Portability and doc tweaks to PerlIO/XS stuff.
[p5sagit/p5-mst-13.2.git] / pod / perlthrtut.pod
1 =head1 NAME
2
3 perlthrtut - tutorial on threads in Perl
4
5 =head1 DESCRIPTION
6
7 B<NOTE>: this tutorial describes the new Perl threading flavour
8 introduced in Perl 5.6.0 called interpreter threads, or ithreads
9 for short.  There is another older perl threading flavour called
10 the 5.005 model, unsurprisingly for 5.005 versions of Perl.
11
12 You can see which (or neither) threading flavour you have by
13 running C<perl -V> and look at the C<Platform> section.
14 If you have C<useithreads=define> you have ithreads, if you
15 have C<use5005threads=define> you have 5.005 threads.
16 If you have neither, you don't have any thread support built in.
17 If you have both, you are in trouble.
18
19
20 =head1 What Is A Thread Anyway?
21
22 A thread is a flow of control through a program with a single
23 execution point.
24
25 Sounds an awful lot like a process, doesn't it? Well, it should.
26 Threads are one of the pieces of a process.  Every process has at least
27 one thread and, up until now, every process running Perl had only one
28 thread.  With 5.8, though, you can create extra threads.  We're going
29 to show you how, when, and why.
30
31 =head1 Threaded Program Models
32
33 There are three basic ways that you can structure a threaded
34 program.  Which model you choose depends on what you need your program
35 to do.  For many non-trivial threaded programs you'll need to choose
36 different models for different pieces of your program.
37
38 =head2 Boss/Worker
39
40 The boss/worker model usually has one `boss' thread and one or more
41 `worker' threads.  The boss thread gathers or generates tasks that need
42 to be done, then parcels those tasks out to the appropriate worker
43 thread.
44
45 This model is common in GUI and server programs, where a main thread
46 waits for some event and then passes that event to the appropriate
47 worker threads for processing.  Once the event has been passed on, the
48 boss thread goes back to waiting for another event.
49
50 The boss thread does relatively little work.  While tasks aren't
51 necessarily performed faster than with any other method, it tends to
52 have the best user-response times.
53
54 =head2 Work Crew
55
56 In the work crew model, several threads are created that do
57 essentially the same thing to different pieces of data.  It closely
58 mirrors classical parallel processing and vector processors, where a
59 large array of processors do the exact same thing to many pieces of
60 data.
61
62 This model is particularly useful if the system running the program
63 will distribute multiple threads across different processors.  It can
64 also be useful in ray tracing or rendering engines, where the
65 individual threads can pass on interim results to give the user visual
66 feedback.
67
68 =head2 Pipeline
69
70 The pipeline model divides up a task into a series of steps, and
71 passes the results of one step on to the thread processing the
72 next.  Each thread does one thing to each piece of data and passes the
73 results to the next thread in line.
74
75 This model makes the most sense if you have multiple processors so two
76 or more threads will be executing in parallel, though it can often
77 make sense in other contexts as well.  It tends to keep the individual
78 tasks small and simple, as well as allowing some parts of the pipeline
79 to block (on I/O or system calls, for example) while other parts keep
80 going.  If you're running different parts of the pipeline on different
81 processors you may also take advantage of the caches on each
82 processor.
83
84 This model is also handy for a form of recursive programming where,
85 rather than having a subroutine call itself, it instead creates
86 another thread.  Prime and Fibonacci generators both map well to this
87 form of the pipeline model. (A version of a prime number generator is
88 presented later on.)
89
90 =head1 Native threads
91
92 There are several different ways to implement threads on a system.  How
93 threads are implemented depends both on the vendor and, in some cases,
94 the version of the operating system.  Often the first implementation
95 will be relatively simple, but later versions of the OS will be more
96 sophisticated.
97
98 While the information in this section is useful, it's not necessary,
99 so you can skip it if you don't feel up to it.
100
101 There are three basic categories of threads-user-mode threads, kernel
102 threads, and multiprocessor kernel threads.
103
104 User-mode threads are threads that live entirely within a program and
105 its libraries.  In this model, the OS knows nothing about threads.  As
106 far as it's concerned, your process is just a process.
107
108 This is the easiest way to implement threads, and the way most OSes
109 start.  The big disadvantage is that, since the OS knows nothing about
110 threads, if one thread blocks they all do.  Typical blocking activities
111 include most system calls, most I/O, and things like sleep().
