c89fef318b4aeeaaeb33117f8c447a8c6a60455d
[p5sagit/p5-mst-13.2.git] / pod / perluniintro.pod
1 =head1 NAME
2
3 perluniintro - Perl Unicode introduction
4
5 =head1 DESCRIPTION
6
7 This document gives a general idea of Unicode and how to use Unicode
8 in Perl.
9
10 =head2 Unicode
11
12 Unicode is a character set standard with plans to cover all of the
13 writing systems of the world, plus many other symbols.
14
15 Unicode and ISO/IEC 10646 are coordinated standards that provide code
16 points for the characters in almost all modern character set standards,
17 covering more than 30 writing systems and hundreds of languages,
18 including all commercially important modern languages.  All characters
19 in the largest Chinese, Japanese, and Korean dictionaries are also
20 encoded. The standards will eventually cover almost all characters in
21 more than 250 writing systems and thousands of languages.
22
23 A Unicode I<character> is an abstract entity.  It is not bound to any
24 particular integer width, and especially not to the C language C<char>.
25 Unicode is language neutral and display neutral: it doesn't encode the
26 language of the text, and it doesn't define fonts or other graphical
27 layout details.  Unicode operates on characters and on text built from
28 those characters.
29
30 Unicode defines characters like C<LATIN CAPITAL LETTER A> or C<GREEK
31 SMALL LETTER ALPHA>, and then unique numbers for those, hexadecimal
32 0x0041 or 0x03B1 for those particular characters.  Such unique
33 numbers are called I<code points>.
34
35 The Unicode standard prefers using hexadecimal notation for the code
36 points.  (In case this notation, numbers like 0x0041, is unfamiliar to
37 you, take a peek at a later section, L</"Hexadecimal Notation">.)
38 The Unicode standard uses the notation C<U+0041 LATIN CAPITAL LETTER A>,
39 which gives the hexadecimal code point, and the normative name of
40 the character.
41
42 Unicode also defines various I<properties> for the characters, like
43 "uppercase" or "lowercase", "decimal digit", or "punctuation":
44 these properties are independent of the names of the characters.
45 Furthermore, various operations on the characters like uppercasing,
46 lowercasing, and collating (sorting), are defined.
47
48 A Unicode character consists either of a single code point, or a
49 I<base character> (like C<LATIN CAPITAL LETTER A>), followed by one or
50 more I<modifiers> (like C<COMBINING ACUTE ACCENT>).  This sequence of
51 a base character and modifiers is called a I<combining character
52 sequence>.
53
54 Whether to call these combining character sequences, as a whole,            
55 "characters" depends on your point of view. If you are a programmer, you     
56 probably would tend towards seeing each element in the sequences as one
57 unit, one "character", but from the user viewpoint, the sequence as a
58 whole is probably considered one "character", since that's probably what   
59 it looks like in the context of the user's language.
60
61 With this "as a whole" view of characters, the number of characters is
62 open-ended. But in the programmer's "one unit is one character" point of
63 view, the concept of "characters" is more deterministic, and so we take
64 that point of view in this document: one "character" is one Unicode
65 code point, be it a base character or a combining character.
66
67 For some of the combinations there are I<precomposed> characters,
68 for example C<LATIN CAPITAL LETTER A WITH ACUTE> is defined as
69 a single code point.  These precomposed characters are, however,
70 often available only for some combinations, and mainly they are
71 meant to support round-trip conversions between Unicode and legacy
72 standards (like the ISO 8859), and in general case the composing
73 method is more extensible.  To support conversion between the
74 different compositions of the characters, various I<normalization
75 forms> are also defined.
76
77 Because of backward compatibility with legacy encodings, the "a unique
78 number for every character" breaks down a bit: "at least one number
79 for every character" is closer to truth.  (This happens when the same
80 character has been encoded in several legacy encodings.)  The converse
81 is also not true: not every code point has an assigned character.
82 Firstly, there are unallocated code points within otherwise used
83 blocks.  Secondly, there are special Unicode control characters that
84 do not represent true characters.
