be defensive about setting {host,group,pass}cat (from Andy Dougherty)
[p5sagit/p5-mst-13.2.git] / pod / perlthrtut.pod
1 =head1 NAME
2
3 perlthrtut - tutorial on threads in Perl
4
5 =head1 DESCRIPTION
6
7 One of the most prominent new features of Perl 5.005 is the inclusion
8 of threads.  Threads make a number of things a lot easier, and are a
9 very useful addition to your bag of programming tricks.
10
11 =head1 What Is A Thread Anyway?
12
13 A thread is a flow of control through a program with a single
14 execution point.
15
16 Sounds an awful lot like a process, doesn't it? Well, it should.
17 Threads are one of the pieces of a process.  Every process has at least
18 one thread and, up until now, every process running Perl had only one
19 thread.  With 5.005, though, you can create extra threads.  We're going
20 to show you how, when, and why.
21
22 =head1 Threaded Program Models
23
24 There are three basic ways that you can structure a threaded
25 program.  Which model you choose depends on what you need your program
26 to do.  For many non-trivial threaded programs you'll need to choose
27 different models for different pieces of your program.
28
29 =head2 Boss/Worker
30
31 The boss/worker model usually has one `boss' thread and one or more
32 `worker' threads.  The boss thread gathers or generates tasks that need
33 to be done, then parcels those tasks out to the appropriate worker
34 thread.
35
36 This model is common in GUI and server programs, where a main thread
37 waits for some event and then passes that event to the appropriate
38 worker threads for processing.  Once the event has been passed on, the
39 boss thread goes back to waiting for another event.
40
41 The boss thread does relatively little work.  While tasks aren't
42 necessarily performed faster than with any other method, it tends to
43 have the best user-response times.
44
45 =head2 Work Crew
46
47 In the work crew model, several threads are created that do
48 essentially the same thing to different pieces of data.  It closely
49 mirrors classical parallel processing and vector processors, where a
50 large array of processors do the exact same thing to many pieces of
51 data.
52
53 This model is particularly useful if the system running the program
54 will distribute multiple threads across different processors.  It can
55 also be useful in ray tracing or rendering engines, where the
56 individual threads can pass on interim results to give the user visual
57 feedback.
58
59 =head2 Pipeline
60
61 The pipeline model divides up a task into a series of steps, and
62 passes the results of one step on to the thread processing the
63 next.  Each thread does one thing to each piece of data and passes the
64 results to the next thread in line.
65
66 This model makes the most sense if you have multiple processors so two
67 or more threads will be executing in parallel, though it can often
68 make sense in other contexts as well.  It tends to keep the individual
69 tasks small and simple, as well as allowing some parts of the pipeline
70 to block (on I/O or system calls, for example) while other parts keep
71 going.  If you're running different parts of the pipeline on different
72 processors you may also take advantage of the caches on each
73 processor.
74
75 This model is also handy for a form of recursive programming where,
76 rather than having a subroutine call itself, it instead creates
77 another thread.  Prime and Fibonacci generators both map well to this
78 form of the pipeline model. (A version of a prime number generator is
79 presented later on.)
80
81 =head1 Native threads
82
83 There are several different ways to implement threads on a system.  How
84 threads are implemented depends both on the vendor and, in some cases,
85 the version of the operating system.  Often the first implementation
86 will be relatively simple, but later versions of the OS will be more
87 sophisticated.
88
89 While the information in this section is useful, it's not necessary,
90 so you can skip it if you don't feel up to it.
91
92 There are three basic categories of threads-user-mode threads, kernel
93 threads, and multiprocessor kernel threads.
94
95 User-mode threads are threads that live entirely within a program and
96 its libraries.  In this model, the OS knows nothing about threads.  As
97 far as it's concerned, your process is just a process.
98
99 This is the easiest way to implement threads, and the way most OSes
100 start.  The big disadvantage is that, since the OS knows nothing about
101 threads, if one thread blocks they all do.  Typical blocking activities
102 include most system calls, most I/O, and things like sleep().
103
104 Kernel threads are the next step in thread evolution.  The OS knows
105 about kernel threads, and makes allowances for them.  The main
106 difference between a kernel thread and a user-mode thread is
107 blocking.  With kernel threads, things that block a single thread don't
108 block other threads.  This is not the case with user-mode threads,
109 where the kernel blocks at the process level and not the thread level.
110
111 This is a big step forward, and can give a threaded program quite a
112 performance boost over non-threaded programs.  Threads that block
113 performing I/O, for example, won't block threads that are doing other
114 things.  Each process still has only one thread running at once,
115 though, regardless of how many CPUs a system might have.
116
117 Since kernel threading can interrupt a thread at any time, they will
118 uncover some of the implicit locking assumptions you may make in your
119 program.  For example, something as simple as C<$a = $a + 2> can behave
120 unpredictably with kernel threads if $a is visible to other
121 threads, as another thread may have changed $a between the time it
122 was fetched on the right hand side and the time the new value is
123 stored.