112
113 Kernel threads are the next step in thread evolution.  The OS knows
114 about kernel threads, and makes allowances for them.  The main
115 difference between a kernel thread and a user-mode thread is
116 blocking.  With kernel threads, things that block a single thread don't
117 block other threads.  This is not the case with user-mode threads,
118 where the kernel blocks at the process level and not the thread level.
119
120 This is a big step forward, and can give a threaded program quite a
121 performance boost over non-threaded programs.  Threads that block
122 performing I/O, for example, won't block threads that are doing other
123 things.  Each process still has only one thread running at once,
124 though, regardless of how many CPUs a system might have.
125
126 Since kernel threading can interrupt a thread at any time, they will
127 uncover some of the implicit locking assumptions you may make in your
128 program.  For example, something as simple as C<$a = $a + 2> can behave
129 unpredictably with kernel threads if $a is visible to other
130 threads, as another thread may have changed $a between the time it
131 was fetched on the right hand side and the time the new value is
132 stored.
133
134 Multiprocessor Kernel Threads are the final step in thread
135 support.  With multiprocessor kernel threads on a machine with multiple
136 CPUs, the OS may schedule two or more threads to run simultaneously on
137 different CPUs.
138
139 This can give a serious performance boost to your threaded program,
140 since more than one thread will be executing at the same time.  As a
141 tradeoff, though, any of those nagging synchronization issues that
142 might not have shown with basic kernel threads will appear with a
143 vengeance.
144
145 In addition to the different levels of OS involvement in threads,
146 different OSes (and different thread implementations for a particular
147 OS) allocate CPU cycles to threads in different ways.
148
149 Cooperative multitasking systems have running threads give up control
150 if one of two things happen.  If a thread calls a yield function, it
151 gives up control.  It also gives up control if the thread does
152 something that would cause it to block, such as perform I/O.  In a
153 cooperative multitasking implementation, one thread can starve all the
154 others for CPU time if it so chooses.
155
156 Preemptive multitasking systems interrupt threads at regular intervals
157 while the system decides which thread should run next.  In a preemptive
158 multitasking system, one thread usually won't monopolize the CPU.
159
160 On some systems, there can be cooperative and preemptive threads
161 running simultaneously. (Threads running with realtime priorities
162 often behave cooperatively, for example, while threads running at
163 normal priorities behave preemptively.)
164
165 =head1 What kind of threads are perl threads?
166
167 If you have experience with other thread implementations, you might
168 find that things aren't quite what you expect.  It's very important to
169 remember when dealing with Perl threads that Perl Threads Are Not X
170 Threads, for all values of X.  They aren't POSIX threads, or
171 DecThreads, or Java's Green threads, or Win32 threads.  There are
172 similarities, and the broad concepts are the same, but if you start
173 looking for implementation details you're going to be either
174 disappointed or confused.  Possibly both.
175
176 This is not to say that Perl threads are completely different from
177 everything that's ever come before--they're not.  Perl's threading
178 model owes a lot to other thread models, especially POSIX.  Just as
179 Perl is not C, though, Perl threads are not POSIX threads.  So if you
180 find yourself looking for mutexes, or thread priorities, it's time to
181 step back a bit and think about what you want to do and how Perl can
182 do it.
183
184 However it is important to remeber that perl threads cannot magicly 
185 do things unless your operating systems threads allows it. So if your
186 system blocks the entire process on sleep(), so will usually perl aswell.
187
188 =head1 Threadsafe Modules
189
190 The addition of threads has changed Perl's internals 
191 substantially. There are implications for people who write
192 modules with XS code or external libraries. However since the threads
193 do not share data pure perl modules that don't interact with external
194 systems should be safe. Modules that are not tagged as thread-safe should
195 be tested or code reviewed before being used in production code.
196
197 Not all modules that you might use are thread-safe, and you should
198 always assume a module is unsafe unless the documentation says
199 otherwise.  This includes modules that are distributed as part of the
200 core.  Threads are a new feature, and even some of the standard
201 modules aren't thread-safe. (*** I think ActiveState checked this for
202 psuedofork, check with GSAR)
203
204 Even if a module us threadsafe, it doesn't mean that the module is optimized
205 to work well with threads. A module could maybe be rewritten to utilize the new
206 features in perl threaded to increase performance in a threaded enviroment.