85
86 A common myth about Unicode is that it would be "16-bit", that is,
87 0x10000 (or 65536) characters from 0x0000 to 0xFFFF.  B<This is untrue.>
88 Since Unicode 2.0 Unicode has been defined all the way up to 21 bits
89 (0x10FFFF), and since 3.1 characters have been defined beyond 0xFFFF.
90 The first 0x10000 characters are called the I<Plane 0>, or the I<Basic
91 Multilingual Plane> (BMP).  With the Unicode 3.1, 17 planes in all are
92 defined (but nowhere near full of defined characters yet).
93
94 Another myth is that the 256-character blocks have something to do
95 with languages: a block per language.  B<Also this is untrue.>
96 The division into the blocks exists but it is almost completely
97 accidental, an artifact of how the characters have been historically
98 allocated.  Instead, there is a concept called I<scripts>, which may
99 be more useful: there is C<Latin> script, C<Greek> script, and so on.
100 Scripts usually span several parts of several blocks.  For further
101 information see L<Unicode::UCD>.
102
103 The Unicode code points are just abstract numbers.  To input and
104 output these abstract numbers, the numbers must be I<encoded> somehow.
105 Unicode defines several I<character encoding forms>, of which I<UTF-8>
106 is perhaps the most popular.  UTF-8 is a variable length encoding that
107 encodes Unicode characters as 1 to 6 bytes (only 4 with the currently
108 defined characters).  Other encodings are UTF-16 and UTF-32 and their
109 big and little endian variants (UTF-8 is byteorder independent).
110 The ISO/IEC 10646 defines the UCS-2 and UCS-4 encoding forms.
111
112 For more information about encodings, for example to learn what
113 I<surrogates> and I<byte order marks> (BOMs) are, see L<perlunicode>.
114
115 =head2 Perl's Unicode Support
116
117 Starting from Perl 5.6.0, Perl has had the capability of handling
118 Unicode natively.  The first recommended release for serious Unicode
119 work is Perl 5.8.0, however.  The maintenance release 5.6.1 fixed many
120 of the problems of the initial implementation of Unicode, but for
121 example regular expressions didn't really work with Unicode.
122
123 B<Starting from Perl 5.8.0, the use of C<use utf8> is no longer
124 necessary.> In earlier releases the C<utf8> pragma was used to declare
125 that operations in the current block or file would be Unicode-aware.
126 This model was found to be wrong, or at least clumsy: the Unicodeness
127 is now carried with the data, not attached to the operations.  (There
128 is one remaining case where an explicit C<use utf8> is needed: if your
129 Perl script is in UTF-8, you can use UTF-8 in your variable and
130 subroutine names, and in your string and regular expression literals,
131 by saying C<use utf8>.  This is not the default because that would
132 break existing scripts having legacy 8-bit data in them.)
133
134 =head2 Perl's Unicode Model
135
136 Perl supports both the old, pre-5.6, model of strings of eight-bit
137 native bytes, and strings of Unicode characters.  The principle is
138 that Perl tries to keep its data as eight-bit bytes for as long as
139 possible, but as soon as Unicodeness cannot be avoided, the data is
140 transparently upgraded to Unicode.
141
142 Internally, Perl currently uses either whatever the native eight-bit
143 character set of the platform (for example Latin-1) or UTF-8 to encode
144 Unicode strings. Specifically, if all code points in the string are
145 0xFF or less, Perl uses the native eight-bit character set.  Otherwise, it uses UTF-8.
146
147 A user of Perl does not normally need to know nor care how Perl happens
148 to encodes its internal strings, but it becomes relevant when outputting
149 Unicode strings to a stream without a discipline (one with the "default
150 default").  In such a case, the raw bytes used internally (the native
151 character set or UTF-8, as appropriate for each string) will be used,
152 and if warnings are turned on, a "Wide character" warning will be issued
153 if those strings contain a character beyond 0x00FF.