124
125 Multiprocessor Kernel Threads are the final step in thread
126 support.  With multiprocessor kernel threads on a machine with multiple
127 CPUs, the OS may schedule two or more threads to run simultaneously on
128 different CPUs.
129
130 This can give a serious performance boost to your threaded program,
131 since more than one thread will be executing at the same time.  As a
132 tradeoff, though, any of those nagging synchronization issues that
133 might not have shown with basic kernel threads will appear with a
134 vengeance.
135
136 In addition to the different levels of OS involvement in threads,
137 different OSes (and different thread implementations for a particular
138 OS) allocate CPU cycles to threads in different ways.
139
140 Cooperative multitasking systems have running threads give up control
141 if one of two things happen.  If a thread calls a yield function, it
142 gives up control.  It also gives up control if the thread does
143 something that would cause it to block, such as perform I/O.  In a
144 cooperative multitasking implementation, one thread can starve all the
145 others for CPU time if it so chooses.
146
147 Preemptive multitasking systems interrupt threads at regular intervals
148 while the system decides which thread should run next.  In a preemptive
149 multitasking system, one thread usually won't monopolize the CPU.
150
151 On some systems, there can be cooperative and preemptive threads
152 running simultaneously. (Threads running with realtime priorities
153 often behave cooperatively, for example, while threads running at
154 normal priorities behave preemptively.)
155
156 =head1 What kind of threads are perl threads?
157
158 If you have experience with other thread implementations, you might
159 find that things aren't quite what you expect.  It's very important to
160 remember when dealing with Perl threads that Perl Threads Are Not X
161 Threads, for all values of X.  They aren't POSIX threads, or
162 DecThreads, or Java's Green threads, or Win32 threads.  There are
163 similarities, and the broad concepts are the same, but if you start
164 looking for implementation details you're going to be either
165 disappointed or confused.  Possibly both.
166
167 This is not to say that Perl threads are completely different from
168 everything that's ever come before--they're not.  Perl's threading
169 model owes a lot to other thread models, especially POSIX.  Just as
170 Perl is not C, though, Perl threads are not POSIX threads.  So if you
171 find yourself looking for mutexes, or thread priorities, it's time to
172 step back a bit and think about what you want to do and how Perl can
173 do it.
174
175 =head1 Threadsafe Modules
176
177 The addition of threads has changed Perl's internals
178 substantially.  There are implications for people who write
179 modules--especially modules with XS code or external libraries.  While
180 most modules won't encounter any problems, modules that aren't
181 explicitly tagged as thread-safe should be tested before being used in
182 production code.
183
184 Not all modules that you might use are thread-safe, and you should
185 always assume a module is unsafe unless the documentation says
186 otherwise.  This includes modules that are distributed as part of the
187 core.  Threads are a beta feature, and even some of the standard
188 modules aren't thread-safe.
189
190 If you're using a module that's not thread-safe for some reason, you
191 can protect yourself by using semaphores and lots of programming
192 discipline to control access to the module.  Semaphores are covered
193 later in the article.  Perl Threads Are Different
194
195 =head1 Thread Basics
196
197 The core Thread module provides the basic functions you need to write
198 threaded programs.  In the following sections we'll cover the basics,
199 showing you what you need to do to create a threaded program.   After
200 that, we'll go over some of the features of the Thread module that
201 make threaded programming easier.
202
203 =head2 Basic Thread Support
204
205 Thread support is a Perl compile-time option-it's something that's
206 turned on or off when Perl is built at your site, rather than when
207 your programs are compiled. If your Perl wasn't compiled with thread
208 support enabled, then any attempt to use threads will fail.
209
210 Remember that the threading support in 5.005 is in beta release, and
211 should be treated as such.   You should expect that it may not function
212 entirely properly, and the thread interface may well change some
213 before it is a fully supported, production release.  The beta version
214 shouldn't be used for mission-critical projects.  Having said that,
215 threaded Perl is pretty nifty, and worth a look.
216
217 Your programs can use the Config module to check whether threads are
218 enabled. If your program can't run without them, you can say something
219 like:
220
221   $Config{usethreads} or die "Recompile Perl with threads to run this program.";
222
223 A possibly-threaded program using a possibly-threaded module might
224 have code like this:
225
226     use Config; 
227     use MyMod; 
228
229     if ($Config{usethreads}) { 
230         # We have threads 
231         require MyMod_threaded; 
232         import MyMod_threaded; 
233     } else { 
234         require MyMod_unthreaded; 
235         import MyMod_unthreaded; 
236     } 
237
238 Since code that runs both with and without threads is usually pretty
239 messy, it's best to isolate the thread-specific code in its own
240 module.  In our example above, that's what MyMod_threaded is, and it's
241 only imported if we're running on a threaded Perl.
242
243 =head2 Creating Threads
244
245 The Thread package provides the tools you need to create new
246 threads.  Like any other module, you need to tell Perl you want to use
247 it; use Thread imports all the pieces you need to create basic
248 threads.
249
250 The simplest, straightforward way to create a thread is with new():
251
252     use Thread; 
253
254     $thr = new Thread \&sub1;
255
256     sub sub1 { 
257         print "In the thread\n"; 
258     }
259
260 The new() method takes a reference to a subroutine and creates a new
261 thread, which starts executing in the referenced subroutine.  Control
262 then passes both to the subroutine and the caller.