207
208 If you're using a module that's not thread-safe for some reason, you
209 can protect yourself by using semaphores and lots of programming
210 discipline to control access to the module.  Semaphores are covered
211 later in the article.  Perl Threads Are Different
212
213 =head1 Thread Basics
214
215 The core L<threads> module provides the basic functions you need to write
216 threaded programs.  In the following sections we'll cover the basics,
217 showing you what you need to do to create a threaded program.   After
218 that, we'll go over some of the features of the L<threads> module that
219 make threaded programming easier.
220
221 =head2 Basic Thread Support
222
223 Thread support is a Perl compile-time option-it's something that's
224 turned on or off when Perl is built at your site, rather than when
225 your programs are compiled. If your Perl wasn't compiled with thread
226 support enabled, then any attempt to use threads will fail.
227
228 Remember that the threading support in 5.005 is in beta release, and
229 should be treated as such.   You should expect that it may not function
230 entirely properly, and the thread interface may well change some
231 before it is a fully supported, production release.  The beta version
232 shouldn't be used for mission-critical projects.  Having said that,
233 threaded Perl is pretty nifty, and worth a look. (??)
234
235 Your programs can use the Config module to check whether threads are
236 enabled. If your program can't run without them, you can say something
237 like:
238
239   $Config{useithreads} or die "Recompile Perl with threads to run this program.";
240
241 A possibly-threaded program using a possibly-threaded module might
242 have code like this:
243
244     use Config; 
245     use MyMod; 
246
247     if ($Config{useithreads}) { 
248         # We have threads 
249         require MyMod_threaded; 
250         import MyMod_threaded; 
251     } else { 
252         require MyMod_unthreaded; 
253         import MyMod_unthreaded; 
254     } 
255
256 Since code that runs both with and without threads is usually pretty
257 messy, it's best to isolate the thread-specific code in its own
258 module.  In our example above, that's what MyMod_threaded is, and it's
259 only imported if we're running on a threaded Perl.
260
261 =head2 Creating Threads
262
263 The L<threads> package provides the tools you need to create new
264 threads.  Like any other module, you need to tell Perl you want to use
265 it; C<use threads> imports all the pieces you need to create basic
266 threads.
267
268 The simplest, straightforward way to create a thread is with new():
269
270     use threads; 
271
272     $thr = threads->new(\&sub1);
273
274     sub sub1 { 
275         print "In the thread\n"; 
276     }
277
278 The new() method takes a reference to a subroutine and creates a new
279 thread, which starts executing in the referenced subroutine.  Control
280 then passes both to the subroutine and the caller.
281
282 If you need to, your program can pass parameters to the subroutine as
283 part of the thread startup.  Just include the list of parameters as
284 part of the C<threads::new> call, like this:
285
286     use threads; 
287     $Param3 = "foo"; 
288     $thr = threads->new(\&sub1, "Param 1", "Param 2", $Param3); 
289     $thr = threads->new(\&sub1, @ParamList); 
290     $thr = threads->new(\&sub1, qw(Param1 Param2 $Param3));
291
292     sub sub1 { 
293         my @InboundParameters = @_; 
294         print "In the thread\n"; 
295         print "got parameters >", join("<>", @InboundParameters), "<\n"; 
296     }
297
298
299 The last example illustrates another feature of threads.  You can spawn
300 off several threads using the same subroutine.  Each thread executes
301 the same subroutine, but in a separate thread with a separate
302 environment and potentially separate arguments.
303
304 =head2 Giving up control
305
306 There are times when you may find it useful to have a thread
307 explicitly give up the CPU to another thread.  Your threading package
308 might not support preemptive multitasking for threads, for example, or
309 you may be doing something compute-intensive and want to make sure
310 that the user-interface thread gets called frequently.  Regardless,
311 there are times that you might want a thread to give up the processor.
312
313 Perl's threading package provides the yield() function that does
314 this. yield() is pretty straightforward, and works like this:
315
316     use threads; 
317         
318         sub loop {
319                 my $thread = shift;
320                 my $foo = 50;
321                 while($foo--) { print "in thread $thread\n" }
322                 threads->yield();
323                 $foo = 50;
324                 while($foo--) {Êprint "in thread $thread\n" }
325         }
326
327         my $thread1 = threads->new(\&loop, 'first');
328         my $thread2 = threads->new(\&loop, 'second');
329         my $thread3 = threads->new(\&loop, 'third');
330         
331 It is important to remember that yield() is only a hint to give up the CPU,
332 it depends on your hardware, OS and threading libraries what actually happens.
