a C<savepvn> I<copy> of C<name> is
4941 stored, if C<namlen> is zero then C<name> is stored as-is and - as another
4942 special case - if C<(name && namlen == HEf_SVKEY)> then C<name> is assumed
4943 to contain an C<SV*> and is stored as-is with its REFCNT incremented.
4945 (This is now used as a subroutine by C<sv_magic>.)
4950 Perl_sv_magicext(pTHX_ SV *const sv, SV *const obj, const int how,
4951 const MGVTBL *const vtable, const char *const name, const I32 namlen)
4956 PERL_ARGS_ASSERT_SV_MAGICEXT;
4958 SvUPGRADE(sv, SVt_PVMG);
4959 Newxz(mg, 1, MAGIC);
4960 mg->mg_moremagic = SvMAGIC(sv);
4961 SvMAGIC_set(sv, mg);
4963 /* Sometimes a magic contains a reference loop, where the sv and
4964 object refer to each other. To prevent a reference loop that
4965 would prevent such objects being freed, we look for such loops
4966 and if we find one we avoid incrementing the object refcount.
4968 Note we cannot do this to avoid self-tie loops as intervening RV must
4969 have its REFCNT incremented to keep it in existence.
4972 if (!obj || obj == sv ||
4973 how == PERL_MAGIC_arylen ||
4974 how == PERL_MAGIC_symtab ||
4975 (SvTYPE(obj) == SVt_PVGV &&
4976 (GvSV(obj) == sv || GvHV(obj) == (const HV *)sv
4977 || GvAV(obj) == (const AV *)sv || GvCV(obj) == (const CV *)sv
4978 || GvIOp(obj) == (const IO *)sv || GvFORM(obj) == (const CV *)sv)))
4983 mg->mg_obj = SvREFCNT_inc_simple(obj);
4984 mg->mg_flags |= MGf_REFCOUNTED;
4987 /* Normal self-ties simply pass a null object, and instead of
4988 using mg_obj directly, use the SvTIED_obj macro to produce a
4989 new RV as needed. For glob "self-ties", we are tieing the PVIO
4990 with an RV obj pointing to the glob containing the PVIO. In
4991 this case, to avoid a reference loop, we need to weaken the
4995 if (how == PERL_MAGIC_tiedscalar && SvTYPE(sv) == SVt_PVIO &&
4996 obj && SvROK(obj) && GvIO(SvRV(obj)) == (const IO *)sv)
5002 mg->mg_len = namlen;
5005 mg->mg_ptr = savepvn(name, namlen);
5006 else if (namlen == HEf_SVKEY) {
5007 /* Yes, this is casting away const. This is only for the case of
5008 HEf_SVKEY. I think we need to document this abberation of the
5009 constness of the API, rather than making name non-const, as
5010 that change propagating outwards a long way. */
5011 mg->mg_ptr = (char*)SvREFCNT_inc_simple_NN((SV *)name);
5013 mg->mg_ptr = (char *) name;
5015 mg->mg_virtual = (MGVTBL *) vtable;
5019 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
5024 =for apidoc sv_magic
5026 Adds magic to an SV. First upgrades C<sv> to type C<SVt_PVMG> if necessary,
5027 then adds a new magic item of type C<how> to the head of the magic list.
5029 See C<sv_magicext> (which C<sv_magic> now calls) for a description of the
5030 handling of the C<name> and C<namlen> arguments.
5032 You need to use C<sv_magicext> to add magic to SvREADONLY SVs and also
5033 to add more than one instance of the same 'how'.
5039 Perl_sv_magic(pTHX_ register SV *const sv, SV *const obj, const int how,
5040 const char *const name, const I32 namlen)
5043 const MGVTBL *vtable;
5046 PERL_ARGS_ASSERT_SV_MAGIC;
5048 #ifdef PERL_OLD_COPY_ON_WRITE
5050 sv_force_normal_flags(sv, 0);
5052 if (SvREADONLY(sv)) {
5054 /* its okay to attach magic to shared strings; the subsequent
5055 * upgrade to PVMG will unshare the string */
5056 !(SvFAKE(sv) && SvTYPE(sv) < SVt_PVMG)
5059 && how != PERL_MAGIC_regex_global
5060 && how != PERL_MAGIC_bm
5061 && how != PERL_MAGIC_fm
5062 && how != PERL_MAGIC_sv
5063 && how != PERL_MAGIC_backref
5066 Perl_croak(aTHX_ "%s", PL_no_modify);
5069 if (SvMAGICAL(sv) || (how == PERL_MAGIC_taint && SvTYPE(sv) >= SVt_PVMG)) {
5070 if (SvMAGIC(sv) && (mg = mg_find(sv, how))) {
5071 /* sv_magic() refuses to add a magic of the same 'how' as an
5074 if (how == PERL_MAGIC_taint) {
5076 /* Any scalar which already had taint magic on which someone
5077 (erroneously?) did SvIOK_on() or similar will now be
5078 incorrectly sporting public "OK" flags. */
5079 SvFLAGS(sv) &= ~(SVf_IOK|SVf_NOK|SVf_POK);
5087 vtable = &PL_vtbl_sv;
5089 case PERL_MAGIC_overload:
5090 vtable = &PL_vtbl_amagic;
5092 case PERL_MAGIC_overload_elem:
5093 vtable = &PL_vtbl_amagicelem;
5095 case PERL_MAGIC_overload_table:
5096 vtable = &PL_vtbl_ovrld;
5099 vtable = &PL_vtbl_bm;
5101 case PERL_MAGIC_regdata:
5102 vtable = &PL_vtbl_regdata;
5104 case PERL_MAGIC_regdatum:
5105 vtable = &PL_vtbl_regdatum;
5107 case PERL_MAGIC_env:
5108 vtable = &PL_vtbl_env;
5111 vtable = &PL_vtbl_fm;
5113 case PERL_MAGIC_envelem:
5114 vtable = &PL_vtbl_envelem;
5116 case PERL_MAGIC_regex_global:
5117 vtable = &PL_vtbl_mglob;
5119 case PERL_MAGIC_isa:
5120 vtable = &PL_vtbl_isa;
5122 case PERL_MAGIC_isaelem:
5123 vtable = &PL_vtbl_isaelem;
5125 case PERL_MAGIC_nkeys:
5126 vtable = &PL_vtbl_nkeys;
5128 case PERL_MAGIC_dbfile:
5131 case PERL_MAGIC_dbline:
5132 vtable = &PL_vtbl_dbline;
5134 #ifdef USE_LOCALE_COLLATE
5135 case PERL_MAGIC_collxfrm:
5136 vtable = &PL_vtbl_collxfrm;
5138 #endif /* USE_LOCALE_COLLATE */
5139 case PERL_MAGIC_tied:
5140 vtable = &PL_vtbl_pack;
5142 case PERL_MAGIC_tiedelem:
5143 case PERL_MAGIC_tiedscalar:
5144 vtable = &PL_vtbl_packelem;
5147 vtable = &PL_vtbl_regexp;
5149 case PERL_MAGIC_sig:
5150 vtable = &PL_vtbl_sig;
5152 case PERL_MAGIC_sigelem:
5153 vtable = &PL_vtbl_sigelem;
5155 case PERL_MAGIC_taint:
5156 vtable = &PL_vtbl_taint;
5158 case PERL_MAGIC_uvar:
5159 vtable = &PL_vtbl_uvar;
5161 case PERL_MAGIC_vec:
5162 vtable = &PL_vtbl_vec;
5164 case PERL_MAGIC_arylen_p:
5165 case PERL_MAGIC_rhash:
5166 case PERL_MAGIC_symtab:
5167 case PERL_MAGIC_vstring:
5170 case PERL_MAGIC_utf8:
5171 vtable = &PL_vtbl_utf8;
5173 case PERL_MAGIC_substr:
5174 vtable = &PL_vtbl_substr;
5176 case PERL_MAGIC_defelem:
5177 vtable = &PL_vtbl_defelem;
5179 case PERL_MAGIC_arylen:
5180 vtable = &PL_vtbl_arylen;
5182 case PERL_MAGIC_pos:
5183 vtable = &PL_vtbl_pos;
5185 case PERL_MAGIC_backref:
5186 vtable = &PL_vtbl_backref;
5188 case PERL_MAGIC_hintselem:
5189 vtable = &PL_vtbl_hintselem;
5191 case PERL_MAGIC_hints:
5192 vtable = &PL_vtbl_hints;
5194 case PERL_MAGIC_ext:
5195 /* Reserved for use by extensions not perl internals. */
5196 /* Useful for attaching extension internal data to perl vars. */
5197 /* Note that multiple extensions may clash if magical scalars */
5198 /* etc holding private data from one are passed to another. */
5202 Perl_croak(aTHX_ "Don't know how to handle magic of type \\%o", how);
5205 /* Rest of work is done else where */
5206 mg = sv_magicext(sv,obj,how,vtable,name,namlen);
5209 case PERL_MAGIC_taint:
5212 case PERL_MAGIC_ext:
5213 case PERL_MAGIC_dbfile:
5220 =for apidoc sv_unmagic
5222 Removes all magic of type C<type> from an SV.
5228 Perl_sv_unmagic(pTHX_ SV *const sv, const int type)
5233 PERL_ARGS_ASSERT_SV_UNMAGIC;
5235 if (SvTYPE(sv) < SVt_PVMG || !SvMAGIC(sv))
5237 mgp = &(((XPVMG*) SvANY(sv))->xmg_u.xmg_magic);
5238 for (mg = *mgp; mg; mg = *mgp) {
5239 if (mg->mg_type == type) {
5240 const MGVTBL* const vtbl = mg->mg_virtual;
5241 *mgp = mg->mg_moremagic;
5242 if (vtbl && vtbl->svt_free)
5243 CALL_FPTR(vtbl->svt_free)(aTHX_ sv, mg);
5244 if (mg->mg_ptr && mg->mg_type != PERL_MAGIC_regex_global) {
5246 Safefree(mg->mg_ptr);
5247 else if (mg->mg_len == HEf_SVKEY)
5248 SvREFCNT_dec(MUTABLE_SV(mg->mg_ptr));
5249 else if (mg->mg_type == PERL_MAGIC_utf8)
5250 Safefree(mg->mg_ptr);
5252 if (mg->mg_flags & MGf_REFCOUNTED)
5253 SvREFCNT_dec(mg->mg_obj);
5257 mgp = &mg->mg_moremagic;
5260 if (SvMAGICAL(sv)) /* if we're under save_magic, wait for restore_magic; */
5261 mg_magical(sv); /* else fix the flags now */
5265 SvFLAGS(sv) |= (SvFLAGS(sv) & (SVp_IOK|SVp_NOK|SVp_POK)) >> PRIVSHIFT;
5271 =for apidoc sv_rvweaken
5273 Weaken a reference: set the C<SvWEAKREF> flag on this RV; give the
5274 referred-to SV C<PERL_MAGIC_backref> magic if it hasn't already; and
5275 push a back-reference to this RV onto the array of backreferences
5276 associated with that magic. If the RV is magical, set magic will be
5277 called after the RV is cleared.
5283 Perl_sv_rvweaken(pTHX_ SV *const sv)
5287 PERL_ARGS_ASSERT_SV_RVWEAKEN;
5289 if (!SvOK(sv)) /* let undefs pass */
5292 Perl_croak(aTHX_ "Can't weaken a nonreference");
5293 else if (SvWEAKREF(sv)) {
5294 Perl_ck_warner(aTHX_ packWARN(WARN_MISC), "Reference is already weak");
5298 Perl_sv_add_backref(aTHX_ tsv, sv);
5304 /* Give tsv backref magic if it hasn't already got it, then push a
5305 * back-reference to sv onto the array associated with the backref magic.
5308 /* A discussion about the backreferences array and its refcount:
5310 * The AV holding the backreferences is pointed to either as the mg_obj of
5311 * PERL_MAGIC_backref, or in the specific case of a HV that has the hv_aux
5312 * structure, from the xhv_backreferences field. (A HV without hv_aux will
5313 * have the standard magic instead.) The array is created with a refcount
5314 * of 2. This means that if during global destruction the array gets
5315 * picked on first to have its refcount decremented by the random zapper,
5316 * it won't actually be freed, meaning it's still theere for when its
5317 * parent gets freed.
5318 * When the parent SV is freed, in the case of magic, the magic is freed,
5319 * Perl_magic_killbackrefs is called which decrements one refcount, then
5320 * mg_obj is freed which kills the second count.
5321 * In the vase of a HV being freed, one ref is removed by
5322 * Perl_hv_kill_backrefs, the other by Perl_sv_kill_backrefs, which it
5327 Perl_sv_add_backref(pTHX_ SV *const tsv, SV *const sv)
5332 PERL_ARGS_ASSERT_SV_ADD_BACKREF;
5334 if (SvTYPE(tsv) == SVt_PVHV) {
5335 AV **const avp = Perl_hv_backreferences_p(aTHX_ MUTABLE_HV(tsv));
5339 /* There is no AV in the offical place - try a fixup. */
5340 MAGIC *const mg = mg_find(tsv, PERL_MAGIC_backref);
5343 /* Aha. They've got it stowed in magic. Bring it back. */
5344 av = MUTABLE_AV(mg->mg_obj);
5345 /* Stop mg_free decreasing the refernce count. */
5347 /* Stop mg_free even calling the destructor, given that
5348 there's no AV to free up. */
5350 sv_unmagic(tsv, PERL_MAGIC_backref);
5354 SvREFCNT_inc_simple_void(av); /* see discussion above */
5359 const MAGIC *const mg
5360 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
5362 av = MUTABLE_AV(mg->mg_obj);
5366 sv_magic(tsv, MUTABLE_SV(av), PERL_MAGIC_backref, NULL, 0);
5367 /* av now has a refcnt of 2; see discussion above */
5370 if (AvFILLp(av) >= AvMAX(av)) {
5371 av_extend(av, AvFILLp(av)+1);
5373 AvARRAY(av)[++AvFILLp(av)] = sv; /* av_push() */
5376 /* delete a back-reference to ourselves from the backref magic associated
5377 * with the SV we point to.
5381 S_sv_del_backref(pTHX_ SV *const tsv, SV *const sv)
5388 PERL_ARGS_ASSERT_SV_DEL_BACKREF;
5390 if (SvTYPE(tsv) == SVt_PVHV && SvOOK(tsv)) {
5391 av = *Perl_hv_backreferences_p(aTHX_ MUTABLE_HV(tsv));
5392 /* We mustn't attempt to "fix up" the hash here by moving the
5393 backreference array back to the hv_aux structure, as that is stored
5394 in the main HvARRAY(), and hfreentries assumes that no-one
5395 reallocates HvARRAY() while it is running. */
5398 const MAGIC *const mg
5399 = SvMAGICAL(tsv) ? mg_find(tsv, PERL_MAGIC_backref) : NULL;
5401 av = MUTABLE_AV(mg->mg_obj);
5405 Perl_croak(aTHX_ "panic: del_backref");
5407 assert(!SvIS_FREED(av));
5410 /* We shouldn't be in here more than once, but for paranoia reasons lets
5412 for (i = AvFILLp(av); i >= 0; i--) {
5414 const SSize_t fill = AvFILLp(av);
5416 /* We weren't the last entry.
5417 An unordered list has this property that you can take the
5418 last element off the end to fill the hole, and it's still
5419 an unordered list :-)
5424 AvFILLp(av) = fill - 1;
5430 Perl_sv_kill_backrefs(pTHX_ SV *const sv, AV *const av)
5432 SV **svp = AvARRAY(av);
5434 PERL_ARGS_ASSERT_SV_KILL_BACKREFS;
5435 PERL_UNUSED_ARG(sv);
5437 assert(!svp || !SvIS_FREED(av));
5439 SV *const *const last = svp + AvFILLp(av);
5441 while (svp <= last) {
5443 SV *const referrer = *svp;
5444 if (SvWEAKREF(referrer)) {
5445 /* XXX Should we check that it hasn't changed? */
5446 SvRV_set(referrer, 0);
5448 SvWEAKREF_off(referrer);
5449 SvSETMAGIC(referrer);
5450 } else if (SvTYPE(referrer) == SVt_PVGV ||
5451 SvTYPE(referrer) == SVt_PVLV) {
5452 /* You lookin' at me? */
5453 assert(GvSTASH(referrer));
5454 assert(GvSTASH(referrer) == (const HV *)sv);
5455 GvSTASH(referrer) = 0;
5458 "panic: magic_killbackrefs (flags=%"UVxf")",
5459 (UV)SvFLAGS(referrer));
5467 SvREFCNT_dec(av); /* remove extra count added by sv_add_backref() */
5472 =for apidoc sv_insert
5474 Inserts a string at the specified offset/length within the SV. Similar to
5475 the Perl substr() function. Handles get magic.
5477 =for apidoc sv_insert_flags
5479 Same as C<sv_insert>, but the extra C<flags> are passed the C<SvPV_force_flags> that applies to C<bigstr>.
5485 Perl_sv_insert_flags(pTHX_ SV *const bigstr, const STRLEN offset, const STRLEN len, const char *const little, const STRLEN littlelen, const U32 flags)
5490 register char *midend;
5491 register char *bigend;
5495 PERL_ARGS_ASSERT_SV_INSERT_FLAGS;
5498 Perl_croak(aTHX_ "Can't modify non-existent substring");
5499 SvPV_force_flags(bigstr, curlen, flags);
5500 (void)SvPOK_only_UTF8(bigstr);
5501 if (offset + len > curlen) {
5502 SvGROW(bigstr, offset+len+1);
5503 Zero(SvPVX(bigstr)+curlen, offset+len-curlen, char);
5504 SvCUR_set(bigstr, offset+len);
5508 i = littlelen - len;
5509 if (i > 0) { /* string might grow */
5510 big = SvGROW(bigstr, SvCUR(bigstr) + i + 1);
5511 mid = big + offset + len;
5512 midend = bigend = big + SvCUR(bigstr);
5515 while (midend > mid) /* shove everything down */
5516 *--bigend = *--midend;
5517 Move(little,big+offset,littlelen,char);
5518 SvCUR_set(bigstr, SvCUR(bigstr) + i);
5523 Move(little,SvPVX(bigstr)+offset,len,char);
5528 big = SvPVX(bigstr);
5531 bigend = big + SvCUR(bigstr);
5533 if (midend > bigend)
5534 Perl_croak(aTHX_ "panic: sv_insert");
5536 if (mid - big > bigend - midend) { /* faster to shorten from end */
5538 Move(little, mid, littlelen,char);
5541 i = bigend - midend;
5543 Move(midend, mid, i,char);
5547 SvCUR_set(bigstr, mid - big);
5549 else if ((i = mid - big)) { /* faster from front */
5550 midend -= littlelen;
5552 Move(big, midend - i, i, char);
5553 sv_chop(bigstr,midend-i);
5555 Move(little, mid, littlelen,char);
5557 else if (littlelen) {
5558 midend -= littlelen;
5559 sv_chop(bigstr,midend);
5560 Move(little,midend,littlelen,char);
5563 sv_chop(bigstr,midend);
5569 =for apidoc sv_replace
5571 Make the first argument a copy of the second, then delete the original.
5572 The target SV physically takes over ownership of the body of the source SV
5573 and inherits its flags; however, the target keeps any magic it owns,
5574 and any magic in the source is discarded.
5575 Note that this is a rather specialist SV copying operation; most of the
5576 time you'll want to use C<sv_setsv> or one of its many macro front-ends.
5582 Perl_sv_replace(pTHX_ register SV *const sv, register SV *const nsv)
5585 const U32 refcnt = SvREFCNT(sv);
5587 PERL_ARGS_ASSERT_SV_REPLACE;
5589 SV_CHECK_THINKFIRST_COW_DROP(sv);
5590 if (SvREFCNT(nsv) != 1) {
5591 Perl_croak(aTHX_ "panic: reference miscount on nsv in sv_replace()"
5592 " (%" UVuf " != 1)", (UV) SvREFCNT(nsv));
5594 if (SvMAGICAL(sv)) {
5598 sv_upgrade(nsv, SVt_PVMG);
5599 SvMAGIC_set(nsv, SvMAGIC(sv));
5600 SvFLAGS(nsv) |= SvMAGICAL(sv);
5602 SvMAGIC_set(sv, NULL);
5606 assert(!SvREFCNT(sv));
5607 #ifdef DEBUG_LEAKING_SCALARS
5608 sv->sv_flags = nsv->sv_flags;
5609 sv->sv_any = nsv->sv_any;
5610 sv->sv_refcnt = nsv->sv_refcnt;
5611 sv->sv_u = nsv->sv_u;
5613 StructCopy(nsv,sv,SV);
5615 if(SvTYPE(sv) == SVt_IV) {
5617 = (XPVIV*)((char*)&(sv->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
5621 #ifdef PERL_OLD_COPY_ON_WRITE
5622 if (SvIsCOW_normal(nsv)) {
5623 /* We need to follow the pointers around the loop to make the
5624 previous SV point to sv, rather than nsv. */
5627 while ((next = SV_COW_NEXT_SV(current)) != nsv) {
5630 assert(SvPVX_const(current) == SvPVX_const(nsv));
5632 /* Make the SV before us point to the SV after us. */
5634 PerlIO_printf(Perl_debug_log, "previous is\n");
5636 PerlIO_printf(Perl_debug_log,
5637 "move it from 0x%"UVxf" to 0x%"UVxf"\n",
5638 (UV) SV_COW_NEXT_SV(current), (UV) sv);
5640 SV_COW_NEXT_SV_SET(current, sv);
5643 SvREFCNT(sv) = refcnt;
5644 SvFLAGS(nsv) |= SVTYPEMASK; /* Mark as freed */
5650 =for apidoc sv_clear
5652 Clear an SV: call any destructors, free up any memory used by the body,
5653 and free the body itself. The SV's head is I<not> freed, although
5654 its type is set to all 1's so that it won't inadvertently be assumed
5655 to be live during global destruction etc.
5656 This function should only be called when REFCNT is zero. Most of the time
5657 you'll want to call C<sv_free()> (or its macro wrapper C<SvREFCNT_dec>)
5664 Perl_sv_clear(pTHX_ register SV *const sv)
5667 const U32 type = SvTYPE(sv);
5668 const struct body_details *const sv_type_details
5669 = bodies_by_type + type;
5672 PERL_ARGS_ASSERT_SV_CLEAR;
5673 assert(SvREFCNT(sv) == 0);
5674 assert(SvTYPE(sv) != SVTYPEMASK);
5676 if (type <= SVt_IV) {
5677 /* See the comment in sv.h about the collusion between this early
5678 return and the overloading of the NULL slots in the size table. */
5681 SvFLAGS(sv) &= SVf_BREAK;
5682 SvFLAGS(sv) |= SVTYPEMASK;
5687 if (PL_defstash && /* Still have a symbol table? */
5694 stash = SvSTASH(sv);
5695 destructor = StashHANDLER(stash,DESTROY);
5697 /* A constant subroutine can have no side effects, so
5698 don't bother calling it. */
5699 && !CvCONST(destructor)
5700 /* Don't bother calling an empty destructor */
5701 && (CvISXSUB(destructor)
5702 || (CvSTART(destructor)
5703 && (CvSTART(destructor)->op_next->op_type != OP_LEAVESUB))))
5705 SV* const tmpref = newRV(sv);
5706 SvREADONLY_on(tmpref); /* DESTROY() could be naughty */
5708 PUSHSTACKi(PERLSI_DESTROY);
5713 call_sv(MUTABLE_SV(destructor), G_DISCARD|G_EVAL|G_KEEPERR|G_VOID);
5719 if(SvREFCNT(tmpref) < 2) {
5720 /* tmpref is not kept alive! */
5722 SvRV_set(tmpref, NULL);
5725 SvREFCNT_dec(tmpref);
5727 } while (SvOBJECT(sv) && SvSTASH(sv) != stash);
5731 if (PL_in_clean_objs)
5732 Perl_croak(aTHX_ "DESTROY created new reference to dead object '%s'",
5734 /* DESTROY gave object new lease on life */
5740 SvREFCNT_dec(SvSTASH(sv)); /* possibly of changed persuasion */
5741 SvOBJECT_off(sv); /* Curse the object. */
5742 if (type != SVt_PVIO)
5743 --PL_sv_objcount; /* XXX Might want something more general */
5746 if (type >= SVt_PVMG) {
5747 if (type == SVt_PVMG && SvPAD_OUR(sv)) {
5748 SvREFCNT_dec(SvOURSTASH(sv));
5749 } else if (SvMAGIC(sv))
5751 if (type == SVt_PVMG && SvPAD_TYPED(sv))
5752 SvREFCNT_dec(SvSTASH(sv));
5755 /* case SVt_BIND: */
5758 IoIFP(sv) != PerlIO_stdin() &&
5759 IoIFP(sv) != PerlIO_stdout() &&
5760 IoIFP(sv) != PerlIO_stderr())
5762 io_close(MUTABLE_IO(sv), FALSE);
5764 if (IoDIRP(sv) && !(IoFLAGS(sv) & IOf_FAKE_DIRP))
5765 PerlDir_close(IoDIRP(sv));
5766 IoDIRP(sv) = (DIR*)NULL;
5767 Safefree(IoTOP_NAME(sv));
5768 Safefree(IoFMT_NAME(sv));
5769 Safefree(IoBOTTOM_NAME(sv));
5772 /* FIXME for plugins */
5773 pregfree2((REGEXP*) sv);
5777 cv_undef(MUTABLE_CV(sv));
5780 if (PL_last_swash_hv == (const HV *)sv) {
5781 PL_last_swash_hv = NULL;
5783 Perl_hv_kill_backrefs(aTHX_ MUTABLE_HV(sv));
5784 hv_undef(MUTABLE_HV(sv));
5787 if (PL_comppad == MUTABLE_AV(sv)) {
5791 av_undef(MUTABLE_AV(sv));
5794 if (LvTYPE(sv) == 'T') { /* for tie: return HE to pool */
5795 SvREFCNT_dec(HeKEY_sv((HE*)LvTARG(sv)));
5796 HeNEXT((HE*)LvTARG(sv)) = PL_hv_fetch_ent_mh;
5797 PL_hv_fetch_ent_mh = (HE*)LvTARG(sv);
5799 else if (LvTYPE(sv) != 't') /* unless tie: unrefcnted fake SV** */
5800 SvREFCNT_dec(LvTARG(sv));
5802 if (isGV_with_GP(sv)) {
5803 if(GvCVu((const GV *)sv) && (stash = GvSTASH(MUTABLE_GV(sv)))
5804 && HvNAME_get(stash))
5805 mro_method_changed_in(stash);
5806 gp_free(MUTABLE_GV(sv));
5808 unshare_hek(GvNAME_HEK(sv));
5809 /* If we're in a stash, we don't own a reference to it. However it does
5810 have a back reference to us, which needs to be cleared. */
5811 if (!SvVALID(sv) && (stash = GvSTASH(sv)))
5812 sv_del_backref(MUTABLE_SV(stash), sv);
5814 /* FIXME. There are probably more unreferenced pointers to SVs in the
5815 interpreter struct that we should check and tidy in a similar
5817 if ((const GV *)sv == PL_last_in_gv)
5818 PL_last_in_gv = NULL;
5824 /* Don't bother with SvOOK_off(sv); as we're only going to free it. */
5827 SvOOK_offset(sv, offset);
5828 SvPV_set(sv, SvPVX_mutable(sv) - offset);
5829 /* Don't even bother with turning off the OOK flag. */
5834 SV * const target = SvRV(sv);
5836 sv_del_backref(target, sv);
5838 SvREFCNT_dec(target);
5841 #ifdef PERL_OLD_COPY_ON_WRITE
5842 else if (SvPVX_const(sv)) {
5845 PerlIO_printf(Perl_debug_log, "Copy on write: clear\n");
5849 sv_release_COW(sv, SvPVX_const(sv), SV_COW_NEXT_SV(sv));
5851 unshare_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sv)));
5855 } else if (SvLEN(sv)) {
5856 Safefree(SvPVX_const(sv));
5860 else if (SvPVX_const(sv) && SvLEN(sv))
5861 Safefree(SvPVX_mutable(sv));
5862 else if (SvPVX_const(sv) && SvREADONLY(sv) && SvFAKE(sv)) {
5863 unshare_hek(SvSHARED_HEK_FROM_PV(SvPVX_const(sv)));
5872 SvFLAGS(sv) &= SVf_BREAK;
5873 SvFLAGS(sv) |= SVTYPEMASK;
5875 if (sv_type_details->arena) {
5876 del_body(((char *)SvANY(sv) + sv_type_details->offset),
5877 &PL_body_roots[type]);
5879 else if (sv_type_details->body_size) {
5880 my_safefree(SvANY(sv));
5885 =for apidoc sv_newref
5887 Increment an SV's reference count. Use the C<SvREFCNT_inc()> wrapper
5894 Perl_sv_newref(pTHX_ SV *const sv)
5896 PERL_UNUSED_CONTEXT;
5905 Decrement an SV's reference count, and if it drops to zero, call
5906 C<sv_clear> to invoke destructors and free up any memory used by
5907 the body; finally, deallocate the SV's head itself.
5908 Normally called via a wrapper macro C<SvREFCNT_dec>.
5914 Perl_sv_free(pTHX_ SV *const sv)
5919 if (SvREFCNT(sv) == 0) {
5920 if (SvFLAGS(sv) & SVf_BREAK)
5921 /* this SV's refcnt has been artificially decremented to
5922 * trigger cleanup */
5924 if (PL_in_clean_all) /* All is fair */
5926 if (SvREADONLY(sv) && SvIMMORTAL(sv)) {
5927 /* make sure SvREFCNT(sv)==0 happens very seldom */
5928 SvREFCNT(sv) = (~(U32)0)/2;
5931 if (ckWARN_d(WARN_INTERNAL)) {
5932 #ifdef DEBUG_LEAKING_SCALARS_FORK_DUMP
5933 Perl_dump_sv_child(aTHX_ sv);
5935 #ifdef DEBUG_LEAKING_SCALARS
5938 #ifdef DEBUG_LEAKING_SCALARS_ABORT
5939 if (PL_warnhook == PERL_WARNHOOK_FATAL
5940 || ckDEAD(packWARN(WARN_INTERNAL))) {
5941 /* Don't let Perl_warner cause us to escape our fate: */
5945 /* This may not return: */
5946 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
5947 "Attempt to free unreferenced scalar: SV 0x%"UVxf
5948 pTHX__FORMAT, PTR2UV(sv) pTHX__VALUE);
5951 #ifdef DEBUG_LEAKING_SCALARS_ABORT
5956 if (--(SvREFCNT(sv)) > 0)
5958 Perl_sv_free2(aTHX_ sv);
5962 Perl_sv_free2(pTHX_ SV *const sv)
5966 PERL_ARGS_ASSERT_SV_FREE2;
5970 Perl_ck_warner_d(aTHX_ packWARN(WARN_DEBUGGING),
5971 "Attempt to free temp prematurely: SV 0x%"UVxf
5972 pTHX__FORMAT, PTR2UV(sv) pTHX__VALUE);
5976 if (SvREADONLY(sv) && SvIMMORTAL(sv)) {
5977 /* make sure SvREFCNT(sv)==0 happens very seldom */
5978 SvREFCNT(sv) = (~(U32)0)/2;
5989 Returns the length of the string in the SV. Handles magic and type
5990 coercion. See also C<SvCUR>, which gives raw access to the xpv_cur slot.