263
264 If you need to, your program can pass parameters to the subroutine as
265 part of the thread startup.  Just include the list of parameters as
266 part of the C<Thread::new> call, like this:
267
268     use Thread; 
269     $Param3 = "foo"; 
270     $thr = new Thread \&sub1, "Param 1", "Param 2", $Param3; 
271     $thr = new Thread \&sub1, @ParamList; 
272     $thr = new Thread \&sub1, qw(Param1 Param2 $Param3);
273
274     sub sub1 { 
275         my @InboundParameters = @_; 
276         print "In the thread\n"; 
277         print "got parameters >", join("<>", @InboundParameters), "<\n"; 
278     }
279
280
281 The subroutine runs like a normal Perl subroutine, and the call to new
282 Thread returns whatever the subroutine returns.
283
284 The last example illustrates another feature of threads.  You can spawn
285 off several threads using the same subroutine.  Each thread executes
286 the same subroutine, but in a separate thread with a separate
287 environment and potentially separate arguments.
288
289 The other way to spawn a new thread is with async(), which is a way to
290 spin off a chunk of code like eval(), but into its own thread:
291
292     use Thread qw(async);
293
294     $LineCount = 0; 
295
296     $thr = async { 
297         while(<>) {$LineCount++}         
298         print "Got $LineCount lines\n";
299     }; 
300
301     print "Waiting for the linecount to end\n"; 
302     $thr->join; 
303     print "All done\n";
304
305 You'll notice we did a use Thread qw(async) in that example.  async is
306 not exported by default, so if you want it, you'll either need to
307 import it before you use it or fully qualify it as
308 Thread::async.  You'll also note that there's a semicolon after the
309 closing brace.  That's because async() treats the following block as an
310 anonymous subroutine, so the semicolon is necessary.
311
312 Like eval(), the code executes in the same context as it would if it
313 weren't spun off.  Since both the code inside and after the async start
314 executing, you need to be careful with any shared resources.  Locking
315 and other synchronization techniques are covered later.
316
317 =head2 Giving up control
318
319 There are times when you may find it useful to have a thread
320 explicitly give up the CPU to another thread.  Your threading package
321 might not support preemptive multitasking for threads, for example, or
322 you may be doing something compute-intensive and want to make sure
323 that the user-interface thread gets called frequently.  Regardless,
324 there are times that you might want a thread to give up the processor.
325
326 Perl's threading package provides the yield() function that does
327 this. yield() is pretty straightforward, and works like this:
328
329     use Thread qw(yield async); 
330     async { 
331         my $foo = 50; 
332         while ($foo--) { print "first async\n" }
333         yield; 
334         $foo = 50; 
335         while ($foo--) { print "first async\n" } 
336     }; 
337     async { 
338         my $foo = 50; 
339         while ($foo--) { print "second async\n" }
340         yield; 
341         $foo = 50; 
342         while ($foo--) { print "second async\n" } 
343     };
344
345 =head2 Waiting For A Thread To Exit
346
347 Since threads are also subroutines, they can return values.  To wait
348 for a thread to exit and extract any scalars it might return, you can
349 use the join() method.
350
351     use Thread; 
352     $thr = new Thread \&sub1;
353
354     @ReturnData = $thr->join; 
355     print "Thread returned @ReturnData"; 
356
357     sub sub1 { return "Fifty-six", "foo", 2; }
358
359 In the example above, the join() method returns as soon as the thread
360 ends.  In addition to waiting for a thread to finish and gathering up
361 any values that the thread might have returned, join() also performs
362 any OS cleanup necessary for the thread.  That cleanup might be
363 important, especially for long-running programs that spawn lots of
364 threads.  If you don't want the return values and don't want to wait
365 for the thread to finish, you should call the detach() method
366 instead. detach() is covered later in the article.
367
368 =head2 Errors In Threads
369
370 So what happens when an error occurs in a thread? Any errors that
371 could be caught with eval() are postponed until the thread is
372 joined.  If your program never joins, the errors appear when your
373 program exits.
374
375 Errors deferred until a join() can be caught with eval():
376
377     use Thread qw(async); 
378     $thr = async {$b = 3/0};   # Divide by zero error
379     $foo = eval {$thr->join}; 
380     if ($@) { 
381         print "died with error $@\n"; 
382     } else { 
383         print "Hey, why aren't you dead?\n"; 
384     }
385
386 eval() passes any results from the joined thread back unmodified, so
387 if you want the return value of the thread, this is your only chance
388 to get them.
389
390 =head2 Ignoring A Thread
391
392 join() does three things:it waits for a thread to exit, cleans up
393 after it, and returns any data the thread may have produced.  But what
394 if you're not interested in the thread's return values, and you don't
395 really care when the thread finishes? All you want is for the thread
396 to get cleaned up after when it's done.
397
398 In this case, you use the detach() method.  Once a thread is detached,
399 it'll run until it's finished, then Perl will clean up after it
400 automatically.