154
155 For example,
156
157       perl -w -e 'print "\x{DF}\n", "\x{0100}\x{DF}\n"'              
158
159 produces a fairly useless mixture of native bytes and UTF-8, as well
160 as a warning.
161
162 To output UTF-8 always, use the ":utf8" output discipline.  Prepending
163
164       binmode(STDOUT, ":utf8");
165
166 to this sample program ensures the output is completely UTF-8, and      
167 of course, removes the warning.
168
169 Perl 5.8.0 will also support Unicode on EBCDIC platforms.  There the
170 support is somewhat harder to implement since additional conversions
171 are needed at every step.  Because of these difficulties the Unicode
172 support won't be quite as full as in other, mainly ASCII-based,
173 platforms (the Unicode support will be better than in the 5.6 series,
174 which didn't work much at all for EBCDIC platform).  On EBCDIC
175 platforms the internal encoding form used is UTF-EBCDIC instead
176 of UTF-8 (the difference is that as UTF-8 is "ASCII-safe" in that
177 ASCII characters encode to UTF-8 as-is, UTF-EBCDIC is "EBCDIC-safe").
178
179 =head2 Creating Unicode
180
181 To create Unicode literals for code points above 0xFF, use the
182 C<\x{...}> notation in doublequoted strings:
183
184     my $smiley = "\x{263a}";
185
186 Similarly for regular expression literals
187
188     $smiley =~ /\x{263a}/;
189
190 At run-time you can use C<chr()>:
191
192     my $hebrew_alef = chr(0x05d0);
193
194 (See L</"Further Resources"> for how to find all these numeric codes.)
195
196 Naturally, C<ord()> will do the reverse: turn a character to a code point.
197
198 Note that C<\x..> (no C<{}> and only two hexadecimal digits), C<\x{...}>
199 and C<chr(...)> for arguments less than 0x100 (decimal 256) will
200 generate an eight-bit character for backward compatibility with older
201 Perls.  For arguments of 0x100 or more, Unicode will always be
202 produced.  If you want UTF-8 always, use C<pack("U", ...)> instead of
203 C<\x..>, C<\x{...}>, or C<chr()>.
204
205 You can also use the C<charnames> pragma to invoke characters
206 by name in doublequoted strings:
207
208     use charnames ':full';
209     my $arabic_alef = "\N{ARABIC LETTER ALEF}";
210
211 And, as mentioned above, you can also C<pack()> numbers into Unicode
212 characters:
213
214    my $georgian_an  = pack("U", 0x10a0);
215
216 Note that both C<\x{...}> and C<\N{...}> are compile-time string
217 constants: you cannot use variables in them.  if you want similar
218 run-time functionality, use C<chr()> and C<charnames::vianame()>.
219
220 =head2 Handling Unicode
221
222 Handling Unicode is for the most part transparent: just use the
223 strings as usual.  Functions like C<index()>, C<length()>, and
224 C<substr()> will work on the Unicode characters; regular expressions
225 will work on the Unicode characters (see L<perlunicode> and L<perlretut>).
226
227 Note that Perl does B<not> consider combining character sequences
228 to be characters, such for example
229
230     use charnames ':full';
231     print length("\N{LATIN CAPITAL LETTER A}\N{COMBINING ACUTE ACCENT}"), "\n";
232
233 will print 2, not 1.  The only exception is that regular expressions
234 have C<\X> for matching a combining character sequence.
235
236 When life is not quite so transparent is working with legacy
237 encodings, and I/O, and certain special cases.
238
239 =head2 Legacy Encodings
240
241 When you combine legacy data and Unicode the legacy data needs
242 to be upgraded to Unicode.  Normally ISO 8859-1 (or EBCDIC, if
243 applicable) is assumed.  You can override this assumption by
244 using the C<encoding> pragma, for example
245
246     use encoding 'latin2'; # ISO 8859-2
247
248 in which case literals (string or regular expression) and chr/ord
249 in your whole script are assumed to produce Unicode characters from
250 ISO 8859-2 code points.  Note that the matching for the encoding 
251 names is forgiving: instead of C<latin2> you could have said 
252 C<Latin 2>, or C<iso8859-2>, and so forth.  With just
253
254     use encoding;
255
256 first the environment variable C<PERL_ENCODING> will be consulted,
257 and if that doesn't exist, ISO 8859-1 (Latin 1) will be assumed.