5996 Perl_sv_len(pTHX_ register SV *const sv)
6004 len = mg_length(sv);
6006 (void)SvPV_const(sv, len);
6011 =for apidoc sv_len_utf8
6013 Returns the number of characters in the string in an SV, counting wide
6014 UTF-8 bytes as a single character. Handles magic and type coercion.
6020 * The length is cached in PERL_MAGIC_utf8, in the mg_len field. Also the
6021 * mg_ptr is used, by sv_pos_u2b() and sv_pos_b2u() - see the comments below.
6022 * (Note that the mg_len is not the length of the mg_ptr field.
6023 * This allows the cache to store the character length of the string without
6024 * needing to malloc() extra storage to attach to the mg_ptr.)
6029 Perl_sv_len_utf8(pTHX_ register SV *const sv)
6035 return mg_length(sv);
6039 const U8 *s = (U8*)SvPV_const(sv, len);
6043 MAGIC *mg = SvMAGICAL(sv) ? mg_find(sv, PERL_MAGIC_utf8) : NULL;
6045 if (mg && mg->mg_len != -1) {
6047 if (PL_utf8cache < 0) {
6048 const STRLEN real = Perl_utf8_length(aTHX_ s, s + len);
6050 /* Need to turn the assertions off otherwise we may
6051 recurse infinitely while printing error messages.
6053 SAVEI8(PL_utf8cache);
6055 Perl_croak(aTHX_ "panic: sv_len_utf8 cache %"UVuf
6056 " real %"UVuf" for %"SVf,
6057 (UV) ulen, (UV) real, SVfARG(sv));
6062 ulen = Perl_utf8_length(aTHX_ s, s + len);
6063 if (!SvREADONLY(sv)) {
6064 if (!mg && (SvTYPE(sv) < SVt_PVMG ||
6065 !(mg = mg_find(sv, PERL_MAGIC_utf8)))) {
6066 mg = sv_magicext(sv, 0, PERL_MAGIC_utf8,
6067 &PL_vtbl_utf8, 0, 0);
6071 /* For now, treat "overflowed" as "still unknown".
6073 if (ulen != (STRLEN) mg->mg_len)
6079 return Perl_utf8_length(aTHX_ s, s + len);
6083 /* Walk forwards to find the byte corresponding to the passed in UTF-8
6086 S_sv_pos_u2b_forwards(const U8 *const start, const U8 *const send,
6089 const U8 *s = start;
6091 PERL_ARGS_ASSERT_SV_POS_U2B_FORWARDS;
6093 while (s < send && uoffset--)
6096 /* This is the existing behaviour. Possibly it should be a croak, as
6097 it's actually a bounds error */
6103 /* Given the length of the string in both bytes and UTF-8 characters, decide
6104 whether to walk forwards or backwards to find the byte corresponding to
6105 the passed in UTF-8 offset. */
6107 S_sv_pos_u2b_midway(const U8 *const start, const U8 *send,
6108 const STRLEN uoffset, const STRLEN uend)
6110 STRLEN backw = uend - uoffset;
6112 PERL_ARGS_ASSERT_SV_POS_U2B_MIDWAY;
6114 if (uoffset < 2 * backw) {
6115 /* The assumption is that going forwards is twice the speed of going
6116 forward (that's where the 2 * backw comes from).
6117 (The real figure of course depends on the UTF-8 data.) */
6118 return sv_pos_u2b_forwards(start, send, uoffset);
6123 while (UTF8_IS_CONTINUATION(*send))
6126 return send - start;
6129 /* For the string representation of the given scalar, find the byte
6130 corresponding to the passed in UTF-8 offset. uoffset0 and boffset0
6131 give another position in the string, *before* the sought offset, which
6132 (which is always true, as 0, 0 is a valid pair of positions), which should
6133 help reduce the amount of linear searching.
6134 If *mgp is non-NULL, it should point to the UTF-8 cache magic, which
6135 will be used to reduce the amount of linear searching. The cache will be
6136 created if necessary, and the found value offered to it for update. */
6138 S_sv_pos_u2b_cached(pTHX_ SV *const sv, MAGIC **const mgp, const U8 *const start,
6139 const U8 *const send, const STRLEN uoffset,
6140 STRLEN uoffset0, STRLEN boffset0)
6142 STRLEN boffset = 0; /* Actually always set, but let's keep gcc happy. */
6145 PERL_ARGS_ASSERT_SV_POS_U2B_CACHED;
6147 assert (uoffset >= uoffset0);
6151 && (*mgp || (SvTYPE(sv) >= SVt_PVMG &&
6152 (*mgp = mg_find(sv, PERL_MAGIC_utf8))))) {
6153 if ((*mgp)->mg_ptr) {
6154 STRLEN *cache = (STRLEN *) (*mgp)->mg_ptr;
6155 if (cache[0] == uoffset) {
6156 /* An exact match. */
6159 if (cache[2] == uoffset) {
6160 /* An exact match. */
6164 if (cache[0] < uoffset) {
6165 /* The cache already knows part of the way. */
6166 if (cache[0] > uoffset0) {
6167 /* The cache knows more than the passed in pair */
6168 uoffset0 = cache[0];
6169 boffset0 = cache[1];
6171 if ((*mgp)->mg_len != -1) {
6172 /* And we know the end too. */
6174 + sv_pos_u2b_midway(start + boffset0, send,
6176 (*mgp)->mg_len - uoffset0);
6179 + sv_pos_u2b_forwards(start + boffset0,
6180 send, uoffset - uoffset0);
6183 else if (cache[2] < uoffset) {
6184 /* We're between the two cache entries. */
6185 if (cache[2] > uoffset0) {
6186 /* and the cache knows more than the passed in pair */
6187 uoffset0 = cache[2];
6188 boffset0 = cache[3];
6192 + sv_pos_u2b_midway(start + boffset0,
6195 cache[0] - uoffset0);
6198 + sv_pos_u2b_midway(start + boffset0,
6201 cache[2] - uoffset0);
6205 else if ((*mgp)->mg_len != -1) {
6206 /* If we can take advantage of a passed in offset, do so. */
6207 /* In fact, offset0 is either 0, or less than offset, so don't
6208 need to worry about the other possibility. */
6210 + sv_pos_u2b_midway(start + boffset0, send,
6212 (*mgp)->mg_len - uoffset0);
6217 if (!found || PL_utf8cache < 0) {
6218 const STRLEN real_boffset
6219 = boffset0 + sv_pos_u2b_forwards(start + boffset0,
6220 send, uoffset - uoffset0);
6222 if (found && PL_utf8cache < 0) {
6223 if (real_boffset != boffset) {
6224 /* Need to turn the assertions off otherwise we may recurse
6225 infinitely while printing error messages. */
6226 SAVEI8(PL_utf8cache);
6228 Perl_croak(aTHX_ "panic: sv_pos_u2b_cache cache %"UVuf
6229 " real %"UVuf" for %"SVf,
6230 (UV) boffset, (UV) real_boffset, SVfARG(sv));
6233 boffset = real_boffset;
6237 utf8_mg_pos_cache_update(sv, mgp, boffset, uoffset, send - start);
6243 =for apidoc sv_pos_u2b_flags
6245 Converts the value pointed to by offsetp from a count of UTF-8 chars from
6246 the start of the string, to a count of the equivalent number of bytes; if
6247 lenp is non-zero, it does the same to lenp, but this time starting from
6248 the offset, rather than from the start of the string. Handles type coercion.
6249 I<flags> is passed to C<SvPV_flags>, and usually should be
6250 C<SV_GMAGIC|SV_CONST_RETURN> to handle magic.
6256 * sv_pos_u2b_flags() uses, like sv_pos_b2u(), the mg_ptr of the potential
6257 * PERL_MAGIC_utf8 of the sv to store the mapping between UTF-8 and
6258 * byte offsets. See also the comments of S_utf8_mg_pos_cache_update().
6263 Perl_sv_pos_u2b_flags(pTHX_ SV *const sv, STRLEN uoffset, STRLEN *const lenp,
6270 PERL_ARGS_ASSERT_SV_POS_U2B_FLAGS;
6272 start = (U8*)SvPV_flags(sv, len, flags);
6274 const U8 * const send = start + len;
6276 boffset = sv_pos_u2b_cached(sv, &mg, start, send, uoffset, 0, 0);
6279 /* Convert the relative offset to absolute. */
6280 const STRLEN uoffset2 = uoffset + *lenp;
6281 const STRLEN boffset2
6282 = sv_pos_u2b_cached(sv, &mg, start, send, uoffset2,
6283 uoffset, boffset) - boffset;
6297 =for apidoc sv_pos_u2b
6299 Converts the value pointed to by offsetp from a count of UTF-8 chars from
6300 the start of the string, to a count of the equivalent number of bytes; if
6301 lenp is non-zero, it does the same to lenp, but this time starting from
6302 the offset, rather than from the start of the string. Handles magic and
6305 Use C<sv_pos_u2b_flags> in preference, which correctly handles strings longer
6312 * sv_pos_u2b() uses, like sv_pos_b2u(), the mg_ptr of the potential
6313 * PERL_MAGIC_utf8 of the sv to store the mapping between UTF-8 and
6314 * byte offsets. See also the comments of S_utf8_mg_pos_cache_update().
6318 /* This function is subject to size and sign problems */
6321 Perl_sv_pos_u2b(pTHX_ register SV *const sv, I32 *const offsetp, I32 *const lenp)
6323 PERL_ARGS_ASSERT_SV_POS_U2B;
6326 STRLEN ulen = (STRLEN)*lenp;
6327 *offsetp = (I32)sv_pos_u2b_flags(sv, (STRLEN)*offsetp, &ulen,
6328 SV_GMAGIC|SV_CONST_RETURN);
6331 *offsetp = (I32)sv_pos_u2b_flags(sv, (STRLEN)*offsetp, NULL,
6332 SV_GMAGIC|SV_CONST_RETURN);
6336 /* Create and update the UTF8 magic offset cache, with the proffered utf8/
6337 byte length pairing. The (byte) length of the total SV is passed in too,
6338 as blen, because for some (more esoteric) SVs, the call to SvPV_const()
6339 may not have updated SvCUR, so we can't rely on reading it directly.
6341 The proffered utf8/byte length pairing isn't used if the cache already has
6342 two pairs, and swapping either for the proffered pair would increase the
6343 RMS of the intervals between known byte offsets.
6345 The cache itself consists of 4 STRLEN values
6346 0: larger UTF-8 offset
6347 1: corresponding byte offset
6348 2: smaller UTF-8 offset
6349 3: corresponding byte offset
6351 Unused cache pairs have the value 0, 0.
6352 Keeping the cache "backwards" means that the invariant of
6353 cache[0] >= cache[2] is maintained even with empty slots, which means that
6354 the code that uses it doesn't need to worry if only 1 entry has actually
6355 been set to non-zero. It also makes the "position beyond the end of the
6356 cache" logic much simpler, as the first slot is always the one to start
6360 S_utf8_mg_pos_cache_update(pTHX_ SV *const sv, MAGIC **const mgp, const STRLEN byte,
6361 const STRLEN utf8, const STRLEN blen)
6365 PERL_ARGS_ASSERT_UTF8_MG_POS_CACHE_UPDATE;
6370 if (!*mgp && (SvTYPE(sv) < SVt_PVMG ||
6371 !(*mgp = mg_find(sv, PERL_MAGIC_utf8)))) {
6372 *mgp = sv_magicext(sv, 0, PERL_MAGIC_utf8, (MGVTBL*)&PL_vtbl_utf8, 0,
6374 (*mgp)->mg_len = -1;
6378 if (!(cache = (STRLEN *)(*mgp)->mg_ptr)) {
6379 Newxz(cache, PERL_MAGIC_UTF8_CACHESIZE * 2, STRLEN);
6380 (*mgp)->mg_ptr = (char *) cache;
6384 if (PL_utf8cache < 0 && SvPOKp(sv)) {
6385 /* SvPOKp() because it's possible that sv has string overloading, and
6386 therefore is a reference, hence SvPVX() is actually a pointer.
6387 This cures the (very real) symptoms of RT 69422, but I'm not actually
6388 sure whether we should even be caching the results of UTF-8
6389 operations on overloading, given that nothing stops overloading
6390 returning a different value every time it's called. */
6391 const U8 *start = (const U8 *) SvPVX_const(sv);
6392 const STRLEN realutf8 = utf8_length(start, start + byte);
6394 if (realutf8 != utf8) {
6395 /* Need to turn the assertions off otherwise we may recurse
6396 infinitely while printing error messages. */
6397 SAVEI8(PL_utf8cache);
6399 Perl_croak(aTHX_ "panic: utf8_mg_pos_cache_update cache %"UVuf
6400 " real %"UVuf" for %"SVf, (UV) utf8, (UV) realutf8, SVfARG(sv));
6404 /* Cache is held with the later position first, to simplify the code
6405 that deals with unbounded ends. */
6407 ASSERT_UTF8_CACHE(cache);
6408 if (cache[1] == 0) {
6409 /* Cache is totally empty */
6412 } else if (cache[3] == 0) {
6413 if (byte > cache[1]) {
6414 /* New one is larger, so goes first. */
6415 cache[2] = cache[0];
6416 cache[3] = cache[1];
6424 #define THREEWAY_SQUARE(a,b,c,d) \
6425 ((float)((d) - (c))) * ((float)((d) - (c))) \
6426 + ((float)((c) - (b))) * ((float)((c) - (b))) \
6427 + ((float)((b) - (a))) * ((float)((b) - (a)))
6429 /* Cache has 2 slots in use, and we know three potential pairs.
6430 Keep the two that give the lowest RMS distance. Do the
6431 calcualation in bytes simply because we always know the byte
6432 length. squareroot has the same ordering as the positive value,
6433 so don't bother with the actual square root. */
6434 const float existing = THREEWAY_SQUARE(0, cache[3], cache[1], blen);
6435 if (byte > cache[1]) {
6436 /* New position is after the existing pair of pairs. */
6437 const float keep_earlier
6438 = THREEWAY_SQUARE(0, cache[3], byte, blen);
6439 const float keep_later
6440 = THREEWAY_SQUARE(0, cache[1], byte, blen);
6442 if (keep_later < keep_earlier) {
6443 if (keep_later < existing) {
6444 cache[2] = cache[0];
6445 cache[3] = cache[1];
6451 if (keep_earlier < existing) {
6457 else if (byte > cache[3]) {
6458 /* New position is between the existing pair of pairs. */
6459 const float keep_earlier
6460 = THREEWAY_SQUARE(0, cache[3], byte, blen);
6461 const float keep_later
6462 = THREEWAY_SQUARE(0, byte, cache[1], blen);
6464 if (keep_later < keep_earlier) {
6465 if (keep_later < existing) {
6471 if (keep_earlier < existing) {
6478 /* New position is before the existing pair of pairs. */
6479 const float keep_earlier
6480 = THREEWAY_SQUARE(0, byte, cache[3], blen);
6481 const float keep_later
6482 = THREEWAY_SQUARE(0, byte, cache[1], blen);
6484 if (keep_later < keep_earlier) {
6485 if (keep_later < existing) {
6491 if (keep_earlier < existing) {
6492 cache[0] = cache[2];
6493 cache[1] = cache[3];
6500 ASSERT_UTF8_CACHE(cache);
6503 /* We already know all of the way, now we may be able to walk back. The same
6504 assumption is made as in S_sv_pos_u2b_midway(), namely that walking
6505 backward is half the speed of walking forward. */
6507 S_sv_pos_b2u_midway(pTHX_ const U8 *const s, const U8 *const target,
6508 const U8 *end, STRLEN endu)
6510 const STRLEN forw = target - s;
6511 STRLEN backw = end - target;
6513 PERL_ARGS_ASSERT_SV_POS_B2U_MIDWAY;
6515 if (forw < 2 * backw) {
6516 return utf8_length(s, target);
6519 while (end > target) {
6521 while (UTF8_IS_CONTINUATION(*end)) {
6530 =for apidoc sv_pos_b2u
6532 Converts the value pointed to by offsetp from a count of bytes from the
6533 start of the string, to a count of the equivalent number of UTF-8 chars.
6534 Handles magic and type coercion.
6540 * sv_pos_b2u() uses, like sv_pos_u2b(), the mg_ptr of the potential
6541 * PERL_MAGIC_utf8 of the sv to store the mapping between UTF-8 and
6546 Perl_sv_pos_b2u(pTHX_ register SV *const sv, I32 *const offsetp)
6549 const STRLEN byte = *offsetp;
6550 STRLEN len = 0; /* Actually always set, but let's keep gcc happy. */
6556 PERL_ARGS_ASSERT_SV_POS_B2U;
6561 s = (const U8*)SvPV_const(sv, blen);
6564 Perl_croak(aTHX_ "panic: sv_pos_b2u: bad byte offset");
6570 && SvTYPE(sv) >= SVt_PVMG
6571 && (mg = mg_find(sv, PERL_MAGIC_utf8)))
6574 STRLEN * const cache = (STRLEN *) mg->mg_ptr;
6575 if (cache[1] == byte) {
6576 /* An exact match. */
6577 *offsetp = cache[0];
6580 if (cache[3] == byte) {
6581 /* An exact match. */
6582 *offsetp = cache[2];
6586 if (cache[1] < byte) {
6587 /* We already know part of the way. */
6588 if (mg->mg_len != -1) {
6589 /* Actually, we know the end too. */
6591 + S_sv_pos_b2u_midway(aTHX_ s + cache[1], send,
6592 s + blen, mg->mg_len - cache[0]);
6594 len = cache[0] + utf8_length(s + cache[1], send);
6597 else if (cache[3] < byte) {
6598 /* We're between the two cached pairs, so we do the calculation
6599 offset by the byte/utf-8 positions for the earlier pair,
6600 then add the utf-8 characters from the string start to
6602 len = S_sv_pos_b2u_midway(aTHX_ s + cache[3], send,
6603 s + cache[1], cache[0] - cache[2])
6607 else { /* cache[3] > byte */
6608 len = S_sv_pos_b2u_midway(aTHX_ s, send, s + cache[3],
6612 ASSERT_UTF8_CACHE(cache);
6614 } else if (mg->mg_len != -1) {
6615 len = S_sv_pos_b2u_midway(aTHX_ s, send, s + blen, mg->mg_len);
6619 if (!found || PL_utf8cache < 0) {
6620 const STRLEN real_len = utf8_length(s, send);
6622 if (found && PL_utf8cache < 0) {
6623 if (len != real_len) {
6624 /* Need to turn the assertions off otherwise we may recurse
6625 infinitely while printing error messages. */
6626 SAVEI8(PL_utf8cache);
6628 Perl_croak(aTHX_ "panic: sv_pos_b2u cache %"UVuf
6629 " real %"UVuf" for %"SVf,
6630 (UV) len, (UV) real_len, SVfARG(sv));
6638 utf8_mg_pos_cache_update(sv, &mg, byte, len, blen);
6644 Returns a boolean indicating whether the strings in the two SVs are
6645 identical. Is UTF-8 and 'use bytes' aware, handles get magic, and will
6646 coerce its args to strings if necessary.
6652 Perl_sv_eq(pTHX_ register SV *sv1, register SV *sv2)
6661 SV* svrecode = NULL;
6668 /* if pv1 and pv2 are the same, second SvPV_const call may
6669 * invalidate pv1, so we may need to make a copy */
6670 if (sv1 == sv2 && (SvTHINKFIRST(sv1) || SvGMAGICAL(sv1))) {
6671 pv1 = SvPV_const(sv1, cur1);
6672 sv1 = newSVpvn_flags(pv1, cur1, SVs_TEMP | SvUTF8(sv2));
6674 pv1 = SvPV_const(sv1, cur1);
6682 pv2 = SvPV_const(sv2, cur2);
6684 if (cur1 && cur2 && SvUTF8(sv1) != SvUTF8(sv2) && !IN_BYTES) {
6685 /* Differing utf8ness.
6686 * Do not UTF8size the comparands as a side-effect. */
6689 svrecode = newSVpvn(pv2, cur2);
6690 sv_recode_to_utf8(svrecode, PL_encoding);
6691 pv2 = SvPV_const(svrecode, cur2);
6694 svrecode = newSVpvn(pv1, cur1);
6695 sv_recode_to_utf8(svrecode, PL_encoding);
6696 pv1 = SvPV_const(svrecode, cur1);
6698 /* Now both are in UTF-8. */
6700 SvREFCNT_dec(svrecode);
6705 bool is_utf8 = TRUE;
6708 /* sv1 is the UTF-8 one,
6709 * if is equal it must be downgrade-able */
6710 char * const pv = (char*)bytes_from_utf8((const U8*)pv1,
6716 /* sv2 is the UTF-8 one,
6717 * if is equal it must be downgrade-able */
6718 char * const pv = (char *)bytes_from_utf8((const U8*)pv2,
6724 /* Downgrade not possible - cannot be eq */
6732 eq = (pv1 == pv2) || memEQ(pv1, pv2, cur1);
6734 SvREFCNT_dec(svrecode);
6744 Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
6745 string in C<sv1> is less than, equal to, or greater than the string in
6746 C<sv2>. Is UTF-8 and 'use bytes' aware, handles get magic, and will
6747 coerce its args to strings if necessary. See also C<sv_cmp_locale>.
6753 Perl_sv_cmp(pTHX_ register SV *const sv1, register SV *const sv2)
6757 const char *pv1, *pv2;
6760 SV *svrecode = NULL;
6767 pv1 = SvPV_const(sv1, cur1);
6774 pv2 = SvPV_const(sv2, cur2);
6776 if (cur1 && cur2 && SvUTF8(sv1) != SvUTF8(sv2) && !IN_BYTES) {
6777 /* Differing utf8ness.
6778 * Do not UTF8size the comparands as a side-effect. */
6781 svrecode = newSVpvn(pv2, cur2);
6782 sv_recode_to_utf8(svrecode, PL_encoding);
6783 pv2 = SvPV_const(svrecode, cur2);
6786 pv2 = tpv = (char*)bytes_to_utf8((const U8*)pv2, &cur2);
6791 svrecode = newSVpvn(pv1, cur1);
6792 sv_recode_to_utf8(svrecode, PL_encoding);
6793 pv1 = SvPV_const(svrecode, cur1);
6796 pv1 = tpv = (char*)bytes_to_utf8((const U8*)pv1, &cur1);
6802 cmp = cur2 ? -1 : 0;
6806 const I32 retval = memcmp((const void*)pv1, (const void*)pv2, cur1 < cur2 ? cur1 : cur2);
6809 cmp = retval < 0 ? -1 : 1;
6810 } else if (cur1 == cur2) {
6813 cmp = cur1 < cur2 ? -1 : 1;
6817 SvREFCNT_dec(svrecode);
6825 =for apidoc sv_cmp_locale
6827 Compares the strings in two SVs in a locale-aware manner. Is UTF-8 and
6828 'use bytes' aware, handles get magic, and will coerce its args to strings
6829 if necessary. See also C<sv_cmp>.
6835 Perl_sv_cmp_locale(pTHX_ register SV *const sv1, register SV *const sv2)
6838 #ifdef USE_LOCALE_COLLATE
6844 if (PL_collation_standard)
6848 pv1 = sv1 ? sv_collxfrm(sv1, &len1) : (char *) NULL;
6850 pv2 = sv2 ? sv_collxfrm(sv2, &len2) : (char *) NULL;
6852 if (!pv1 || !len1) {
6863 retval = memcmp((void*)pv1, (void*)pv2, len1 < len2 ? len1 : len2);
6866 return retval < 0 ? -1 : 1;
6869 * When the result of collation is equality, that doesn't mean
6870 * that there are no differences -- some locales exclude some
6871 * characters from consideration. So to avoid false equalities,
6872 * we use the raw string as a tiebreaker.
6878 #endif /* USE_LOCALE_COLLATE */
6880 return sv_cmp(sv1, sv2);
6884 #ifdef USE_LOCALE_COLLATE
6887 =for apidoc sv_collxfrm
6889 Add Collate Transform magic to an SV if it doesn't already have it.
6891 Any scalar variable may carry PERL_MAGIC_collxfrm magic that contains the
6892 scalar data of the variable, but transformed to such a format that a normal
6893 memory comparison can be used to compare the data according to the locale
6900 Perl_sv_collxfrm(pTHX_ SV *const sv, STRLEN *const nxp)
6905 PERL_ARGS_ASSERT_SV_COLLXFRM;
6907 mg = SvMAGICAL(sv) ? mg_find(sv, PERL_MAGIC_collxfrm) : (MAGIC *) NULL;
6908 if (!mg || !mg->mg_ptr || *(U32*)mg->mg_ptr != PL_collation_ix) {
6914 Safefree(mg->mg_ptr);
6915 s = SvPV_const(sv, len);
6916 if ((xf = mem_collxfrm(s, len, &xlen))) {
6918 #ifdef PERL_OLD_COPY_ON_WRITE
6920 sv_force_normal_flags(sv, 0);
6922 mg = sv_magicext(sv, 0, PERL_MAGIC_collxfrm, &PL_vtbl_collxfrm,
6936 if (mg && mg->mg_ptr) {
6938 return mg->mg_ptr + sizeof(PL_collation_ix);
6946 #endif /* USE_LOCALE_COLLATE */
6951 Get a line from the filehandle and store it into the SV, optionally
6952 appending to the currently-stored string.
6958 Perl_sv_gets(pTHX_ register SV *const sv, register PerlIO *const fp, I32 append)
6963 register STDCHAR rslast;
6964 register STDCHAR *bp;
6969 PERL_ARGS_ASSERT_SV_GETS;
6971 if (SvTHINKFIRST(sv))
6972 sv_force_normal_flags(sv, append ? 0 : SV_COW_DROP_PV);
6973 /* XXX. If you make this PVIV, then copy on write can copy scalars read
6975 However, perlbench says it's slower, because the existing swipe code
6976 is faster than copy on write.
6977 Swings and roundabouts. */
6978 SvUPGRADE(sv, SVt_PV);
6983 if (PerlIO_isutf8(fp)) {
6985 sv_utf8_upgrade_nomg(sv);
6986 sv_pos_u2b(sv,&append,0);
6988 } else if (SvUTF8(sv)) {
6989 SV * const tsv = newSV(0);
6990 sv_gets(tsv, fp, 0);
6991 sv_utf8_upgrade_nomg(tsv);
6992 SvCUR_set(sv,append);
6995 goto return_string_or_null;
7000 if (PerlIO_isutf8(fp))
7003 if (IN_PERL_COMPILETIME) {
7004 /* we always read code in line mode */
7008 else if (RsSNARF(PL_rs)) {
7009 /* If it is a regular disk file use size from stat() as estimate
7010 of amount we are going to read -- may result in mallocing
7011 more memory than we really need if the layers below reduce
7012 the size we read (e.g. CRLF or a gzip layer).
7015 if (!PerlLIO_fstat(PerlIO_fileno(fp), &st) && S_ISREG(st.st_mode)) {
7016 const Off_t offset = PerlIO_tell(fp);
7017 if (offset != (Off_t) -1 && st.st_size + append > offset) {
7018 (void) SvGROW(sv, (STRLEN)((st.st_size - offset) + append + 1));
7024 else if (RsRECORD(PL_rs)) {
7032 /* Grab the size of the record we're getting */
7033 recsize = SvUV(SvRV(PL_rs)); /* RsRECORD() guarantees > 0. */
7034 buffer = SvGROW(sv, (STRLEN)(recsize + append + 1)) + append;
7037 /* VMS wants read instead of fread, because fread doesn't respect */
7038 /* RMS record boundaries. This is not necessarily a good thing to be */
7039 /* doing, but we've got no other real choice - except avoid stdio
7040 as implementation - perhaps write a :vms layer ?
7042 fd = PerlIO_fileno(fp);
7043 if (fd == -1) { /* in-memory file from PerlIO::Scalar */
7044 bytesread = PerlIO_read(fp, buffer, recsize);
7047 bytesread = PerlLIO_read(fd, buffer, recsize);
7050 bytesread = PerlIO_read(fp, buffer, recsize);
7054 SvCUR_set(sv, bytesread + append);
7055 buffer[bytesread] = '\0';
7056 goto return_string_or_null;
7058 else if (RsPARA(PL_rs)) {
7064 /* Get $/ i.e. PL_rs into same encoding as stream wants */
7065 if (PerlIO_isutf8(fp)) {
7066 rsptr = SvPVutf8(PL_rs, rslen);
7069 if (SvUTF8(PL_rs)) {
7070 if (!sv_utf8_downgrade(PL_rs, TRUE)) {
7071 Perl_croak(aTHX_ "Wide character in $/");
7074 rsptr = SvPV_const(PL_rs, rslen);
7078 rslast = rslen ? rsptr[rslen - 1] : '\0';
7080 if (rspara) { /* have to do this both before and after */
7081 do { /* to make sure file boundaries work right */
7084 i = PerlIO_getc(fp);
7088 PerlIO_ungetc(fp,i);
7094 /* See if we know enough about I/O mechanism to cheat it ! */
7096 /* This used to be #ifdef test - it is made run-time test for ease
7097 of abstracting out stdio interface. One call should be cheap
7098 enough here - and may even be a macro allowing compile
7102 if (PerlIO_fast_gets(fp)) {
7105 * We're going to steal some values from the stdio struct
7106 * and put EVERYTHING in the innermost loop into registers.
7108 register STDCHAR *ptr;
7112 #if defined(VMS) && defined(PERLIO_IS_STDIO)
7113 /* An ungetc()d char is handled separately from the regular
7114 * buffer, so we getc() it back out and stuff it in the buffer.