401
402     use Thread; 
403     $thr = new Thread \&sub1; # Spawn the thread
404
405     $thr->detach; # Now we officially don't care any more
406
407     sub sub1 { 
408         $a = 0; 
409         while (1) { 
410             $a++; 
411             print "\$a is $a\n"; 
412             sleep 1; 
413         } 
414     }
415
416
417 Once a thread is detached, it may not be joined, and any output that
418 it might have produced (if it was done and waiting for a join) is
419 lost.
420
421 =head1 Threads And Data
422
423 Now that we've covered the basics of threads, it's time for our next
424 topic: data.  Threading introduces a couple of complications to data
425 access that non-threaded programs never need to worry about.
426
427 =head2 Shared And Unshared Data
428
429 The single most important thing to remember when using threads is that
430 all threads potentially have access to all the data anywhere in your
431 program.  While this is true with a nonthreaded Perl program as well,
432 it's especially important to remember with a threaded program, since
433 more than one thread can be accessing this data at once.
434
435 Perl's scoping rules don't change because you're using threads.  If a
436 subroutine (or block, in the case of async()) could see a variable if
437 you weren't running with threads, it can see it if you are.  This is
438 especially important for the subroutines that create, and makes my
439 variables even more important.  Remember--if your variables aren't
440 lexically scoped (declared with C<my>) you're probably sharing it between
441 threads.
442
443 =head2 Thread Pitfall: Races
444
445 While threads bring a new set of useful tools, they also bring a
446 number of pitfalls.  One pitfall is the race condition:
447
448     use Thread; 
449     $a = 1; 
450     $thr1 = Thread->new(\&sub1); 
451     $thr2 = Thread->new(\&sub2); 
452
453     sleep 10; 
454     print "$a\n";
455
456     sub sub1 { $foo = $a; $a = $foo + 1; }
457     sub sub2 { $bar = $a; $a = $bar + 1; }
458
459 What do you think $a will be? The answer, unfortunately, is "it
460 depends." Both sub1() and sub2() access the global variable $a, once
461 to read and once to write.  Depending on factors ranging from your
462 thread implementation's scheduling algorithm to the phase of the moon,
463 $a can be 2 or 3.
464
465 Race conditions are caused by unsynchronized access to shared
466 data.  Without explicit synchronization, there's no way to be sure that
467 nothing has happened to the shared data between the time you access it
468 and the time you update it.  Even this simple code fragment has the
469 possibility of error:
470
471     use Thread qw(async); 
472     $a = 2; 
473     async{ $b = $a; $a = $b + 1; }; 
474     async{ $c = $a; $a = $c + 1; };
475
476 Two threads both access $a.  Each thread can potentially be interrupted
477 at any point, or be executed in any order.  At the end, $a could be 3
478 or 4, and both $b and $c could be 2 or 3.
479
480 Whenever your program accesses data or resources that can be accessed
481 by other threads, you must take steps to coordinate access or risk
482 data corruption and race conditions.
483
484 =head2 Controlling access: lock()
485
486 The lock() function takes a variable (or subroutine, but we'll get to
487 that later) and puts a lock on it.  No other thread may lock the
488 variable until the locking thread exits the innermost block containing
489 the lock.  Using lock() is straightforward:
490
491     use Thread qw(async); 
492     $a = 4; 
493     $thr1 = async { 
494         $foo = 12; 
495         { 
496             lock ($a); # Block until we get access to $a 
497             $b = $a; 
498             $a = $b * $foo; 
499         } 
500         print "\$foo was $foo\n";
501     }; 
502     $thr2 = async { 
503         $bar = 7; 
504         { 
505             lock ($a); # Block until we can get access to $a
506             $c = $a; 
507             $a = $c * $bar; 
508         } 
509         print "\$bar was $bar\n";
510     }; 
511     $thr1->join; 
512     $thr2->join; 
513     print "\$a is $a\n";
514
515 lock() blocks the thread until the variable being locked is
516 available.  When lock() returns, your thread can be sure that no other
517 thread can lock that variable until the innermost block containing the
518 lock exits.
519
520 It's important to note that locks don't prevent access to the variable
521 in question, only lock attempts.  This is in keeping with Perl's
522 longstanding tradition of courteous programming, and the advisory file
523 locking that flock() gives you.  Locked subroutines behave differently,
524 however.  We'll cover that later in the article.
525
526 You may lock arrays and hashes as well as scalars.  Locking an array,
527 though, will not block subsequent locks on array elements, just lock
528 attempts on the array itself.
529
530 Finally, locks are recursive, which means it's okay for a thread to
531 lock a variable more than once.  The lock will last until the outermost
532 lock() on the variable goes out of scope.