258
259 The C<Encode> module knows about many encodings and it has interfaces
260 for doing conversions between those encodings:
261
262     use Encode 'from_to';
263     from_to($data, "iso-8859-3", "utf-8"); # from legacy to utf-8
264
265 =head2 Unicode I/O
266
267 Normally writing out Unicode data
268
269     print FH chr(0x100), "\n";
270
271 will print out the raw UTF-8 bytes, but you will get a warning
272 out of that if you use C<-w> or C<use warnings>.  To avoid the
273 warning open the stream explicitly in UTF-8:
274
275     open FH, ">:utf8", "file";
276
277 and on already open streams use C<binmode()>:
278
279     binmode(STDOUT, ":utf8");
280
281 Reading in correctly formed UTF-8 data will not magically turn
282 the data into Unicode in Perl's eyes.
283
284 You can use either the C<':utf8'> I/O discipline when opening files
285
286     open(my $fh,'<:utf8', 'anything');
287     my $line_of_utf8 = <$fh>;
288
289 The I/O disciplines can also be specified more flexibly with
290 the C<open> pragma; see L<open>:
291
292     use open ':utf8'; # input and output default discipline will be UTF-8
293     open X, ">file";
294     print X chr(0x100), "\n";
295     close X;
296     open Y, "<file";
297     printf "%#x\n", ord(<Y>); # this should print 0x100
298     close Y;
299
300 With the C<open> pragma you can use the C<:locale> discipline
301
302     $ENV{LC_ALL} = $ENV{LANG} = 'ru_RU.KOI8-R';
303     # the :locale will probe the locale environment variables like LC_ALL
304     use open OUT => ':locale'; # russki parusski
305     open(O, ">koi8");
306     print O chr(0x430); # Unicode CYRILLIC SMALL LETTER A = KOI8-R 0xc1
307     close O;
308     open(I, "<koi8");
309     printf "%#x\n", ord(<I>), "\n"; # this should print 0xc1
310     close I;
311
312 or you can also use the C<':encoding(...)'> discipline
313
314     open(my $epic,'<:encoding(iso-8859-7)','iliad.greek');
315     my $line_of_iliad = <$epic>;
316
317 Both of these methods install a transparent filter on the I/O stream that
318 will convert data from the specified encoding when it is read in from the
319 stream.  In the first example the F<anything> file is assumed to be UTF-8
320 encoded Unicode, in the second example the F<iliad.greek> file is assumed
321 to be ISO-8858-7 encoded Greek, but the lines read in will be in both
322 cases Unicode.
323
324 The L<open> pragma affects all the C<open()> calls after the pragma by
325 setting default disciplines.  If you want to affect only certain
326 streams, use explicit disciplines directly in the C<open()> call.
327
328 You can switch encodings on an already opened stream by using
329 C<binmode()>, see L<perlfunc/binmode>.
330
331 The C<:locale> does not currently (as of Perl 5.8.0) work with
332 C<open()> and C<binmode()>, only with the C<open> pragma.  The
333 C<:utf8> and C<:encoding(...)> do work with all of C<open()>,
334 C<binmode()>, and the C<open> pragma.
335
336 Similarly, you may use these I/O disciplines on input streams to
337 automatically convert data from the specified encoding when it is
338 written to the stream.
339
340     open(my $unicode, '<:utf8',                 'japanese.uni');
341     open(my $nihongo, '>:encoding(iso2022-jp)', 'japanese.jp');
342     while (<$unicode>) { print $nihongo }
343
344 The naming of encodings, both by the C<open()> and by the C<open>
345 pragma, is similarly understanding as with the C<encoding> pragma:
346 C<koi8-r> and C<KOI8R> will both be understood.
347
348 Common encodings recognized by ISO, MIME, IANA, and various other
349 standardisation organisations are recognised, for a more detailed
350 list see L<Encode>.