7116 i = PerlIO_getc(fp);
7117 if (i == EOF) return 0;
7118 *(--((*fp)->_ptr)) = (unsigned char) i;
7122 /* Here is some breathtakingly efficient cheating */
7124 cnt = PerlIO_get_cnt(fp); /* get count into register */
7125 /* make sure we have the room */
7126 if ((I32)(SvLEN(sv) - append) <= cnt + 1) {
7127 /* Not room for all of it
7128 if we are looking for a separator and room for some
7130 if (rslen && cnt > 80 && (I32)SvLEN(sv) > append) {
7131 /* just process what we have room for */
7132 shortbuffered = cnt - SvLEN(sv) + append + 1;
7133 cnt -= shortbuffered;
7137 /* remember that cnt can be negative */
7138 SvGROW(sv, (STRLEN)(append + (cnt <= 0 ? 2 : (cnt + 1))));
7143 bp = (STDCHAR*)SvPVX_const(sv) + append; /* move these two too to registers */
7144 ptr = (STDCHAR*)PerlIO_get_ptr(fp);
7145 DEBUG_P(PerlIO_printf(Perl_debug_log,
7146 "Screamer: entering, ptr=%"UVuf", cnt=%ld\n",PTR2UV(ptr),(long)cnt));
7147 DEBUG_P(PerlIO_printf(Perl_debug_log,
7148 "Screamer: entering: PerlIO * thinks ptr=%"UVuf", cnt=%ld, base=%"UVuf"\n",
7149 PTR2UV(PerlIO_get_ptr(fp)), (long)PerlIO_get_cnt(fp),
7150 PTR2UV(PerlIO_has_base(fp) ? PerlIO_get_base(fp) : 0)));
7155 while (cnt > 0) { /* this | eat */
7157 if ((*bp++ = *ptr++) == rslast) /* really | dust */
7158 goto thats_all_folks; /* screams | sed :-) */
7162 Copy(ptr, bp, cnt, char); /* this | eat */
7163 bp += cnt; /* screams | dust */
7164 ptr += cnt; /* louder | sed :-) */
7169 if (shortbuffered) { /* oh well, must extend */
7170 cnt = shortbuffered;
7172 bpx = bp - (STDCHAR*)SvPVX_const(sv); /* box up before relocation */
7174 SvGROW(sv, SvLEN(sv) + append + cnt + 2);
7175 bp = (STDCHAR*)SvPVX_const(sv) + bpx; /* unbox after relocation */
7179 DEBUG_P(PerlIO_printf(Perl_debug_log,
7180 "Screamer: going to getc, ptr=%"UVuf", cnt=%ld\n",
7181 PTR2UV(ptr),(long)cnt));
7182 PerlIO_set_ptrcnt(fp, (STDCHAR*)ptr, cnt); /* deregisterize cnt and ptr */
7184 DEBUG_P(PerlIO_printf(Perl_debug_log,
7185 "Screamer: pre: FILE * thinks ptr=%"UVuf", cnt=%ld, base=%"UVuf"\n",
7186 PTR2UV(PerlIO_get_ptr(fp)), (long)PerlIO_get_cnt(fp),
7187 PTR2UV(PerlIO_has_base (fp) ? PerlIO_get_base(fp) : 0)));
7189 /* This used to call 'filbuf' in stdio form, but as that behaves like
7190 getc when cnt <= 0 we use PerlIO_getc here to avoid introducing
7191 another abstraction. */
7192 i = PerlIO_getc(fp); /* get more characters */
7194 DEBUG_P(PerlIO_printf(Perl_debug_log,
7195 "Screamer: post: FILE * thinks ptr=%"UVuf", cnt=%ld, base=%"UVuf"\n",
7196 PTR2UV(PerlIO_get_ptr(fp)), (long)PerlIO_get_cnt(fp),
7197 PTR2UV(PerlIO_has_base (fp) ? PerlIO_get_base(fp) : 0)));
7199 cnt = PerlIO_get_cnt(fp);
7200 ptr = (STDCHAR*)PerlIO_get_ptr(fp); /* reregisterize cnt and ptr */
7201 DEBUG_P(PerlIO_printf(Perl_debug_log,
7202 "Screamer: after getc, ptr=%"UVuf", cnt=%ld\n",PTR2UV(ptr),(long)cnt));
7204 if (i == EOF) /* all done for ever? */
7205 goto thats_really_all_folks;
7207 bpx = bp - (STDCHAR*)SvPVX_const(sv); /* box up before relocation */
7209 SvGROW(sv, bpx + cnt + 2);
7210 bp = (STDCHAR*)SvPVX_const(sv) + bpx; /* unbox after relocation */
7212 *bp++ = (STDCHAR)i; /* store character from PerlIO_getc */
7214 if (rslen && (STDCHAR)i == rslast) /* all done for now? */
7215 goto thats_all_folks;
7219 if ((rslen > 1 && (STRLEN)(bp - (STDCHAR*)SvPVX_const(sv)) < rslen) ||
7220 memNE((char*)bp - rslen, rsptr, rslen))
7221 goto screamer; /* go back to the fray */
7222 thats_really_all_folks:
7224 cnt += shortbuffered;
7225 DEBUG_P(PerlIO_printf(Perl_debug_log,
7226 "Screamer: quitting, ptr=%"UVuf", cnt=%ld\n",PTR2UV(ptr),(long)cnt));
7227 PerlIO_set_ptrcnt(fp, (STDCHAR*)ptr, cnt); /* put these back or we're in trouble */
7228 DEBUG_P(PerlIO_printf(Perl_debug_log,
7229 "Screamer: end: FILE * thinks ptr=%"UVuf", cnt=%ld, base=%"UVuf"\n",
7230 PTR2UV(PerlIO_get_ptr(fp)), (long)PerlIO_get_cnt(fp),
7231 PTR2UV(PerlIO_has_base (fp) ? PerlIO_get_base(fp) : 0)));
7233 SvCUR_set(sv, bp - (STDCHAR*)SvPVX_const(sv)); /* set length */
7234 DEBUG_P(PerlIO_printf(Perl_debug_log,
7235 "Screamer: done, len=%ld, string=|%.*s|\n",
7236 (long)SvCUR(sv),(int)SvCUR(sv),SvPVX_const(sv)));
7240 /*The big, slow, and stupid way. */
7241 #ifdef USE_HEAP_INSTEAD_OF_STACK /* Even slower way. */
7242 STDCHAR *buf = NULL;
7243 Newx(buf, 8192, STDCHAR);
7251 register const STDCHAR * const bpe = buf + sizeof(buf);
7253 while ((i = PerlIO_getc(fp)) != EOF && (*bp++ = (STDCHAR)i) != rslast && bp < bpe)
7254 ; /* keep reading */
7258 cnt = PerlIO_read(fp,(char*)buf, sizeof(buf));
7259 /* Accomodate broken VAXC compiler, which applies U8 cast to
7260 * both args of ?: operator, causing EOF to change into 255
7263 i = (U8)buf[cnt - 1];
7269 cnt = 0; /* we do need to re-set the sv even when cnt <= 0 */
7271 sv_catpvn(sv, (char *) buf, cnt);
7273 sv_setpvn(sv, (char *) buf, cnt);
7275 if (i != EOF && /* joy */
7277 SvCUR(sv) < rslen ||
7278 memNE(SvPVX_const(sv) + SvCUR(sv) - rslen, rsptr, rslen)))
7282 * If we're reading from a TTY and we get a short read,
7283 * indicating that the user hit his EOF character, we need
7284 * to notice it now, because if we try to read from the TTY
7285 * again, the EOF condition will disappear.
7287 * The comparison of cnt to sizeof(buf) is an optimization
7288 * that prevents unnecessary calls to feof().
7292 if (!(cnt < (I32)sizeof(buf) && PerlIO_eof(fp)))
7296 #ifdef USE_HEAP_INSTEAD_OF_STACK
7301 if (rspara) { /* have to do this both before and after */
7302 while (i != EOF) { /* to make sure file boundaries work right */
7303 i = PerlIO_getc(fp);
7305 PerlIO_ungetc(fp,i);
7311 return_string_or_null:
7312 return (SvCUR(sv) - append) ? SvPVX(sv) : NULL;
7318 Auto-increment of the value in the SV, doing string to numeric conversion
7319 if necessary. Handles 'get' magic and operator overloading.
7325 Perl_sv_inc(pTHX_ register SV *const sv)
7334 =for apidoc sv_inc_nomg
7336 Auto-increment of the value in the SV, doing string to numeric conversion
7337 if necessary. Handles operator overloading. Skips handling 'get' magic.
7343 Perl_sv_inc_nomg(pTHX_ register SV *const sv)
7351 if (SvTHINKFIRST(sv)) {
7353 sv_force_normal_flags(sv, 0);
7354 if (SvREADONLY(sv)) {
7355 if (IN_PERL_RUNTIME)
7356 Perl_croak(aTHX_ "%s", PL_no_modify);
7360 if (SvAMAGIC(sv) && AMG_CALLun(sv,inc))
7362 i = PTR2IV(SvRV(sv));
7367 flags = SvFLAGS(sv);
7368 if ((flags & (SVp_NOK|SVp_IOK)) == SVp_NOK) {
7369 /* It's (privately or publicly) a float, but not tested as an
7370 integer, so test it to see. */
7372 flags = SvFLAGS(sv);
7374 if ((flags & SVf_IOK) || ((flags & (SVp_IOK | SVp_NOK)) == SVp_IOK)) {
7375 /* It's publicly an integer, or privately an integer-not-float */
7376 #ifdef PERL_PRESERVE_IVUV
7380 if (SvUVX(sv) == UV_MAX)
7381 sv_setnv(sv, UV_MAX_P1);
7383 (void)SvIOK_only_UV(sv);
7384 SvUV_set(sv, SvUVX(sv) + 1);
7386 if (SvIVX(sv) == IV_MAX)
7387 sv_setuv(sv, (UV)IV_MAX + 1);
7389 (void)SvIOK_only(sv);
7390 SvIV_set(sv, SvIVX(sv) + 1);
7395 if (flags & SVp_NOK) {
7396 const NV was = SvNVX(sv);
7397 if (NV_OVERFLOWS_INTEGERS_AT &&
7398 was >= NV_OVERFLOWS_INTEGERS_AT) {
7399 Perl_ck_warner(aTHX_ packWARN(WARN_IMPRECISION),
7400 "Lost precision when incrementing %" NVff " by 1",
7403 (void)SvNOK_only(sv);
7404 SvNV_set(sv, was + 1.0);
7408 if (!(flags & SVp_POK) || !*SvPVX_const(sv)) {
7409 if ((flags & SVTYPEMASK) < SVt_PVIV)
7410 sv_upgrade(sv, ((flags & SVTYPEMASK) > SVt_IV ? SVt_PVIV : SVt_IV));
7411 (void)SvIOK_only(sv);
7416 while (isALPHA(*d)) d++;
7417 while (isDIGIT(*d)) d++;
7418 if (d < SvEND(sv)) {
7419 #ifdef PERL_PRESERVE_IVUV
7420 /* Got to punt this as an integer if needs be, but we don't issue
7421 warnings. Probably ought to make the sv_iv_please() that does
7422 the conversion if possible, and silently. */
7423 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), NULL);
7424 if (numtype && !(numtype & IS_NUMBER_INFINITY)) {
7425 /* Need to try really hard to see if it's an integer.
7426 9.22337203685478e+18 is an integer.
7427 but "9.22337203685478e+18" + 0 is UV=9223372036854779904
7428 so $a="9.22337203685478e+18"; $a+0; $a++
7429 needs to be the same as $a="9.22337203685478e+18"; $a++
7436 /* sv_2iv *should* have made this an NV */
7437 if (flags & SVp_NOK) {
7438 (void)SvNOK_only(sv);
7439 SvNV_set(sv, SvNVX(sv) + 1.0);
7442 /* I don't think we can get here. Maybe I should assert this
7443 And if we do get here I suspect that sv_setnv will croak. NWC
7445 #if defined(USE_LONG_DOUBLE)
7446 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_inc punt failed to convert '%s' to IOK or NOKp, UV=0x%"UVxf" NV=%"PERL_PRIgldbl"\n",
7447 SvPVX_const(sv), SvIVX(sv), SvNVX(sv)));
7449 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_inc punt failed to convert '%s' to IOK or NOKp, UV=0x%"UVxf" NV=%"NVgf"\n",
7450 SvPVX_const(sv), SvIVX(sv), SvNVX(sv)));
7453 #endif /* PERL_PRESERVE_IVUV */
7454 sv_setnv(sv,Atof(SvPVX_const(sv)) + 1.0);
7458 while (d >= SvPVX_const(sv)) {
7466 /* MKS: The original code here died if letters weren't consecutive.
7467 * at least it didn't have to worry about non-C locales. The
7468 * new code assumes that ('z'-'a')==('Z'-'A'), letters are
7469 * arranged in order (although not consecutively) and that only
7470 * [A-Za-z] are accepted by isALPHA in the C locale.
7472 if (*d != 'z' && *d != 'Z') {
7473 do { ++*d; } while (!isALPHA(*d));
7476 *(d--) -= 'z' - 'a';
7481 *(d--) -= 'z' - 'a' + 1;
7485 /* oh,oh, the number grew */
7486 SvGROW(sv, SvCUR(sv) + 2);
7487 SvCUR_set(sv, SvCUR(sv) + 1);
7488 for (d = SvPVX(sv) + SvCUR(sv); d > SvPVX_const(sv); d--)
7499 Auto-decrement of the value in the SV, doing string to numeric conversion
7500 if necessary. Handles 'get' magic and operator overloading.
7506 Perl_sv_dec(pTHX_ register SV *const sv)
7516 =for apidoc sv_dec_nomg
7518 Auto-decrement of the value in the SV, doing string to numeric conversion
7519 if necessary. Handles operator overloading. Skips handling 'get' magic.
7525 Perl_sv_dec_nomg(pTHX_ register SV *const sv)
7532 if (SvTHINKFIRST(sv)) {
7534 sv_force_normal_flags(sv, 0);
7535 if (SvREADONLY(sv)) {
7536 if (IN_PERL_RUNTIME)
7537 Perl_croak(aTHX_ "%s", PL_no_modify);
7541 if (SvAMAGIC(sv) && AMG_CALLun(sv,dec))
7543 i = PTR2IV(SvRV(sv));
7548 /* Unlike sv_inc we don't have to worry about string-never-numbers
7549 and keeping them magic. But we mustn't warn on punting */
7550 flags = SvFLAGS(sv);
7551 if ((flags & SVf_IOK) || ((flags & (SVp_IOK | SVp_NOK)) == SVp_IOK)) {
7552 /* It's publicly an integer, or privately an integer-not-float */
7553 #ifdef PERL_PRESERVE_IVUV
7557 if (SvUVX(sv) == 0) {
7558 (void)SvIOK_only(sv);
7562 (void)SvIOK_only_UV(sv);
7563 SvUV_set(sv, SvUVX(sv) - 1);
7566 if (SvIVX(sv) == IV_MIN) {
7567 sv_setnv(sv, (NV)IV_MIN);
7571 (void)SvIOK_only(sv);
7572 SvIV_set(sv, SvIVX(sv) - 1);
7577 if (flags & SVp_NOK) {
7580 const NV was = SvNVX(sv);
7581 if (NV_OVERFLOWS_INTEGERS_AT &&
7582 was <= -NV_OVERFLOWS_INTEGERS_AT) {
7583 Perl_ck_warner(aTHX_ packWARN(WARN_IMPRECISION),
7584 "Lost precision when decrementing %" NVff " by 1",
7587 (void)SvNOK_only(sv);
7588 SvNV_set(sv, was - 1.0);
7592 if (!(flags & SVp_POK)) {
7593 if ((flags & SVTYPEMASK) < SVt_PVIV)
7594 sv_upgrade(sv, ((flags & SVTYPEMASK) > SVt_IV) ? SVt_PVIV : SVt_IV);
7596 (void)SvIOK_only(sv);
7599 #ifdef PERL_PRESERVE_IVUV
7601 const int numtype = grok_number(SvPVX_const(sv), SvCUR(sv), NULL);
7602 if (numtype && !(numtype & IS_NUMBER_INFINITY)) {
7603 /* Need to try really hard to see if it's an integer.
7604 9.22337203685478e+18 is an integer.
7605 but "9.22337203685478e+18" + 0 is UV=9223372036854779904
7606 so $a="9.22337203685478e+18"; $a+0; $a--
7607 needs to be the same as $a="9.22337203685478e+18"; $a--
7614 /* sv_2iv *should* have made this an NV */
7615 if (flags & SVp_NOK) {
7616 (void)SvNOK_only(sv);
7617 SvNV_set(sv, SvNVX(sv) - 1.0);
7620 /* I don't think we can get here. Maybe I should assert this
7621 And if we do get here I suspect that sv_setnv will croak. NWC
7623 #if defined(USE_LONG_DOUBLE)
7624 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_dec punt failed to convert '%s' to IOK or NOKp, UV=0x%"UVxf" NV=%"PERL_PRIgldbl"\n",
7625 SvPVX_const(sv), SvIVX(sv), SvNVX(sv)));
7627 DEBUG_c(PerlIO_printf(Perl_debug_log,"sv_dec punt failed to convert '%s' to IOK or NOKp, UV=0x%"UVxf" NV=%"NVgf"\n",
7628 SvPVX_const(sv), SvIVX(sv), SvNVX(sv)));
7632 #endif /* PERL_PRESERVE_IVUV */
7633 sv_setnv(sv,Atof(SvPVX_const(sv)) - 1.0); /* punt */
7636 /* this define is used to eliminate a chunk of duplicated but shared logic
7637 * it has the suffix __SV_C to signal that it isnt API, and isnt meant to be
7638 * used anywhere but here - yves
7640 #define PUSH_EXTEND_MORTAL__SV_C(AnSv) \
7643 PL_tmps_stack[++PL_tmps_ix] = (AnSv); \
7647 =for apidoc sv_mortalcopy
7649 Creates a new SV which is a copy of the original SV (using C<sv_setsv>).
7650 The new SV is marked as mortal. It will be destroyed "soon", either by an
7651 explicit call to FREETMPS, or by an implicit call at places such as
7652 statement boundaries. See also C<sv_newmortal> and C<sv_2mortal>.
7657 /* Make a string that will exist for the duration of the expression
7658 * evaluation. Actually, it may have to last longer than that, but
7659 * hopefully we won't free it until it has been assigned to a
7660 * permanent location. */
7663 Perl_sv_mortalcopy(pTHX_ SV *const oldstr)
7669 sv_setsv(sv,oldstr);
7670 PUSH_EXTEND_MORTAL__SV_C(sv);
7676 =for apidoc sv_newmortal
7678 Creates a new null SV which is mortal. The reference count of the SV is
7679 set to 1. It will be destroyed "soon", either by an explicit call to
7680 FREETMPS, or by an implicit call at places such as statement boundaries.
7681 See also C<sv_mortalcopy> and C<sv_2mortal>.
7687 Perl_sv_newmortal(pTHX)
7693 SvFLAGS(sv) = SVs_TEMP;
7694 PUSH_EXTEND_MORTAL__SV_C(sv);
7700 =for apidoc newSVpvn_flags
7702 Creates a new SV and copies a string into it. The reference count for the
7703 SV is set to 1. Note that if C<len> is zero, Perl will create a zero length
7704 string. You are responsible for ensuring that the source string is at least
7705 C<len> bytes long. If the C<s> argument is NULL the new SV will be undefined.
7706 Currently the only flag bits accepted are C<SVf_UTF8> and C<SVs_TEMP>.
7707 If C<SVs_TEMP> is set, then C<sv2mortal()> is called on the result before
7708 returning. If C<SVf_UTF8> is set, C<s> is considered to be in UTF-8 and the
7709 C<SVf_UTF8> flag will be set on the new SV.
7710 C<newSVpvn_utf8()> is a convenience wrapper for this function, defined as
7712 #define newSVpvn_utf8(s, len, u) \
7713 newSVpvn_flags((s), (len), (u) ? SVf_UTF8 : 0)
7719 Perl_newSVpvn_flags(pTHX_ const char *const s, const STRLEN len, const U32 flags)
7724 /* All the flags we don't support must be zero.
7725 And we're new code so I'm going to assert this from the start. */
7726 assert(!(flags & ~(SVf_UTF8|SVs_TEMP)));
7728 sv_setpvn(sv,s,len);
7730 /* This code used to a sv_2mortal(), however we now unroll the call to sv_2mortal()
7731 * and do what it does outselves here.
7732 * Since we have asserted that flags can only have the SVf_UTF8 and/or SVs_TEMP flags
7733 * set above we can use it to enable the sv flags directly (bypassing SvTEMP_on), which
7734 * in turn means we dont need to mask out the SVf_UTF8 flag below, which means that we
7735 * eleminate quite a few steps than it looks - Yves (explaining patch by gfx)
7738 SvFLAGS(sv) |= flags;
7740 if(flags & SVs_TEMP){
7741 PUSH_EXTEND_MORTAL__SV_C(sv);
7748 =for apidoc sv_2mortal
7750 Marks an existing SV as mortal. The SV will be destroyed "soon", either
7751 by an explicit call to FREETMPS, or by an implicit call at places such as
7752 statement boundaries. SvTEMP() is turned on which means that the SV's
7753 string buffer can be "stolen" if this SV is copied. See also C<sv_newmortal>
7754 and C<sv_mortalcopy>.
7760 Perl_sv_2mortal(pTHX_ register SV *const sv)
7765 if (SvREADONLY(sv) && SvIMMORTAL(sv))
7767 PUSH_EXTEND_MORTAL__SV_C(sv);
7775 Creates a new SV and copies a string into it. The reference count for the
7776 SV is set to 1. If C<len> is zero, Perl will compute the length using
7777 strlen(). For efficiency, consider using C<newSVpvn> instead.
7783 Perl_newSVpv(pTHX_ const char *const s, const STRLEN len)
7789 sv_setpvn(sv, s, len || s == NULL ? len : strlen(s));
7794 =for apidoc newSVpvn
7796 Creates a new SV and copies a string into it. The reference count for the
7797 SV is set to 1. Note that if C<len> is zero, Perl will create a zero length
7798 string. You are responsible for ensuring that the source string is at least
7799 C<len> bytes long. If the C<s> argument is NULL the new SV will be undefined.
7805 Perl_newSVpvn(pTHX_ const char *const s, const STRLEN len)
7811 sv_setpvn(sv,s,len);
7816 =for apidoc newSVhek
7818 Creates a new SV from the hash key structure. It will generate scalars that
7819 point to the shared string table where possible. Returns a new (undefined)
7820 SV if the hek is NULL.
7826 Perl_newSVhek(pTHX_ const HEK *const hek)
7836 if (HEK_LEN(hek) == HEf_SVKEY) {
7837 return newSVsv(*(SV**)HEK_KEY(hek));
7839 const int flags = HEK_FLAGS(hek);
7840 if (flags & HVhek_WASUTF8) {
7842 Andreas would like keys he put in as utf8 to come back as utf8
7844 STRLEN utf8_len = HEK_LEN(hek);
7845 const U8 *as_utf8 = bytes_to_utf8 ((U8*)HEK_KEY(hek), &utf8_len);
7846 SV * const sv = newSVpvn ((const char*)as_utf8, utf8_len);
7849 Safefree (as_utf8); /* bytes_to_utf8() allocates a new string */
7851 } else if (flags & (HVhek_REHASH|HVhek_UNSHARED)) {
7852 /* We don't have a pointer to the hv, so we have to replicate the
7853 flag into every HEK. This hv is using custom a hasing
7854 algorithm. Hence we can't return a shared string scalar, as
7855 that would contain the (wrong) hash value, and might get passed
7856 into an hv routine with a regular hash.
7857 Similarly, a hash that isn't using shared hash keys has to have
7858 the flag in every key so that we know not to try to call
7859 share_hek_kek on it. */
7861 SV * const sv = newSVpvn (HEK_KEY(hek), HEK_LEN(hek));
7866 /* This will be overwhelminly the most common case. */
7868 /* Inline most of newSVpvn_share(), because share_hek_hek() is far
7869 more efficient than sharepvn(). */
7873 sv_upgrade(sv, SVt_PV);
7874 SvPV_set(sv, (char *)HEK_KEY(share_hek_hek(hek)));
7875 SvCUR_set(sv, HEK_LEN(hek));
7888 =for apidoc newSVpvn_share
7890 Creates a new SV with its SvPVX_const pointing to a shared string in the string
7891 table. If the string does not already exist in the table, it is created
7892 first. Turns on READONLY and FAKE. If the C<hash> parameter is non-zero, that
7893 value is used; otherwise the hash is computed. The string's hash can be later
7894 be retrieved from the SV with the C<SvSHARED_HASH()> macro. The idea here is
7895 that as the string table is used for shared hash keys these strings will have
7896 SvPVX_const == HeKEY and hash lookup will avoid string compare.
7902 Perl_newSVpvn_share(pTHX_ const char *src, I32 len, U32 hash)
7906 bool is_utf8 = FALSE;
7907 const char *const orig_src = src;
7910 STRLEN tmplen = -len;
7912 /* See the note in hv.c:hv_fetch() --jhi */
7913 src = (char*)bytes_from_utf8((const U8*)src, &tmplen, &is_utf8);
7917 PERL_HASH(hash, src, len);
7919 /* The logic for this is inlined in S_mro_get_linear_isa_dfs(), so if it
7920 changes here, update it there too. */
7921 sv_upgrade(sv, SVt_PV);
7922 SvPV_set(sv, sharepvn(src, is_utf8?-len:len, hash));
7930 if (src != orig_src)
7936 #if defined(PERL_IMPLICIT_CONTEXT)
7938 /* pTHX_ magic can't cope with varargs, so this is a no-context
7939 * version of the main function, (which may itself be aliased to us).
7940 * Don't access this version directly.
7944 Perl_newSVpvf_nocontext(const char *const pat, ...)
7950 PERL_ARGS_ASSERT_NEWSVPVF_NOCONTEXT;
7952 va_start(args, pat);
7953 sv = vnewSVpvf(pat, &args);
7960 =for apidoc newSVpvf
7962 Creates a new SV and initializes it with the string formatted like
7969 Perl_newSVpvf(pTHX_ const char *const pat, ...)
7974 PERL_ARGS_ASSERT_NEWSVPVF;
7976 va_start(args, pat);
7977 sv = vnewSVpvf(pat, &args);
7982 /* backend for newSVpvf() and newSVpvf_nocontext() */
7985 Perl_vnewSVpvf(pTHX_ const char *const pat, va_list *const args)
7990 PERL_ARGS_ASSERT_VNEWSVPVF;
7993 sv_vsetpvfn(sv, pat, strlen(pat), args, NULL, 0, NULL);
8000 Creates a new SV and copies a floating point value into it.
8001 The reference count for the SV is set to 1.
8007 Perl_newSVnv(pTHX_ const NV n)
8020 Creates a new SV and copies an integer into it. The reference count for the
8027 Perl_newSViv(pTHX_ const IV i)
8040 Creates a new SV and copies an unsigned integer into it.
8041 The reference count for the SV is set to 1.
8047 Perl_newSVuv(pTHX_ const UV u)
8058 =for apidoc newSV_type
8060 Creates a new SV, of the type specified. The reference count for the new SV
8067 Perl_newSV_type(pTHX_ const svtype type)
8072 sv_upgrade(sv, type);
8077 =for apidoc newRV_noinc
8079 Creates an RV wrapper for an SV. The reference count for the original
8080 SV is B<not> incremented.
8086 Perl_newRV_noinc(pTHX_ SV *const tmpRef)
8089 register SV *sv = newSV_type(SVt_IV);
8091 PERL_ARGS_ASSERT_NEWRV_NOINC;
8094 SvRV_set(sv, tmpRef);
8099 /* newRV_inc is the official function name to use now.
8100 * newRV_inc is in fact #defined to newRV in sv.h
8104 Perl_newRV(pTHX_ SV *const sv)
8108 PERL_ARGS_ASSERT_NEWRV;
8110 return newRV_noinc(SvREFCNT_inc_simple_NN(sv));
8116 Creates a new SV which is an exact duplicate of the original SV.
8123 Perl_newSVsv(pTHX_ register SV *const old)
8130 if (SvTYPE(old) == SVTYPEMASK) {
8131 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL), "semi-panic: attempt to dup freed string");
8135 /* SV_GMAGIC is the default for sv_setv()
8136 SV_NOSTEAL prevents TEMP buffers being, well, stolen, and saves games
8137 with SvTEMP_off and SvTEMP_on round a call to sv_setsv. */
8138 sv_setsv_flags(sv, old, SV_GMAGIC | SV_NOSTEAL);
8143 =for apidoc sv_reset
8145 Underlying implementation for the C<reset> Perl function.
8146 Note that the perl-level function is vaguely deprecated.
8152 Perl_sv_reset(pTHX_ register const char *s, HV *const stash)
8155 char todo[PERL_UCHAR_MAX+1];
8157 PERL_ARGS_ASSERT_SV_RESET;
8162 if (!*s) { /* reset ?? searches */
8163 MAGIC * const mg = mg_find((const SV *)stash, PERL_MAGIC_symtab);
8165 const U32 count = mg->mg_len / sizeof(PMOP**);
8166 PMOP **pmp = (PMOP**) mg->mg_ptr;
8167 PMOP *const *const end = pmp + count;
8171 SvREADONLY_off(PL_regex_pad[(*pmp)->op_pmoffset]);
8173 (*pmp)->op_pmflags &= ~PMf_USED;
8181 /* reset variables */
8183 if (!HvARRAY(stash))
8186 Zero(todo, 256, char);
8189 I32 i = (unsigned char)*s;
8193 max = (unsigned char)*s++;
8194 for ( ; i <= max; i++) {
8197 for (i = 0; i <= (I32) HvMAX(stash); i++) {
8199 for (entry = HvARRAY(stash)[i];
8201 entry = HeNEXT(entry))
8206 if (!todo[(U8)*HeKEY(entry)])
8208 gv = MUTABLE_GV(HeVAL(entry));
8211 if (SvTHINKFIRST(sv)) {
8212 if (!SvREADONLY(sv) && SvROK(sv))
8214 /* XXX Is this continue a bug? Why should THINKFIRST
8215 exempt us from resetting arrays and hashes? */
8219 if (SvTYPE(sv) >= SVt_PV) {
8221 if (SvPVX_const(sv) != NULL)
8229 if (GvHV(gv) && !HvNAME_get(GvHV(gv))) {
8231 Perl_die(aTHX_ "Can't reset %%ENV on this system");
8234 # if defined(USE_ENVIRON_ARRAY)
8237 # endif /* USE_ENVIRON_ARRAY */
8248 Using various gambits, try to get an IO from an SV: the IO slot if its a
8249 GV; or the recursive result if we're an RV; or the IO slot of the symbol
8250 named after the PV if we're a string.
8256 Perl_sv_2io(pTHX_ SV *const sv)
8261 PERL_ARGS_ASSERT_SV_2IO;
8263 switch (SvTYPE(sv)) {
8265 io = MUTABLE_IO(sv);
8268 if (isGV_with_GP(sv)) {
8269 gv = MUTABLE_GV(sv);
8272 Perl_croak(aTHX_ "Bad filehandle: %s", GvNAME(gv));
8278 Perl_croak(aTHX_ PL_no_usym, "filehandle");
8280 return sv_2io(SvRV(sv));
8281 gv = gv_fetchsv(sv, 0, SVt_PVIO);
8287 Perl_croak(aTHX_ "Bad filehandle: %"SVf, SVfARG(sv));
8296 Using various gambits, try to get a CV from an SV; in addition, try if
8297 possible to set C<*st> and C<*gvp> to the stash and GV associated with it.