533
534 =head2 Thread Pitfall: Deadlocks
535
536 Locks are a handy tool to synchronize access to data.  Using them
537 properly is the key to safe shared data.  Unfortunately, locks aren't
538 without their dangers.  Consider the following code:
539
540     use Thread qw(async yield); 
541     $a = 4; 
542     $b = "foo"; 
543     async { 
544         lock($a); 
545         yield; 
546         sleep 20; 
547         lock ($b); 
548     }; 
549     async { 
550         lock($b); 
551         yield; 
552         sleep 20; 
553         lock ($a); 
554     };
555
556 This program will probably hang until you kill it.  The only way it
557 won't hang is if one of the two async() routines acquires both locks
558 first.  A guaranteed-to-hang version is more complicated, but the
559 principle is the same.
560
561 The first thread spawned by async() will grab a lock on $a then, a
562 second or two later, try to grab a lock on $b.  Meanwhile, the second
563 thread grabs a lock on $b, then later tries to grab a lock on $a.  The
564 second lock attempt for both threads will block, each waiting for the
565 other to release its lock.
566
567 This condition is called a deadlock, and it occurs whenever two or
568 more threads are trying to get locks on resources that the others
569 own.  Each thread will block, waiting for the other to release a lock
570 on a resource.  That never happens, though, since the thread with the
571 resource is itself waiting for a lock to be released.
572
573 There are a number of ways to handle this sort of problem.  The best
574 way is to always have all threads acquire locks in the exact same
575 order.  If, for example, you lock variables $a, $b, and $c, always lock
576 $a before $b, and $b before $c.  It's also best to hold on to locks for
577 as short a period of time to minimize the risks of deadlock.
578
579 =head2 Queues: Passing Data Around
580
581 A queue is a special thread-safe object that lets you put data in one
582 end and take it out the other without having to worry about
583 synchronization issues.  They're pretty straightforward, and look like
584 this:
585
586     use Thread qw(async); 
587     use Thread::Queue;
588
589     my $DataQueue = new Thread::Queue; 
590     $thr = async { 
591         while ($DataElement = $DataQueue->dequeue) { 
592             print "Popped $DataElement off the queue\n";
593         } 
594     }; 
595
596     $DataQueue->enqueue(12); 
597     $DataQueue->enqueue("A", "B", "C"); 
598     $DataQueue->enqueue(\$thr); 
599     sleep 10; 
600     $DataQueue->enqueue(undef);
601
602 You create the queue with new Thread::Queue.  Then you can add lists of
603 scalars onto the end with enqueue(), and pop scalars off the front of
604 it with dequeue().  A queue has no fixed size, and can grow as needed
605 to hold everything pushed on to it.
606
607 If a queue is empty, dequeue() blocks until another thread enqueues
608 something.  This makes queues ideal for event loops and other
609 communications between threads.
610
611 =head1 Threads And Code
612
613 In addition to providing thread-safe access to data via locks and
614 queues, threaded Perl also provides general-purpose semaphores for
615 coarser synchronization than locks provide and thread-safe access to
616 entire subroutines.
617
618 =head2 Semaphores: Synchronizing Data Access
619
620 Semaphores are a kind of generic locking mechanism.  Unlike lock, which
621 gets a lock on a particular scalar, Perl doesn't associate any
622 particular thing with a semaphore so you can use them to control
623 access to anything you like.  In addition, semaphores can allow more
624 than one thread to access a resource at once, though by default
625 semaphores only allow one thread access at a time.
626
627 =over 4
628
629 =item Basic semaphores
630
631 Semaphores have two methods, down and up. down decrements the resource
632 count, while up increments it.  down calls will block if the
633 semaphore's current count would decrement below zero.  This program
634 gives a quick demonstration:
635
636     use Thread qw(yield); 
637     use Thread::Semaphore; 
638     my $semaphore = new Thread::Semaphore; 
639     $GlobalVariable = 0;
640
641     $thr1 = new Thread \&sample_sub, 1; 
642     $thr2 = new Thread \&sample_sub, 2; 
643     $thr3 = new Thread \&sample_sub, 3;
644
645     sub sample_sub { 
646         my $SubNumber = shift @_; 
647         my $TryCount = 10; 
648         my $LocalCopy; 
649         sleep 1; 
650         while ($TryCount--) { 
651             $semaphore->down; 
652             $LocalCopy = $GlobalVariable; 
653             print "$TryCount tries left for sub $SubNumber (\$GlobalVariable is $GlobalVariable)\n"; 
654             yield; 
655             sleep 2; 
656             $LocalCopy++; 
657             $GlobalVariable = $LocalCopy; 
658             $semaphore->up; 
659         } 
660     }
661
662 The three invocations of the subroutine all operate in sync.  The
663 semaphore, though, makes sure that only one thread is accessing the
664 global variable at once.
665
666 =item Advanced Semaphores
667
668 By default, semaphores behave like locks, letting only one thread
669 down() them at a time.  However, there are other uses for semaphores.
670
671 Each semaphore has a counter attached to it. down() decrements the
672 counter and up() increments the counter.  By default, semaphores are
673 created with the counter set to one, down() decrements by one, and
674 up() increments by one.  If down() attempts to decrement the counter
675 below zero, it blocks until the counter is large enough.  Note that
676 while a semaphore can be created with a starting count of zero, any
677 up() or down() always changes the counter by at least
678 one. $semaphore->down(0) is the same as $semaphore->down(1).