351
352 C<read()> reads characters and returns the number of characters.
353 C<seek()> and C<tell()> operate on byte counts, as do C<sysread()>
354 and C<sysseek()>.
355
356 Notice that because of the default behaviour "input is not UTF-8"
357 it is easy to mistakenly write code that keeps on expanding a file
358 by repeatedly encoding it in UTF-8:
359
360     # BAD CODE WARNING
361     open F, "file";
362     local $/; # read in the whole file
363     $t = <F>;
364     close F;
365     open F, ">:utf8", "file";
366     print F $t;
367     close F;
368
369 If you run this code twice, the contents of the F<file> will be twice
370 UTF-8 encoded.  A C<use open ':utf8'> would have avoided the bug, or
371 explicitly opening also the F<file> for input as UTF-8.
372
373 B<NOTE>: the C<:utf8> and C<:encoding> features work only if your
374 Perl has been built with the new "perlio" feature.  Almost all 
375 Perl 5.8 platforms do use "perlio", though: you can see whether
376 yours is by running "perl -V" and looking for C<useperlio=define>.
377
378 =head2 Displaying Unicode As Text
379
380 Sometimes you might want to display Perl scalars containing Unicode as
381 simple ASCII (or EBCDIC) text.  The following subroutine will convert
382 its argument so that Unicode characters with code points greater than
383 255 are displayed as "\x{...}", control characters (like "\n") are
384 displayed as "\x..", and the rest of the characters as themselves.
385
386    sub nice_string {
387        join("",
388          map { $_ > 255 ?                  # if wide character...
389                sprintf("\\x{%x}", $_) :    # \x{...}
390                chr($_) =~ /[[:cntrl:]]/ ?  # else if control character ...
391                sprintf("\\x%02x", $_) :    # \x..
392                chr($_)                     # else as themselves
393          } unpack("U*", $_[0]));           # unpack Unicode characters
394    }
395
396 For example,
397
398    nice_string("foo\x{100}bar\n")
399
400 will return:
401
402    "foo\x{100}bar\x0a"
403
404 =head2 Special Cases
405
406 =over 4
407
408 =item *
409
410 Bit Complement Operator ~ And vec()
411
412 The bit complement operator C<~> will produce surprising results if
413 used on strings containing Unicode characters.  The results are
414 consistent with the internal UTF-8 encoding of the characters, but not
415 with much else.  So don't do that.  Similarly for vec(): you will be
416 operating on the UTF-8 bit patterns of the Unicode characters, not on
417 the bytes, which is very probably not what you want.
418
419 =item *
420
421 Peeking At UTF-8
422
423 One way of peeking inside the internal encoding of Unicode characters
424 is to use C<unpack("C*", ...> to get the bytes, or C<unpack("H*", ...)>
425 to display the bytes:
426
427     # this will print c4 80 for the UTF-8 bytes 0xc4 0x80
428     print join(" ", unpack("H*", pack("U", 0x100))), "\n";
429
430 Yet another way would be to use the Devel::Peek module:
431
432     perl -MDevel::Peek -e 'Dump(chr(0x100))'
433
434 That will show the UTF8 flag in FLAGS and both the UTF-8 bytes
435 and Unicode characters in PV.  See also later in this document
436 the discussion about the C<is_utf8> function of the C<Encode> module.
437
438 =back
439
440 =head2 Advanced Topics
441
442 =over 4
443
444 =item *
445
446 String Equivalence
447
448 The question of string equivalence turns somewhat complicated
449 in Unicode: what do you mean by equal?
450
451 (Is C<LATIN CAPITAL LETTER A WITH ACUTE> equal to
452 C<LATIN CAPITAL LETTER A>?)
453
454 The short answer is that by default Perl compares equivalence
455 (C<eq>, C<ne>) based only on code points of the characters.