8298 The flags in C<lref> are passed to gv_fetchsv.
8304 Perl_sv_2cv(pTHX_ SV *sv, HV **const st, GV **const gvp, const I32 lref)
8310 PERL_ARGS_ASSERT_SV_2CV;
8317 switch (SvTYPE(sv)) {
8321 return MUTABLE_CV(sv);
8328 if (isGV_with_GP(sv)) {
8329 gv = MUTABLE_GV(sv);
8338 SV * const *sp = &sv; /* Used in tryAMAGICunDEREF macro. */
8340 tryAMAGICunDEREF(to_cv);
8343 if (SvTYPE(sv) == SVt_PVCV) {
8344 cv = MUTABLE_CV(sv);
8349 else if(isGV_with_GP(sv))
8350 gv = MUTABLE_GV(sv);
8352 Perl_croak(aTHX_ "Not a subroutine reference");
8354 else if (isGV_with_GP(sv)) {
8356 gv = MUTABLE_GV(sv);
8359 gv = gv_fetchsv(sv, lref, SVt_PVCV); /* Calls get magic */
8365 /* Some flags to gv_fetchsv mean don't really create the GV */
8366 if (!isGV_with_GP(gv)) {
8372 if (lref && !GvCVu(gv)) {
8376 gv_efullname3(tmpsv, gv, NULL);
8377 /* XXX this is probably not what they think they're getting.
8378 * It has the same effect as "sub name;", i.e. just a forward
8380 newSUB(start_subparse(FALSE, 0),
8381 newSVOP(OP_CONST, 0, tmpsv),
8385 Perl_croak(aTHX_ "Unable to create sub named \"%"SVf"\"",
8386 SVfARG(SvOK(sv) ? sv : &PL_sv_no));
8395 Returns true if the SV has a true value by Perl's rules.
8396 Use the C<SvTRUE> macro instead, which may call C<sv_true()> or may
8397 instead use an in-line version.
8403 Perl_sv_true(pTHX_ register SV *const sv)
8408 register const XPV* const tXpv = (XPV*)SvANY(sv);
8410 (tXpv->xpv_cur > 1 ||
8411 (tXpv->xpv_cur && *sv->sv_u.svu_pv != '0')))
8418 return SvIVX(sv) != 0;
8421 return SvNVX(sv) != 0.0;
8423 return sv_2bool(sv);
8429 =for apidoc sv_pvn_force
8431 Get a sensible string out of the SV somehow.
8432 A private implementation of the C<SvPV_force> macro for compilers which
8433 can't cope with complex macro expressions. Always use the macro instead.
8435 =for apidoc sv_pvn_force_flags
8437 Get a sensible string out of the SV somehow.
8438 If C<flags> has C<SV_GMAGIC> bit set, will C<mg_get> on C<sv> if
8439 appropriate, else not. C<sv_pvn_force> and C<sv_pvn_force_nomg> are
8440 implemented in terms of this function.
8441 You normally want to use the various wrapper macros instead: see
8442 C<SvPV_force> and C<SvPV_force_nomg>
8448 Perl_sv_pvn_force_flags(pTHX_ SV *const sv, STRLEN *const lp, const I32 flags)
8452 PERL_ARGS_ASSERT_SV_PVN_FORCE_FLAGS;
8454 if (SvTHINKFIRST(sv) && !SvROK(sv))
8455 sv_force_normal_flags(sv, 0);
8465 if (SvREADONLY(sv) && !(flags & SV_MUTABLE_RETURN)) {
8466 const char * const ref = sv_reftype(sv,0);
8468 Perl_croak(aTHX_ "Can't coerce readonly %s to string in %s",
8469 ref, OP_DESC(PL_op));
8471 Perl_croak(aTHX_ "Can't coerce readonly %s to string", ref);
8473 if ((SvTYPE(sv) > SVt_PVLV && SvTYPE(sv) != SVt_PVFM)
8474 || isGV_with_GP(sv))
8475 Perl_croak(aTHX_ "Can't coerce %s to string in %s", sv_reftype(sv,0),
8477 s = sv_2pv_flags(sv, &len, flags);
8481 if (s != SvPVX_const(sv)) { /* Almost, but not quite, sv_setpvn() */
8484 SvUPGRADE(sv, SVt_PV); /* Never FALSE */
8485 SvGROW(sv, len + 1);
8486 Move(s,SvPVX(sv),len,char);
8488 SvPVX(sv)[len] = '\0';
8491 SvPOK_on(sv); /* validate pointer */
8493 DEBUG_c(PerlIO_printf(Perl_debug_log, "0x%"UVxf" 2pv(%s)\n",
8494 PTR2UV(sv),SvPVX_const(sv)));
8497 return SvPVX_mutable(sv);
8501 =for apidoc sv_pvbyten_force
8503 The backend for the C<SvPVbytex_force> macro. Always use the macro instead.
8509 Perl_sv_pvbyten_force(pTHX_ SV *const sv, STRLEN *const lp)
8511 PERL_ARGS_ASSERT_SV_PVBYTEN_FORCE;
8513 sv_pvn_force(sv,lp);
8514 sv_utf8_downgrade(sv,0);
8520 =for apidoc sv_pvutf8n_force
8522 The backend for the C<SvPVutf8x_force> macro. Always use the macro instead.
8528 Perl_sv_pvutf8n_force(pTHX_ SV *const sv, STRLEN *const lp)
8530 PERL_ARGS_ASSERT_SV_PVUTF8N_FORCE;
8532 sv_pvn_force(sv,lp);
8533 sv_utf8_upgrade(sv);
8539 =for apidoc sv_reftype
8541 Returns a string describing what the SV is a reference to.
8547 Perl_sv_reftype(pTHX_ const SV *const sv, const int ob)
8549 PERL_ARGS_ASSERT_SV_REFTYPE;
8551 /* The fact that I don't need to downcast to char * everywhere, only in ?:
8552 inside return suggests a const propagation bug in g++. */
8553 if (ob && SvOBJECT(sv)) {
8554 char * const name = HvNAME_get(SvSTASH(sv));
8555 return name ? name : (char *) "__ANON__";
8558 switch (SvTYPE(sv)) {
8573 case SVt_PVLV: return (char *) (SvROK(sv) ? "REF"
8574 /* tied lvalues should appear to be
8575 * scalars for backwards compatitbility */
8576 : (LvTYPE(sv) == 't' || LvTYPE(sv) == 'T')
8577 ? "SCALAR" : "LVALUE");
8578 case SVt_PVAV: return "ARRAY";
8579 case SVt_PVHV: return "HASH";
8580 case SVt_PVCV: return "CODE";
8581 case SVt_PVGV: return (char *) (isGV_with_GP(sv)
8582 ? "GLOB" : "SCALAR");
8583 case SVt_PVFM: return "FORMAT";
8584 case SVt_PVIO: return "IO";
8585 case SVt_BIND: return "BIND";
8586 case SVt_REGEXP: return "REGEXP";
8587 default: return "UNKNOWN";
8593 =for apidoc sv_isobject
8595 Returns a boolean indicating whether the SV is an RV pointing to a blessed
8596 object. If the SV is not an RV, or if the object is not blessed, then this
8603 Perl_sv_isobject(pTHX_ SV *sv)
8619 Returns a boolean indicating whether the SV is blessed into the specified
8620 class. This does not check for subtypes; use C<sv_derived_from> to verify
8621 an inheritance relationship.
8627 Perl_sv_isa(pTHX_ SV *sv, const char *const name)
8631 PERL_ARGS_ASSERT_SV_ISA;
8641 hvname = HvNAME_get(SvSTASH(sv));
8645 return strEQ(hvname, name);
8651 Creates a new SV for the RV, C<rv>, to point to. If C<rv> is not an RV then
8652 it will be upgraded to one. If C<classname> is non-null then the new SV will
8653 be blessed in the specified package. The new SV is returned and its
8654 reference count is 1.
8660 Perl_newSVrv(pTHX_ SV *const rv, const char *const classname)
8665 PERL_ARGS_ASSERT_NEWSVRV;
8669 SV_CHECK_THINKFIRST_COW_DROP(rv);
8670 (void)SvAMAGIC_off(rv);
8672 if (SvTYPE(rv) >= SVt_PVMG) {
8673 const U32 refcnt = SvREFCNT(rv);
8677 SvREFCNT(rv) = refcnt;
8679 sv_upgrade(rv, SVt_IV);
8680 } else if (SvROK(rv)) {
8681 SvREFCNT_dec(SvRV(rv));
8683 prepare_SV_for_RV(rv);
8691 HV* const stash = gv_stashpv(classname, GV_ADD);
8692 (void)sv_bless(rv, stash);
8698 =for apidoc sv_setref_pv
8700 Copies a pointer into a new SV, optionally blessing the SV. The C<rv>
8701 argument will be upgraded to an RV. That RV will be modified to point to
8702 the new SV. If the C<pv> argument is NULL then C<PL_sv_undef> will be placed
8703 into the SV. The C<classname> argument indicates the package for the
8704 blessing. Set C<classname> to C<NULL> to avoid the blessing. The new SV
8705 will have a reference count of 1, and the RV will be returned.
8707 Do not use with other Perl types such as HV, AV, SV, CV, because those
8708 objects will become corrupted by the pointer copy process.
8710 Note that C<sv_setref_pvn> copies the string while this copies the pointer.
8716 Perl_sv_setref_pv(pTHX_ SV *const rv, const char *const classname, void *const pv)
8720 PERL_ARGS_ASSERT_SV_SETREF_PV;
8723 sv_setsv(rv, &PL_sv_undef);
8727 sv_setiv(newSVrv(rv,classname), PTR2IV(pv));
8732 =for apidoc sv_setref_iv
8734 Copies an integer into a new SV, optionally blessing the SV. The C<rv>
8735 argument will be upgraded to an RV. That RV will be modified to point to
8736 the new SV. The C<classname> argument indicates the package for the
8737 blessing. Set C<classname> to C<NULL> to avoid the blessing. The new SV
8738 will have a reference count of 1, and the RV will be returned.
8744 Perl_sv_setref_iv(pTHX_ SV *const rv, const char *const classname, const IV iv)
8746 PERL_ARGS_ASSERT_SV_SETREF_IV;
8748 sv_setiv(newSVrv(rv,classname), iv);
8753 =for apidoc sv_setref_uv
8755 Copies an unsigned integer into a new SV, optionally blessing the SV. The C<rv>
8756 argument will be upgraded to an RV. That RV will be modified to point to
8757 the new SV. The C<classname> argument indicates the package for the
8758 blessing. Set C<classname> to C<NULL> to avoid the blessing. The new SV
8759 will have a reference count of 1, and the RV will be returned.
8765 Perl_sv_setref_uv(pTHX_ SV *const rv, const char *const classname, const UV uv)
8767 PERL_ARGS_ASSERT_SV_SETREF_UV;
8769 sv_setuv(newSVrv(rv,classname), uv);
8774 =for apidoc sv_setref_nv
8776 Copies a double into a new SV, optionally blessing the SV. The C<rv>
8777 argument will be upgraded to an RV. That RV will be modified to point to
8778 the new SV. The C<classname> argument indicates the package for the
8779 blessing. Set C<classname> to C<NULL> to avoid the blessing. The new SV
8780 will have a reference count of 1, and the RV will be returned.
8786 Perl_sv_setref_nv(pTHX_ SV *const rv, const char *const classname, const NV nv)
8788 PERL_ARGS_ASSERT_SV_SETREF_NV;
8790 sv_setnv(newSVrv(rv,classname), nv);
8795 =for apidoc sv_setref_pvn
8797 Copies a string into a new SV, optionally blessing the SV. The length of the
8798 string must be specified with C<n>. The C<rv> argument will be upgraded to
8799 an RV. That RV will be modified to point to the new SV. The C<classname>
8800 argument indicates the package for the blessing. Set C<classname> to
8801 C<NULL> to avoid the blessing. The new SV will have a reference count
8802 of 1, and the RV will be returned.
8804 Note that C<sv_setref_pv> copies the pointer while this copies the string.
8810 Perl_sv_setref_pvn(pTHX_ SV *const rv, const char *const classname,
8811 const char *const pv, const STRLEN n)
8813 PERL_ARGS_ASSERT_SV_SETREF_PVN;
8815 sv_setpvn(newSVrv(rv,classname), pv, n);
8820 =for apidoc sv_bless
8822 Blesses an SV into a specified package. The SV must be an RV. The package
8823 must be designated by its stash (see C<gv_stashpv()>). The reference count
8824 of the SV is unaffected.
8830 Perl_sv_bless(pTHX_ SV *const sv, HV *const stash)
8835 PERL_ARGS_ASSERT_SV_BLESS;
8838 Perl_croak(aTHX_ "Can't bless non-reference value");
8840 if (SvFLAGS(tmpRef) & (SVs_OBJECT|SVf_READONLY)) {
8841 if (SvIsCOW(tmpRef))
8842 sv_force_normal_flags(tmpRef, 0);
8843 if (SvREADONLY(tmpRef))
8844 Perl_croak(aTHX_ "%s", PL_no_modify);
8845 if (SvOBJECT(tmpRef)) {
8846 if (SvTYPE(tmpRef) != SVt_PVIO)
8848 SvREFCNT_dec(SvSTASH(tmpRef));
8851 SvOBJECT_on(tmpRef);
8852 if (SvTYPE(tmpRef) != SVt_PVIO)
8854 SvUPGRADE(tmpRef, SVt_PVMG);
8855 SvSTASH_set(tmpRef, MUTABLE_HV(SvREFCNT_inc_simple(stash)));
8860 (void)SvAMAGIC_off(sv);
8862 if(SvSMAGICAL(tmpRef))
8863 if(mg_find(tmpRef, PERL_MAGIC_ext) || mg_find(tmpRef, PERL_MAGIC_uvar))
8871 /* Downgrades a PVGV to a PVMG.
8875 S_sv_unglob(pTHX_ SV *const sv)
8880 SV * const temp = sv_newmortal();
8882 PERL_ARGS_ASSERT_SV_UNGLOB;
8884 assert(SvTYPE(sv) == SVt_PVGV);
8886 gv_efullname3(temp, MUTABLE_GV(sv), "*");
8889 if(GvCVu((const GV *)sv) && (stash = GvSTASH(MUTABLE_GV(sv)))
8890 && HvNAME_get(stash))
8891 mro_method_changed_in(stash);
8892 gp_free(MUTABLE_GV(sv));
8895 sv_del_backref(MUTABLE_SV(GvSTASH(sv)), sv);
8899 if (GvNAME_HEK(sv)) {
8900 unshare_hek(GvNAME_HEK(sv));
8902 isGV_with_GP_off(sv);
8904 /* need to keep SvANY(sv) in the right arena */
8905 xpvmg = new_XPVMG();
8906 StructCopy(SvANY(sv), xpvmg, XPVMG);
8907 del_XPVGV(SvANY(sv));
8910 SvFLAGS(sv) &= ~SVTYPEMASK;
8911 SvFLAGS(sv) |= SVt_PVMG;
8913 /* Intentionally not calling any local SET magic, as this isn't so much a
8914 set operation as merely an internal storage change. */
8915 sv_setsv_flags(sv, temp, 0);
8919 =for apidoc sv_unref_flags
8921 Unsets the RV status of the SV, and decrements the reference count of
8922 whatever was being referenced by the RV. This can almost be thought of
8923 as a reversal of C<newSVrv>. The C<cflags> argument can contain
8924 C<SV_IMMEDIATE_UNREF> to force the reference count to be decremented
8925 (otherwise the decrementing is conditional on the reference count being
8926 different from one or the reference being a readonly SV).
8933 Perl_sv_unref_flags(pTHX_ SV *const ref, const U32 flags)
8935 SV* const target = SvRV(ref);
8937 PERL_ARGS_ASSERT_SV_UNREF_FLAGS;
8939 if (SvWEAKREF(ref)) {
8940 sv_del_backref(target, ref);
8942 SvRV_set(ref, NULL);
8945 SvRV_set(ref, NULL);
8947 /* You can't have a || SvREADONLY(target) here, as $a = $$a, where $a was
8948 assigned to as BEGIN {$a = \"Foo"} will fail. */
8949 if (SvREFCNT(target) != 1 || (flags & SV_IMMEDIATE_UNREF))
8950 SvREFCNT_dec(target);
8951 else /* XXX Hack, but hard to make $a=$a->[1] work otherwise */
8952 sv_2mortal(target); /* Schedule for freeing later */
8956 =for apidoc sv_untaint
8958 Untaint an SV. Use C<SvTAINTED_off> instead.
8963 Perl_sv_untaint(pTHX_ SV *const sv)
8965 PERL_ARGS_ASSERT_SV_UNTAINT;
8967 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
8968 MAGIC * const mg = mg_find(sv, PERL_MAGIC_taint);
8975 =for apidoc sv_tainted
8977 Test an SV for taintedness. Use C<SvTAINTED> instead.
8982 Perl_sv_tainted(pTHX_ SV *const sv)
8984 PERL_ARGS_ASSERT_SV_TAINTED;
8986 if (SvTYPE(sv) >= SVt_PVMG && SvMAGIC(sv)) {
8987 const MAGIC * const mg = mg_find(sv, PERL_MAGIC_taint);
8988 if (mg && (mg->mg_len & 1) )
8995 =for apidoc sv_setpviv
8997 Copies an integer into the given SV, also updating its string value.
8998 Does not handle 'set' magic. See C<sv_setpviv_mg>.
9004 Perl_sv_setpviv(pTHX_ SV *const sv, const IV iv)
9006 char buf[TYPE_CHARS(UV)];
9008 char * const ptr = uiv_2buf(buf, iv, 0, 0, &ebuf);
9010 PERL_ARGS_ASSERT_SV_SETPVIV;
9012 sv_setpvn(sv, ptr, ebuf - ptr);
9016 =for apidoc sv_setpviv_mg
9018 Like C<sv_setpviv>, but also handles 'set' magic.
9024 Perl_sv_setpviv_mg(pTHX_ SV *const sv, const IV iv)
9026 PERL_ARGS_ASSERT_SV_SETPVIV_MG;
9032 #if defined(PERL_IMPLICIT_CONTEXT)
9034 /* pTHX_ magic can't cope with varargs, so this is a no-context
9035 * version of the main function, (which may itself be aliased to us).
9036 * Don't access this version directly.
9040 Perl_sv_setpvf_nocontext(SV *const sv, const char *const pat, ...)
9045 PERL_ARGS_ASSERT_SV_SETPVF_NOCONTEXT;
9047 va_start(args, pat);
9048 sv_vsetpvf(sv, pat, &args);
9052 /* pTHX_ magic can't cope with varargs, so this is a no-context
9053 * version of the main function, (which may itself be aliased to us).
9054 * Don't access this version directly.
9058 Perl_sv_setpvf_mg_nocontext(SV *const sv, const char *const pat, ...)
9063 PERL_ARGS_ASSERT_SV_SETPVF_MG_NOCONTEXT;
9065 va_start(args, pat);
9066 sv_vsetpvf_mg(sv, pat, &args);
9072 =for apidoc sv_setpvf
9074 Works like C<sv_catpvf> but copies the text into the SV instead of
9075 appending it. Does not handle 'set' magic. See C<sv_setpvf_mg>.
9081 Perl_sv_setpvf(pTHX_ SV *const sv, const char *const pat, ...)
9085 PERL_ARGS_ASSERT_SV_SETPVF;
9087 va_start(args, pat);
9088 sv_vsetpvf(sv, pat, &args);
9093 =for apidoc sv_vsetpvf
9095 Works like C<sv_vcatpvf> but copies the text into the SV instead of
9096 appending it. Does not handle 'set' magic. See C<sv_vsetpvf_mg>.
9098 Usually used via its frontend C<sv_setpvf>.
9104 Perl_sv_vsetpvf(pTHX_ SV *const sv, const char *const pat, va_list *const args)
9106 PERL_ARGS_ASSERT_SV_VSETPVF;
9108 sv_vsetpvfn(sv, pat, strlen(pat), args, NULL, 0, NULL);
9112 =for apidoc sv_setpvf_mg
9114 Like C<sv_setpvf>, but also handles 'set' magic.
9120 Perl_sv_setpvf_mg(pTHX_ SV *const sv, const char *const pat, ...)
9124 PERL_ARGS_ASSERT_SV_SETPVF_MG;
9126 va_start(args, pat);
9127 sv_vsetpvf_mg(sv, pat, &args);
9132 =for apidoc sv_vsetpvf_mg
9134 Like C<sv_vsetpvf>, but also handles 'set' magic.
9136 Usually used via its frontend C<sv_setpvf_mg>.
9142 Perl_sv_vsetpvf_mg(pTHX_ SV *const sv, const char *const pat, va_list *const args)
9144 PERL_ARGS_ASSERT_SV_VSETPVF_MG;
9146 sv_vsetpvfn(sv, pat, strlen(pat), args, NULL, 0, NULL);
9150 #if defined(PERL_IMPLICIT_CONTEXT)
9152 /* pTHX_ magic can't cope with varargs, so this is a no-context
9153 * version of the main function, (which may itself be aliased to us).
9154 * Don't access this version directly.
9158 Perl_sv_catpvf_nocontext(SV *const sv, const char *const pat, ...)
9163 PERL_ARGS_ASSERT_SV_CATPVF_NOCONTEXT;
9165 va_start(args, pat);
9166 sv_vcatpvf(sv, pat, &args);
9170 /* pTHX_ magic can't cope with varargs, so this is a no-context
9171 * version of the main function, (which may itself be aliased to us).
9172 * Don't access this version directly.
9176 Perl_sv_catpvf_mg_nocontext(SV *const sv, const char *const pat, ...)
9181 PERL_ARGS_ASSERT_SV_CATPVF_MG_NOCONTEXT;
9183 va_start(args, pat);
9184 sv_vcatpvf_mg(sv, pat, &args);
9190 =for apidoc sv_catpvf
9192 Processes its arguments like C<sprintf> and appends the formatted
9193 output to an SV. If the appended data contains "wide" characters
9194 (including, but not limited to, SVs with a UTF-8 PV formatted with %s,
9195 and characters >255 formatted with %c), the original SV might get
9196 upgraded to UTF-8. Handles 'get' magic, but not 'set' magic. See
9197 C<sv_catpvf_mg>. If the original SV was UTF-8, the pattern should be
9198 valid UTF-8; if the original SV was bytes, the pattern should be too.
9203 Perl_sv_catpvf(pTHX_ SV *const sv, const char *const pat, ...)
9207 PERL_ARGS_ASSERT_SV_CATPVF;
9209 va_start(args, pat);
9210 sv_vcatpvf(sv, pat, &args);
9215 =for apidoc sv_vcatpvf
9217 Processes its arguments like C<vsprintf> and appends the formatted output
9218 to an SV. Does not handle 'set' magic. See C<sv_vcatpvf_mg>.
9220 Usually used via its frontend C<sv_catpvf>.
9226 Perl_sv_vcatpvf(pTHX_ SV *const sv, const char *const pat, va_list *const args)
9228 PERL_ARGS_ASSERT_SV_VCATPVF;
9230 sv_vcatpvfn(sv, pat, strlen(pat), args, NULL, 0, NULL);
9234 =for apidoc sv_catpvf_mg
9236 Like C<sv_catpvf>, but also handles 'set' magic.
9242 Perl_sv_catpvf_mg(pTHX_ SV *const sv, const char *const pat, ...)
9246 PERL_ARGS_ASSERT_SV_CATPVF_MG;
9248 va_start(args, pat);
9249 sv_vcatpvf_mg(sv, pat, &args);
9254 =for apidoc sv_vcatpvf_mg
9256 Like C<sv_vcatpvf>, but also handles 'set' magic.
9258 Usually used via its frontend C<sv_catpvf_mg>.
9264 Perl_sv_vcatpvf_mg(pTHX_ SV *const sv, const char *const pat, va_list *const args)
9266 PERL_ARGS_ASSERT_SV_VCATPVF_MG;
9268 sv_vcatpvfn(sv, pat, strlen(pat), args, NULL, 0, NULL);
9273 =for apidoc sv_vsetpvfn
9275 Works like C<sv_vcatpvfn> but copies the text into the SV instead of
9278 Usually used via one of its frontends C<sv_vsetpvf> and C<sv_vsetpvf_mg>.
9284 Perl_sv_vsetpvfn(pTHX_ SV *const sv, const char *const pat, const STRLEN patlen,
9285 va_list *const args, SV **const svargs, const I32 svmax, bool *const maybe_tainted)
9287 PERL_ARGS_ASSERT_SV_VSETPVFN;
9290 sv_vcatpvfn(sv, pat, patlen, args, svargs, svmax, maybe_tainted);
9295 * Warn of missing argument to sprintf, and then return a defined value
9296 * to avoid inappropriate "use of uninit" warnings [perl #71000].
9298 #define WARN_MISSING WARN_UNINITIALIZED /* Not sure we want a new category */
9300 S_vcatpvfn_missing_argument(pTHX) {
9301 if (ckWARN(WARN_MISSING)) {
9302 Perl_warner(aTHX_ packWARN(WARN_MISSING), "Missing argument in %s",
9303 PL_op ? OP_DESC(PL_op) : "sv_vcatpvfn()");
9310 S_expect_number(pTHX_ char **const pattern)
9315 PERL_ARGS_ASSERT_EXPECT_NUMBER;
9317 switch (**pattern) {
9318 case '1': case '2': case '3':
9319 case '4': case '5': case '6':
9320 case '7': case '8': case '9':
9321 var = *(*pattern)++ - '0';
9322 while (isDIGIT(**pattern)) {
9323 const I32 tmp = var * 10 + (*(*pattern)++ - '0');
9325 Perl_croak(aTHX_ "Integer overflow in format string for %s", (PL_op ? OP_DESC(PL_op) : "sv_vcatpvfn"));
9333 S_F0convert(NV nv, char *const endbuf, STRLEN *const len)
9335 const int neg = nv < 0;
9338 PERL_ARGS_ASSERT_F0CONVERT;
9346 if (uv & 1 && uv == nv)
9347 uv--; /* Round to even */
9349 const unsigned dig = uv % 10;
9362 =for apidoc sv_vcatpvfn
9364 Processes its arguments like C<vsprintf> and appends the formatted output
9365 to an SV. Uses an array of SVs if the C style variable argument list is
9366 missing (NULL). When running with taint checks enabled, indicates via
9367 C<maybe_tainted> if results are untrustworthy (often due to the use of
9370 Usually used via one of its frontends C<sv_vcatpvf> and C<sv_vcatpvf_mg>.
9376 #define VECTORIZE_ARGS vecsv = va_arg(*args, SV*);\
9377 vecstr = (U8*)SvPV_const(vecsv,veclen);\
9378 vec_utf8 = DO_UTF8(vecsv);
9380 /* XXX maybe_tainted is never assigned to, so the doc above is lying. */
9383 Perl_sv_vcatpvfn(pTHX_ SV *const sv, const char *const pat, const STRLEN patlen,
9384 va_list *const args, SV **const svargs, const I32 svmax, bool *const maybe_tainted)
9392 static const char nullstr[] = "(null)";
9394 bool has_utf8 = DO_UTF8(sv); /* has the result utf8? */
9395 const bool pat_utf8 = has_utf8; /* the pattern is in utf8? */
9397 /* Times 4: a decimal digit takes more than 3 binary digits.
9398 * NV_DIG: mantissa takes than many decimal digits.
9399 * Plus 32: Playing safe. */
9400 char ebuf[IV_DIG * 4 + NV_DIG + 32];
9401 /* large enough for "%#.#f" --chip */
9402 /* what about long double NVs? --jhi */
9404 PERL_ARGS_ASSERT_SV_VCATPVFN;
9405 PERL_UNUSED_ARG(maybe_tainted);
9407 /* no matter what, this is a string now */
9408 (void)SvPV_force(sv, origlen);
9410 /* special-case "", "%s", and "%-p" (SVf - see below) */
9413 if (patlen == 2 && pat[0] == '%' && pat[1] == 's') {
9415 const char * const s = va_arg(*args, char*);
9416 sv_catpv(sv, s ? s : nullstr);
9418 else if (svix < svmax) {
9419 sv_catsv(sv, *svargs);
9422 S_vcatpvfn_missing_argument(aTHX);
9425 if (args && patlen == 3 && pat[0] == '%' &&
9426 pat[1] == '-' && pat[2] == 'p') {
9427 argsv = MUTABLE_SV(va_arg(*args, void*));
9428 sv_catsv(sv, argsv);
9432 #ifndef USE_LONG_DOUBLE
9433 /* special-case "%.<number>[gf]" */
9434 if ( !args && patlen <= 5 && pat[0] == '%' && pat[1] == '.'
9435 && (pat[patlen-1] == 'g' || pat[patlen-1] == 'f') ) {
9436 unsigned digits = 0;
9440 while (*pp >= '0' && *pp <= '9')
9441 digits = 10 * digits + (*pp++ - '0');
9442 if (pp - pat == (int)patlen - 1 && svix < svmax) {
9443 const NV nv = SvNV(*svargs);
9445 /* Add check for digits != 0 because it seems that some
9446 gconverts are buggy in this case, and we don't yet have
9447 a Configure test for this. */
9448 if (digits && digits < sizeof(ebuf) - NV_DIG - 10) {
9449 /* 0, point, slack */
9450 Gconvert(nv, (int)digits, 0, ebuf);
9452 if (*ebuf) /* May return an empty string for digits==0 */
9455 } else if (!digits) {
9458 if ((p = F0convert(nv, ebuf + sizeof ebuf, &l))) {
9459 sv_catpvn(sv, p, l);
9465 #endif /* !USE_LONG_DOUBLE */
9467 if (!args && svix < svmax && DO_UTF8(*svargs))
9470 patend = (char*)pat + patlen;
9471 for (p = (char*)pat; p < patend; p = q) {
9474 bool vectorize = FALSE;
9475 bool vectorarg = FALSE;
9476 bool vec_utf8 = FALSE;
9482 bool has_precis = FALSE;
9484 const I32 osvix = svix;
9485 bool is_utf8 = FALSE; /* is this item utf8? */
9486 #ifdef HAS_LDBL_SPRINTF_BUG
9487 /* This is to try to fix a bug with irix/nonstop-ux/powerux and
9488 with sfio - Allen <allens@cpan.org> */
9489 bool fix_ldbl_sprintf_bug = FALSE;
9493 U8 utf8buf[UTF8_MAXBYTES+1];
9494 STRLEN esignlen = 0;
9496 const char *eptr = NULL;
9497 const char *fmtstart;
9500 const U8 *vecstr = NULL;
9507 /* we need a long double target in case HAS_LONG_DOUBLE but
9510 #if defined(HAS_LONG_DOUBLE) && LONG_DOUBLESIZE > DOUBLESIZE
9518 const char *dotstr = ".";
9519 STRLEN dotstrlen = 1;
9520 I32 efix = 0; /* explicit format parameter index */
9521 I32 ewix = 0; /* explicit width index */
9522 I32 epix = 0; /* explicit precision index */
9523 I32 evix = 0; /* explicit vector index */
9524 bool asterisk = FALSE;
9526 /* echo everything up to the next format specification */
9527 for (q = p; q < patend && *q != '%'; ++q) ;
9529 if (has_utf8 && !pat_utf8)
9530 sv_catpvn_utf8_upgrade(sv, p, q - p, nsv);
9532 sv_catpvn(sv, p, q - p);
9541 We allow format specification elements in this order:
9542 \d+\$ explicit format parameter index
9544 v|\*(\d+\$)?v vector with optional (optionally specified) arg
9545 0 flag (as above): repeated to allow "v02"
9546 \d+|\*(\d+\$)? width using optional (optionally specified) arg
9547 \.(\d*|\*(\d+\$)?) precision using optional (optionally specified) arg
9549 [%bcdefginopsuxDFOUX] format (mandatory)
9554 As of perl5.9.3, printf format checking is on by default.
9555 Internally, perl uses %p formats to provide an escape to
9556 some extended formatting. This block deals with those
9557 extensions: if it does not match, (char*)q is reset and
9558 the normal format processing code is used.