333 Therefore it is important to note that one should not build the scheduling of 
334 the threads around yield() calls. It might work on your platform but it won't
335 work on another platform.
336
337 =head2 Waiting For A Thread To Exit
338
339 Since threads are also subroutines, they can return values.  To wait
340 for a thread to exit and extract any scalars it might return, you can
341 use the join() method.
342
343     use threads; 
344     $thr = threads->new(\&sub1);
345
346     @ReturnData = $thr->join; 
347     print "Thread returned @ReturnData"; 
348
349     sub sub1 { return "Fifty-six", "foo", 2; }
350
351 In the example above, the join() method returns as soon as the thread
352 ends.  In addition to waiting for a thread to finish and gathering up
353 any values that the thread might have returned, join() also performs
354 any OS cleanup necessary for the thread.  That cleanup might be
355 important, especially for long-running programs that spawn lots of
356 threads.  If you don't want the return values and don't want to wait
357 for the thread to finish, you should call the detach() method
358 instead. detach() is covered later in the article.
359
360 =head2 Ignoring A Thread
361
362 join() does three things: it waits for a thread to exit, cleans up
363 after it, and returns any data the thread may have produced.  But what
364 if you're not interested in the thread's return values, and you don't
365 really care when the thread finishes? All you want is for the thread
366 to get cleaned up after when it's done.
367
368 In this case, you use the detach() method.  Once a thread is detached,
369 it'll run until it's finished, then Perl will clean up after it
370 automatically.
371
372     use threads; 
373     $thr = new threads \&sub1; # Spawn the thread
374
375     $thr->detach; # Now we officially don't care any more
376
377     sub sub1 { 
378         $a = 0; 
379         while (1) { 
380             $a++; 
381             print "\$a is $a\n"; 
382             sleep 1; 
383         } 
384     }
385
386
387 Once a thread is detached, it may not be joined, and any output that
388 it might have produced (if it was done and waiting for a join) is
389 lost.
390
391 =head1 Threads And Data
392
393 Now that we've covered the basics of threads, it's time for our next
394 topic: data.  Threading introduces a couple of complications to data
395 access that non-threaded programs never need to worry about.
396
397 =head2 Shared And Unshared Data
398
399 The biggest difference between perl threading and the old 5.005 style
400 threading, or most other threading systems out there, is that all data
401 is not shared. When a new perl thread is created all data is cloned 
402 and is private to that thread!
403
404 To make use of threading however, one usually want the threads to share
405 data between each other, that is used with the L<threads::shared> module
406 and the C< : shared> attribute.
407
408         use threads;
409         use threads::shared;
410         my $foo : shared = 1;
411         my $bar = 1;
412         threads->new(sub { $foo++; $bar++ })->join;
413         
414         print "$foo\n";  #prints 2 since $foo is shared
415         print "$bar\n";  #prints 1 since bar is not shared
416
417 =head2 Thread Pitfall: Races
418
419 While threads bring a new set of useful tools, they also bring a
420 number of pitfalls.  One pitfall is the race condition:
421
422     use threads; 
423     use threads::shared;
424     my $a : shared = 1; 
425     $thr1 = threads->new(\&sub1); 
426     $thr2 = threads->new(\&sub2); 
427
428     $thr1->join;
429     $thr2->join;
430     print "$a\n";
431
432     sub sub1 { $foo = $a; $a = $foo + 1; }
433     sub sub2 { $bar = $a; $a = $bar + 1; }
434
435 What do you think $a will be? The answer, unfortunately, is "it
436 depends." Both sub1() and sub2() access the global variable $a, once
437 to read and once to write.  Depending on factors ranging from your
438 thread implementation's scheduling algorithm to the phase of the moon,
439 $a can be 2 or 3.
440
441 Race conditions are caused by unsynchronized access to shared
442 data.  Without explicit synchronization, there's no way to be sure that
443 nothing has happened to the shared data between the time you access it
444 and the time you update it.  Even this simple code fragment has the
445 possibility of error:
446
447     use threads; 
448     my $a : shared = 2;
449     my $b : shared;
450     my $c : shared;
451     my $thr1 = threads->create(sub { $b = $a; $a = $b + 1; }); 
452     my $thr2 = threads->create(sub { $c = $a; $a = $c + 1; });
453     $thr1->join();
454     $thr2->join();
455
456 Two threads both access $a.  Each thread can potentially be interrupted
457 at any point, or be executed in any order.  At the end, $a could be 3
458 or 4, and both $b and $c could be 2 or 3.