456 In the above case, the answer is no (because 0x00C1 != 0x0041).  But sometimes any
457 CAPITAL LETTER As being considered equal, or even any As of any case,
458 would be desirable.
459
460 The long answer is that you need to consider character normalization
461 and casing issues: see L<Unicode::Normalize>, and Unicode Technical
462 Reports #15 and #21, I<Unicode Normalization Forms> and I<Case
463 Mappings>, http://www.unicode.org/unicode/reports/tr15/
464 http://www.unicode.org/unicode/reports/tr21/
465
466 As of Perl 5.8.0, regular expression case-ignoring matching
467 implements only 1:1 semantics: one character matches one character.
468 In I<Case Mappings> both 1:N and N:1 matches are defined.
469
470 =item *
471
472 String Collation
473
474 People like to see their strings nicely sorted, or as Unicode
475 parlance goes, collated.  But again, what do you mean by collate?
476
477 (Does C<LATIN CAPITAL LETTER A WITH ACUTE> come before or after
478 C<LATIN CAPITAL LETTER A WITH GRAVE>?)
479
480 The short answer is that by default, Perl compares strings (C<lt>,
481 C<le>, C<cmp>, C<ge>, C<gt>) based only on the code points of the
482 characters.  In the above case, the answer is "after", since 0x00C1 > 0x00C0.
483
484 The long answer is that "it depends", and a good answer cannot be
485 given without knowing (at the very least) the language context.
486 See L<Unicode::Collate>, and I<Unicode Collation Algorithm>
487 http://www.unicode.org/unicode/reports/tr10/
488
489 =back
490
491 =head2 Miscellaneous
492
493 =over 4
494
495 =item *
496
497 Character Ranges
498
499 Character ranges in regular expression character classes (C</[a-z]/>)
500 and in the C<tr///> (also known as C<y///>) operator are not magically
501 Unicode-aware.  What this means that C<[A-Za-z]> will not magically start
502 to mean "all alphabetic letters" (not that it does mean that even for
503 8-bit characters, you should be using C</[[:alpha]]/> for that).
504
505 For specifying things like that in regular expressions, you can use the
506 various Unicode properties, C<\pL> or perhaps C<\p{Alphabetic}>, in this particular case.  You can
507 use Unicode code points as the end points of character ranges, but
508 that means that particular code point range, nothing more.  For
509 further information, see L<perlunicode>.
510
511 =item *
512
513 String-To-Number Conversions
514
515 Unicode does define several other decimal (and numeric) characters
516 than just the familiar 0 to 9, such as the Arabic and Indic digits.
517 Perl does not support string-to-number conversion for digits other
518 than ASCII 0 to 9 (and ASCII a to f for hexadecimal).
519
520 =back
521
522 =head2 Questions With Answers
523
524 =over 4
525
526 =item Will My Old Scripts Break?
527
528 Very probably not.  Unless you are generating Unicode characters
529 somehow, any old behaviour should be preserved.  About the only
530 behaviour that has changed and which could start generating Unicode
531 is the old behaviour of C<chr()> where supplying an argument more
532 than 255 produced a character modulo 255 (for example, C<chr(300)>
533 was equal to C<chr(45)>).
534
535 =item How Do I Make My Scripts Work With Unicode?
536
537 Very little work should be needed since nothing changes until you
538 somehow generate Unicode data.  The greatest trick will be getting
539 input as Unicode, and for that see the earlier I/O discussion.
540
541 =item How Do I Know Whether My String Is In Unicode?
542
543 You shouldn't care.  No, you really shouldn't.  If you have
544 to care (beyond the cases described above), it means that we
545 didn't get the transparency of Unicode quite right.