9560 Currently defined extensions are:
9561 %p include pointer address (standard)
9562 %-p (SVf) include an SV (previously %_)
9563 %-<num>p include an SV with precision <num>
9564 %<num>p reserved for future extensions
9566 Robin Barker 2005-07-14
9568 %1p (VDf) removed. RMB 2007-10-19
9575 n = expect_number(&q);
9582 argsv = MUTABLE_SV(va_arg(*args, void*));
9583 eptr = SvPV_const(argsv, elen);
9589 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
9590 "internal %%<num>p might conflict with future printf extensions");
9596 if ( (width = expect_number(&q)) ) {
9611 if (plus == '+' && *q == ' ') /* '+' over ' ' */
9640 if ( (ewix = expect_number(&q)) )
9649 if ((vectorarg = asterisk)) {
9662 width = expect_number(&q);
9668 vecsv = va_arg(*args, SV*);
9670 vecsv = (evix > 0 && evix <= svmax)
9671 ? svargs[evix-1] : S_vcatpvfn_missing_argument(aTHX);
9673 vecsv = svix < svmax
9674 ? svargs[svix++] : S_vcatpvfn_missing_argument(aTHX);
9676 dotstr = SvPV_const(vecsv, dotstrlen);
9677 /* Keep the DO_UTF8 test *after* the SvPV call, else things go
9678 bad with tied or overloaded values that return UTF8. */
9681 else if (has_utf8) {
9682 vecsv = sv_mortalcopy(vecsv);
9683 sv_utf8_upgrade(vecsv);
9684 dotstr = SvPV_const(vecsv, dotstrlen);
9691 else if (efix ? (efix > 0 && efix <= svmax) : svix < svmax) {
9692 vecsv = svargs[efix ? efix-1 : svix++];
9693 vecstr = (U8*)SvPV_const(vecsv,veclen);
9694 vec_utf8 = DO_UTF8(vecsv);
9696 /* if this is a version object, we need to convert
9697 * back into v-string notation and then let the
9698 * vectorize happen normally
9700 if (sv_derived_from(vecsv, "version")) {
9701 char *version = savesvpv(vecsv);
9702 if ( hv_exists(MUTABLE_HV(SvRV(vecsv)), "alpha", 5 ) ) {
9703 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
9704 "vector argument not supported with alpha versions");
9707 vecsv = sv_newmortal();
9708 scan_vstring(version, version + veclen, vecsv);
9709 vecstr = (U8*)SvPV_const(vecsv, veclen);
9710 vec_utf8 = DO_UTF8(vecsv);
9722 i = va_arg(*args, int);
9724 i = (ewix ? ewix <= svmax : svix < svmax) ?
9725 SvIVx(svargs[ewix ? ewix-1 : svix++]) : 0;
9727 width = (i < 0) ? -i : i;
9737 if ( ((epix = expect_number(&q))) && (*q++ != '$') )
9739 /* XXX: todo, support specified precision parameter */
9743 i = va_arg(*args, int);
9745 i = (ewix ? ewix <= svmax : svix < svmax)
9746 ? SvIVx(svargs[ewix ? ewix-1 : svix++]) : 0;
9748 has_precis = !(i < 0);
9753 precis = precis * 10 + (*q++ - '0');
9762 case 'I': /* Ix, I32x, and I64x */
9764 if (q[1] == '6' && q[2] == '4') {
9770 if (q[1] == '3' && q[2] == '2') {
9780 #if defined(HAS_QUAD) || defined(HAS_LONG_DOUBLE)
9791 #if defined(HAS_QUAD) || defined(HAS_LONG_DOUBLE)
9792 if (*(q + 1) == 'l') { /* lld, llf */
9818 if (!vectorize && !args) {
9820 const I32 i = efix-1;
9821 argsv = (i >= 0 && i < svmax)
9822 ? svargs[i] : S_vcatpvfn_missing_argument(aTHX);
9824 argsv = (svix >= 0 && svix < svmax)
9825 ? svargs[svix++] : S_vcatpvfn_missing_argument(aTHX);
9836 uv = (args) ? va_arg(*args, int) : SvIV(argsv);
9838 (!UNI_IS_INVARIANT(uv) && SvUTF8(sv)))
9840 eptr = (char*)utf8buf;
9841 elen = uvchr_to_utf8((U8*)eptr, uv) - utf8buf;
9855 eptr = va_arg(*args, char*);
9857 elen = strlen(eptr);
9859 eptr = (char *)nullstr;
9860 elen = sizeof nullstr - 1;
9864 eptr = SvPV_const(argsv, elen);
9865 if (DO_UTF8(argsv)) {
9866 STRLEN old_precis = precis;
9867 if (has_precis && precis < elen) {
9868 STRLEN ulen = sv_len_utf8(argsv);
9869 I32 p = precis > ulen ? ulen : precis;
9870 sv_pos_u2b(argsv, &p, 0); /* sticks at end */
9873 if (width) { /* fudge width (can't fudge elen) */
9874 if (has_precis && precis < elen)
9875 width += precis - old_precis;
9877 width += elen - sv_len_utf8(argsv);
9884 if (has_precis && precis < elen)
9891 if (alt || vectorize)
9893 uv = PTR2UV(args ? va_arg(*args, void*) : argsv);
9914 uv = utf8n_to_uvchr(vecstr, veclen, &ulen,
9923 esignbuf[esignlen++] = plus;
9927 case 'h': iv = (short)va_arg(*args, int); break;
9928 case 'l': iv = va_arg(*args, long); break;
9929 case 'V': iv = va_arg(*args, IV); break;
9930 default: iv = va_arg(*args, int); break;
9933 iv = va_arg(*args, Quad_t); break;
9940 IV tiv = SvIV(argsv); /* work around GCC bug #13488 */
9942 case 'h': iv = (short)tiv; break;
9943 case 'l': iv = (long)tiv; break;
9945 default: iv = tiv; break;
9948 iv = (Quad_t)tiv; break;
9954 if ( !vectorize ) /* we already set uv above */
9959 esignbuf[esignlen++] = plus;
9963 esignbuf[esignlen++] = '-';
10007 uv = utf8n_to_uvchr(vecstr, veclen, &ulen,
10018 case 'h': uv = (unsigned short)va_arg(*args, unsigned); break;
10019 case 'l': uv = va_arg(*args, unsigned long); break;
10020 case 'V': uv = va_arg(*args, UV); break;
10021 default: uv = va_arg(*args, unsigned); break;
10024 uv = va_arg(*args, Uquad_t); break;
10031 UV tuv = SvUV(argsv); /* work around GCC bug #13488 */
10033 case 'h': uv = (unsigned short)tuv; break;
10034 case 'l': uv = (unsigned long)tuv; break;
10036 default: uv = tuv; break;
10039 uv = (Uquad_t)tuv; break;
10048 char *ptr = ebuf + sizeof ebuf;
10049 bool tempalt = uv ? alt : FALSE; /* Vectors can't change alt */
10055 p = (char *)((c == 'X') ? PL_hexdigit + 16 : PL_hexdigit);
10059 } while (uv >>= 4);
10061 esignbuf[esignlen++] = '0';
10062 esignbuf[esignlen++] = c; /* 'x' or 'X' */
10068 *--ptr = '0' + dig;
10069 } while (uv >>= 3);
10070 if (alt && *ptr != '0')
10076 *--ptr = '0' + dig;
10077 } while (uv >>= 1);
10079 esignbuf[esignlen++] = '0';
10080 esignbuf[esignlen++] = c;
10083 default: /* it had better be ten or less */
10086 *--ptr = '0' + dig;
10087 } while (uv /= base);
10090 elen = (ebuf + sizeof ebuf) - ptr;
10094 zeros = precis - elen;
10095 else if (precis == 0 && elen == 1 && *eptr == '0'
10096 && !(base == 8 && alt)) /* "%#.0o" prints "0" */
10099 /* a precision nullifies the 0 flag. */
10106 /* FLOATING POINT */
10109 c = 'f'; /* maybe %F isn't supported here */
10111 case 'e': case 'E':
10113 case 'g': case 'G':
10117 /* This is evil, but floating point is even more evil */
10119 /* for SV-style calling, we can only get NV
10120 for C-style calling, we assume %f is double;
10121 for simplicity we allow any of %Lf, %llf, %qf for long double
10125 #if defined(USE_LONG_DOUBLE)
10129 /* [perl #20339] - we should accept and ignore %lf rather than die */
10133 #if defined(USE_LONG_DOUBLE)
10134 intsize = args ? 0 : 'q';
10138 #if defined(HAS_LONG_DOUBLE)
10147 /* now we need (long double) if intsize == 'q', else (double) */
10149 #if LONG_DOUBLESIZE > DOUBLESIZE
10151 va_arg(*args, long double) :
10152 va_arg(*args, double)
10154 va_arg(*args, double)
10159 /* nv * 0 will be NaN for NaN, +Inf and -Inf, and 0 for anything
10160 else. frexp() has some unspecified behaviour for those three */
10161 if (c != 'e' && c != 'E' && (nv * 0) == 0) {
10163 /* FIXME: if HAS_LONG_DOUBLE but not USE_LONG_DOUBLE this
10164 will cast our (long double) to (double) */
10165 (void)Perl_frexp(nv, &i);
10166 if (i == PERL_INT_MIN)
10167 Perl_die(aTHX_ "panic: frexp");
10169 need = BIT_DIGITS(i);
10171 need += has_precis ? precis : 6; /* known default */
10176 #ifdef HAS_LDBL_SPRINTF_BUG
10177 /* This is to try to fix a bug with irix/nonstop-ux/powerux and
10178 with sfio - Allen <allens@cpan.org> */
10181 # define MY_DBL_MAX DBL_MAX
10182 # else /* XXX guessing! HUGE_VAL may be defined as infinity, so not using */
10183 # if DOUBLESIZE >= 8
10184 # define MY_DBL_MAX 1.7976931348623157E+308L
10186 # define MY_DBL_MAX 3.40282347E+38L
10190 # ifdef HAS_LDBL_SPRINTF_BUG_LESS1 /* only between -1L & 1L - Allen */
10191 # define MY_DBL_MAX_BUG 1L
10193 # define MY_DBL_MAX_BUG MY_DBL_MAX
10197 # define MY_DBL_MIN DBL_MIN
10198 # else /* XXX guessing! -Allen */
10199 # if DOUBLESIZE >= 8
10200 # define MY_DBL_MIN 2.2250738585072014E-308L
10202 # define MY_DBL_MIN 1.17549435E-38L
10206 if ((intsize == 'q') && (c == 'f') &&
10207 ((nv < MY_DBL_MAX_BUG) && (nv > -MY_DBL_MAX_BUG)) &&
10208 (need < DBL_DIG)) {
10209 /* it's going to be short enough that
10210 * long double precision is not needed */
10212 if ((nv <= 0L) && (nv >= -0L))
10213 fix_ldbl_sprintf_bug = TRUE; /* 0 is 0 - easiest */
10215 /* would use Perl_fp_class as a double-check but not
10216 * functional on IRIX - see perl.h comments */
10218 if ((nv >= MY_DBL_MIN) || (nv <= -MY_DBL_MIN)) {
10219 /* It's within the range that a double can represent */
10220 #if defined(DBL_MAX) && !defined(DBL_MIN)
10221 if ((nv >= ((long double)1/DBL_MAX)) ||
10222 (nv <= (-(long double)1/DBL_MAX)))
10224 fix_ldbl_sprintf_bug = TRUE;
10227 if (fix_ldbl_sprintf_bug == TRUE) {
10237 # undef MY_DBL_MAX_BUG
10240 #endif /* HAS_LDBL_SPRINTF_BUG */
10242 need += 20; /* fudge factor */
10243 if (PL_efloatsize < need) {
10244 Safefree(PL_efloatbuf);
10245 PL_efloatsize = need + 20; /* more fudge */
10246 Newx(PL_efloatbuf, PL_efloatsize, char);
10247 PL_efloatbuf[0] = '\0';
10250 if ( !(width || left || plus || alt) && fill != '0'
10251 && has_precis && intsize != 'q' ) { /* Shortcuts */
10252 /* See earlier comment about buggy Gconvert when digits,
10254 if ( c == 'g' && precis) {
10255 Gconvert((NV)nv, (int)precis, 0, PL_efloatbuf);
10256 /* May return an empty string for digits==0 */
10257 if (*PL_efloatbuf) {
10258 elen = strlen(PL_efloatbuf);
10259 goto float_converted;
10261 } else if ( c == 'f' && !precis) {
10262 if ((eptr = F0convert(nv, ebuf + sizeof ebuf, &elen)))
10267 char *ptr = ebuf + sizeof ebuf;
10270 /* FIXME: what to do if HAS_LONG_DOUBLE but not PERL_PRIfldbl? */
10271 #if defined(HAS_LONG_DOUBLE) && defined(PERL_PRIfldbl)
10272 if (intsize == 'q') {
10273 /* Copy the one or more characters in a long double
10274 * format before the 'base' ([efgEFG]) character to
10275 * the format string. */
10276 static char const prifldbl[] = PERL_PRIfldbl;
10277 char const *p = prifldbl + sizeof(prifldbl) - 3;
10278 while (p >= prifldbl) { *--ptr = *p--; }
10283 do { *--ptr = '0' + (base % 10); } while (base /= 10);
10288 do { *--ptr = '0' + (base % 10); } while (base /= 10);
10300 /* No taint. Otherwise we are in the strange situation
10301 * where printf() taints but print($float) doesn't.
10303 #if defined(HAS_LONG_DOUBLE)
10304 elen = ((intsize == 'q')
10305 ? my_snprintf(PL_efloatbuf, PL_efloatsize, ptr, nv)
10306 : my_snprintf(PL_efloatbuf, PL_efloatsize, ptr, (double)nv));
10308 elen = my_sprintf(PL_efloatbuf, ptr, nv);
10312 eptr = PL_efloatbuf;
10320 i = SvCUR(sv) - origlen;
10323 case 'h': *(va_arg(*args, short*)) = i; break;
10324 default: *(va_arg(*args, int*)) = i; break;
10325 case 'l': *(va_arg(*args, long*)) = i; break;
10326 case 'V': *(va_arg(*args, IV*)) = i; break;
10329 *(va_arg(*args, Quad_t*)) = i; break;
10336 sv_setuv_mg(argsv, (UV)i);
10337 continue; /* not "break" */
10344 && (PL_op->op_type == OP_PRTF || PL_op->op_type == OP_SPRINTF)
10345 && ckWARN(WARN_PRINTF))
10347 SV * const msg = sv_newmortal();
10348 Perl_sv_setpvf(aTHX_ msg, "Invalid conversion in %sprintf: ",
10349 (PL_op->op_type == OP_PRTF) ? "" : "s");
10350 if (fmtstart < patend) {
10351 const char * const fmtend = q < patend ? q : patend;
10353 sv_catpvs(msg, "\"%");
10354 for (f = fmtstart; f < fmtend; f++) {
10356 sv_catpvn(msg, f, 1);
10358 Perl_sv_catpvf(aTHX_ msg,
10359 "\\%03"UVof, (UV)*f & 0xFF);
10362 sv_catpvs(msg, "\"");
10364 sv_catpvs(msg, "end of string");
10366 Perl_warner(aTHX_ packWARN(WARN_PRINTF), "%"SVf, SVfARG(msg)); /* yes, this is reentrant */
10369 /* output mangled stuff ... */
10375 /* ... right here, because formatting flags should not apply */
10376 SvGROW(sv, SvCUR(sv) + elen + 1);
10378 Copy(eptr, p, elen, char);
10381 SvCUR_set(sv, p - SvPVX_const(sv));
10383 continue; /* not "break" */
10386 if (is_utf8 != has_utf8) {
10389 sv_utf8_upgrade(sv);
10392 const STRLEN old_elen = elen;
10393 SV * const nsv = newSVpvn_flags(eptr, elen, SVs_TEMP);
10394 sv_utf8_upgrade(nsv);
10395 eptr = SvPVX_const(nsv);
10398 if (width) { /* fudge width (can't fudge elen) */
10399 width += elen - old_elen;
10405 have = esignlen + zeros + elen;
10407 Perl_croak_nocontext("%s", PL_memory_wrap);
10409 need = (have > width ? have : width);
10412 if (need >= (((STRLEN)~0) - SvCUR(sv) - dotstrlen - 1))
10413 Perl_croak_nocontext("%s", PL_memory_wrap);
10414 SvGROW(sv, SvCUR(sv) + need + dotstrlen + 1);
10416 if (esignlen && fill == '0') {
10418 for (i = 0; i < (int)esignlen; i++)
10419 *p++ = esignbuf[i];
10421 if (gap && !left) {
10422 memset(p, fill, gap);
10425 if (esignlen && fill != '0') {
10427 for (i = 0; i < (int)esignlen; i++)
10428 *p++ = esignbuf[i];
10432 for (i = zeros; i; i--)
10436 Copy(eptr, p, elen, char);
10440 memset(p, ' ', gap);
10445 Copy(dotstr, p, dotstrlen, char);
10449 vectorize = FALSE; /* done iterating over vecstr */
10456 SvCUR_set(sv, p - SvPVX_const(sv));
10465 /* =========================================================================
10467 =head1 Cloning an interpreter
10469 All the macros and functions in this section are for the private use of
10470 the main function, perl_clone().
10472 The foo_dup() functions make an exact copy of an existing foo thingy.
10473 During the course of a cloning, a hash table is used to map old addresses
10474 to new addresses. The table is created and manipulated with the
10475 ptr_table_* functions.
10479 * =========================================================================*/
10482 #if defined(USE_ITHREADS)
10484 /* XXX Remove this so it doesn't have to go thru the macro and return for nothing */
10485 #ifndef GpREFCNT_inc
10486 # define GpREFCNT_inc(gp) ((gp) ? (++(gp)->gp_refcnt, (gp)) : (GP*)NULL)
10490 /* Certain cases in Perl_ss_dup have been merged, by relying on the fact
10491 that currently av_dup, gv_dup and hv_dup are the same as sv_dup.
10492 If this changes, please unmerge ss_dup.
10493 Likewise, sv_dup_inc_multiple() relies on this fact. */
10494 #define sv_dup_inc(s,t) SvREFCNT_inc(sv_dup(s,t))
10495 #define sv_dup_inc_NN(s,t) SvREFCNT_inc_NN(sv_dup(s,t))
10496 #define av_dup(s,t) MUTABLE_AV(sv_dup((const SV *)s,t))
10497 #define av_dup_inc(s,t) MUTABLE_AV(SvREFCNT_inc(sv_dup((const SV *)s,t)))
10498 #define hv_dup(s,t) MUTABLE_HV(sv_dup((const SV *)s,t))
10499 #define hv_dup_inc(s,t) MUTABLE_HV(SvREFCNT_inc(sv_dup((const SV *)s,t)))
10500 #define cv_dup(s,t) MUTABLE_CV(sv_dup((const SV *)s,t))
10501 #define cv_dup_inc(s,t) MUTABLE_CV(SvREFCNT_inc(sv_dup((const SV *)s,t)))
10502 #define io_dup(s,t) MUTABLE_IO(sv_dup((const SV *)s,t))
10503 #define io_dup_inc(s,t) MUTABLE_IO(SvREFCNT_inc(sv_dup((const SV *)s,t)))
10504 #define gv_dup(s,t) MUTABLE_GV(sv_dup((const SV *)s,t))
10505 #define gv_dup_inc(s,t) MUTABLE_GV(SvREFCNT_inc(sv_dup((const SV *)s,t)))
10506 #define SAVEPV(p) ((p) ? savepv(p) : NULL)
10507 #define SAVEPVN(p,n) ((p) ? savepvn(p,n) : NULL)
10509 /* clone a parser */
10512 Perl_parser_dup(pTHX_ const yy_parser *const proto, CLONE_PARAMS *const param)
10516 PERL_ARGS_ASSERT_PARSER_DUP;
10521 /* look for it in the table first */
10522 parser = (yy_parser *)ptr_table_fetch(PL_ptr_table, proto);
10526 /* create anew and remember what it is */
10527 Newxz(parser, 1, yy_parser);
10528 ptr_table_store(PL_ptr_table, proto, parser);
10530 parser->yyerrstatus = 0;
10531 parser->yychar = YYEMPTY; /* Cause a token to be read. */
10533 /* XXX these not yet duped */
10534 parser->old_parser = NULL;
10535 parser->stack = NULL;
10537 parser->stack_size = 0;
10538 /* XXX parser->stack->state = 0; */
10540 /* XXX eventually, just Copy() most of the parser struct ? */
10542 parser->lex_brackets = proto->lex_brackets;
10543 parser->lex_casemods = proto->lex_casemods;
10544 parser->lex_brackstack = savepvn(proto->lex_brackstack,
10545 (proto->lex_brackets < 120 ? 120 : proto->lex_brackets));
10546 parser->lex_casestack = savepvn(proto->lex_casestack,
10547 (proto->lex_casemods < 12 ? 12 : proto->lex_casemods));
10548 parser->lex_defer = proto->lex_defer;
10549 parser->lex_dojoin = proto->lex_dojoin;
10550 parser->lex_expect = proto->lex_expect;
10551 parser->lex_formbrack = proto->lex_formbrack;
10552 parser->lex_inpat = proto->lex_inpat;
10553 parser->lex_inwhat = proto->lex_inwhat;
10554 parser->lex_op = proto->lex_op;
10555 parser->lex_repl = sv_dup_inc(proto->lex_repl, param);
10556 parser->lex_starts = proto->lex_starts;
10557 parser->lex_stuff = sv_dup_inc(proto->lex_stuff, param);
10558 parser->multi_close = proto->multi_close;
10559 parser->multi_open = proto->multi_open;
10560 parser->multi_start = proto->multi_start;
10561 parser->multi_end = proto->multi_end;
10562 parser->pending_ident = proto->pending_ident;
10563 parser->preambled = proto->preambled;
10564 parser->sublex_info = proto->sublex_info; /* XXX not quite right */
10565 parser->linestr = sv_dup_inc(proto->linestr, param);
10566 parser->expect = proto->expect;
10567 parser->copline = proto->copline;
10568 parser->last_lop_op = proto->last_lop_op;
10569 parser->lex_state = proto->lex_state;
10570 parser->rsfp = fp_dup(proto->rsfp, '<', param);
10571 /* rsfp_filters entries have fake IoDIRP() */
10572 parser->rsfp_filters= av_dup_inc(proto->rsfp_filters, param);
10573 parser->in_my = proto->in_my;
10574 parser->in_my_stash = hv_dup(proto->in_my_stash, param);
10575 parser->error_count = proto->error_count;
10578 parser->linestr = sv_dup_inc(proto->linestr, param);
10581 char * const ols = SvPVX(proto->linestr);
10582 char * const ls = SvPVX(parser->linestr);
10584 parser->bufptr = ls + (proto->bufptr >= ols ?
10585 proto->bufptr - ols : 0);
10586 parser->oldbufptr = ls + (proto->oldbufptr >= ols ?
10587 proto->oldbufptr - ols : 0);
10588 parser->oldoldbufptr= ls + (proto->oldoldbufptr >= ols ?
10589 proto->oldoldbufptr - ols : 0);
10590 parser->linestart = ls + (proto->linestart >= ols ?
10591 proto->linestart - ols : 0);
10592 parser->last_uni = ls + (proto->last_uni >= ols ?
10593 proto->last_uni - ols : 0);
10594 parser->last_lop = ls + (proto->last_lop >= ols ?
10595 proto->last_lop - ols : 0);
10597 parser->bufend = ls + SvCUR(parser->linestr);
10600 Copy(proto->tokenbuf, parser->tokenbuf, 256, char);
10604 parser->endwhite = proto->endwhite;
10605 parser->faketokens = proto->faketokens;
10606 parser->lasttoke = proto->lasttoke;
10607 parser->nextwhite = proto->nextwhite;
10608 parser->realtokenstart = proto->realtokenstart;
10609 parser->skipwhite = proto->skipwhite;
10610 parser->thisclose = proto->thisclose;
10611 parser->thismad = proto->thismad;
10612 parser->thisopen = proto->thisopen;
10613 parser->thisstuff = proto->thisstuff;
10614 parser->thistoken = proto->thistoken;
10615 parser->thiswhite = proto->thiswhite;
10617 Copy(proto->nexttoke, parser->nexttoke, 5, NEXTTOKE);
10618 parser->curforce = proto->curforce;
10620 Copy(proto->nextval, parser->nextval, 5, YYSTYPE);
10621 Copy(proto->nexttype, parser->nexttype, 5, I32);
10622 parser->nexttoke = proto->nexttoke;
10625 /* XXX should clone saved_curcop here, but we aren't passed
10626 * proto_perl; so do it in perl_clone_using instead */
10632 /* duplicate a file handle */
10635 Perl_fp_dup(pTHX_ PerlIO *const fp, const char type, CLONE_PARAMS *const param)
10639 PERL_ARGS_ASSERT_FP_DUP;
10640 PERL_UNUSED_ARG(type);
10643 return (PerlIO*)NULL;
10645 /* look for it in the table first */
10646 ret = (PerlIO*)ptr_table_fetch(PL_ptr_table, fp);
10650 /* create anew and remember what it is */
10651 ret = PerlIO_fdupopen(aTHX_ fp, param, PERLIO_DUP_CLONE);
10652 ptr_table_store(PL_ptr_table, fp, ret);
10656 /* duplicate a directory handle */
10659 Perl_dirp_dup(pTHX_ DIR *const dp)
10661 PERL_UNUSED_CONTEXT;
10668 /* duplicate a typeglob */
10671 Perl_gp_dup(pTHX_ GP *const gp, CLONE_PARAMS *const param)
10675 PERL_ARGS_ASSERT_GP_DUP;
10679 /* look for it in the table first */
10680 ret = (GP*)ptr_table_fetch(PL_ptr_table, gp);
10684 /* create anew and remember what it is */
10686 ptr_table_store(PL_ptr_table, gp, ret);
10689 /* ret->gp_refcnt must be 0 before any other dups are called. We're relying
10690 on Newxz() to do this for us. */
10691 ret->gp_sv = sv_dup_inc(gp->gp_sv, param);
10692 ret->gp_io = io_dup_inc(gp->gp_io, param);
10693 ret->gp_form = cv_dup_inc(gp->gp_form, param);
10694 ret->gp_av = av_dup_inc(gp->gp_av, param);
10695 ret->gp_hv = hv_dup_inc(gp->gp_hv, param);
10696 ret->gp_egv = gv_dup(gp->gp_egv, param);/* GvEGV is not refcounted */
10697 ret->gp_cv = cv_dup_inc(gp->gp_cv, param);
10698 ret->gp_cvgen = gp->gp_cvgen;
10699 ret->gp_line = gp->gp_line;
10700 ret->gp_file_hek = hek_dup(gp->gp_file_hek, param);
10704 /* duplicate a chain of magic */
10707 Perl_mg_dup(pTHX_ MAGIC *mg, CLONE_PARAMS *const param)
10709 MAGIC *mgret = NULL;
10710 MAGIC **mgprev_p = &mgret;
10712 PERL_ARGS_ASSERT_MG_DUP;
10714 for (; mg; mg = mg->mg_moremagic) {
10716 Newx(nmg, 1, MAGIC);
10718 mgprev_p = &(nmg->mg_moremagic);
10720 /* There was a comment "XXX copy dynamic vtable?" but as we don't have
10721 dynamic vtables, I'm not sure why Sarathy wrote it. The comment dates
10722 from the original commit adding Perl_mg_dup() - revision 4538.