459
460 Whenever your program accesses data or resources that can be accessed
461 by other threads, you must take steps to coordinate access or risk
462 data corruption and race conditions.
463
464 =head2 Controlling access: lock()
465
466 The lock() function takes a shared variable and puts a lock on it.  
467 No other thread may lock the variable until the locking thread exits
468 the innermost block containing the lock.  
469 Using lock() is straightforward:
470
471     use threads; 
472     my $a : shared = 4; 
473     $thr1 = threads->new(sub { 
474         $foo = 12; 
475         { 
476             lock ($a); # Block until we get access to $a 
477             $b = $a; 
478             $a = $b * $foo; 
479         } 
480         print "\$foo was $foo\n";
481     }); 
482     $thr2 = threads->new(sub { 
483         $bar = 7; 
484         { 
485             lock ($a); # Block until we can get access to $a
486             $c = $a; 
487             $a = $c * $bar; 
488         } 
489         print "\$bar was $bar\n";
490     }); 
491     $thr1->join; 
492     $thr2->join; 
493     print "\$a is $a\n";
494
495 lock() blocks the thread until the variable being locked is
496 available.  When lock() returns, your thread can be sure that no other
497 thread can lock that variable until the innermost block containing the
498 lock exits.
499
500 It's important to note that locks don't prevent access to the variable
501 in question, only lock attempts.  This is in keeping with Perl's
502 longstanding tradition of courteous programming, and the advisory file
503 locking that flock() gives you.  
504
505 You may lock arrays and hashes as well as scalars.  Locking an array,
506 though, will not block subsequent locks on array elements, just lock
507 attempts on the array itself.
508
509 Finally, locks are recursive, which means it's okay for a thread to
510 lock a variable more than once.  The lock will last until the outermost
511 lock() on the variable goes out of scope.
512
513 =head2 Thread Pitfall: Deadlocks
514
515 Locks are a handy tool to synchronize access to data.  Using them
516 properly is the key to safe shared data.  Unfortunately, locks aren't
517 without their dangers.  Consider the following code:
518
519     use threads; 
520     my $a : shared = 4; 
521     my $b : shared = "foo"; 
522     my $thr1 = threads->new(sub { 
523         lock($a); 
524         yield; 
525         sleep 20; 
526         lock ($b); 
527     }); 
528     my $thr2 = threads->new(sub { 
529         lock($b); 
530         yield; 
531         sleep 20; 
532         lock ($a); 
533     });
534
535 This program will probably hang until you kill it.  The only way it
536 won't hang is if one of the two async() routines acquires both locks
537 first.  A guaranteed-to-hang version is more complicated, but the
538 principle is the same.
539
540 The first thread spawned by async() will grab a lock on $a then, a
541 second or two later, try to grab a lock on $b.  Meanwhile, the second
542 thread grabs a lock on $b, then later tries to grab a lock on $a.  The
543 second lock attempt for both threads will block, each waiting for the
544 other to release its lock.
545
546 This condition is called a deadlock, and it occurs whenever two or
547 more threads are trying to get locks on resources that the others
548 own.  Each thread will block, waiting for the other to release a lock
549 on a resource.  That never happens, though, since the thread with the
550 resource is itself waiting for a lock to be released.
551
552 There are a number of ways to handle this sort of problem.  The best
553 way is to always have all threads acquire locks in the exact same
554 order.  If, for example, you lock variables $a, $b, and $c, always lock
555 $a before $b, and $b before $c.  It's also best to hold on to locks for
556 as short a period of time to minimize the risks of deadlock.
557
558 =head2 Queues: Passing Data Around
559
560 A queue is a special thread-safe object that lets you put data in one
561 end and take it out the other without having to worry about
562 synchronization issues.  They're pretty straightforward, and look like
563 this:
564
565     use threads; 
566     use threads::shared::queue;
567
568     my $DataQueue = new threads::shared::queue; 
569     $thr = threads->new(sub { 
570         while ($DataElement = $DataQueue->dequeue) { 
571             print "Popped $DataElement off the queue\n";
572         } 
573     }); 
574
575     $DataQueue->enqueue(12); 
576     $DataQueue->enqueue("A", "B", "C"); 
577     $DataQueue->enqueue(\$thr); 
578     sleep 10; 
579     $DataQueue->enqueue(undef);
580     $thr->join();
581
582 You create the queue with new threads::shared::queue.  Then you can add lists of
583 scalars onto the end with enqueue(), and pop scalars off the front of
584 it with dequeue().  A queue has no fixed size, and can grow as needed
585 to hold everything pushed on to it.
586
587 If a queue is empty, dequeue() blocks until another thread enqueues
588 something.  This makes queues ideal for event loops and other
589 communications between threads.
590
591
592 =head1 Threads And Code
593
594 In addition to providing thread-safe access to data via locks and
595 queues, threaded Perl also provides general-purpose semaphores for
596 coarser synchronization than locks provide and thread-safe access to
597 entire subroutines.
598
599 =head2 Semaphores: Synchronizing Data Access
600
601 Semaphores are a kind of generic locking mechanism.  Unlike lock, which
602 gets a lock on a particular scalar, Perl doesn't associate any
603 particular thing with a semaphore so you can use them to control
604 access to anything you like.  In addition, semaphores can allow more
605 than one thread to access a resource at once, though by default
606 semaphores only allow one thread access at a time.
607
608 =over 4
609
610 =item Basic semaphores
611
612 Semaphores have two methods, down and up. down decrements the resource
613 count, while up increments it.  down calls will block if the
614 semaphore's current count would decrement below zero.  This program
615 gives a quick demonstration:
616
617     use threads qw(yield); 
618     use threads::shared::semaphore; 
619     my $semaphore = new threads::shared::semaphore; 
620     $GlobalVariable = 0;
621
622     $thr1 = new threads \&sample_sub, 1; 
623     $thr2 = new threads \&sample_sub, 2; 
624     $thr3 = new threads \&sample_sub, 3;
625
626     sub sample_sub { 
627         my $SubNumber = shift @_; 
628         my $TryCount = 10; 
629         my $LocalCopy; 
630         sleep 1; 
631         while ($TryCount--) { 
632             $semaphore->down; 
633             $LocalCopy = $GlobalVariable; 
634             print "$TryCount tries left for sub $SubNumber (\$GlobalVariable is $GlobalVariable)\n"; 
635             yield; 
636             sleep 2; 
637             $LocalCopy++; 
638             $GlobalVariable = $LocalCopy; 
639             $semaphore->up; 
640         } 
641     }
642     
643     $thr1->join();
644     $thr2->join();
645     $thr3->join();
646
647 The three invocations of the subroutine all operate in sync.  The
648 semaphore, though, makes sure that only one thread is accessing the
649 global variable at once.
650
651 =item Advanced Semaphores
652
653 By default, semaphores behave like locks, letting only one thread
654 down() them at a time.  However, there are other uses for semaphores.
655
656 Each semaphore has a counter attached to it. down() decrements the
657 counter and up() increments the counter.  By default, semaphores are
658 created with the counter set to one, down() decrements by one, and
659 up() increments by one.  If down() attempts to decrement the counter
660 below zero, it blocks until the counter is large enough.  Note that
661 while a semaphore can be created with a starting count of zero, any
662 up() or down() always changes the counter by at least
663 one. $semaphore->down(0) is the same as $semaphore->down(1).
664
665 The question, of course, is why would you do something like this? Why
666 create a semaphore with a starting count that's not one, or why
667 decrement/increment it by more than one? The answer is resource
668 availability.  Many resources that you want to manage access for can be
669 safely used by more than one thread at once.
670
671 For example, let's take a GUI driven program.  It has a semaphore that
672 it uses to synchronize access to the display, so only one thread is
673 ever drawing at once.  Handy, but of course you don't want any thread
674 to start drawing until things are properly set up.  In this case, you
675 can create a semaphore with a counter set to zero, and up it when
676 things are ready for drawing.
677
678 Semaphores with counters greater than one are also useful for
679 establishing quotas.  Say, for example, that you have a number of
680 threads that can do I/O at once.  You don't want all the threads
681 reading or writing at once though, since that can potentially swamp
682 your I/O channels, or deplete your process' quota of filehandles.  You
683 can use a semaphore initialized to the number of concurrent I/O
684 requests (or open files) that you want at any one time, and have your
685 threads quietly block and unblock themselves.
686
687 Larger increments or decrements are handy in those cases where a
688 thread needs to check out or return a number of resources at once.
689
690 =back
691
692 =head1 General Thread Utility Routines
693
694 We've covered the workhorse parts of Perl's threading package, and
695 with these tools you should be well on your way to writing threaded
696 code and packages.  There are a few useful little pieces that didn't
697 really fit in anyplace else.
698
699 =head2 What Thread Am I In?
700
701 The threads->self method provides your program with a way to get an
702 object representing the thread it's currently in.  You can use this
703 object in the same way as the ones returned from the thread creation.
704
705 =head2 Thread IDs
706
707 tid() is a thread object method that returns the thread ID of the
708 thread the object represents.  Thread IDs are integers, with the main
709 thread in a program being 0.  Currently Perl assigns a unique tid to
710 every thread ever created in your program, assigning the first thread
711 to be created a tid of 1, and increasing the tid by 1 for each new
712 thread that's created.
713
714 =head2 Are These Threads The Same?
715
716 The equal() method takes two thread objects and returns true 
717 if the objects represent the same thread, and false if they don't.
718
719 Thread objects also have an overloaded == comparison so that you can do
720 comparison on them as you would with normal objects.
721
722 =head2 What Threads Are Running?
723
724 threads->list returns a list of thread objects, one for each thread
725 that's currently running and not detached.  Handy for a number of things,
726 including cleaning up at the end of your program:
727
728     # Loop through all the threads 
729     foreach $thr (threads->list) { 
730         # Don't join the main thread or ourselves 
731         if ($thr->tid && !threads::equal($thr, threads->self)) { 
732             $thr->join; 
733         } 
734     }
735
736 If not all threads are finished running when the main perl thread
737 ends, perl will warn you about it and die, since it is impossible for perl
738 to clean up itself while other threads are runninng
739
740 =head1 A Complete Example
741
742 Confused yet? It's time for an example program to show some of the
743 things we've covered.  This program finds prime numbers using threads.
744
745     1  #!/usr/bin/perl -w
746     2  # prime-pthread, courtesy of Tom Christiansen
747     3
748     4  use strict;
749     5
750     6  use threads;
751     7  use threads::shared::queue;
752     8
753     9  my $stream = new threads::shared::queue;
754     10 my $kid    = new threads(\&check_num, $stream, 2);
755     11
756     12 for my $i ( 3 .. 1000 ) {
757     13     $stream->enqueue($i);
758     14 } 
759     15
760     16 $stream->enqueue(undef);
761     17 $kid->join();
762     18
763     19 sub check_num {
764     20     my ($upstream, $cur_prime) = @_;
765     21     my $kid;
766     22     my $downstream = new threads::shared::queue;
767     23     while (my $num = $upstream->dequeue) {
768     24         next unless $num % $cur_prime;
769     25         if ($kid) {
770     26            $downstream->enqueue($num);
771     27                  } else {
772     28            print "Found prime $num\n";
773     29                $kid = new threads(\&check_num, $downstream, $num);
774     30         }
775     31     } 
776     32     $downstream->enqueue(undef) if $kid;
777     33     $kid->join()         if $kid;
778     34 }
779
780 This program uses the pipeline model to generate prime numbers.  Each
781 thread in the pipeline has an input queue that feeds numbers to be
782 checked, a prime number that it's responsible for, and an output queue
783 that it funnels numbers that have failed the check into.  If the thread
784 has a number that's failed its check and there's no child thread, then
785 the thread must have found a new prime number.  In that case, a new
786 child thread is created for that prime and stuck on the end of the
787 pipeline.
788
789 This probably sounds a bit more confusing than it really is, so lets
790 go through this program piece by piece and see what it does.  (For
791 those of you who might be trying to remember exactly what a prime
792 number is, it's a number that's only evenly divisible by itself and 1)
793
794 The bulk of the work is done by the check_num() subroutine, which
795 takes a reference to its input queue and a prime number that it's
796 responsible for.  After pulling in the input queue and the prime that
797 the subroutine's checking (line 20), we create a new queue (line 22)
798 and reserve a scalar for the thread that we're likely to create later
799 (line 21).
800
801 The while loop from lines 23 to line 31 grabs a scalar off the input
802 queue and checks against the prime this thread is responsible
803 for.  Line 24 checks to see if there's a remainder when we modulo the
804 number to be checked against our prime.  If there is one, the number
805 must not be evenly divisible by our prime, so we need to either pass
806 it on to the next thread if we've created one (line 26) or create a
807 new thread if we haven't.
808
809 The new thread creation is line 29.  We pass on to it a reference to
810 the queue we've created, and the prime number we've found.
811
812 Finally, once the loop terminates (because we got a 0 or undef in the
813 queue, which serves as a note to die), we pass on the notice to our
814 child and wait for it to exit if we've created a child (Lines 32 and
815 37).
816
817 Meanwhile, back in the main thread, we create a queue (line 9) and the
818 initial child thread (line 10), and pre-seed it with the first prime:
819 2.  Then we queue all the numbers from 3 to 1000 for checking (lines
820 12-14), then queue a die notice (line 16) and wait for the first child
821 thread to terminate (line 17).  Because a child won't die until its
822 child has died, we know that we're done once we return from the join.
823
824 That's how it works.  It's pretty simple; as with many Perl programs,
825 the explanation is much longer than the program.
826
827 =head1 Conclusion
828
829 A complete thread tutorial could fill a book (and has, many times),
830 but this should get you well on your way.  The final authority on how
831 Perl's threads behave is the documentation bundled with the Perl
832 distribution, but with what we've covered in this article, you should
833 be well on your way to becoming a threaded Perl expert.
834
835 =head1 Bibliography
836
837 Here's a short bibliography courtesy of Jürgen Christoffel:
838
839 =head2 Introductory Texts
840
841 Birrell, Andrew D. An Introduction to Programming with
842 Threads. Digital Equipment Corporation, 1989, DEC-SRC Research Report
843 #35 online as
844 http://www.research.digital.com/SRC/staff/birrell/bib.html (highly
845 recommended)
846
847 Robbins, Kay. A., and Steven Robbins. Practical Unix Programming: A
848 Guide to Concurrency, Communication, and
849 Multithreading. Prentice-Hall, 1996.
850
851 Lewis, Bill, and Daniel J. Berg. Multithreaded Programming with
852 Pthreads. Prentice Hall, 1997, ISBN 0-13-443698-9 (a well-written
853 introduction to threads).
854
855 Nelson, Greg (editor). Systems Programming with Modula-3.  Prentice
856 Hall, 1991, ISBN 0-13-590464-1.
857
858 Nichols, Bradford, Dick Buttlar, and Jacqueline Proulx Farrell.
859 Pthreads Programming. O'Reilly & Associates, 1996, ISBN 156592-115-1
860 (covers POSIX threads).
861
862 =head2 OS-Related References
863
864 Boykin, Joseph, David Kirschen, Alan Langerman, and Susan
865 LoVerso. Programming under Mach. Addison-Wesley, 1994, ISBN
866 0-201-52739-1.
867
868 Tanenbaum, Andrew S. Distributed Operating Systems. Prentice Hall,
869 1995, ISBN 0-13-219908-4 (great textbook).
870
871 Silberschatz, Abraham, and Peter B. Galvin. Operating System Concepts,
872 4th ed. Addison-Wesley, 1995, ISBN 0-201-59292-4
873
874 =head2 Other References
875
876 Arnold, Ken and James Gosling. The Java Programming Language, 2nd
877 ed. Addison-Wesley, 1998, ISBN 0-201-31006-6.
878
879 Le Sergent, T. and B. Berthomieu. "Incremental MultiThreaded Garbage
880 Collection on Virtually Shared Memory Architectures" in Memory
881 Management: Proc. of the International Workshop IWMM 92, St. Malo,
882 France, September 1992, Yves Bekkers and Jacques Cohen, eds. Springer,
883 1992, ISBN 3540-55940-X (real-life thread applications).
884
885 =head1 Acknowledgements
886
887 Thanks (in no particular order) to Chaim Frenkel, Steve Fink, Gurusamy
888 Sarathy, Ilya Zakharevich, Benjamin Sugars, Jürgen Christoffel, Joshua
889 Pritikin, and Alan Burlison, for their help in reality-checking and
890 polishing this article.  Big thanks to Tom Christiansen for his rewrite
891 of the prime number generator.
892
893 =head1 AUTHOR
894
895 Dan Sugalski E<lt>sugalskd@ous.eduE<gt>
896
897 Slightly modified by Arthur Bergman to fit the new thread model/module.
898
899 =head1 Copyrights
900
901 This article originally appeared in The Perl Journal #10, and is
902 copyright 1998 The Perl Journal. It appears courtesy of Jon Orwant and
903 The Perl Journal.  This document may be distributed under the same terms
904 as Perl itself.
905
906
907 For more information please see L<threads> and L<threads::shared>.
908