546
547 Okay, if you insist:
548
549     use Encode 'is_utf8';
550     print is_utf8($string) ? 1 : 0, "\n";
551
552 But note that this doesn't mean that any of the characters in the
553 string are necessary UTF-8 encoded, or that any of the characters have
554 code points greater than 0xFF (255) or even 0x80 (128), or that the
555 string has any characters at all.  All the C<is_utf8()> does is to
556 return the value of the internal "utf8ness" flag attached to the
557 $string.  If the flag is on, characters added to that string will be
558 automatically upgraded to UTF-8 (and even then only if they really
559 need to be upgraded, that is, if their code point is greater than 0xFF).
560
561 Sometimes you might really need to know the byte length of a string
562 instead of the character length.  For that use the C<bytes> pragma
563 and its only defined function C<length()>:
564
565     my $unicode = chr(0x100);
566     print length($unicode), "\n"; # will print 1
567     use bytes;
568     print length($unicode), "\n"; # will print 2 (the 0xC4 0x80 of the UTF-8)
569
570 =item How Do I Detect Invalid UTF-8?
571
572 Either
573
574     use Encode 'encode_utf8';
575     if (encode_utf8($string)) {
576         # valid
577     } else {
578         # invalid
579     }
580
581 or
582
583     use warnings;
584     @chars = unpack("U0U*", "\xFF"); # will warn
585
586 The warning will be C<Malformed UTF-8 character (byte 0xff) in
587 unpack>.  The "U0" means "expect strictly UTF-8 encoded Unicode".
588 Without that the C<unpack("U*", ...)> would accept also data like
589 C<chr(0xFF>).
590
591 =item How Do I Convert Data Into UTF-8?  Or Vice Versa?
592
593 This probably isn't as useful (or simple) as you might think.
594 Also, normally you shouldn't need to.
595
596 In one sense what you are asking doesn't make much sense: UTF-8 is
597 (intended as an) Unicode encoding, so converting "data" into UTF-8
598 isn't meaningful unless you know in what character set and encoding
599 the binary data is in, and in this case you can use C<Encode>.
600
601     use Encode 'from_to';
602     from_to($data, "iso-8859-1", "utf-8"); # from latin-1 to utf-8
603
604 If you have ASCII (really 7-bit US-ASCII), you already have valid
605 UTF-8, the lowest 128 characters of UTF-8 encoded Unicode and US-ASCII
606 are equivalent.
607
608 If you have Latin-1 (or want Latin-1), you can just use pack/unpack:
609
610     $latin1 = pack("C*", unpack("U*", $utf8));
611     $utf8   = pack("U*", unpack("C*", $latin1));
612
613 (The same works for EBCDIC.)
614
615 If you have a sequence of bytes you B<know> is valid UTF-8,
616 but Perl doesn't know it yet, you can make Perl a believer, too:
617
618     use Encode 'decode_utf8';
619     $utf8 = decode_utf8($bytes);
620
621 You can convert well-formed UTF-8 to a sequence of bytes, but if
622 you just want to convert random binary data into UTF-8, you can't.
623 Any random collection of bytes isn't well-formed UTF-8.  You can
624 use C<unpack("C*", $string)> for the former, and you can create
625 well-formed Unicode/UTF-8 data by C<pack("U*", 0xff, ...)>.
626
627 =item How Do I Display Unicode?  How Do I Input Unicode?
628
629 See http://www.hclrss.demon.co.uk/unicode/ and
630 http://www.cl.cam.ac.uk/~mgk25/unicode.html
631
632 =item How Does Unicode Work With Traditional Locales?
633
634 In Perl, not very well.  Avoid using locales through the C<locale>
635 pragma.  Use only one or the other.
636
637 =back
638
639 =head2 Hexadecimal Notation
640
641 The Unicode standard prefers using hexadecimal notation because that
642 shows better the division of Unicode into blocks of 256 characters.
643 Hexadecimal is also simply shorter than decimal.  You can use decimal
644 notation, too, but learning to use hexadecimal just makes life easier
645 with the Unicode standard.
646
647 The C<0x> prefix means a hexadecimal number, the digits are 0-9 I<and>
648 a-f (or A-F, case doesn't matter).  Each hexadecimal digit represents
649 four bits, or half a byte.  C<print 0x..., "\n"> will show a
650 hexadecimal number in decimal, and C<printf "%x\n", $decimal> will
651 show a decimal number in hexadecimal.  If you have just the
652 "hexdigits" of a hexadecimal number, you can use the C<hex()>
653 function.
654
655     print 0x0009, "\n";    # 9
656     print 0x000a, "\n";    # 10
657     print 0x000f, "\n";    # 15
658     print 0x0010, "\n";    # 16
659     print 0x0011, "\n";    # 17
660     print 0x0100, "\n";    # 256
661
662     print 0x0041, "\n";    # 65
663
664     printf "%x\n",  65;    # 41
665     printf "%#x\n", 65;    # 0x41
666
667     print hex("41"), "\n"; # 65
668
669 =head2 Further Resources
670
671 =over 4
672
673 =item *
674
675 Unicode Consortium
676
677     http://www.unicode.org/
678
679 =item *
680
681 Unicode FAQ
682
683     http://www.unicode.org/unicode/faq/
684
685 =item *
686
687 Unicode Glossary
688
689     http://www.unicode.org/glossary/
690
691 =item *
692
693 Unicode Useful Resources
694
695     http://www.unicode.org/unicode/onlinedat/resources.html
696
697 =item *
698
699 Unicode and Multilingual Support in HTML, Fonts, Web Browsers and Other Applications
700
701     http://www.hclrss.demon.co.uk/unicode/
702
703 =item *
704
705 UTF-8 and Unicode FAQ for Unix/Linux
706
707     http://www.cl.cam.ac.uk/~mgk25/unicode.html
708
709 =item *
710
711 Legacy Character Sets
712
713     http://www.czyborra.com/
714     http://www.eki.ee/letter/
715
716 =item *
717
718 The Unicode support files live within the Perl installation in the
719 directory
720
721     $Config{installprivlib}/unicore
722
723 in Perl 5.8.0 or newer, and 
724
725     $Config{installprivlib}/unicode
726
727 in the Perl 5.6 series.  (The renaming to F<lib/unicore> was done to
728 avoid naming conflicts with lib/Unicode in case-insensitive filesystems.)
729 The main Unicode data file is F<Unicode.txt> (or F<Unicode.301> in
730 Perl 5.6.1.)  You can find the C<$Config{installprivlib}> by
731
732     perl "-V:installprivlib"
733
734 Note that some of the files have been renamed from the Unicode
735 standard since the Perl installation tries to live by the "8.3"
736 filenaming restrictions.  The renamings are shown in the
737 accompanying F<rename> file.
738
739 You can explore various information from the Unicode data files using
740 the C<Unicode::UCD> module.
741
742 =back
743
744 =head1 UNICODE IN OLDER PERLS
745
746 If you cannot upgrade your Perl to 5.8.0 or later, you can still
747 do some Unicode processing by using the modules C<Unicode::String>,
748 C<Unicode::Map8>, and C<Unicode::Map>, available from CPAN.
749 If you have the GNU recode installed, you can also use the
750 Perl frontend C<Convert::Recode> for character conversions.
751
752 =head1 SEE ALSO
753
754 L<perlunicode>, L<Encode>, L<encoding>, L<open>, L<utf8>, L<bytes>,
755 L<perlretut>, L<Unicode::Collate>, L<Unicode::Normalize>, L<Unicode::UCD>
756
757 =head1 ACKNOWLEDGEMENTS
758
759 Thanks to the kind readers of the perl5-porters@perl.org,
760 perl-unicode@perl.org, linux-utf8@nl.linux.org, and unicore@unicode.org
761 mailing lists for their valuable feedback.
762
763 =head1 AUTHOR, COPYRIGHT, AND LICENSE
764
765 Copyright 2001 Jarkko Hietaniemi <jhi@iki.fi>
766
767 This document may be distributed under the same terms as Perl itself.