10723 Similarly there is the annotation "XXX random ptr?" next to the
10724 assignment to nmg->mg_ptr. */
10727 /* FIXME for plugins
10728 if (nmg->mg_type == PERL_MAGIC_qr) {
10729 nmg->mg_obj = MUTABLE_SV(CALLREGDUPE((REGEXP*)nmg->mg_obj, param));
10733 if(nmg->mg_type == PERL_MAGIC_backref) {
10734 /* The backref AV has its reference count deliberately bumped by
10737 = SvREFCNT_inc(av_dup_inc((const AV *) nmg->mg_obj, param));
10740 nmg->mg_obj = (nmg->mg_flags & MGf_REFCOUNTED)
10741 ? sv_dup_inc(nmg->mg_obj, param)
10742 : sv_dup(nmg->mg_obj, param);
10745 if (nmg->mg_ptr && nmg->mg_type != PERL_MAGIC_regex_global) {
10746 if (nmg->mg_len > 0) {
10747 nmg->mg_ptr = SAVEPVN(nmg->mg_ptr, nmg->mg_len);
10748 if (nmg->mg_type == PERL_MAGIC_overload_table &&
10749 AMT_AMAGIC((AMT*)nmg->mg_ptr))
10751 AMT * const namtp = (AMT*)nmg->mg_ptr;
10752 sv_dup_inc_multiple((SV**)(namtp->table),
10753 (SV**)(namtp->table), NofAMmeth, param);
10756 else if (nmg->mg_len == HEf_SVKEY)
10757 nmg->mg_ptr = (char*)sv_dup_inc((const SV *)nmg->mg_ptr, param);
10759 if ((nmg->mg_flags & MGf_DUP) && nmg->mg_virtual && nmg->mg_virtual->svt_dup) {
10760 CALL_FPTR(nmg->mg_virtual->svt_dup)(aTHX_ nmg, param);
10766 #endif /* USE_ITHREADS */
10768 struct ptr_tbl_arena {
10769 struct ptr_tbl_arena *next;
10770 struct ptr_tbl_ent array[1023/3]; /* as ptr_tbl_ent has 3 pointers. */
10773 /* create a new pointer-mapping table */
10776 Perl_ptr_table_new(pTHX)
10779 PERL_UNUSED_CONTEXT;
10781 Newx(tbl, 1, PTR_TBL_t);
10782 tbl->tbl_max = 511;
10783 tbl->tbl_items = 0;
10784 tbl->tbl_arena = NULL;
10785 tbl->tbl_arena_next = NULL;
10786 tbl->tbl_arena_end = NULL;
10787 Newxz(tbl->tbl_ary, tbl->tbl_max + 1, PTR_TBL_ENT_t*);
10791 #define PTR_TABLE_HASH(ptr) \
10792 ((PTR2UV(ptr) >> 3) ^ (PTR2UV(ptr) >> (3 + 7)) ^ (PTR2UV(ptr) >> (3 + 17)))
10794 /* map an existing pointer using a table */
10796 STATIC PTR_TBL_ENT_t *
10797 S_ptr_table_find(PTR_TBL_t *const tbl, const void *const sv)
10799 PTR_TBL_ENT_t *tblent;
10800 const UV hash = PTR_TABLE_HASH(sv);
10802 PERL_ARGS_ASSERT_PTR_TABLE_FIND;
10804 tblent = tbl->tbl_ary[hash & tbl->tbl_max];
10805 for (; tblent; tblent = tblent->next) {
10806 if (tblent->oldval == sv)
10813 Perl_ptr_table_fetch(pTHX_ PTR_TBL_t *const tbl, const void *const sv)
10815 PTR_TBL_ENT_t const *const tblent = ptr_table_find(tbl, sv);
10817 PERL_ARGS_ASSERT_PTR_TABLE_FETCH;
10818 PERL_UNUSED_CONTEXT;
10820 return tblent ? tblent->newval : NULL;
10823 /* add a new entry to a pointer-mapping table */
10826 Perl_ptr_table_store(pTHX_ PTR_TBL_t *const tbl, const void *const oldsv, void *const newsv)
10828 PTR_TBL_ENT_t *tblent = ptr_table_find(tbl, oldsv);
10830 PERL_ARGS_ASSERT_PTR_TABLE_STORE;
10831 PERL_UNUSED_CONTEXT;
10834 tblent->newval = newsv;
10836 const UV entry = PTR_TABLE_HASH(oldsv) & tbl->tbl_max;
10838 if (tbl->tbl_arena_next == tbl->tbl_arena_end) {
10839 struct ptr_tbl_arena *new_arena;
10841 Newx(new_arena, 1, struct ptr_tbl_arena);
10842 new_arena->next = tbl->tbl_arena;
10843 tbl->tbl_arena = new_arena;
10844 tbl->tbl_arena_next = new_arena->array;
10845 tbl->tbl_arena_end = new_arena->array
10846 + sizeof(new_arena->array) / sizeof(new_arena->array[0]);
10849 tblent = tbl->tbl_arena_next++;
10851 tblent->oldval = oldsv;
10852 tblent->newval = newsv;
10853 tblent->next = tbl->tbl_ary[entry];
10854 tbl->tbl_ary[entry] = tblent;
10856 if (tblent->next && tbl->tbl_items > tbl->tbl_max)
10857 ptr_table_split(tbl);
10861 /* double the hash bucket size of an existing ptr table */
10864 Perl_ptr_table_split(pTHX_ PTR_TBL_t *const tbl)
10866 PTR_TBL_ENT_t **ary = tbl->tbl_ary;
10867 const UV oldsize = tbl->tbl_max + 1;
10868 UV newsize = oldsize * 2;
10871 PERL_ARGS_ASSERT_PTR_TABLE_SPLIT;
10872 PERL_UNUSED_CONTEXT;
10874 Renew(ary, newsize, PTR_TBL_ENT_t*);
10875 Zero(&ary[oldsize], newsize-oldsize, PTR_TBL_ENT_t*);
10876 tbl->tbl_max = --newsize;
10877 tbl->tbl_ary = ary;
10878 for (i=0; i < oldsize; i++, ary++) {
10879 PTR_TBL_ENT_t **curentp, **entp, *ent;
10882 curentp = ary + oldsize;
10883 for (entp = ary, ent = *ary; ent; ent = *entp) {
10884 if ((newsize & PTR_TABLE_HASH(ent->oldval)) != i) {
10886 ent->next = *curentp;
10896 /* remove all the entries from a ptr table */
10897 /* Deprecated - will be removed post 5.14 */
10900 Perl_ptr_table_clear(pTHX_ PTR_TBL_t *const tbl)
10902 if (tbl && tbl->tbl_items) {
10903 struct ptr_tbl_arena *arena = tbl->tbl_arena;
10905 Zero(tbl->tbl_ary, tbl->tbl_max + 1, struct ptr_tbl_ent **);
10908 struct ptr_tbl_arena *next = arena->next;
10914 tbl->tbl_items = 0;
10915 tbl->tbl_arena = NULL;
10916 tbl->tbl_arena_next = NULL;
10917 tbl->tbl_arena_end = NULL;
10921 /* clear and free a ptr table */
10924 Perl_ptr_table_free(pTHX_ PTR_TBL_t *const tbl)
10926 struct ptr_tbl_arena *arena;
10932 arena = tbl->tbl_arena;
10935 struct ptr_tbl_arena *next = arena->next;
10941 Safefree(tbl->tbl_ary);
10945 #if defined(USE_ITHREADS)
10948 Perl_rvpv_dup(pTHX_ SV *const dstr, const SV *const sstr, CLONE_PARAMS *const param)
10950 PERL_ARGS_ASSERT_RVPV_DUP;
10953 SvRV_set(dstr, SvWEAKREF(sstr)
10954 ? sv_dup(SvRV_const(sstr), param)
10955 : sv_dup_inc(SvRV_const(sstr), param));
10958 else if (SvPVX_const(sstr)) {
10959 /* Has something there */
10961 /* Normal PV - clone whole allocated space */
10962 SvPV_set(dstr, SAVEPVN(SvPVX_const(sstr), SvLEN(sstr)-1));
10963 if (SvREADONLY(sstr) && SvFAKE(sstr)) {
10964 /* Not that normal - actually sstr is copy on write.
10965 But we are a true, independant SV, so: */
10966 SvREADONLY_off(dstr);
10971 /* Special case - not normally malloced for some reason */
10972 if (isGV_with_GP(sstr)) {
10973 /* Don't need to do anything here. */
10975 else if ((SvREADONLY(sstr) && SvFAKE(sstr))) {
10976 /* A "shared" PV - clone it as "shared" PV */
10978 HEK_KEY(hek_dup(SvSHARED_HEK_FROM_PV(SvPVX_const(sstr)),
10982 /* Some other special case - random pointer */
10983 SvPV_set(dstr, (char *) SvPVX_const(sstr));
10988 /* Copy the NULL */
10989 SvPV_set(dstr, NULL);
10993 /* duplicate a list of SVs. source and dest may point to the same memory. */
10995 S_sv_dup_inc_multiple(pTHX_ SV *const *source, SV **dest,
10996 SSize_t items, CLONE_PARAMS *const param)
10998 PERL_ARGS_ASSERT_SV_DUP_INC_MULTIPLE;
11000 while (items-- > 0) {
11001 *dest++ = sv_dup_inc(*source++, param);
11007 /* duplicate an SV of any type (including AV, HV etc) */
11010 Perl_sv_dup(pTHX_ const SV *const sstr, CLONE_PARAMS *const param)
11015 PERL_ARGS_ASSERT_SV_DUP;
11019 if (SvTYPE(sstr) == SVTYPEMASK) {
11020 #ifdef DEBUG_LEAKING_SCALARS_ABORT
11025 /* look for it in the table first */
11026 dstr = MUTABLE_SV(ptr_table_fetch(PL_ptr_table, sstr));
11030 if(param->flags & CLONEf_JOIN_IN) {
11031 /** We are joining here so we don't want do clone
11032 something that is bad **/
11033 if (SvTYPE(sstr) == SVt_PVHV) {
11034 const HEK * const hvname = HvNAME_HEK(sstr);
11036 /** don't clone stashes if they already exist **/
11037 return MUTABLE_SV(gv_stashpvn(HEK_KEY(hvname), HEK_LEN(hvname), 0));
11041 /* create anew and remember what it is */
11044 #ifdef DEBUG_LEAKING_SCALARS
11045 dstr->sv_debug_optype = sstr->sv_debug_optype;
11046 dstr->sv_debug_line = sstr->sv_debug_line;
11047 dstr->sv_debug_inpad = sstr->sv_debug_inpad;
11048 dstr->sv_debug_cloned = 1;
11049 dstr->sv_debug_file = savepv(sstr->sv_debug_file);
11052 ptr_table_store(PL_ptr_table, sstr, dstr);
11055 SvFLAGS(dstr) = SvFLAGS(sstr);
11056 SvFLAGS(dstr) &= ~SVf_OOK; /* don't propagate OOK hack */
11057 SvREFCNT(dstr) = 0; /* must be before any other dups! */
11060 if (SvANY(sstr) && PL_watch_pvx && SvPVX_const(sstr) == PL_watch_pvx)
11061 PerlIO_printf(Perl_debug_log, "watch at %p hit, found string \"%s\"\n",
11062 (void*)PL_watch_pvx, SvPVX_const(sstr));
11065 /* don't clone objects whose class has asked us not to */
11066 if (SvOBJECT(sstr) && ! (SvFLAGS(SvSTASH(sstr)) & SVphv_CLONEABLE)) {
11071 switch (SvTYPE(sstr)) {
11073 SvANY(dstr) = NULL;
11076 SvANY(dstr) = (XPVIV*)((char*)&(dstr->sv_u.svu_iv) - STRUCT_OFFSET(XPVIV, xiv_iv));
11078 Perl_rvpv_dup(aTHX_ dstr, sstr, param);
11080 SvIV_set(dstr, SvIVX(sstr));
11084 SvANY(dstr) = new_XNV();
11085 SvNV_set(dstr, SvNVX(sstr));
11087 /* case SVt_BIND: */
11090 /* These are all the types that need complex bodies allocating. */
11092 const svtype sv_type = SvTYPE(sstr);
11093 const struct body_details *const sv_type_details
11094 = bodies_by_type + sv_type;
11098 Perl_croak(aTHX_ "Bizarre SvTYPE [%" IVdf "]", (IV)SvTYPE(sstr));
11113 assert(sv_type_details->body_size);
11114 if (sv_type_details->arena) {
11115 new_body_inline(new_body, sv_type);
11117 = (void*)((char*)new_body - sv_type_details->offset);
11119 new_body = new_NOARENA(sv_type_details);
11123 SvANY(dstr) = new_body;
11126 Copy(((char*)SvANY(sstr)) + sv_type_details->offset,
11127 ((char*)SvANY(dstr)) + sv_type_details->offset,
11128 sv_type_details->copy, char);
11130 Copy(((char*)SvANY(sstr)),
11131 ((char*)SvANY(dstr)),
11132 sv_type_details->body_size + sv_type_details->offset, char);
11135 if (sv_type != SVt_PVAV && sv_type != SVt_PVHV
11136 && !isGV_with_GP(dstr))
11137 Perl_rvpv_dup(aTHX_ dstr, sstr, param);
11139 /* The Copy above means that all the source (unduplicated) pointers
11140 are now in the destination. We can check the flags and the
11141 pointers in either, but it's possible that there's less cache
11142 missing by always going for the destination.
11143 FIXME - instrument and check that assumption */
11144 if (sv_type >= SVt_PVMG) {
11145 if ((sv_type == SVt_PVMG) && SvPAD_OUR(dstr)) {
11146 SvOURSTASH_set(dstr, hv_dup_inc(SvOURSTASH(dstr), param));
11147 } else if (SvMAGIC(dstr))
11148 SvMAGIC_set(dstr, mg_dup(SvMAGIC(dstr), param));
11150 SvSTASH_set(dstr, hv_dup_inc(SvSTASH(dstr), param));
11153 /* The cast silences a GCC warning about unhandled types. */
11154 switch ((int)sv_type) {
11164 /* FIXME for plugins */
11165 re_dup_guts((REGEXP*) sstr, (REGEXP*) dstr, param);
11168 /* XXX LvTARGOFF sometimes holds PMOP* when DEBUGGING */
11169 if (LvTYPE(dstr) == 't') /* for tie: unrefcnted fake (SV**) */
11170 LvTARG(dstr) = dstr;
11171 else if (LvTYPE(dstr) == 'T') /* for tie: fake HE */
11172 LvTARG(dstr) = MUTABLE_SV(he_dup((HE*)LvTARG(dstr), 0, param));
11174 LvTARG(dstr) = sv_dup_inc(LvTARG(dstr), param);
11176 if(isGV_with_GP(sstr)) {
11177 GvNAME_HEK(dstr) = hek_dup(GvNAME_HEK(dstr), param);
11178 /* Don't call sv_add_backref here as it's going to be
11179 created as part of the magic cloning of the symbol
11180 table--unless this is during a join and the stash
11181 is not actually being cloned. */
11182 /* Danger Will Robinson - GvGP(dstr) isn't initialised
11183 at the point of this comment. */
11184 GvSTASH(dstr) = hv_dup(GvSTASH(dstr), param);
11185 if(param->flags & CLONEf_JOIN_IN) {
11186 const HEK * const hvname
11187 = HvNAME_HEK(GvSTASH(dstr));
11189 && GvSTASH(dstr) == gv_stashpvn(
11190 HEK_KEY(hvname), HEK_LEN(hvname), 0
11193 Perl_sv_add_backref(
11194 aTHX_ MUTABLE_SV(GvSTASH(dstr)), dstr
11197 GvGP(dstr) = gp_dup(GvGP(sstr), param);
11198 (void)GpREFCNT_inc(GvGP(dstr));
11200 Perl_rvpv_dup(aTHX_ dstr, sstr, param);
11203 IoIFP(dstr) = fp_dup(IoIFP(dstr), IoTYPE(dstr), param);
11204 if (IoOFP(dstr) == IoIFP(sstr))
11205 IoOFP(dstr) = IoIFP(dstr);
11207 IoOFP(dstr) = fp_dup(IoOFP(dstr), IoTYPE(dstr), param);
11208 /* PL_parser->rsfp_filters entries have fake IoDIRP() */
11209 if(IoFLAGS(dstr) & IOf_FAKE_DIRP) {
11210 /* I have no idea why fake dirp (rsfps)
11211 should be treated differently but otherwise
11212 we end up with leaks -- sky*/
11213 IoTOP_GV(dstr) = gv_dup_inc(IoTOP_GV(dstr), param);
11214 IoFMT_GV(dstr) = gv_dup_inc(IoFMT_GV(dstr), param);
11215 IoBOTTOM_GV(dstr) = gv_dup_inc(IoBOTTOM_GV(dstr), param);
11217 IoTOP_GV(dstr) = gv_dup(IoTOP_GV(dstr), param);
11218 IoFMT_GV(dstr) = gv_dup(IoFMT_GV(dstr), param);
11219 IoBOTTOM_GV(dstr) = gv_dup(IoBOTTOM_GV(dstr), param);
11220 if (IoDIRP(dstr)) {
11221 IoDIRP(dstr) = dirp_dup(IoDIRP(dstr));
11224 /* IoDIRP(dstr) is already a copy of IoDIRP(sstr) */
11227 IoTOP_NAME(dstr) = SAVEPV(IoTOP_NAME(dstr));
11228 IoFMT_NAME(dstr) = SAVEPV(IoFMT_NAME(dstr));
11229 IoBOTTOM_NAME(dstr) = SAVEPV(IoBOTTOM_NAME(dstr));
11232 /* avoid cloning an empty array */
11233 if (AvARRAY((const AV *)sstr) && AvFILLp((const AV *)sstr) >= 0) {
11234 SV **dst_ary, **src_ary;
11235 SSize_t items = AvFILLp((const AV *)sstr) + 1;
11237 src_ary = AvARRAY((const AV *)sstr);
11238 Newxz(dst_ary, AvMAX((const AV *)sstr)+1, SV*);
11239 ptr_table_store(PL_ptr_table, src_ary, dst_ary);
11240 AvARRAY(MUTABLE_AV(dstr)) = dst_ary;
11241 AvALLOC((const AV *)dstr) = dst_ary;
11242 if (AvREAL((const AV *)sstr)) {
11243 dst_ary = sv_dup_inc_multiple(src_ary, dst_ary, items,
11247 while (items-- > 0)
11248 *dst_ary++ = sv_dup(*src_ary++, param);
11249 if (!(param->flags & CLONEf_COPY_STACKS)
11252 av_reify(MUTABLE_AV(dstr)); /* #41138 */
11255 items = AvMAX((const AV *)sstr) - AvFILLp((const AV *)sstr);
11256 while (items-- > 0) {
11257 *dst_ary++ = &PL_sv_undef;
11261 AvARRAY(MUTABLE_AV(dstr)) = NULL;
11262 AvALLOC((const AV *)dstr) = (SV**)NULL;
11263 AvMAX( (const AV *)dstr) = -1;
11264 AvFILLp((const AV *)dstr) = -1;
11268 if (HvARRAY((const HV *)sstr)) {
11270 const bool sharekeys = !!HvSHAREKEYS(sstr);
11271 XPVHV * const dxhv = (XPVHV*)SvANY(dstr);
11272 XPVHV * const sxhv = (XPVHV*)SvANY(sstr);
11274 Newx(darray, PERL_HV_ARRAY_ALLOC_BYTES(dxhv->xhv_max+1)
11275 + (SvOOK(sstr) ? sizeof(struct xpvhv_aux) : 0),
11277 HvARRAY(dstr) = (HE**)darray;
11278 while (i <= sxhv->xhv_max) {
11279 const HE * const source = HvARRAY(sstr)[i];
11280 HvARRAY(dstr)[i] = source
11281 ? he_dup(source, sharekeys, param) : 0;
11286 const struct xpvhv_aux * const saux = HvAUX(sstr);
11287 struct xpvhv_aux * const daux = HvAUX(dstr);
11288 /* This flag isn't copied. */
11289 /* SvOOK_on(hv) attacks the IV flags. */
11290 SvFLAGS(dstr) |= SVf_OOK;
11292 hvname = saux->xhv_name;
11293 daux->xhv_name = hek_dup(hvname, param);
11295 daux->xhv_riter = saux->xhv_riter;
11296 daux->xhv_eiter = saux->xhv_eiter
11297 ? he_dup(saux->xhv_eiter,
11298 cBOOL(HvSHAREKEYS(sstr)), param) : 0;
11299 /* backref array needs refcnt=2; see sv_add_backref */
11300 daux->xhv_backreferences =
11301 saux->xhv_backreferences
11302 ? MUTABLE_AV(SvREFCNT_inc(
11303 sv_dup_inc((const SV *)saux->xhv_backreferences, param)))
11306 daux->xhv_mro_meta = saux->xhv_mro_meta
11307 ? mro_meta_dup(saux->xhv_mro_meta, param)
11310 /* Record stashes for possible cloning in Perl_clone(). */
11312 av_push(param->stashes, dstr);
11316 HvARRAY(MUTABLE_HV(dstr)) = NULL;
11319 if (!(param->flags & CLONEf_COPY_STACKS)) {
11323 /* NOTE: not refcounted */
11324 CvSTASH(dstr) = hv_dup(CvSTASH(dstr), param);
11326 if (!CvISXSUB(dstr))
11327 CvROOT(dstr) = OpREFCNT_inc(CvROOT(dstr));
11329 if (CvCONST(dstr) && CvISXSUB(dstr)) {
11330 CvXSUBANY(dstr).any_ptr =
11331 sv_dup_inc((const SV *)CvXSUBANY(dstr).any_ptr, param);
11333 /* don't dup if copying back - CvGV isn't refcounted, so the
11334 * duped GV may never be freed. A bit of a hack! DAPM */
11335 CvGV(dstr) = (param->flags & CLONEf_JOIN_IN) ?
11336 NULL : gv_dup(CvGV(dstr), param) ;
11337 PAD_DUP(CvPADLIST(dstr), CvPADLIST(sstr), param);
11339 CvWEAKOUTSIDE(sstr)
11340 ? cv_dup( CvOUTSIDE(dstr), param)
11341 : cv_dup_inc(CvOUTSIDE(dstr), param);
11342 if (!CvISXSUB(dstr))
11343 CvFILE(dstr) = SAVEPV(CvFILE(dstr));
11349 if (SvOBJECT(dstr) && SvTYPE(dstr) != SVt_PVIO)
11355 /* duplicate a context */
11358 Perl_cx_dup(pTHX_ PERL_CONTEXT *cxs, I32 ix, I32 max, CLONE_PARAMS* param)
11360 PERL_CONTEXT *ncxs;
11362 PERL_ARGS_ASSERT_CX_DUP;
11365 return (PERL_CONTEXT*)NULL;
11367 /* look for it in the table first */
11368 ncxs = (PERL_CONTEXT*)ptr_table_fetch(PL_ptr_table, cxs);
11372 /* create anew and remember what it is */
11373 Newx(ncxs, max + 1, PERL_CONTEXT);
11374 ptr_table_store(PL_ptr_table, cxs, ncxs);
11375 Copy(cxs, ncxs, max + 1, PERL_CONTEXT);
11378 PERL_CONTEXT * const ncx = &ncxs[ix];
11379 if (CxTYPE(ncx) == CXt_SUBST) {
11380 Perl_croak(aTHX_ "Cloning substitution context is unimplemented");
11383 switch (CxTYPE(ncx)) {
11385 ncx->blk_sub.cv = (ncx->blk_sub.olddepth == 0
11386 ? cv_dup_inc(ncx->blk_sub.cv, param)
11387 : cv_dup(ncx->blk_sub.cv,param));
11388 ncx->blk_sub.argarray = (CxHASARGS(ncx)
11389 ? av_dup_inc(ncx->blk_sub.argarray,
11392 ncx->blk_sub.savearray = av_dup_inc(ncx->blk_sub.savearray,
11394 ncx->blk_sub.oldcomppad = (PAD*)ptr_table_fetch(PL_ptr_table,
11395 ncx->blk_sub.oldcomppad);
11398 ncx->blk_eval.old_namesv = sv_dup_inc(ncx->blk_eval.old_namesv,
11400 ncx->blk_eval.cur_text = sv_dup(ncx->blk_eval.cur_text, param);
11402 case CXt_LOOP_LAZYSV:
11403 ncx->blk_loop.state_u.lazysv.end
11404 = sv_dup_inc(ncx->blk_loop.state_u.lazysv.end, param);
11405 /* We are taking advantage of av_dup_inc and sv_dup_inc
11406 actually being the same function, and order equivalance of
11408 We can assert the later [but only at run time :-(] */
11409 assert ((void *) &ncx->blk_loop.state_u.ary.ary ==
11410 (void *) &ncx->blk_loop.state_u.lazysv.cur);
11412 ncx->blk_loop.state_u.ary.ary
11413 = av_dup_inc(ncx->blk_loop.state_u.ary.ary, param);
11414 case CXt_LOOP_LAZYIV:
11415 case CXt_LOOP_PLAIN:
11416 if (CxPADLOOP(ncx)) {
11417 ncx->blk_loop.oldcomppad
11418 = (PAD*)ptr_table_fetch(PL_ptr_table,
11419 ncx->blk_loop.oldcomppad);
11421 ncx->blk_loop.oldcomppad
11422 = (PAD*)gv_dup((const GV *)ncx->blk_loop.oldcomppad,
11427 ncx->blk_format.cv = cv_dup(ncx->blk_format.cv, param);
11428 ncx->blk_format.gv = gv_dup(ncx->blk_format.gv, param);
11429 ncx->blk_format.dfoutgv = gv_dup_inc(ncx->blk_format.dfoutgv,
11442 /* duplicate a stack info structure */
11445 Perl_si_dup(pTHX_ PERL_SI *si, CLONE_PARAMS* param)
11449 PERL_ARGS_ASSERT_SI_DUP;
11452 return (PERL_SI*)NULL;
11454 /* look for it in the table first */
11455 nsi = (PERL_SI*)ptr_table_fetch(PL_ptr_table, si);
11459 /* create anew and remember what it is */
11460 Newxz(nsi, 1, PERL_SI);
11461 ptr_table_store(PL_ptr_table, si, nsi);
11463 nsi->si_stack = av_dup_inc(si->si_stack, param);
11464 nsi->si_cxix = si->si_cxix;
11465 nsi->si_cxmax = si->si_cxmax;
11466 nsi->si_cxstack = cx_dup(si->si_cxstack, si->si_cxix, si->si_cxmax, param);
11467 nsi->si_type = si->si_type;
11468 nsi->si_prev = si_dup(si->si_prev, param);
11469 nsi->si_next = si_dup(si->si_next, param);
11470 nsi->si_markoff = si->si_markoff;
11475 #define POPINT(ss,ix) ((ss)[--(ix)].any_i32)
11476 #define TOPINT(ss,ix) ((ss)[ix].any_i32)
11477 #define POPLONG(ss,ix) ((ss)[--(ix)].any_long)
11478 #define TOPLONG(ss,ix) ((ss)[ix].any_long)
11479 #define POPIV(ss,ix) ((ss)[--(ix)].any_iv)
11480 #define TOPIV(ss,ix) ((ss)[ix].any_iv)
11481 #define POPUV(ss,ix) ((ss)[--(ix)].any_uv)
11482 #define TOPUV(ss,ix) ((ss)[ix].any_uv)
11483 #define POPBOOL(ss,ix) ((ss)[--(ix)].any_bool)
11484 #define TOPBOOL(ss,ix) ((ss)[ix].any_bool)
11485 #define POPPTR(ss,ix) ((ss)[--(ix)].any_ptr)
11486 #define TOPPTR(ss,ix) ((ss)[ix].any_ptr)
11487 #define POPDPTR(ss,ix) ((ss)[--(ix)].any_dptr)
11488 #define TOPDPTR(ss,ix) ((ss)[ix].any_dptr)
11489 #define POPDXPTR(ss,ix) ((ss)[--(ix)].any_dxptr)
11490 #define TOPDXPTR(ss,ix) ((ss)[ix].any_dxptr)
11493 #define pv_dup_inc(p) SAVEPV(p)
11494 #define pv_dup(p) SAVEPV(p)
11495 #define svp_dup_inc(p,pp) any_dup(p,pp)
11497 /* map any object to the new equivent - either something in the
11498 * ptr table, or something in the interpreter structure
11502 Perl_any_dup(pTHX_ void *v, const PerlInterpreter *proto_perl)
11506 PERL_ARGS_ASSERT_ANY_DUP;
11509 return (void*)NULL;
11511 /* look for it in the table first */
11512 ret = ptr_table_fetch(PL_ptr_table, v);
11516 /* see if it is part of the interpreter structure */
11517 if (v >= (void*)proto_perl && v < (void*)(proto_perl+1))
11518 ret = (void*)(((char*)aTHX) + (((char*)v) - (char*)proto_perl));
11526 /* duplicate the save stack */
11529 Perl_ss_dup(pTHX_ PerlInterpreter *proto_perl, CLONE_PARAMS* param)
11532 ANY * const ss = proto_perl->Isavestack;
11533 const I32 max = proto_perl->Isavestack_max;
11534 I32 ix = proto_perl->Isavestack_ix;
11547 void (*dptr) (void*);
11548 void (*dxptr) (pTHX_ void*);
11550 PERL_ARGS_ASSERT_SS_DUP;
11552 Newxz(nss, max, ANY);
11555 const UV uv = POPUV(ss,ix);
11556 const U8 type = (U8)uv & SAVE_MASK;
11558 TOPUV(nss,ix) = uv;
11560 case SAVEt_CLEARSV:
11562 case SAVEt_HELEM: /* hash element */
11563 sv = (const SV *)POPPTR(ss,ix);
11564 TOPPTR(nss,ix) = sv_dup_inc(sv, param);
11566 case SAVEt_ITEM: /* normal string */
11567 case SAVEt_SV: /* scalar reference */
11568 sv = (const SV *)POPPTR(ss,ix);
11569 TOPPTR(nss,ix) = sv_dup_inc(sv, param);
11572 case SAVEt_MORTALIZESV:
11573 sv = (const SV *)POPPTR(ss,ix);
11574 TOPPTR(nss,ix) = sv_dup_inc(sv, param);
11576 case SAVEt_SHARED_PVREF: /* char* in shared space */
11577 c = (char*)POPPTR(ss,ix);
11578 TOPPTR(nss,ix) = savesharedpv(c);
11579 ptr = POPPTR(ss,ix);
11580 TOPPTR(nss,ix) = any_dup(ptr, proto_perl);
11582 case SAVEt_GENERIC_SVREF: /* generic sv */
11583 case SAVEt_SVREF: /* scalar reference */
11584 sv = (const SV *)POPPTR(ss,ix);
11585 TOPPTR(nss,ix) = sv_dup_inc(sv, param);
11586 ptr = POPPTR(ss,ix);
11587 TOPPTR(nss,ix) = svp_dup_inc((SV**)ptr, proto_perl);/* XXXXX */
11589 case SAVEt_HV: /* hash reference */
11590 case SAVEt_AV: /* array reference */
11591 sv = (const SV *) POPPTR(ss,ix);
11592 TOPPTR(nss,ix) = sv_dup_inc(sv, param);
11594 case SAVEt_COMPPAD:
11596 sv = (const SV *) POPPTR(ss,ix);
11597 TOPPTR(nss,ix) = sv_dup(sv, param);
11599 case SAVEt_INT: /* int reference */
11600 ptr = POPPTR(ss,ix);
11601 TOPPTR(nss,ix) = any_dup(ptr, proto_perl);
11602 intval = (int)POPINT(ss,ix);
11603 TOPINT(nss,ix) = intval;
11605 case SAVEt_LONG: /* long reference */
11606 ptr = POPPTR(ss,ix);
11607 TOPPTR(nss,ix) = any_dup(ptr, proto_perl);
11608 longval = (long)POPLONG(ss,ix);
11609 TOPLONG(nss,ix) = longval;
11611 case SAVEt_I32: /* I32 reference */
11612 case SAVEt_COP_ARYBASE: /* call CopARYBASE_set */
11613 ptr = POPPTR(ss,ix);
11614 TOPPTR(nss,ix) = any_dup(ptr, proto_perl);
11616 TOPINT(nss,ix) = i;
11618 case SAVEt_IV: /* IV reference */
11619 ptr = POPPTR(ss,ix);
11620 TOPPTR(nss,ix) = any_dup(ptr, proto_perl);
11622 TOPIV(nss,ix) = iv;
11624 case SAVEt_HPTR: /* HV* reference */
11625 case SAVEt_APTR: /* AV* reference */
11626 case SAVEt_SPTR: /* SV* reference */
11627 ptr = POPPTR(ss,ix);
11628 TOPPTR(nss,ix) = any_dup(ptr, proto_perl);
11629 sv = (const SV *)POPPTR(ss,ix);
11630 TOPPTR(nss,ix) = sv_dup(sv, param);
11632 case SAVEt_VPTR: /* random* reference */
11633 ptr = POPPTR(ss,ix);
11634 TOPPTR(nss,ix) = any_dup(ptr, proto_perl);
11636 case SAVEt_INT_SMALL:
11637 case SAVEt_I32_SMALL:
11638 case SAVEt_I16: /* I16 reference */
11639 case SAVEt_I8: /* I8 reference */
11641 ptr = POPPTR(ss,ix);
11642 TOPPTR(nss,ix) = any_dup(ptr, proto_perl);
11644 case SAVEt_GENERIC_PVREF: /* generic char* */
11645 case SAVEt_PPTR: /* char* reference */
11646 ptr = POPPTR(ss,ix);
11647 TOPPTR(nss,ix) = any_dup(ptr, proto_perl);
11648 c = (char*)POPPTR(ss,ix);
11649 TOPPTR(nss,ix) = pv_dup(c);
11651 case SAVEt_GP: /* scalar reference */
11652 gv = (const GV *)POPPTR(ss,ix);
11653 TOPPTR(nss,ix) = gv_dup_inc(gv, param);
11654 gp = (GP*)POPPTR(ss,ix);
11655 TOPPTR(nss,ix) = gp = gp_dup(gp, param);
11656 (void)GpREFCNT_inc(gp);
11658 TOPINT(nss,ix) = i;
11661 ptr = POPPTR(ss,ix);
11662 if (ptr && (((OP*)ptr)->op_private & OPpREFCOUNTED)) {
11663 /* these are assumed to be refcounted properly */
11665 switch (((OP*)ptr)->op_type) {
11667 case OP_LEAVESUBLV:
11671 case OP_LEAVEWRITE:
11672 TOPPTR(nss,ix) = ptr;
11675 (void) OpREFCNT_inc(o);
11679 TOPPTR(nss,ix) = NULL;
11684 TOPPTR(nss,ix) = NULL;
11687 hv = (const HV *)POPPTR(ss,ix);
11688 TOPPTR(nss,ix) = hv_dup_inc(hv, param);
11690 TOPINT(nss,ix) = i;
11693 c = (char*)POPPTR(ss,ix);
11694 TOPPTR(nss,ix) = pv_dup_inc(c);
11696 case SAVEt_STACK_POS: /* Position on Perl stack */
11698 TOPINT(nss,ix) = i;
11700 case SAVEt_DESTRUCTOR:
11701 ptr = POPPTR(ss,ix);
11702 TOPPTR(nss,ix) = any_dup(ptr, proto_perl); /* XXX quite arbitrary */
11703 dptr = POPDPTR(ss,ix);
11704 TOPDPTR(nss,ix) = DPTR2FPTR(void (*)(void*),
11705 any_dup(FPTR2DPTR(void *, dptr),
11708 case SAVEt_DESTRUCTOR_X:
11709 ptr = POPPTR(ss,ix);
11710 TOPPTR(nss,ix) = any_dup(ptr, proto_perl); /* XXX quite arbitrary */
11711 dxptr = POPDXPTR(ss,ix);
11712 TOPDXPTR(nss,ix) = DPTR2FPTR(void (*)(pTHX_ void*),
11713 any_dup(FPTR2DPTR(void *, dxptr),
11716 case SAVEt_REGCONTEXT:
11718 ix -= uv >> SAVE_TIGHT_SHIFT;
11720 case SAVEt_AELEM: /* array element */
11721 sv = (const SV *)POPPTR(ss,ix);
11722 TOPPTR(nss,ix) = sv_dup_inc(sv, param);
11724 TOPINT(nss,ix) = i;
11725 av = (const AV *)POPPTR(ss,ix);
11726 TOPPTR(nss,ix) = av_dup_inc(av, param);
11729 ptr = POPPTR(ss,ix);
11730 TOPPTR(nss,ix) = ptr;
11733 ptr = POPPTR(ss,ix);
11736 ((struct refcounted_he *)ptr)->refcounted_he_refcnt++;
11737 HINTS_REFCNT_UNLOCK;
11739 TOPPTR(nss,ix) = ptr;
11741 TOPINT(nss,ix) = i;
11742 if (i & HINT_LOCALIZE_HH) {
11743 hv = (const HV *)POPPTR(ss,ix);
11744 TOPPTR(nss,ix) = hv_dup_inc(hv, param);
11747 case SAVEt_PADSV_AND_MORTALIZE:
11748 longval = (long)POPLONG(ss,ix);
11749 TOPLONG(nss,ix) = longval;
11750 ptr = POPPTR(ss,ix);
11751 TOPPTR(nss,ix) = any_dup(ptr, proto_perl);
11752 sv = (const SV *)POPPTR(ss,ix);
11753 TOPPTR(nss,ix) = sv_dup_inc(sv, param);
11755 case SAVEt_SET_SVFLAGS:
11757 TOPINT(nss,ix) = i;
11759 TOPINT(nss,ix) = i;
11760 sv = (const SV *)POPPTR(ss,ix);
11761 TOPPTR(nss,ix) = sv_dup(sv, param);
11763 case SAVEt_RE_STATE:
11765 const struct re_save_state *const old_state
11766 = (struct re_save_state *)
11767 (ss + ix - SAVESTACK_ALLOC_FOR_RE_SAVE_STATE);
11768 struct re_save_state *const new_state
11769 = (struct re_save_state *)
11770 (nss + ix - SAVESTACK_ALLOC_FOR_RE_SAVE_STATE);
11772 Copy(old_state, new_state, 1, struct re_save_state);
11773 ix -= SAVESTACK_ALLOC_FOR_RE_SAVE_STATE;
11775 new_state->re_state_bostr
11776 = pv_dup(old_state->re_state_bostr);
11777 new_state->re_state_reginput
11778 = pv_dup(old_state->re_state_reginput);
11779 new_state->re_state_regeol
11780 = pv_dup(old_state->re_state_regeol);
11781 new_state->re_state_regoffs
11782 = (regexp_paren_pair*)
11783 any_dup(old_state->re_state_regoffs, proto_perl);
11784 new_state->re_state_reglastparen
11785 = (U32*) any_dup(old_state->re_state_reglastparen,
11787 new_state->re_state_reglastcloseparen
11788 = (U32*)any_dup(old_state->re_state_reglastcloseparen,
11790 /* XXX This just has to be broken. The old save_re_context
11791 code did SAVEGENERICPV(PL_reg_start_tmp);