679
680 The question, of course, is why would you do something like this? Why
681 create a semaphore with a starting count that's not one, or why
682 decrement/increment it by more than one? The answer is resource
683 availability.  Many resources that you want to manage access for can be
684 safely used by more than one thread at once.
685
686 For example, let's take a GUI driven program.  It has a semaphore that
687 it uses to synchronize access to the display, so only one thread is
688 ever drawing at once.  Handy, but of course you don't want any thread
689 to start drawing until things are properly set up.  In this case, you
690 can create a semaphore with a counter set to zero, and up it when
691 things are ready for drawing.
692
693 Semaphores with counters greater than one are also useful for
694 establishing quotas.  Say, for example, that you have a number of
695 threads that can do I/O at once.  You don't want all the threads
696 reading or writing at once though, since that can potentially swamp
697 your I/O channels, or deplete your process' quota of filehandles.  You
698 can use a semaphore initialized to the number of concurrent I/O
699 requests (or open files) that you want at any one time, and have your
700 threads quietly block and unblock themselves.
701
702 Larger increments or decrements are handy in those cases where a
703 thread needs to check out or return a number of resources at once.
704
705 =back
706
707 =head2 Attributes: Restricting Access To Subroutines
708
709 In addition to synchronizing access to data or resources, you might
710 find it useful to synchronize access to subroutines.  You may be
711 accessing a singular machine resource (perhaps a vector processor), or
712 find it easier to serialize calls to a particular subroutine than to
713 have a set of locks and sempahores.
714
715 One of the additions to Perl 5.005 is subroutine attributes.  The
716 Thread package uses these to provide several flavors of
717 serialization.  It's important to remember that these attributes are
718 used in the compilation phase of your program so you can't change a
719 subroutine's behavior while your program is actually running.
720
721 =head2 Subroutine Locks
722
723 The basic subroutine lock looks like this:
724
725     sub test_sub { 
726         use attrs qw(locked); 
727     }
728
729 This ensures that only one thread will be executing this subroutine at
730 any one time.  Once a thread calls this subroutine, any other thread
731 that calls it will block until the thread in the subroutine exits
732 it.  A more elaborate example looks like this:
733
734     use Thread qw(yield); 
735
736     new Thread \&thread_sub, 1; 
737     new Thread \&thread_sub, 2; 
738     new Thread \&thread_sub, 3; 
739     new Thread \&thread_sub, 4;
740
741     sub sync_sub { 
742         use attrs qw(locked); 
743         my $CallingThread = shift @_; 
744         print "In sync_sub for thread $CallingThread\n";
745         yield; 
746         sleep 3; 
747         print "Leaving sync_sub for thread $CallingThread\n"; 
748     }
749
750     sub thread_sub { 
751         my $ThreadID = shift @_; 
752         print "Thread $ThreadID calling sync_sub\n";
753         sync_sub($ThreadID); 
754         print "$ThreadID is done with sync_sub\n"; 
755     }
756
757 The use attrs qw(locked) locks sync_sub(), and if you run this, you
758 can see that only one thread is in it at any one time.
759
760 =head2 Methods
761
762 Locking an entire subroutine can sometimes be overkill, especially
763 when dealing with Perl objects.  When calling a method for an object,
764 for example, you want to serialize calls to a method, so that only one
765 thread will be in the subroutine for a particular object, but threads
766 calling that subroutine for a different object aren't blocked.  The
767 method attribute indicates whether the subroutine is really a method.
768
769     use Thread;
770
771     sub tester { 
772         my $thrnum = shift @_; 
773         my $bar = new Foo; 
774         foreach (1..10) {       
775             print "$thrnum calling per_object\n"; 
776             $bar->per_object($thrnum);  
777             print "$thrnum out of per_object\n"; 
778             yield; 
779             print "$thrnum calling one_at_a_time\n";
780             $bar->one_at_a_time($thrnum);       
781             print "$thrnum out of one_at_a_time\n"; 
782             yield; 
783         } 
784     }
785
786     foreach my $thrnum (1..10) { 
787         new Thread \&tester, $thrnum; 
788     }
789
790     package Foo; 
791     sub new { 
792         my $class = shift @_; 
793         return bless [@_], $class; 
794     }
795
796     sub per_object { 
797         use attrs qw(locked method); 
798         my ($class, $thrnum) = @_; 
799         print "In per_object for thread $thrnum\n"; 
800         yield; 
801         sleep 2; 
802         print "Exiting per_object for thread $thrnum\n"; 
803     }
804
805     sub one_at_a_time { 
806         use attrs qw(locked); 
807         my ($class, $thrnum) = @_; 
808         print "In one_at_a_time for thread $thrnum\n";     
809         yield; 
810         sleep 2; 
811         print "Exiting one_at_a_time for thread $thrnum\n"; 
812     }
813
814 As you can see from the output (omitted for brevity; it's 800 lines)
815 all the threads can be in per_object() simultaneously, but only one
816 thread is ever in one_at_a_time() at once.
817
818 =head2 Locking A Subroutine
819
820 You can lock a subroutine as you would lock a variable.  Subroutine
821 locks work the same as a C<use attrs qw(locked)> in the subroutine,
822 and block all access to the subroutine for other threads until the
823 lock goes out of scope.  When the subroutine isn't locked, any number
824 of threads can be in it at once, and getting a lock on a subroutine
825 doesn't affect threads already in the subroutine.  Getting a lock on a
826 subroutine looks like this:
827
828     lock(\&sub_to_lock);
829
830 Simple enough.  Unlike use attrs, which is a compile time option,
831 locking and unlocking a subroutine can be done at runtime at your
832 discretion.  There is some runtime penalty to using lock(\&sub) instead
833 of use attrs qw(locked), so make sure you're choosing the proper
834 method to do the locking.
835
836 You'd choose lock(\&sub) when writing modules and code to run on both
837 threaded and unthreaded Perl, especially for code that will run on
838 5.004 or earlier Perls.  In that case, it's useful to have subroutines
839 that should be serialized lock themselves if they're running threaded,
840 like so:
841
842     package Foo; 
843     use Config; 
844     $Running_Threaded = 0;
845
846     BEGIN { $Running_Threaded = $Config{'usethreads'} }
847
848     sub sub1 { lock(\&sub1) if $Running_Threaded }
849
850
851 This way you can ensure single-threadedness regardless of which
852 version of Perl you're running.
853
854 =head1 General Thread Utility Routines
855
856 We've covered the workhorse parts of Perl's threading package, and
857 with these tools you should be well on your way to writing threaded
858 code and packages.  There are a few useful little pieces that didn't
859 really fit in anyplace else.
860
861 =head2 What Thread Am I In?
862
863 The Thread->self method provides your program with a way to get an
864 object representing the thread it's currently in.  You can use this
865 object in the same way as the ones returned from the thread creation.
866
867 =head2 Thread IDs
868
869 tid() is a thread object method that returns the thread ID of the
870 thread the object represents.  Thread IDs are integers, with the main
871 thread in a program being 0.  Currently Perl assigns a unique tid to
872 every thread ever created in your program, assigning the first thread
873 to be created a tid of 1, and increasing the tid by 1 for each new
874 thread that's created.
875
876 =head2 Are These Threads The Same?
877
878 The equal() method takes two thread objects and returns true 
879 if the objects represent the same thread, and false if they don't.
880
881 =head2 What Threads Are Running?
882
883 Thread->list returns a list of thread objects, one for each thread
884 that's currently running.  Handy for a number of things, including
885 cleaning up at the end of your program:
886
887     # Loop through all the threads 
888     foreach $thr (Thread->list) { 
889         # Don't join the main thread or ourselves 
890         if ($thr->tid && !Thread::equal($thr, Thread->self)) { 
891             $thr->join; 
892         } 
893     }
894
895 The example above is just for illustration.  It isn't strictly
896 necessary to join all the threads you create, since Perl detaches all
897 the threads before it exits.
898
899 =head1 A Complete Example
900
901 Confused yet? It's time for an example program to show some of the
902 things we've covered.  This program finds prime numbers using threads.
903
904     1  #!/usr/bin/perl -w
905     2  # prime-pthread, courtesy of Tom Christiansen
906     3
907     4  use strict;
908     5
909     6  use Thread;
910     7  use Thread::Queue;
911     8
912     9  my $stream = new Thread::Queue;
913     10 my $kid    = new Thread(\&check_num, $stream, 2);
914     11
915     12 for my $i ( 3 .. 1000 ) {
916     13     $stream->enqueue($i);
917     14 } 
918     15
919     16 $stream->enqueue(undef);
920     17 $kid->join();
921     18
922     19 sub check_num {
923     20     my ($upstream, $cur_prime) = @_;
924     21     my $kid;
925     22     my $downstream = new Thread::Queue;
926     23     while (my $num = $upstream->dequeue) {
927     24         next unless $num % $cur_prime;
928     25         if ($kid) {
929     26            $downstream->enqueue($num);
930     27                  } else {
931     28            print "Found prime $num\n";
932     29                $kid = new Thread(\&check_num, $downstream, $num);
933     30         }
934     31     } 
935     32     $downstream->enqueue(undef) if $kid;
936     33     $kid->join()         if $kid;
937     34 }
938
939 This program uses the pipeline model to generate prime numbers.  Each
940 thread in the pipeline has an input queue that feeds numbers to be
941 checked, a prime number that it's responsible for, and an output queue
942 that it funnels numbers that have failed the check into.  If the thread
943 has a number that's failed its check and there's no child thread, then
944 the thread must have found a new prime number.  In that case, a new
945 child thread is created for that prime and stuck on the end of the
946 pipeline.
947
948 This probably sounds a bit more confusing than it really is, so lets
949 go through this program piece by piece and see what it does.  (For
950 those of you who might be trying to remember exactly what a prime
951 number is, it's a number that's only evenly divisible by itself and 1)
952
953 The bulk of the work is done by the check_num() subroutine, which
954 takes a reference to its input queue and a prime number that it's
955 responsible for.  After pulling in the input queue and the prime that
956 the subroutine's checking (line 20), we create a new queue (line 22)
957 and reserve a scalar for the thread that we're likely to create later
958 (line 21).
959
960 The while loop from lines 23 to line 31 grabs a scalar off the input
961 queue and checks against the prime this thread is responsible
962 for.  Line 24 checks to see if there's a remainder when we modulo the
963 number to be checked against our prime.  If there is one, the number
964 must not be evenly divisible by our prime, so we need to either pass
965 it on to the next thread if we've created one (line 26) or create a
966 new thread if we haven't.
967
968 The new thread creation is line 29.  We pass on to it a reference to
969 the queue we've created, and the prime number we've found.
970
971 Finally, once the loop terminates (because we got a 0 or undef in the
972 queue, which serves as a note to die), we pass on the notice to our
973 child and wait for it to exit if we've created a child (Lines 32 and
974 37).
975
976 Meanwhile, back in the main thread, we create a queue (line 9) and the
977 initial child thread (line 10), and pre-seed it with the first prime:
978 2.  Then we queue all the numbers from 3 to 1000 for checking (lines
979 12-14), then queue a die notice (line 16) and wait for the first child
980 thread to terminate (line 17).  Because a child won't die until its
981 child has died, we know that we're done once we return from the join.
982
983 That's how it works.  It's pretty simple; as with many Perl programs,
984 the explanation is much longer than the program.
985
986 =head1 Conclusion
987
988 A complete thread tutorial could fill a book (and has, many times),
989 but this should get you well on your way.  The final authority on how
990 Perl's threads behave is the documention bundled with the Perl
991 distribution, but with what we've covered in this article, you should
992 be well on your way to becoming a threaded Perl expert.
993
994 =head1 Bibliography
995
996 Here's a short bibliography courtesy of Jürgen Christoffel:
997
998 =head2 Introductory Texts
999
1000 Birrell, Andrew D. An Introduction to Programming with
1001 Threads. Digital Equipment Corporation, 1989, DEC-SRC Research Report
1002 #35 online as
1003 http://www.research.digital.com/SRC/staff/birrell/bib.html (highly
1004 recommended)
1005
1006 Robbins, Kay. A., and Steven Robbins. Practical Unix Programming: A
1007 Guide to Concurrency, Communication, and
1008 Multithreading. Prentice-Hall, 1996.
1009
1010 Lewis, Bill, and Daniel J. Berg. Multithreaded Programming with
1011 Pthreads. Prentice Hall, 1997, ISBN 0-13-443698-9 (a well-written
1012 introduction to threads).
1013
1014 Nelson, Greg (editor). Systems Programming with Modula-3.  Prentice
1015 Hall, 1991, ISBN 0-13-590464-1.
1016
1017 Nichols, Bradford, Dick Buttlar, and Jacqueline Proulx Farrell.
1018 Pthreads Programming. O'Reilly & Associates, 1996, ISBN 156592-115-1
1019 (covers POSIX threads).
1020
1021 =head2 OS-Related References
1022
1023 Boykin, Joseph, David Kirschen, Alan Langerman, and Susan
1024 LoVerso. Programming under Mach. Addison-Wesley, 1994, ISBN
1025 0-201-52739-1.
1026
1027 Tanenbaum, Andrew S. Distributed Operating Systems. Prentice Hall,
1028 1995, ISBN 0-13-143934-0 (great textbook).
1029
1030 Silberschatz, Abraham, and Peter B. Galvin. Operating System Concepts,
1031 4th ed. Addison-Wesley, 1995, ISBN 0-201-59292-4
1032
1033 =head2 Other References
1034
1035 Arnold, Ken and James Gosling. The Java Programming Language, 2nd
1036 ed. Addison-Wesley, 1998, ISBN 0-201-31006-6.
1037
1038 Le Sergent, T. and B. Berthomieu. "Incremental MultiThreaded Garbage
1039 Collection on Virtually Shared Memory Architectures" in Memory
1040 Management: Proc. of the International Workshop IWMM 92, St. Malo,
1041 France, September 1992, Yves Bekkers and Jacques Cohen, eds. Springer,
1042 1992, ISBN 3540-55940-X (real-life thread applications).
1043
1044 =head1 Acknowledgements
1045
1046 Thanks (in no particular order) to Chaim Frenkel, Steve Fink, Gurusamy
1047 Sarathy, Ilya Zakharevich, Benjamin Sugars, Jürgen Christoffel, Joshua
1048 Pritikin, and Alan Burlison, for their help in reality-checking and
1049 polishing this article.  Big thanks to Tom Christiansen for his rewrite
1050 of the prime number generator.
1051
1052 =head1 AUTHOR
1053
1054 Dan Sugalski E<lt>sugalskd@ous.eduE<gt>
1055
1056 =head1 Copyrights
1057
1058 This article originally appeared in The Perl Journal #10, and is
1059 copyright 1998 The Perl Journal. It appears courtesy of Jon Orwant and
1060 The Perl Journal.  This document may be distributed under the same terms
1061 as Perl itself.
1062
1063