11792 PL_reg_start_tmp is char **.
11793 Look above to what the dup code does for
11794 SAVEt_GENERIC_PVREF
11795 It can never have worked.
11796 So this is merely a faithful copy of the exiting bug: */
11797 new_state->re_state_reg_start_tmp
11798 = (char **) pv_dup((char *)
11799 old_state->re_state_reg_start_tmp);
11800 /* I assume that it only ever "worked" because no-one called
11801 (pseudo)fork while the regexp engine had re-entered itself.
11803 #ifdef PERL_OLD_COPY_ON_WRITE
11804 new_state->re_state_nrs
11805 = sv_dup(old_state->re_state_nrs, param);
11807 new_state->re_state_reg_magic
11808 = (MAGIC*) any_dup(old_state->re_state_reg_magic,
11810 new_state->re_state_reg_oldcurpm
11811 = (PMOP*) any_dup(old_state->re_state_reg_oldcurpm,
11813 new_state->re_state_reg_curpm
11814 = (PMOP*) any_dup(old_state->re_state_reg_curpm,
11816 new_state->re_state_reg_oldsaved
11817 = pv_dup(old_state->re_state_reg_oldsaved);
11818 new_state->re_state_reg_poscache
11819 = pv_dup(old_state->re_state_reg_poscache);
11820 new_state->re_state_reg_starttry
11821 = pv_dup(old_state->re_state_reg_starttry);
11824 case SAVEt_COMPILE_WARNINGS:
11825 ptr = POPPTR(ss,ix);
11826 TOPPTR(nss,ix) = DUP_WARNINGS((STRLEN*)ptr);
11829 ptr = POPPTR(ss,ix);
11830 TOPPTR(nss,ix) = parser_dup((const yy_parser*)ptr, param);
11834 "panic: ss_dup inconsistency (%"IVdf")", (IV) type);
11842 /* if sv is a stash, call $class->CLONE_SKIP(), and set the SVphv_CLONEABLE
11843 * flag to the result. This is done for each stash before cloning starts,
11844 * so we know which stashes want their objects cloned */
11847 do_mark_cloneable_stash(pTHX_ SV *const sv)
11849 const HEK * const hvname = HvNAME_HEK((const HV *)sv);
11851 GV* const cloner = gv_fetchmethod_autoload(MUTABLE_HV(sv), "CLONE_SKIP", 0);
11852 SvFLAGS(sv) |= SVphv_CLONEABLE; /* clone objects by default */
11853 if (cloner && GvCV(cloner)) {
11860 mXPUSHs(newSVhek(hvname));
11862 call_sv(MUTABLE_SV(GvCV(cloner)), G_SCALAR);
11869 SvFLAGS(sv) &= ~SVphv_CLONEABLE;
11877 =for apidoc perl_clone
11879 Create and return a new interpreter by cloning the current one.
11881 perl_clone takes these flags as parameters:
11883 CLONEf_COPY_STACKS - is used to, well, copy the stacks also,
11884 without it we only clone the data and zero the stacks,
11885 with it we copy the stacks and the new perl interpreter is
11886 ready to run at the exact same point as the previous one.
11887 The pseudo-fork code uses COPY_STACKS while the
11888 threads->create doesn't.
11890 CLONEf_KEEP_PTR_TABLE
11891 perl_clone keeps a ptr_table with the pointer of the old
11892 variable as a key and the new variable as a value,
11893 this allows it to check if something has been cloned and not
11894 clone it again but rather just use the value and increase the
11895 refcount. If KEEP_PTR_TABLE is not set then perl_clone will kill
11896 the ptr_table using the function
11897 C<ptr_table_free(PL_ptr_table); PL_ptr_table = NULL;>,
11898 reason to keep it around is if you want to dup some of your own
11899 variable who are outside the graph perl scans, example of this
11900 code is in threads.xs create
11903 This is a win32 thing, it is ignored on unix, it tells perls
11904 win32host code (which is c++) to clone itself, this is needed on
11905 win32 if you want to run two threads at the same time,
11906 if you just want to do some stuff in a separate perl interpreter
11907 and then throw it away and return to the original one,
11908 you don't need to do anything.
11913 /* XXX the above needs expanding by someone who actually understands it ! */
11914 EXTERN_C PerlInterpreter *
11915 perl_clone_host(PerlInterpreter* proto_perl, UV flags);
11918 perl_clone(PerlInterpreter *proto_perl, UV flags)
11921 #ifdef PERL_IMPLICIT_SYS
11923 PERL_ARGS_ASSERT_PERL_CLONE;
11925 /* perlhost.h so we need to call into it
11926 to clone the host, CPerlHost should have a c interface, sky */
11928 if (flags & CLONEf_CLONE_HOST) {
11929 return perl_clone_host(proto_perl,flags);
11931 return perl_clone_using(proto_perl, flags,
11933 proto_perl->IMemShared,
11934 proto_perl->IMemParse,
11936 proto_perl->IStdIO,
11940 proto_perl->IProc);
11944 perl_clone_using(PerlInterpreter *proto_perl, UV flags,
11945 struct IPerlMem* ipM, struct IPerlMem* ipMS,
11946 struct IPerlMem* ipMP, struct IPerlEnv* ipE,
11947 struct IPerlStdIO* ipStd, struct IPerlLIO* ipLIO,
11948 struct IPerlDir* ipD, struct IPerlSock* ipS,
11949 struct IPerlProc* ipP)
11951 /* XXX many of the string copies here can be optimized if they're
11952 * constants; they need to be allocated as common memory and just
11953 * their pointers copied. */
11956 CLONE_PARAMS clone_params;
11957 CLONE_PARAMS* const param = &clone_params;
11959 PerlInterpreter * const my_perl = (PerlInterpreter*)(*ipM->pMalloc)(ipM, sizeof(PerlInterpreter));
11961 PERL_ARGS_ASSERT_PERL_CLONE_USING;
11962 #else /* !PERL_IMPLICIT_SYS */
11964 CLONE_PARAMS clone_params;
11965 CLONE_PARAMS* param = &clone_params;
11966 PerlInterpreter * const my_perl = (PerlInterpreter*)PerlMem_malloc(sizeof(PerlInterpreter));
11968 PERL_ARGS_ASSERT_PERL_CLONE;
11969 #endif /* PERL_IMPLICIT_SYS */
11971 /* for each stash, determine whether its objects should be cloned */
11972 S_visit(proto_perl, do_mark_cloneable_stash, SVt_PVHV, SVTYPEMASK);
11973 PERL_SET_THX(my_perl);
11976 PoisonNew(my_perl, 1, PerlInterpreter);
11981 PL_scopestack_name = 0;
11983 PL_savestack_ix = 0;
11984 PL_savestack_max = -1;
11985 PL_sig_pending = 0;
11987 Zero(&PL_debug_pad, 1, struct perl_debug_pad);
11988 # ifdef DEBUG_LEAKING_SCALARS
11989 PL_sv_serial = (((U32)my_perl >> 2) & 0xfff) * 1000000;
11991 #else /* !DEBUGGING */
11992 Zero(my_perl, 1, PerlInterpreter);
11993 #endif /* DEBUGGING */
11995 #ifdef PERL_IMPLICIT_SYS
11996 /* host pointers */
11998 PL_MemShared = ipMS;
11999 PL_MemParse = ipMP;
12006 #endif /* PERL_IMPLICIT_SYS */
12008 param->flags = flags;
12009 param->proto_perl = proto_perl;
12011 INIT_TRACK_MEMPOOL(my_perl->Imemory_debug_header, my_perl);
12013 PL_body_arenas = NULL;
12014 Zero(&PL_body_roots, 1, PL_body_roots);
12016 PL_nice_chunk = NULL;
12017 PL_nice_chunk_size = 0;
12019 PL_sv_objcount = 0;
12021 PL_sv_arenaroot = NULL;
12023 PL_debug = proto_perl->Idebug;
12025 PL_hash_seed = proto_perl->Ihash_seed;
12026 PL_rehash_seed = proto_perl->Irehash_seed;
12028 #ifdef USE_REENTRANT_API
12029 /* XXX: things like -Dm will segfault here in perlio, but doing
12030 * PERL_SET_CONTEXT(proto_perl);
12031 * breaks too many other things
12033 Perl_reentrant_init(aTHX);
12036 /* create SV map for pointer relocation */
12037 PL_ptr_table = ptr_table_new();
12039 /* initialize these special pointers as early as possible */
12040 SvANY(&PL_sv_undef) = NULL;
12041 SvREFCNT(&PL_sv_undef) = (~(U32)0)/2;
12042 SvFLAGS(&PL_sv_undef) = SVf_READONLY|SVt_NULL;
12043 ptr_table_store(PL_ptr_table, &proto_perl->Isv_undef, &PL_sv_undef);
12045 SvANY(&PL_sv_no) = new_XPVNV();
12046 SvREFCNT(&PL_sv_no) = (~(U32)0)/2;
12047 SvFLAGS(&PL_sv_no) = SVp_IOK|SVf_IOK|SVp_NOK|SVf_NOK
12048 |SVp_POK|SVf_POK|SVf_READONLY|SVt_PVNV;
12049 SvPV_set(&PL_sv_no, savepvn(PL_No, 0));
12050 SvCUR_set(&PL_sv_no, 0);
12051 SvLEN_set(&PL_sv_no, 1);
12052 SvIV_set(&PL_sv_no, 0);
12053 SvNV_set(&PL_sv_no, 0);
12054 ptr_table_store(PL_ptr_table, &proto_perl->Isv_no, &PL_sv_no);
12056 SvANY(&PL_sv_yes) = new_XPVNV();
12057 SvREFCNT(&PL_sv_yes) = (~(U32)0)/2;
12058 SvFLAGS(&PL_sv_yes) = SVp_IOK|SVf_IOK|SVp_NOK|SVf_NOK
12059 |SVp_POK|SVf_POK|SVf_READONLY|SVt_PVNV;
12060 SvPV_set(&PL_sv_yes, savepvn(PL_Yes, 1));
12061 SvCUR_set(&PL_sv_yes, 1);
12062 SvLEN_set(&PL_sv_yes, 2);
12063 SvIV_set(&PL_sv_yes, 1);
12064 SvNV_set(&PL_sv_yes, 1);
12065 ptr_table_store(PL_ptr_table, &proto_perl->Isv_yes, &PL_sv_yes);
12067 /* dbargs array probably holds garbage */
12070 /* create (a non-shared!) shared string table */
12071 PL_strtab = newHV();
12072 HvSHAREKEYS_off(PL_strtab);
12073 hv_ksplit(PL_strtab, HvTOTALKEYS(proto_perl->Istrtab));
12074 ptr_table_store(PL_ptr_table, proto_perl->Istrtab, PL_strtab);
12076 PL_compiling = proto_perl->Icompiling;
12078 /* These two PVs will be free'd special way so must set them same way op.c does */
12079 PL_compiling.cop_stashpv = savesharedpv(PL_compiling.cop_stashpv);
12080 ptr_table_store(PL_ptr_table, proto_perl->Icompiling.cop_stashpv, PL_compiling.cop_stashpv);
12082 PL_compiling.cop_file = savesharedpv(PL_compiling.cop_file);
12083 ptr_table_store(PL_ptr_table, proto_perl->Icompiling.cop_file, PL_compiling.cop_file);
12085 ptr_table_store(PL_ptr_table, &proto_perl->Icompiling, &PL_compiling);
12086 PL_compiling.cop_warnings = DUP_WARNINGS(PL_compiling.cop_warnings);
12087 if (PL_compiling.cop_hints_hash) {
12089 PL_compiling.cop_hints_hash->refcounted_he_refcnt++;
12090 HINTS_REFCNT_UNLOCK;
12092 PL_curcop = (COP*)any_dup(proto_perl->Icurcop, proto_perl);
12093 #ifdef PERL_DEBUG_READONLY_OPS
12098 /* pseudo environmental stuff */
12099 PL_origargc = proto_perl->Iorigargc;
12100 PL_origargv = proto_perl->Iorigargv;
12102 param->stashes = newAV(); /* Setup array of objects to call clone on */
12104 /* Set tainting stuff before PerlIO_debug can possibly get called */
12105 PL_tainting = proto_perl->Itainting;
12106 PL_taint_warn = proto_perl->Itaint_warn;
12108 #ifdef PERLIO_LAYERS
12109 /* Clone PerlIO tables as soon as we can handle general xx_dup() */
12110 PerlIO_clone(aTHX_ proto_perl, param);
12113 PL_envgv = gv_dup(proto_perl->Ienvgv, param);
12114 PL_incgv = gv_dup(proto_perl->Iincgv, param);
12115 PL_hintgv = gv_dup(proto_perl->Ihintgv, param);
12116 PL_origfilename = SAVEPV(proto_perl->Iorigfilename);
12117 PL_diehook = sv_dup_inc(proto_perl->Idiehook, param);
12118 PL_warnhook = sv_dup_inc(proto_perl->Iwarnhook, param);
12121 PL_minus_c = proto_perl->Iminus_c;
12122 PL_patchlevel = sv_dup_inc(proto_perl->Ipatchlevel, param);
12123 PL_localpatches = proto_perl->Ilocalpatches;
12124 PL_splitstr = proto_perl->Isplitstr;
12125 PL_minus_n = proto_perl->Iminus_n;
12126 PL_minus_p = proto_perl->Iminus_p;
12127 PL_minus_l = proto_perl->Iminus_l;
12128 PL_minus_a = proto_perl->Iminus_a;
12129 PL_minus_E = proto_perl->Iminus_E;
12130 PL_minus_F = proto_perl->Iminus_F;
12131 PL_doswitches = proto_perl->Idoswitches;
12132 PL_dowarn = proto_perl->Idowarn;
12133 PL_doextract = proto_perl->Idoextract;
12134 PL_sawampersand = proto_perl->Isawampersand;
12135 PL_unsafe = proto_perl->Iunsafe;
12136 PL_inplace = SAVEPV(proto_perl->Iinplace);
12137 PL_e_script = sv_dup_inc(proto_perl->Ie_script, param);
12138 PL_perldb = proto_perl->Iperldb;
12139 PL_perl_destruct_level = proto_perl->Iperl_destruct_level;
12140 PL_exit_flags = proto_perl->Iexit_flags;
12142 /* magical thingies */
12143 /* XXX time(&PL_basetime) when asked for? */
12144 PL_basetime = proto_perl->Ibasetime;
12145 PL_formfeed = sv_dup(proto_perl->Iformfeed, param);
12147 PL_maxsysfd = proto_perl->Imaxsysfd;
12148 PL_statusvalue = proto_perl->Istatusvalue;
12150 PL_statusvalue_vms = proto_perl->Istatusvalue_vms;
12152 PL_statusvalue_posix = proto_perl->Istatusvalue_posix;
12154 PL_encoding = sv_dup(proto_perl->Iencoding, param);
12156 sv_setpvs(PERL_DEBUG_PAD(0), ""); /* For regex debugging. */
12157 sv_setpvs(PERL_DEBUG_PAD(1), ""); /* ext/re needs these */
12158 sv_setpvs(PERL_DEBUG_PAD(2), ""); /* even without DEBUGGING. */
12161 /* RE engine related */
12162 Zero(&PL_reg_state, 1, struct re_save_state);
12163 PL_reginterp_cnt = 0;
12164 PL_regmatch_slab = NULL;
12166 /* Clone the regex array */
12167 /* ORANGE FIXME for plugins, probably in the SV dup code.
12168 newSViv(PTR2IV(CALLREGDUPE(
12169 INT2PTR(REGEXP *, SvIVX(regex)), param))))
12171 PL_regex_padav = av_dup_inc(proto_perl->Iregex_padav, param);
12172 PL_regex_pad = AvARRAY(PL_regex_padav);
12174 /* shortcuts to various I/O objects */
12175 PL_ofsgv = gv_dup(proto_perl->Iofsgv, param);
12176 PL_stdingv = gv_dup(proto_perl->Istdingv, param);
12177 PL_stderrgv = gv_dup(proto_perl->Istderrgv, param);
12178 PL_defgv = gv_dup(proto_perl->Idefgv, param);
12179 PL_argvgv = gv_dup(proto_perl->Iargvgv, param);
12180 PL_argvoutgv = gv_dup(proto_perl->Iargvoutgv, param);
12181 PL_argvout_stack = av_dup_inc(proto_perl->Iargvout_stack, param);
12183 /* shortcuts to regexp stuff */
12184 PL_replgv = gv_dup(proto_perl->Ireplgv, param);
12186 /* shortcuts to misc objects */
12187 PL_errgv = gv_dup(proto_perl->Ierrgv, param);
12189 /* shortcuts to debugging objects */
12190 PL_DBgv = gv_dup(proto_perl->IDBgv, param);
12191 PL_DBline = gv_dup(proto_perl->IDBline, param);
12192 PL_DBsub = gv_dup(proto_perl->IDBsub, param);
12193 PL_DBsingle = sv_dup(proto_perl->IDBsingle, param);
12194 PL_DBtrace = sv_dup(proto_perl->IDBtrace, param);
12195 PL_DBsignal = sv_dup(proto_perl->IDBsignal, param);
12197 /* symbol tables */
12198 PL_defstash = hv_dup_inc(proto_perl->Idefstash, param);
12199 PL_curstash = hv_dup(proto_perl->Icurstash, param);
12200 PL_debstash = hv_dup(proto_perl->Idebstash, param);
12201 PL_globalstash = hv_dup(proto_perl->Iglobalstash, param);
12202 PL_curstname = sv_dup_inc(proto_perl->Icurstname, param);
12204 PL_beginav = av_dup_inc(proto_perl->Ibeginav, param);
12205 PL_beginav_save = av_dup_inc(proto_perl->Ibeginav_save, param);
12206 PL_checkav_save = av_dup_inc(proto_perl->Icheckav_save, param);
12207 PL_unitcheckav = av_dup_inc(proto_perl->Iunitcheckav, param);
12208 PL_unitcheckav_save = av_dup_inc(proto_perl->Iunitcheckav_save, param);
12209 PL_endav = av_dup_inc(proto_perl->Iendav, param);
12210 PL_checkav = av_dup_inc(proto_perl->Icheckav, param);
12211 PL_initav = av_dup_inc(proto_perl->Iinitav, param);
12213 PL_sub_generation = proto_perl->Isub_generation;
12214 PL_isarev = hv_dup_inc(proto_perl->Iisarev, param);
12216 /* funky return mechanisms */
12217 PL_forkprocess = proto_perl->Iforkprocess;
12219 /* subprocess state */
12220 PL_fdpid = av_dup_inc(proto_perl->Ifdpid, param);
12222 /* internal state */
12223 PL_maxo = proto_perl->Imaxo;
12224 if (proto_perl->Iop_mask)
12225 PL_op_mask = SAVEPVN(proto_perl->Iop_mask, PL_maxo);
12228 /* PL_asserting = proto_perl->Iasserting; */
12230 /* current interpreter roots */
12231 PL_main_cv = cv_dup_inc(proto_perl->Imain_cv, param);
12233 PL_main_root = OpREFCNT_inc(proto_perl->Imain_root);
12235 PL_main_start = proto_perl->Imain_start;
12236 PL_eval_root = proto_perl->Ieval_root;
12237 PL_eval_start = proto_perl->Ieval_start;
12239 /* runtime control stuff */
12240 PL_curcopdb = (COP*)any_dup(proto_perl->Icurcopdb, proto_perl);
12242 PL_filemode = proto_perl->Ifilemode;
12243 PL_lastfd = proto_perl->Ilastfd;
12244 PL_oldname = proto_perl->Ioldname; /* XXX not quite right */
12247 PL_gensym = proto_perl->Igensym;
12248 PL_preambleav = av_dup_inc(proto_perl->Ipreambleav, param);
12249 PL_laststatval = proto_perl->Ilaststatval;
12250 PL_laststype = proto_perl->Ilaststype;
12253 PL_ors_sv = sv_dup_inc(proto_perl->Iors_sv, param);
12255 /* interpreter atexit processing */
12256 PL_exitlistlen = proto_perl->Iexitlistlen;
12257 if (PL_exitlistlen) {
12258 Newx(PL_exitlist, PL_exitlistlen, PerlExitListEntry);
12259 Copy(proto_perl->Iexitlist, PL_exitlist, PL_exitlistlen, PerlExitListEntry);
12262 PL_exitlist = (PerlExitListEntry*)NULL;
12264 PL_my_cxt_size = proto_perl->Imy_cxt_size;
12265 if (PL_my_cxt_size) {
12266 Newx(PL_my_cxt_list, PL_my_cxt_size, void *);
12267 Copy(proto_perl->Imy_cxt_list, PL_my_cxt_list, PL_my_cxt_size, void *);
12268 #ifdef PERL_GLOBAL_STRUCT_PRIVATE
12269 Newx(PL_my_cxt_keys, PL_my_cxt_size, const char *);
12270 Copy(proto_perl->Imy_cxt_keys, PL_my_cxt_keys, PL_my_cxt_size, char *);
12274 PL_my_cxt_list = (void**)NULL;
12275 #ifdef PERL_GLOBAL_STRUCT_PRIVATE
12276 PL_my_cxt_keys = (const char**)NULL;
12279 PL_modglobal = hv_dup_inc(proto_perl->Imodglobal, param);
12280 PL_custom_op_names = hv_dup_inc(proto_perl->Icustom_op_names,param);
12281 PL_custom_op_descs = hv_dup_inc(proto_perl->Icustom_op_descs,param);
12283 PL_profiledata = NULL;
12285 PL_compcv = cv_dup(proto_perl->Icompcv, param);
12287 PAD_CLONE_VARS(proto_perl, param);
12289 #ifdef HAVE_INTERP_INTERN
12290 sys_intern_dup(&proto_perl->Isys_intern, &PL_sys_intern);
12293 /* more statics moved here */
12294 PL_generation = proto_perl->Igeneration;
12295 PL_DBcv = cv_dup(proto_perl->IDBcv, param);
12297 PL_in_clean_objs = proto_perl->Iin_clean_objs;
12298 PL_in_clean_all = proto_perl->Iin_clean_all;
12300 PL_uid = proto_perl->Iuid;
12301 PL_euid = proto_perl->Ieuid;
12302 PL_gid = proto_perl->Igid;
12303 PL_egid = proto_perl->Iegid;
12304 PL_nomemok = proto_perl->Inomemok;
12305 PL_an = proto_perl->Ian;
12306 PL_evalseq = proto_perl->Ievalseq;
12307 PL_origenviron = proto_perl->Iorigenviron; /* XXX not quite right */
12308 PL_origalen = proto_perl->Iorigalen;
12309 #ifdef PERL_USES_PL_PIDSTATUS
12310 PL_pidstatus = newHV(); /* XXX flag for cloning? */
12312 PL_osname = SAVEPV(proto_perl->Iosname);
12313 PL_sighandlerp = proto_perl->Isighandlerp;
12315 PL_runops = proto_perl->Irunops;
12317 PL_parser = parser_dup(proto_perl->Iparser, param);
12319 /* XXX this only works if the saved cop has already been cloned */
12320 if (proto_perl->Iparser) {
12321 PL_parser->saved_curcop = (COP*)any_dup(
12322 proto_perl->Iparser->saved_curcop,
12326 PL_subline = proto_perl->Isubline;
12327 PL_subname = sv_dup_inc(proto_perl->Isubname, param);
12330 PL_cryptseen = proto_perl->Icryptseen;
12333 PL_hints = proto_perl->Ihints;
12335 PL_amagic_generation = proto_perl->Iamagic_generation;
12337 #ifdef USE_LOCALE_COLLATE
12338 PL_collation_ix = proto_perl->Icollation_ix;
12339 PL_collation_name = SAVEPV(proto_perl->Icollation_name);
12340 PL_collation_standard = proto_perl->Icollation_standard;
12341 PL_collxfrm_base = proto_perl->Icollxfrm_base;
12342 PL_collxfrm_mult = proto_perl->Icollxfrm_mult;
12343 #endif /* USE_LOCALE_COLLATE */
12345 #ifdef USE_LOCALE_NUMERIC
12346 PL_numeric_name = SAVEPV(proto_perl->Inumeric_name);
12347 PL_numeric_standard = proto_perl->Inumeric_standard;
12348 PL_numeric_local = proto_perl->Inumeric_local;
12349 PL_numeric_radix_sv = sv_dup_inc(proto_perl->Inumeric_radix_sv, param);
12350 #endif /* !USE_LOCALE_NUMERIC */
12352 /* utf8 character classes */
12353 PL_utf8_alnum = sv_dup_inc(proto_perl->Iutf8_alnum, param);
12354 PL_utf8_ascii = sv_dup_inc(proto_perl->Iutf8_ascii, param);
12355 PL_utf8_alpha = sv_dup_inc(proto_perl->Iutf8_alpha, param);
12356 PL_utf8_space = sv_dup_inc(proto_perl->Iutf8_space, param);
12357 PL_utf8_cntrl = sv_dup_inc(proto_perl->Iutf8_cntrl, param);
12358 PL_utf8_graph = sv_dup_inc(proto_perl->Iutf8_graph, param);
12359 PL_utf8_digit = sv_dup_inc(proto_perl->Iutf8_digit, param);
12360 PL_utf8_upper = sv_dup_inc(proto_perl->Iutf8_upper, param);
12361 PL_utf8_lower = sv_dup_inc(proto_perl->Iutf8_lower, param);
12362 PL_utf8_print = sv_dup_inc(proto_perl->Iutf8_print, param);
12363 PL_utf8_punct = sv_dup_inc(proto_perl->Iutf8_punct, param);
12364 PL_utf8_xdigit = sv_dup_inc(proto_perl->Iutf8_xdigit, param);
12365 PL_utf8_mark = sv_dup_inc(proto_perl->Iutf8_mark, param);
12366 PL_utf8_X_begin = sv_dup_inc(proto_perl->Iutf8_X_begin, param);
12367 PL_utf8_X_extend = sv_dup_inc(proto_perl->Iutf8_X_extend, param);
12368 PL_utf8_X_prepend = sv_dup_inc(proto_perl->Iutf8_X_prepend, param);
12369 PL_utf8_X_non_hangul = sv_dup_inc(proto_perl->Iutf8_X_non_hangul, param);
12370 PL_utf8_X_L = sv_dup_inc(proto_perl->Iutf8_X_L, param);
12371 PL_utf8_X_LV = sv_dup_inc(proto_perl->Iutf8_X_LV, param);
12372 PL_utf8_X_LVT = sv_dup_inc(proto_perl->Iutf8_X_LVT, param);
12373 PL_utf8_X_T = sv_dup_inc(proto_perl->Iutf8_X_T, param);
12374 PL_utf8_X_V = sv_dup_inc(proto_perl->Iutf8_X_V, param);
12375 PL_utf8_X_LV_LVT_V = sv_dup_inc(proto_perl->Iutf8_X_LV_LVT_V, param);
12376 PL_utf8_toupper = sv_dup_inc(proto_perl->Iutf8_toupper, param);
12377 PL_utf8_totitle = sv_dup_inc(proto_perl->Iutf8_totitle, param);
12378 PL_utf8_tolower = sv_dup_inc(proto_perl->Iutf8_tolower, param);
12379 PL_utf8_tofold = sv_dup_inc(proto_perl->Iutf8_tofold, param);
12380 PL_utf8_idstart = sv_dup_inc(proto_perl->Iutf8_idstart, param);
12381 PL_utf8_idcont = sv_dup_inc(proto_perl->Iutf8_idcont, param);
12383 /* Did the locale setup indicate UTF-8? */
12384 PL_utf8locale = proto_perl->Iutf8locale;
12385 /* Unicode features (see perlrun/-C) */
12386 PL_unicode = proto_perl->Iunicode;
12388 /* Pre-5.8 signals control */
12389 PL_signals = proto_perl->Isignals;
12391 /* times() ticks per second */
12392 PL_clocktick = proto_perl->Iclocktick;
12394 /* Recursion stopper for PerlIO_find_layer */
12395 PL_in_load_module = proto_perl->Iin_load_module;
12397 /* sort() routine */
12398 PL_sort_RealCmp = proto_perl->Isort_RealCmp;
12400 /* Not really needed/useful since the reenrant_retint is "volatile",
12401 * but do it for consistency's sake. */
12402 PL_reentrant_retint = proto_perl->Ireentrant_retint;
12404 /* Hooks to shared SVs and locks. */
12405 PL_sharehook = proto_perl->Isharehook;
12406 PL_lockhook = proto_perl->Ilockhook;
12407 PL_unlockhook = proto_perl->Iunlockhook;
12408 PL_threadhook = proto_perl->Ithreadhook;
12409 PL_destroyhook = proto_perl->Idestroyhook;
12411 #ifdef THREADS_HAVE_PIDS
12412 PL_ppid = proto_perl->Ippid;
12416 PL_last_swash_hv = NULL; /* reinits on demand */
12417 PL_last_swash_klen = 0;
12418 PL_last_swash_key[0]= '\0';
12419 PL_last_swash_tmps = (U8*)NULL;
12420 PL_last_swash_slen = 0;
12422 PL_glob_index = proto_perl->Iglob_index;
12423 PL_srand_called = proto_perl->Isrand_called;
12425 if (proto_perl->Ipsig_pend) {
12426 Newxz(PL_psig_pend, SIG_SIZE, int);
12429 PL_psig_pend = (int*)NULL;
12432 if (proto_perl->Ipsig_name) {
12433 Newx(PL_psig_name, 2 * SIG_SIZE, SV*);
12434 sv_dup_inc_multiple(proto_perl->Ipsig_name, PL_psig_name, 2 * SIG_SIZE,
12436 PL_psig_ptr = PL_psig_name + SIG_SIZE;
12439 PL_psig_ptr = (SV**)NULL;
12440 PL_psig_name = (SV**)NULL;
12443 /* intrpvar.h stuff */
12445 if (flags & CLONEf_COPY_STACKS) {
12446 /* next allocation will be PL_tmps_stack[PL_tmps_ix+1] */
12447 PL_tmps_ix = proto_perl->Itmps_ix;
12448 PL_tmps_max = proto_perl->Itmps_max;
12449 PL_tmps_floor = proto_perl->Itmps_floor;
12450 Newx(PL_tmps_stack, PL_tmps_max, SV*);
12451 sv_dup_inc_multiple(proto_perl->Itmps_stack, PL_tmps_stack,
12452 PL_tmps_ix+1, param);
12454 /* next PUSHMARK() sets *(PL_markstack_ptr+1) */
12455 i = proto_perl->Imarkstack_max - proto_perl->Imarkstack;
12456 Newxz(PL_markstack, i, I32);
12457 PL_markstack_max = PL_markstack + (proto_perl->Imarkstack_max
12458 - proto_perl->Imarkstack);
12459 PL_markstack_ptr = PL_markstack + (proto_perl->Imarkstack_ptr
12460 - proto_perl->Imarkstack);
12461 Copy(proto_perl->Imarkstack, PL_markstack,
12462 PL_markstack_ptr - PL_markstack + 1, I32);
12464 /* next push_scope()/ENTER sets PL_scopestack[PL_scopestack_ix]
12465 * NOTE: unlike the others! */
12466 PL_scopestack_ix = proto_perl->Iscopestack_ix;
12467 PL_scopestack_max = proto_perl->Iscopestack_max;
12468 Newxz(PL_scopestack, PL_scopestack_max, I32);
12469 Copy(proto_perl->Iscopestack, PL_scopestack, PL_scopestack_ix, I32);
12472 Newxz(PL_scopestack_name, PL_scopestack_max, const char *);
12473 Copy(proto_perl->Iscopestack_name, PL_scopestack_name, PL_scopestack_ix, const char *);
12475 /* NOTE: si_dup() looks at PL_markstack */
12476 PL_curstackinfo = si_dup(proto_perl->Icurstackinfo, param);
12478 /* PL_curstack = PL_curstackinfo->si_stack; */
12479 PL_curstack = av_dup(proto_perl->Icurstack, param);
12480 PL_mainstack = av_dup(proto_perl->Imainstack, param);
12482 /* next PUSHs() etc. set *(PL_stack_sp+1) */
12483 PL_stack_base = AvARRAY(PL_curstack);
12484 PL_stack_sp = PL_stack_base + (proto_perl->Istack_sp
12485 - proto_perl->Istack_base);
12486 PL_stack_max = PL_stack_base + AvMAX(PL_curstack);
12488 /* next SSPUSHFOO() sets PL_savestack[PL_savestack_ix]
12489 * NOTE: unlike the others! */
12490 PL_savestack_ix = proto_perl->Isavestack_ix;
12491 PL_savestack_max = proto_perl->Isavestack_max;
12492 /*Newxz(PL_savestack, PL_savestack_max, ANY);*/
12493 PL_savestack = ss_dup(proto_perl, param);
12497 ENTER; /* perl_destruct() wants to LEAVE; */
12499 /* although we're not duplicating the tmps stack, we should still
12500 * add entries for any SVs on the tmps stack that got cloned by a
12501 * non-refcount means (eg a temp in @_); otherwise they will be
12504 for (i = 0; i<= proto_perl->Itmps_ix; i++) {
12505 SV * const nsv = MUTABLE_SV(ptr_table_fetch(PL_ptr_table,
12506 proto_perl->Itmps_stack[i]));
12507 if (nsv && !SvREFCNT(nsv)) {
12508 PUSH_EXTEND_MORTAL__SV_C(SvREFCNT_inc_simple(nsv));
12513 PL_start_env = proto_perl->Istart_env; /* XXXXXX */
12514 PL_top_env = &PL_start_env;
12516 PL_op = proto_perl->Iop;
12519 PL_Xpv = (XPV*)NULL;
12520 my_perl->Ina = proto_perl->Ina;
12522 PL_statbuf = proto_perl->Istatbuf;
12523 PL_statcache = proto_perl->Istatcache;
12524 PL_statgv = gv_dup(proto_perl->Istatgv, param);
12525 PL_statname = sv_dup_inc(proto_perl->Istatname, param);
12527 PL_timesbuf = proto_perl->Itimesbuf;
12530 PL_tainted = proto_perl->Itainted;
12531 PL_curpm = proto_perl->Icurpm; /* XXX No PMOP ref count */
12532 PL_rs = sv_dup_inc(proto_perl->Irs, param);
12533 PL_last_in_gv = gv_dup(proto_perl->Ilast_in_gv, param);
12534 PL_defoutgv = gv_dup_inc(proto_perl->Idefoutgv, param);
12535 PL_chopset = proto_perl->Ichopset; /* XXX never deallocated */
12536 PL_toptarget = sv_dup_inc(proto_perl->Itoptarget, param);
12537 PL_bodytarget = sv_dup_inc(proto_perl->Ibodytarget, param);
12538 PL_formtarget = sv_dup(proto_perl->Iformtarget, param);
12540 PL_restartjmpenv = proto_perl->Irestartjmpenv;
12541 PL_restartop = proto_perl->Irestartop;
12542 PL_in_eval = proto_perl->Iin_eval;
12543 PL_delaymagic = proto_perl->Idelaymagic;
12544 PL_dirty = proto_perl->Idirty;
12545 PL_localizing = proto_perl->Ilocalizing;
12547 PL_errors = sv_dup_inc(proto_perl->Ierrors, param);
12548 PL_hv_fetch_ent_mh = NULL;
12549 PL_modcount = proto_perl->Imodcount;
12550 PL_lastgotoprobe = NULL;
12551 PL_dumpindent = proto_perl->Idumpindent;
12553 PL_sortcop = (OP*)any_dup(proto_perl->Isortcop, proto_perl);
12554 PL_sortstash = hv_dup(proto_perl->Isortstash, param);
12555 PL_firstgv = gv_dup(proto_perl->Ifirstgv, param);
12556 PL_secondgv = gv_dup(proto_perl->Isecondgv, param);
12557 PL_efloatbuf = NULL; /* reinits on demand */
12558 PL_efloatsize = 0; /* reinits on demand */
12562 PL_screamfirst = NULL;
12563 PL_screamnext = NULL;
12564 PL_maxscream = -1; /* reinits on demand */
12565 PL_lastscream = NULL;
12568 PL_regdummy = proto_perl->Iregdummy;
12569 PL_colorset = 0; /* reinits PL_colors[] */
12570 /*PL_colors[6] = {0,0,0,0,0,0};*/
12574 /* Pluggable optimizer */
12575 PL_peepp = proto_perl->Ipeepp;
12576 /* op_free() hook */
12577 PL_opfreehook = proto_perl->Iopfreehook;
12579 PL_stashcache = newHV();
12581 PL_watchaddr = (char **) ptr_table_fetch(PL_ptr_table,
12582 proto_perl->Iwatchaddr);
12583 PL_watchok = PL_watchaddr ? * PL_watchaddr : NULL;
12584 if (PL_debug && PL_watchaddr) {
12585 PerlIO_printf(Perl_debug_log,
12586 "WATCHING: %"UVxf" cloned as %"UVxf" with value %"UVxf"\n",
12587 PTR2UV(proto_perl->Iwatchaddr), PTR2UV(PL_watchaddr),
12588 PTR2UV(PL_watchok));
12591 PL_registered_mros = hv_dup_inc(proto_perl->Iregistered_mros, param);
12593 /* Call the ->CLONE method, if it exists, for each of the stashes
12594 identified by sv_dup() above.
12596 while(av_len(param->stashes) != -1) {
12597 HV* const stash = MUTABLE_HV(av_shift(param->stashes));
12598 GV* const cloner = gv_fetchmethod_autoload(stash, "CLONE", 0);
12599 if (cloner && GvCV(cloner)) {
12604 mXPUSHs(newSVhek(HvNAME_HEK(stash)));
12606 call_sv(MUTABLE_SV(GvCV(cloner)), G_DISCARD);
12612 if (!(flags & CLONEf_KEEP_PTR_TABLE)) {
12613 ptr_table_free(PL_ptr_table);
12614 PL_ptr_table = NULL;
12618 SvREFCNT_dec(param->stashes);
12620 /* orphaned? eg threads->new inside BEGIN or use */
12621 if (PL_compcv && ! SvREFCNT(PL_compcv)) {
12622 SvREFCNT_inc_simple_void(PL_compcv);
12623 SAVEFREESV(PL_compcv);
12629 #endif /* USE_ITHREADS */
12632 =head1 Unicode Support
12634 =for apidoc sv_recode_to_utf8
12636 The encoding is assumed to be an Encode object, on entry the PV
12637 of the sv is assumed to be octets in that encoding, and the sv
12638 will be converted into Unicode (and UTF-8).
12640 If the sv already is UTF-8 (or if it is not POK), or if the encoding
12641 is not a reference, nothing is done to the sv. If the encoding is not
12642 an C<Encode::XS> Encoding object, bad things will happen.
12643 (See F<lib/encoding.pm> and L<Encode>).
12645 The PV of the sv is returned.
12650 Perl_sv_recode_to_utf8(pTHX_ SV *sv, SV *encoding)
12654 PERL_ARGS_ASSERT_SV_RECODE_TO_UTF8;
12656 if (SvPOK(sv) && !SvUTF8(sv) && !IN_BYTES && SvROK(encoding)) {
12670 Passing sv_yes is wrong - it needs to be or'ed set of constants
12671 for Encode::XS, while UTf-8 decode (currently) assumes a true value means
12672 remove converted chars from source.
12674 Both will default the value - let them.
12676 XPUSHs(&PL_sv_yes);
12679 call_method("decode", G_SCALAR);
12683 s = SvPV_const(uni, len);
12684 if (s != SvPVX_const(sv)) {
12685 SvGROW(sv, len + 1);
12686 Move(s, SvPVX(sv), len + 1, char);
12687 SvCUR_set(sv, len);
12694 return SvPOKp(sv) ? SvPVX(sv) : NULL;
12698 =for apidoc sv_cat_decode
12700 The encoding is assumed to be an Encode object, the PV of the ssv is
12701 assumed to be octets in that encoding and decoding the input starts
12702 from the position which (PV + *offset) pointed to. The dsv will be
12703 concatenated the decoded UTF-8 string from ssv. Decoding will terminate
12704 when the string tstr appears in decoding output or the input ends on
12705 the PV of the ssv. The value which the offset points will be modified
12706 to the last input position on the ssv.
12708 Returns TRUE if the terminator was found, else returns FALSE.
12713 Perl_sv_cat_decode(pTHX_ SV *dsv, SV *encoding,
12714 SV *ssv, int *offset, char *tstr, int tlen)
12719 PERL_ARGS_ASSERT_SV_CAT_DECODE;
12721 if (SvPOK(ssv) && SvPOK(dsv) && SvROK(encoding) && offset) {
12732 offsv = newSViv(*offset);
12734 mXPUSHp(tstr, tlen);
12736 call_method("cat_decode", G_SCALAR);
12738 ret = SvTRUE(TOPs);
12739 *offset = SvIV(offsv);
12745 Perl_croak(aTHX_ "Invalid argument to sv_cat_decode");
12750 /* ---------------------------------------------------------------------
12752 * support functions for report_uninit()
12755 /* the maxiumum size of array or hash where we will scan looking
12756 * for the undefined element that triggered the warning */
12758 #define FUV_MAX_SEARCH_SIZE 1000
12760 /* Look for an entry in the hash whose value has the same SV as val;
12761 * If so, return a mortal copy of the key. */
12764 S_find_hash_subscript(pTHX_ const HV *const hv, const SV *const val)
12767 register HE **array;
12770 PERL_ARGS_ASSERT_FIND_HASH_SUBSCRIPT;
12772 if (!hv || SvMAGICAL(hv) || !HvARRAY(hv) ||
12773 (HvTOTALKEYS(hv) > FUV_MAX_SEARCH_SIZE))
12776 array = HvARRAY(hv);
12778 for (i=HvMAX(hv); i>0; i--) {
12779 register HE *entry;
12780 for (entry = array[i]; entry; entry = HeNEXT(entry)) {
12781 if (HeVAL(entry) != val)
12783 if ( HeVAL(entry) == &PL_sv_undef ||
12784 HeVAL(entry) == &PL_sv_placeholder)
12788 if (HeKLEN(entry) == HEf_SVKEY)
12789 return sv_mortalcopy(HeKEY_sv(entry));
12790 return sv_2mortal(newSVhek(HeKEY_hek(entry)));
12796 /* Look for an entry in the array whose value has the same SV as val;
12797 * If so, return the index, otherwise return -1. */
12800 S_find_array_subscript(pTHX_ const AV *const av, const SV *const val)
12804 PERL_ARGS_ASSERT_FIND_ARRAY_SUBSCRIPT;
12806 if (!av || SvMAGICAL(av) || !AvARRAY(av) ||
12807 (AvFILLp(av) > FUV_MAX_SEARCH_SIZE))
12810 if (val != &PL_sv_undef) {
12811 SV ** const svp = AvARRAY(av);
12814 for (i=AvFILLp(av); i>=0; i--)
12821 /* S_varname(): return the name of a variable, optionally with a subscript.
12822 * If gv is non-zero, use the name of that global, along with gvtype (one
12823 * of "$", "@", "%"); otherwise use the name of the lexical at pad offset
12824 * targ. Depending on the value of the subscript_type flag, return:
12827 #define FUV_SUBSCRIPT_NONE 1 /* "@foo" */
12828 #define FUV_SUBSCRIPT_ARRAY 2 /* "$foo[aindex]" */
12829 #define FUV_SUBSCRIPT_HASH 3 /* "$foo{keyname}" */
12830 #define FUV_SUBSCRIPT_WITHIN 4 /* "within @foo" */
12833 S_varname(pTHX_ const GV *const gv, const char gvtype, PADOFFSET targ,
12834 const SV *const keyname, I32 aindex, int subscript_type)
12837 SV * const name = sv_newmortal();
12840 buffer[0] = gvtype;
12843 /* as gv_fullname4(), but add literal '^' for $^FOO names */
12845 gv_fullname4(name, gv, buffer, 0);
12847 if ((unsigned int)SvPVX(name)[1] <= 26) {
12849 buffer[1] = SvPVX(name)[1] + 'A' - 1;
12851 /* Swap the 1 unprintable control character for the 2 byte pretty
12852 version - ie substr($name, 1, 1) = $buffer; */
12853 sv_insert(name, 1, 1, buffer, 2);
12857 CV * const cv = find_runcv(NULL);
12861 if (!cv || !CvPADLIST(cv))
12863 av = MUTABLE_AV((*av_fetch(CvPADLIST(cv), 0, FALSE)));
12864 sv = *av_fetch(av, targ, FALSE);
12865 sv_setpvn(name, SvPV_nolen_const(sv), SvCUR(sv));
12868 if (subscript_type == FUV_SUBSCRIPT_HASH) {
12869 SV * const sv = newSV(0);
12870 *SvPVX(name) = '$';
12871 Perl_sv_catpvf(aTHX_ name, "{%s}",
12872 pv_display(sv,SvPVX_const(keyname), SvCUR(keyname), 0, 32));
12875 else if (subscript_type == FUV_SUBSCRIPT_ARRAY) {
12876 *SvPVX(name) = '$';
12877 Perl_sv_catpvf(aTHX_ name, "[%"IVdf"]", (IV)aindex);
12879 else if (subscript_type == FUV_SUBSCRIPT_WITHIN) {
12880 /* We know that name has no magic, so can use 0 instead of SV_GMAGIC */
12881 Perl_sv_insert_flags(aTHX_ name, 0, 0, STR_WITH_LEN("within "), 0);
12889 =for apidoc find_uninit_var
12891 Find the name of the undefined variable (if any) that caused the operator o
12892 to issue a "Use of uninitialized value" warning.
12893 If match is true, only return a name if it's value matches uninit_sv.
12894 So roughly speaking, if a unary operator (such as OP_COS) generates a
12895 warning, then following the direct child of the op may yield an
12896 OP_PADSV or OP_GV that gives the name of the undefined variable. On the
12897 other hand, with OP_ADD there are two branches to follow, so we only print
12898 the variable name if we get an exact match.
12900 The name is returned as a mortal SV.
12902 Assumes that PL_op is the op that originally triggered the error, and that
12903 PL_comppad/PL_curpad points to the currently executing pad.
12909 S_find_uninit_var(pTHX_ const OP *const obase, const SV *const uninit_sv,
12915 const OP *o, *o2, *kid;
12917 if (!obase || (match && (!uninit_sv || uninit_sv == &PL_sv_undef ||
12918 uninit_sv == &PL_sv_placeholder)))
12921 switch (obase->op_type) {
12928 const bool pad = (obase->op_type == OP_PADAV || obase->op_type == OP_PADHV);
12929 const bool hash = (obase->op_type == OP_PADHV || obase->op_type == OP_RV2HV);
12932 int subscript_type = FUV_SUBSCRIPT_WITHIN;
12934 if (pad) { /* @lex, %lex */
12935 sv = PAD_SVl(obase->op_targ);
12939 if (cUNOPx(obase)->op_first->op_type == OP_GV) {
12940 /* @global, %global */
12941 gv = cGVOPx_gv(cUNOPx(obase)->op_first);
12944 sv = hash ? MUTABLE_SV(GvHV(gv)): MUTABLE_SV(GvAV(gv));
12946 else /* @{expr}, %{expr} */
12947 return find_uninit_var(cUNOPx(obase)->op_first,
12951 /* attempt to find a match within the aggregate */
12953 keysv = find_hash_subscript((const HV*)sv, uninit_sv);
12955 subscript_type = FUV_SUBSCRIPT_HASH;
12958 index = find_array_subscript((const AV *)sv, uninit_sv);
12960 subscript_type = FUV_SUBSCRIPT_ARRAY;
12963 if (match && subscript_type == FUV_SUBSCRIPT_WITHIN)
12966 return varname(gv, hash ? '%' : '@', obase->op_targ,
12967 keysv, index, subscript_type);
12971 if (match && PAD_SVl(obase->op_targ) != uninit_sv)
12973 return varname(NULL, '$', obase->op_targ,
12974 NULL, 0, FUV_SUBSCRIPT_NONE);
12977 gv = cGVOPx_gv(obase);
12978 if (!gv || (match && GvSV(gv) != uninit_sv))
12980 return varname(gv, '$', 0, NULL, 0, FUV_SUBSCRIPT_NONE);
12983 if (obase->op_flags & OPf_SPECIAL) { /* lexical array */
12986 AV *av = MUTABLE_AV(PAD_SV(obase->op_targ));
12987 if (!av || SvRMAGICAL(av))
12989 svp = av_fetch(av, (I32)obase->op_private, FALSE);
12990 if (!svp || *svp != uninit_sv)
12993 return varname(NULL, '$', obase->op_targ,
12994 NULL, (I32)obase->op_private, FUV_SUBSCRIPT_ARRAY);
12997 gv = cGVOPx_gv(obase);
13002 AV *const av = GvAV(gv);
13003 if (!av || SvRMAGICAL(av))
13005 svp = av_fetch(av, (I32)obase->op_private, FALSE);
13006 if (!svp || *svp != uninit_sv)
13009 return varname(gv, '$', 0,
13010 NULL, (I32)obase->op_private, FUV_SUBSCRIPT_ARRAY);
13015 o = cUNOPx(obase)->op_first;
13016 if (!o || o->op_type != OP_NULL ||
13017 ! (o->op_targ == OP_AELEM || o->op_targ == OP_HELEM))
13019 return find_uninit_var(cBINOPo->op_last, uninit_sv, match);
13023 if (PL_op == obase)
13024 /* $a[uninit_expr] or $h{uninit_expr} */
13025 return find_uninit_var(cBINOPx(obase)->op_last, uninit_sv, match);
13028 o = cBINOPx(obase)->op_first;
13029 kid = cBINOPx(obase)->op_last;
13031 /* get the av or hv, and optionally the gv */
13033 if (o->op_type == OP_PADAV || o->op_type == OP_PADHV) {
13034 sv = PAD_SV(o->op_targ);
13036 else if ((o->op_type == OP_RV2AV || o->op_type == OP_RV2HV)
13037 && cUNOPo->op_first->op_type == OP_GV)
13039 gv = cGVOPx_gv(cUNOPo->op_first);
13043 == OP_RV2HV ? MUTABLE_SV(GvHV(gv)) : MUTABLE_SV(GvAV(gv));
13048 if (kid && kid->op_type == OP_CONST && SvOK(cSVOPx_sv(kid))) {
13049 /* index is constant */
13053 if (obase->op_type == OP_HELEM) {
13054 HE* he = hv_fetch_ent(MUTABLE_HV(sv), cSVOPx_sv(kid), 0, 0);
13055 if (!he || HeVAL(he) != uninit_sv)
13059 SV * const * const svp = av_fetch(MUTABLE_AV(sv), SvIV(cSVOPx_sv(kid)), FALSE);
13060 if (!svp || *svp != uninit_sv)
13064 if (obase->op_type == OP_HELEM)
13065 return varname(gv, '%', o->op_targ,
13066 cSVOPx_sv(kid), 0, FUV_SUBSCRIPT_HASH);
13068 return varname(gv, '@', o->op_targ, NULL,
13069 SvIV(cSVOPx_sv(kid)), FUV_SUBSCRIPT_ARRAY);
13072 /* index is an expression;
13073 * attempt to find a match within the aggregate */
13074 if (obase->op_type == OP_HELEM) {
13075 SV * const keysv = find_hash_subscript((const HV*)sv, uninit_sv);
13077 return varname(gv, '%', o->op_targ,
13078 keysv, 0, FUV_SUBSCRIPT_HASH);
13082 = find_array_subscript((const AV *)sv, uninit_sv);
13084 return varname(gv, '@', o->op_targ,
13085 NULL, index, FUV_SUBSCRIPT_ARRAY);
13090 (o->op_type == OP_PADAV || o->op_type == OP_RV2AV)
13092 o->op_targ, NULL, 0, FUV_SUBSCRIPT_WITHIN);
13097 /* only examine RHS */
13098 return find_uninit_var(cBINOPx(obase)->op_first, uninit_sv, match);
13101 o = cUNOPx(obase)->op_first;
13102 if (o->op_type == OP_PUSHMARK)
13105 if (!o->op_sibling) {
13106 /* one-arg version of open is highly magical */
13108 if (o->op_type == OP_GV) { /* open FOO; */
13110 if (match && GvSV(gv) != uninit_sv)
13112 return varname(gv, '$', 0,
13113 NULL, 0, FUV_SUBSCRIPT_NONE);
13115 /* other possibilities not handled are:
13116 * open $x; or open my $x; should return '${*$x}'
13117 * open expr; should return '$'.expr ideally
13123 /* ops where $_ may be an implicit arg */
13127 if ( !(obase->op_flags & OPf_STACKED)) {
13128 if (uninit_sv == ((obase->op_private & OPpTARGET_MY)
13129 ? PAD_SVl(obase->op_targ)
13132 sv = sv_newmortal();
13133 sv_setpvs(sv, "$_");
13142 match = 1; /* print etc can return undef on defined args */
13143 /* skip filehandle as it can't produce 'undef' warning */
13144 o = cUNOPx(obase)->op_first;
13145 if ((obase->op_flags & OPf_STACKED) && o->op_type == OP_PUSHMARK)
13146 o = o->op_sibling->op_sibling;
13150 case OP_ENTEREVAL: /* could be eval $undef or $x='$undef'; eval $x */
13152 case OP_CUSTOM: /* XS or custom code could trigger random warnings */
13154 /* the following ops are capable of returning PL_sv_undef even for
13155 * defined arg(s) */
13174 case OP_GETPEERNAME:
13222 case OP_SMARTMATCH:
13231 /* XXX tmp hack: these two may call an XS sub, and currently
13232 XS subs don't have a SUB entry on the context stack, so CV and
13233 pad determination goes wrong, and BAD things happen. So, just
13234 don't try to determine the value under those circumstances.
13235 Need a better fix at dome point. DAPM 11/2007 */
13241 GV * const gv = gv_fetchpvs(".", GV_NOTQUAL, SVt_PV);
13242 if (gv && GvSV(gv) == uninit_sv)
13243 return newSVpvs_flags("$.", SVs_TEMP);
13248 /* def-ness of rval pos() is independent of the def-ness of its arg */
13249 if ( !(obase->op_flags & OPf_MOD))
13254 if (SvROK(PL_rs) && uninit_sv == SvRV(PL_rs))
13255 return newSVpvs_flags("${$/}", SVs_TEMP);
13260 if (!(obase->op_flags & OPf_KIDS))
13262 o = cUNOPx(obase)->op_first;
13268 /* if all except one arg are constant, or have no side-effects,
13269 * or are optimized away, then it's unambiguous */
13271 for (kid=o; kid; kid = kid->op_sibling) {
13273 const OPCODE type = kid->op_type;
13274 if ( (type == OP_CONST && SvOK(cSVOPx_sv(kid)))
13275 || (type == OP_NULL && ! (kid->op_flags & OPf_KIDS))
13276 || (type == OP_PUSHMARK)
13280 if (o2) { /* more than one found */
13287 return find_uninit_var(o2, uninit_sv, match);
13289 /* scan all args */
13291 sv = find_uninit_var(o, uninit_sv, 1);
13303 =for apidoc report_uninit
13305 Print appropriate "Use of uninitialized variable" warning
13311 Perl_report_uninit(pTHX_ const SV *uninit_sv)
13315 SV* varname = NULL;
13317 varname = find_uninit_var(PL_op, uninit_sv,0);
13319 sv_insert(varname, 0, 0, " ", 1);
13321 Perl_warner(aTHX_ packWARN(WARN_UNINITIALIZED), PL_warn_uninit,
13322 varname ? SvPV_nolen_const(varname) : "",
13323 " in ", OP_DESC(PL_op));
13326 Perl_warner(aTHX_ packWARN(WARN_UNINITIALIZED), PL_warn_uninit,
13332 * c-indentation-style: bsd
13333 * c-basic-offset: 4
13334 * indent-tabs-mode: t
13337 * ex: set ts=8 sts=4 sw=4 noet: