Mention state variables in perldiag. Add switch-related keywords
[p5sagit/p5-mst-13.2.git] / pod / perlsub.pod
1 =head1 NAME
2 X<subroutine> X<function>
3
4 perlsub - Perl subroutines
5
6 =head1 SYNOPSIS
7
8 To declare subroutines:
9 X<subroutine, declaration> X<sub>
10
11     sub NAME;                     # A "forward" declaration.
12     sub NAME(PROTO);              #  ditto, but with prototypes
13     sub NAME : ATTRS;             #  with attributes
14     sub NAME(PROTO) : ATTRS;      #  with attributes and prototypes
15
16     sub NAME BLOCK                # A declaration and a definition.
17     sub NAME(PROTO) BLOCK         #  ditto, but with prototypes
18     sub NAME : ATTRS BLOCK        #  with attributes
19     sub NAME(PROTO) : ATTRS BLOCK #  with prototypes and attributes
20
21 To define an anonymous subroutine at runtime:
22 X<subroutine, anonymous>
23
24     $subref = sub BLOCK;                 # no proto
25     $subref = sub (PROTO) BLOCK;         # with proto
26     $subref = sub : ATTRS BLOCK;         # with attributes
27     $subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes
28
29 To import subroutines:
30 X<import>
31
32     use MODULE qw(NAME1 NAME2 NAME3);
33
34 To call subroutines:
35 X<subroutine, call> X<call>
36
37     NAME(LIST);    # & is optional with parentheses.
38     NAME LIST;     # Parentheses optional if predeclared/imported.
39     &NAME(LIST);   # Circumvent prototypes.
40     &NAME;         # Makes current @_ visible to called subroutine.
41
42 =head1 DESCRIPTION
43
44 Like many languages, Perl provides for user-defined subroutines.
45 These may be located anywhere in the main program, loaded in from
46 other files via the C<do>, C<require>, or C<use> keywords, or
47 generated on the fly using C<eval> or anonymous subroutines.
48 You can even call a function indirectly using a variable containing
49 its name or a CODE reference.
50
51 The Perl model for function call and return values is simple: all
52 functions are passed as parameters one single flat list of scalars, and
53 all functions likewise return to their caller one single flat list of
54 scalars.  Any arrays or hashes in these call and return lists will
55 collapse, losing their identities--but you may always use
56 pass-by-reference instead to avoid this.  Both call and return lists may
57 contain as many or as few scalar elements as you'd like.  (Often a
58 function without an explicit return statement is called a subroutine, but
59 there's really no difference from Perl's perspective.)
60 X<subroutine, parameter> X<parameter>
61
62 Any arguments passed in show up in the array C<@_>.  Therefore, if
63 you called a function with two arguments, those would be stored in
64 C<$_[0]> and C<$_[1]>.  The array C<@_> is a local array, but its
65 elements are aliases for the actual scalar parameters.  In particular,
66 if an element C<$_[0]> is updated, the corresponding argument is
67 updated (or an error occurs if it is not updatable).  If an argument
68 is an array or hash element which did not exist when the function
69 was called, that element is created only when (and if) it is modified
70 or a reference to it is taken.  (Some earlier versions of Perl
71 created the element whether or not the element was assigned to.)
72 Assigning to the whole array C<@_> removes that aliasing, and does
73 not update any arguments.
74 X<subroutine, argument> X<argument> X<@_>
75
76 A C<return> statement may be used to exit a subroutine, optionally
77 specifying the returned value, which will be evaluated in the
78 appropriate context (list, scalar, or void) depending on the context of
79 the subroutine call.  If you specify no return value, the subroutine
80 returns an empty list in list context, the undefined value in scalar
81 context, or nothing in void context.  If you return one or more
82 aggregates (arrays and hashes), these will be flattened together into
83 one large indistinguishable list.
84
85 If no C<return> is found and if the last statement is an expression, its
86 value is returned. If the last statement is a loop control structure
87 like a C<foreach> or a C<while>, the returned value is unspecified. The
88 empty sub returns the empty list.
89 X<subroutine, return value> X<return value> X<return>
90
91 Perl does not have named formal parameters.  In practice all you
92 do is assign to a C<my()> list of these.  Variables that aren't
93 declared to be private are global variables.  For gory details
94 on creating private variables, see L<"Private Variables via my()">
95 and L<"Temporary Values via local()">.  To create protected
96 environments for a set of functions in a separate package (and
97 probably a separate file), see L<perlmod/"Packages">.
98 X<formal parameter> X<parameter, formal>
99
100 Example:
101
102     sub max {
103         my $max = shift(@_);
104         foreach $foo (@_) {
105             $max = $foo if $max < $foo;
106         }
107         return $max;
108     }
109     $bestday = max($mon,$tue,$wed,$thu,$fri);
110
111 Example:
112
113     # get a line, combining continuation lines
114     #  that start with whitespace
115
116     sub get_line {
117         $thisline = $lookahead;  # global variables!
118         LINE: while (defined($lookahead = <STDIN>)) {
119             if ($lookahead =~ /^[ \t]/) {
120                 $thisline .= $lookahead;
121             }
122             else {
123                 last LINE;
124             }
125         }
126         return $thisline;
127     }
128
129     $lookahead = <STDIN>;       # get first line
130     while (defined($line = get_line())) {
131         ...
132     }
133
134 Assigning to a list of private variables to name your arguments:
135
136     sub maybeset {
137         my($key, $value) = @_;
138         $Foo{$key} = $value unless $Foo{$key};
139     }
140
141 Because the assignment copies the values, this also has the effect
142 of turning call-by-reference into call-by-value.  Otherwise a
143 function is free to do in-place modifications of C<@_> and change
144 its caller's values.
145 X<call-by-reference> X<call-by-value>
146
147     upcase_in($v1, $v2);  # this changes $v1 and $v2
148     sub upcase_in {
149         for (@_) { tr/a-z/A-Z/ }
150     }
151
152 You aren't allowed to modify constants in this way, of course.  If an
153 argument were actually literal and you tried to change it, you'd take a
154 (presumably fatal) exception.   For example, this won't work:
155 X<call-by-reference> X<call-by-value>
156
157     upcase_in("frederick");
158
159 It would be much safer if the C<upcase_in()> function
160 were written to return a copy of its parameters instead
161 of changing them in place:
162
163     ($v3, $v4) = upcase($v1, $v2);  # this doesn't change $v1 and $v2
164     sub upcase {
165         return unless defined wantarray;  # void context, do nothing
166         my @parms = @_;
167         for (@parms) { tr/a-z/A-Z/ }
168         return wantarray ? @parms : $parms[0];
169     }
170
171 Notice how this (unprototyped) function doesn't care whether it was
172 passed real scalars or arrays.  Perl sees all arguments as one big,
173 long, flat parameter list in C<@_>.  This is one area where
174 Perl's simple argument-passing style shines.  The C<upcase()>
175 function would work perfectly well without changing the C<upcase()>
176 definition even if we fed it things like this:
177
178     @newlist   = upcase(@list1, @list2);
179     @newlist   = upcase( split /:/, $var );
180
181 Do not, however, be tempted to do this:
182
183     (@a, @b)   = upcase(@list1, @list2);
184
185 Like the flattened incoming parameter list, the return list is also
186 flattened on return.  So all you have managed to do here is stored
187 everything in C<@a> and made C<@b> empty.  See 
188 L<Pass by Reference> for alternatives.
189
190 A subroutine may be called using an explicit C<&> prefix.  The
191 C<&> is optional in modern Perl, as are parentheses if the
192 subroutine has been predeclared.  The C<&> is I<not> optional
193 when just naming the subroutine, such as when it's used as
194 an argument to defined() or undef().  Nor is it optional when you
195 want to do an indirect subroutine call with a subroutine name or
196 reference using the C<&$subref()> or C<&{$subref}()> constructs,
197 although the C<< $subref->() >> notation solves that problem.
198 See L<perlref> for more about all that.
199 X<&>
200
201 Subroutines may be called recursively.  If a subroutine is called
202 using the C<&> form, the argument list is optional, and if omitted,
203 no C<@_> array is set up for the subroutine: the C<@_> array at the
204 time of the call is visible to subroutine instead.  This is an
205 efficiency mechanism that new users may wish to avoid.
206 X<recursion>
207
208     &foo(1,2,3);        # pass three arguments
209     foo(1,2,3);         # the same
210
211     foo();              # pass a null list
212     &foo();             # the same
213
214     &foo;               # foo() get current args, like foo(@_) !!
215     foo;                # like foo() IFF sub foo predeclared, else "foo"
216
217 Not only does the C<&> form make the argument list optional, it also
218 disables any prototype checking on arguments you do provide.  This
219 is partly for historical reasons, and partly for having a convenient way
220 to cheat if you know what you're doing.  See L<Prototypes> below.
221 X<&>
222
223 Subroutines whose names are in all upper case are reserved to the Perl
224 core, as are modules whose names are in all lower case.  A subroutine in
225 all capitals is a loosely-held convention meaning it will be called
226 indirectly by the run-time system itself, usually due to a triggered event.
227 Subroutines that do special, pre-defined things include C<AUTOLOAD>, C<CLONE>,
228 C<DESTROY> plus all functions mentioned in L<perltie> and L<PerlIO::via>.
229
230 The C<BEGIN>, C<CHECK>, C<INIT> and C<END> subroutines are not so much
231 subroutines as named special code blocks, of which you can have more
232 than one in a package, and which you can B<not> call explicitly.  See
233 L<perlmod/"BEGIN, CHECK, INIT and END">
234
235 =head2 Private Variables via my()
236 X<my> X<variable, lexical> X<lexical> X<lexical variable> X<scope, lexical>
237 X<lexical scope> X<attributes, my>
238
239 Synopsis:
240
241     my $foo;            # declare $foo lexically local
242     my (@wid, %get);    # declare list of variables local
243     my $foo = "flurp";  # declare $foo lexical, and init it
244     my @oof = @bar;     # declare @oof lexical, and init it
245     my $x : Foo = $y;   # similar, with an attribute applied
246
247 B<WARNING>: The use of attribute lists on C<my> declarations is still
248 evolving.  The current semantics and interface are subject to change.
249 See L<attributes> and L<Attribute::Handlers>.
250
251 The C<my> operator declares the listed variables to be lexically
252 confined to the enclosing block, conditional (C<if/unless/elsif/else>),
253 loop (C<for/foreach/while/until/continue>), subroutine, C<eval>,
254 or C<do/require/use>'d file.  If more than one value is listed, the
255 list must be placed in parentheses.  All listed elements must be
256 legal lvalues.  Only alphanumeric identifiers may be lexically
257 scoped--magical built-ins like C<$/> must currently be C<local>ized
258 with C<local> instead.
259
260 Unlike dynamic variables created by the C<local> operator, lexical
261 variables declared with C<my> are totally hidden from the outside
262 world, including any called subroutines.  This is true if it's the
263 same subroutine called from itself or elsewhere--every call gets
264 its own copy.
265 X<local>
266
267 This doesn't mean that a C<my> variable declared in a statically
268 enclosing lexical scope would be invisible.  Only dynamic scopes
269 are cut off.   For example, the C<bumpx()> function below has access
270 to the lexical $x variable because both the C<my> and the C<sub>
271 occurred at the same scope, presumably file scope.
272
273     my $x = 10;
274     sub bumpx { $x++ } 
275
276 An C<eval()>, however, can see lexical variables of the scope it is
277 being evaluated in, so long as the names aren't hidden by declarations within
278 the C<eval()> itself.  See L<perlref>.
279 X<eval, scope of>
280
281 The parameter list to my() may be assigned to if desired, which allows you
282 to initialize your variables.  (If no initializer is given for a
283 particular variable, it is created with the undefined value.)  Commonly
284 this is used to name input parameters to a subroutine.  Examples:
285
286     $arg = "fred";        # "global" variable
287     $n = cube_root(27);
288     print "$arg thinks the root is $n\n";
289  fred thinks the root is 3
290
291     sub cube_root {
292         my $arg = shift;  # name doesn't matter
293         $arg **= 1/3;
294         return $arg;
295     }
296
297 The C<my> is simply a modifier on something you might assign to.  So when
298 you do assign to variables in its argument list, C<my> doesn't
299 change whether those variables are viewed as a scalar or an array.  So
300
301     my ($foo) = <STDIN>;                # WRONG?
302     my @FOO = <STDIN>;
303
304 both supply a list context to the right-hand side, while
305
306     my $foo = <STDIN>;
307
308 supplies a scalar context.  But the following declares only one variable:
309
310     my $foo, $bar = 1;                  # WRONG
311
312 That has the same effect as
313
314     my $foo;
315     $bar = 1;
316
317 The declared variable is not introduced (is not visible) until after
318 the current statement.  Thus,
319
320     my $x = $x;
321
322 can be used to initialize a new $x with the value of the old $x, and
323 the expression
324
325     my $x = 123 and $x == 123
326
327 is false unless the old $x happened to have the value C<123>.
328
329 Lexical scopes of control structures are not bounded precisely by the
330 braces that delimit their controlled blocks; control expressions are
331 part of that scope, too.  Thus in the loop
332
333     while (my $line = <>) {
334         $line = lc $line;
335     } continue {
336         print $line;
337     }
338
339 the scope of $line extends from its declaration throughout the rest of
340 the loop construct (including the C<continue> clause), but not beyond
341 it.  Similarly, in the conditional
342
343     if ((my $answer = <STDIN>) =~ /^yes$/i) {
344         user_agrees();
345     } elsif ($answer =~ /^no$/i) {
346         user_disagrees();
347     } else {
348         chomp $answer;
349         die "'$answer' is neither 'yes' nor 'no'";
350     }
351
352 the scope of $answer extends from its declaration through the rest
353 of that conditional, including any C<elsif> and C<else> clauses, 
354 but not beyond it.  See L<perlsyn/"Simple statements"> for information
355 on the scope of variables in statements with modifiers.
356
357 The C<foreach> loop defaults to scoping its index variable dynamically
358 in the manner of C<local>.  However, if the index variable is
359 prefixed with the keyword C<my>, or if there is already a lexical
360 by that name in scope, then a new lexical is created instead.  Thus
361 in the loop
362 X<foreach> X<for>
363
364     for my $i (1, 2, 3) {
365         some_function();
366     }
367
368 the scope of $i extends to the end of the loop, but not beyond it,
369 rendering the value of $i inaccessible within C<some_function()>.
370 X<foreach> X<for>
371
372 Some users may wish to encourage the use of lexically scoped variables.
373 As an aid to catching implicit uses to package variables,
374 which are always global, if you say
375
376     use strict 'vars';
377
378 then any variable mentioned from there to the end of the enclosing
379 block must either refer to a lexical variable, be predeclared via
380 C<our> or C<use vars>, or else must be fully qualified with the package name.
381 A compilation error results otherwise.  An inner block may countermand
382 this with C<no strict 'vars'>.
383
384 A C<my> has both a compile-time and a run-time effect.  At compile
385 time, the compiler takes notice of it.  The principal usefulness
386 of this is to quiet C<use strict 'vars'>, but it is also essential
387 for generation of closures as detailed in L<perlref>.  Actual
388 initialization is delayed until run time, though, so it gets executed
389 at the appropriate time, such as each time through a loop, for
390 example.
391
392 Variables declared with C<my> are not part of any package and are therefore
393 never fully qualified with the package name.  In particular, you're not
394 allowed to try to make a package variable (or other global) lexical:
395
396     my $pack::var;      # ERROR!  Illegal syntax
397
398 In fact, a dynamic variable (also known as package or global variables)
399 are still accessible using the fully qualified C<::> notation even while a
400 lexical of the same name is also visible:
401
402     package main;
403     local $x = 10;
404     my    $x = 20;
405     print "$x and $::x\n";
406
407 That will print out C<20> and C<10>.
408
409 You may declare C<my> variables at the outermost scope of a file
410 to hide any such identifiers from the world outside that file.  This
411 is similar in spirit to C's static variables when they are used at
412 the file level.  To do this with a subroutine requires the use of
413 a closure (an anonymous function that accesses enclosing lexicals).
414 If you want to create a private subroutine that cannot be called
415 from outside that block, it can declare a lexical variable containing
416 an anonymous sub reference:
417
418     my $secret_version = '1.001-beta';
419     my $secret_sub = sub { print $secret_version };
420     &$secret_sub();
421
422 As long as the reference is never returned by any function within the
423 module, no outside module can see the subroutine, because its name is not in
424 any package's symbol table.  Remember that it's not I<REALLY> called
425 C<$some_pack::secret_version> or anything; it's just $secret_version,
426 unqualified and unqualifiable.
427
428 This does not work with object methods, however; all object methods
429 have to be in the symbol table of some package to be found.  See
430 L<perlref/"Function Templates"> for something of a work-around to
431 this.
432
433 =head2 Persistent Private Variables
434 X<static> X<variable, persistent> X<variable, static> X<closure>
435
436 Just because a lexical variable is lexically (also called statically)
437 scoped to its enclosing block, C<eval>, or C<do> FILE, this doesn't mean that
438 within a function it works like a C static.  It normally works more
439 like a C auto, but with implicit garbage collection.  
440
441 Unlike local variables in C or C++, Perl's lexical variables don't
442 necessarily get recycled just because their scope has exited.
443 If something more permanent is still aware of the lexical, it will
444 stick around.  So long as something else references a lexical, that
445 lexical won't be freed--which is as it should be.  You wouldn't want
446 memory being free until you were done using it, or kept around once you
447 were done.  Automatic garbage collection takes care of this for you.
448
449 This means that you can pass back or save away references to lexical
450 variables, whereas to return a pointer to a C auto is a grave error.
451 It also gives us a way to simulate C's function statics.  Here's a
452 mechanism for giving a function private variables with both lexical
453 scoping and a static lifetime.  If you do want to create something like
454 C's static variables, just enclose the whole function in an extra block,
455 and put the static variable outside the function but in the block.
456
457     {
458         my $secret_val = 0;
459         sub gimme_another {
460             return ++$secret_val;
461         }
462     }
463     # $secret_val now becomes unreachable by the outside
464     # world, but retains its value between calls to gimme_another
465
466 If this function is being sourced in from a separate file
467 via C<require> or C<use>, then this is probably just fine.  If it's
468 all in the main program, you'll need to arrange for the C<my>
469 to be executed early, either by putting the whole block above
470 your main program, or more likely, placing merely a C<BEGIN>
471 code block around it to make sure it gets executed before your program
472 starts to run:
473
474     BEGIN {
475         my $secret_val = 0;
476         sub gimme_another {
477             return ++$secret_val;
478         }
479     }
480
481 See L<perlmod/"BEGIN, CHECK, INIT and END"> about the
482 special triggered code blocks, C<BEGIN>, C<CHECK>, C<INIT> and C<END>.
483
484 If declared at the outermost scope (the file scope), then lexicals
485 work somewhat like C's file statics.  They are available to all
486 functions in that same file declared below them, but are inaccessible
487 from outside that file.  This strategy is sometimes used in modules
488 to create private variables that the whole module can see.
489
490 =head2 Temporary Values via local()
491 X<local> X<scope, dynamic> X<dynamic scope> X<variable, local>
492 X<variable, temporary>
493
494 B<WARNING>: In general, you should be using C<my> instead of C<local>, because
495 it's faster and safer.  Exceptions to this include the global punctuation
496 variables, global filehandles and formats, and direct manipulation of the
497 Perl symbol table itself.  C<local> is mostly used when the current value
498 of a variable must be visible to called subroutines.
499
500 Synopsis:
501
502     # localization of values
503
504     local $foo;                 # make $foo dynamically local
505     local (@wid, %get);         # make list of variables local
506     local $foo = "flurp";       # make $foo dynamic, and init it
507     local @oof = @bar;          # make @oof dynamic, and init it
508
509     local $hash{key} = "val";   # sets a local value for this hash entry
510     local ($cond ? $v1 : $v2);  # several types of lvalues support
511                                 # localization
512
513     # localization of symbols
514
515     local *FH;                  # localize $FH, @FH, %FH, &FH  ...
516     local *merlyn = *randal;    # now $merlyn is really $randal, plus
517                                 #     @merlyn is really @randal, etc
518     local *merlyn = 'randal';   # SAME THING: promote 'randal' to *randal
519     local *merlyn = \$randal;   # just alias $merlyn, not @merlyn etc
520
521 A C<local> modifies its listed variables to be "local" to the
522 enclosing block, C<eval>, or C<do FILE>--and to I<any subroutine
523 called from within that block>.  A C<local> just gives temporary
524 values to global (meaning package) variables.  It does I<not> create
525 a local variable.  This is known as dynamic scoping.  Lexical scoping
526 is done with C<my>, which works more like C's auto declarations.
527
528 Some types of lvalues can be localized as well : hash and array elements
529 and slices, conditionals (provided that their result is always
530 localizable), and symbolic references.  As for simple variables, this
531 creates new, dynamically scoped values.
532
533 If more than one variable or expression is given to C<local>, they must be
534 placed in parentheses.  This operator works
535 by saving the current values of those variables in its argument list on a
536 hidden stack and restoring them upon exiting the block, subroutine, or
537 eval.  This means that called subroutines can also reference the local
538 variable, but not the global one.  The argument list may be assigned to if
539 desired, which allows you to initialize your local variables.  (If no
540 initializer is given for a particular variable, it is created with an
541 undefined value.)
542
543 Because C<local> is a run-time operator, it gets executed each time
544 through a loop.  Consequently, it's more efficient to localize your
545 variables outside the loop.
546
547 =head3 Grammatical note on local()
548 X<local, context>
549
550 A C<local> is simply a modifier on an lvalue expression.  When you assign to
551 a C<local>ized variable, the C<local> doesn't change whether its list is viewed
552 as a scalar or an array.  So
553
554     local($foo) = <STDIN>;
555     local @FOO = <STDIN>;
556
557 both supply a list context to the right-hand side, while
558
559     local $foo = <STDIN>;
560
561 supplies a scalar context.
562
563 =head3 Localization of special variables
564 X<local, special variable>
565
566 If you localize a special variable, you'll be giving a new value to it,
567 but its magic won't go away.  That means that all side-effects related
568 to this magic still work with the localized value.
569
570 This feature allows code like this to work :
571
572     # Read the whole contents of FILE in $slurp
573     { local $/ = undef; $slurp = <FILE>; }
574
575 Note, however, that this restricts localization of some values ; for
576 example, the following statement dies, as of perl 5.9.0, with an error
577 I<Modification of a read-only value attempted>, because the $1 variable is
578 magical and read-only :
579
580     local $1 = 2;
581
582 Similarly, but in a way more difficult to spot, the following snippet will
583 die in perl 5.9.0 :
584
585     sub f { local $_ = "foo"; print }
586     for ($1) {
587         # now $_ is aliased to $1, thus is magic and readonly
588         f();
589     }
590
591 See next section for an alternative to this situation.
592
593 B<WARNING>: Localization of tied arrays and hashes does not currently
594 work as described.
595 This will be fixed in a future release of Perl; in the meantime, avoid
596 code that relies on any particular behaviour of localising tied arrays
597 or hashes (localising individual elements is still okay).
598 See L<perl58delta/"Localising Tied Arrays and Hashes Is Broken"> for more
599 details.
600 X<local, tie>
601
602 =head3 Localization of globs
603 X<local, glob> X<glob>
604
605 The construct
606
607     local *name;
608
609 creates a whole new symbol table entry for the glob C<name> in the
610 current package.  That means that all variables in its glob slot ($name,
611 @name, %name, &name, and the C<name> filehandle) are dynamically reset.
612
613 This implies, among other things, that any magic eventually carried by
614 those variables is locally lost.  In other words, saying C<local */>
615 will not have any effect on the internal value of the input record
616 separator.
617
618 Notably, if you want to work with a brand new value of the default scalar
619 $_, and avoid the potential problem listed above about $_ previously
620 carrying a magic value, you should use C<local *_> instead of C<local $_>.
621 As of perl 5.9.1, you can also use the lexical form of C<$_> (declaring it
622 with C<my $_>), which avoids completely this problem.
623
624 =head3 Localization of elements of composite types
625 X<local, composite type element> X<local, array element> X<local, hash element>
626
627 It's also worth taking a moment to explain what happens when you
628 C<local>ize a member of a composite type (i.e. an array or hash element).
629 In this case, the element is C<local>ized I<by name>. This means that
630 when the scope of the C<local()> ends, the saved value will be
631 restored to the hash element whose key was named in the C<local()>, or
632 the array element whose index was named in the C<local()>.  If that
633 element was deleted while the C<local()> was in effect (e.g. by a
634 C<delete()> from a hash or a C<shift()> of an array), it will spring
635 back into existence, possibly extending an array and filling in the
636 skipped elements with C<undef>.  For instance, if you say
637
638     %hash = ( 'This' => 'is', 'a' => 'test' );
639     @ary  = ( 0..5 );
640     {
641          local($ary[5]) = 6;
642          local($hash{'a'}) = 'drill';
643          while (my $e = pop(@ary)) {
644              print "$e . . .\n";
645              last unless $e > 3;
646          }
647          if (@ary) {
648              $hash{'only a'} = 'test';
649              delete $hash{'a'};
650          }
651     }
652     print join(' ', map { "$_ $hash{$_}" } sort keys %hash),".\n";
653     print "The array has ",scalar(@ary)," elements: ",
654           join(', ', map { defined $_ ? $_ : 'undef' } @ary),"\n";
655
656 Perl will print
657
658     6 . . .
659     4 . . .
660     3 . . .
661     This is a test only a test.
662     The array has 6 elements: 0, 1, 2, undef, undef, 5
663
664 The behavior of local() on non-existent members of composite
665 types is subject to change in future.
666
667 =head2 Lvalue subroutines
668 X<lvalue> X<subroutine, lvalue>
669
670 B<WARNING>: Lvalue subroutines are still experimental and the
671 implementation may change in future versions of Perl.
672
673 It is possible to return a modifiable value from a subroutine.
674 To do this, you have to declare the subroutine to return an lvalue.
675
676     my $val;
677     sub canmod : lvalue {
678         # return $val; this doesn't work, don't say "return"
679         $val;
680     }
681     sub nomod {
682         $val;
683     }
684
685     canmod() = 5;   # assigns to $val
686     nomod()  = 5;   # ERROR
687
688 The scalar/list context for the subroutine and for the right-hand
689 side of assignment is determined as if the subroutine call is replaced
690 by a scalar. For example, consider:
691
692     data(2,3) = get_data(3,4);
693
694 Both subroutines here are called in a scalar context, while in:
695
696     (data(2,3)) = get_data(3,4);
697
698 and in:
699
700     (data(2),data(3)) = get_data(3,4);
701
702 all the subroutines are called in a list context.
703
704 =over 4
705
706 =item Lvalue subroutines are EXPERIMENTAL
707
708 They appear to be convenient, but there are several reasons to be
709 circumspect.
710
711 You can't use the return keyword, you must pass out the value before
712 falling out of subroutine scope. (see comment in example above).  This
713 is usually not a problem, but it disallows an explicit return out of a
714 deeply nested loop, which is sometimes a nice way out.
715
716 They violate encapsulation.  A normal mutator can check the supplied
717 argument before setting the attribute it is protecting, an lvalue
718 subroutine never gets that chance.  Consider;
719
720     my $some_array_ref = [];    # protected by mutators ??
721
722     sub set_arr {               # normal mutator
723         my $val = shift;
724         die("expected array, you supplied ", ref $val)
725            unless ref $val eq 'ARRAY';
726         $some_array_ref = $val;
727     }
728     sub set_arr_lv : lvalue {   # lvalue mutator
729         $some_array_ref;
730     }
731
732     # set_arr_lv cannot stop this !
733     set_arr_lv() = { a => 1 };
734
735 =back
736
737 =head2 Passing Symbol Table Entries (typeglobs)
738 X<typeglob> X<*>
739
740 B<WARNING>: The mechanism described in this section was originally
741 the only way to simulate pass-by-reference in older versions of
742 Perl.  While it still works fine in modern versions, the new reference
743 mechanism is generally easier to work with.  See below.
744
745 Sometimes you don't want to pass the value of an array to a subroutine
746 but rather the name of it, so that the subroutine can modify the global
747 copy of it rather than working with a local copy.  In perl you can
748 refer to all objects of a particular name by prefixing the name
749 with a star: C<*foo>.  This is often known as a "typeglob", because the
750 star on the front can be thought of as a wildcard match for all the
751 funny prefix characters on variables and subroutines and such.
752
753 When evaluated, the typeglob produces a scalar value that represents
754 all the objects of that name, including any filehandle, format, or
755 subroutine.  When assigned to, it causes the name mentioned to refer to
756 whatever C<*> value was assigned to it.  Example:
757
758     sub doubleary {
759         local(*someary) = @_;
760         foreach $elem (@someary) {
761             $elem *= 2;
762         }
763     }
764     doubleary(*foo);
765     doubleary(*bar);
766
767 Scalars are already passed by reference, so you can modify
768 scalar arguments without using this mechanism by referring explicitly
769 to C<$_[0]> etc.  You can modify all the elements of an array by passing
770 all the elements as scalars, but you have to use the C<*> mechanism (or
771 the equivalent reference mechanism) to C<push>, C<pop>, or change the size of
772 an array.  It will certainly be faster to pass the typeglob (or reference).
773
774 Even if you don't want to modify an array, this mechanism is useful for
775 passing multiple arrays in a single LIST, because normally the LIST
776 mechanism will merge all the array values so that you can't extract out
777 the individual arrays.  For more on typeglobs, see
778 L<perldata/"Typeglobs and Filehandles">.
779
780 =head2 When to Still Use local()
781 X<local> X<variable, local>
782
783 Despite the existence of C<my>, there are still three places where the
784 C<local> operator still shines.  In fact, in these three places, you
785 I<must> use C<local> instead of C<my>.
786
787 =over 4
788
789 =item 1.
790
791 You need to give a global variable a temporary value, especially $_.
792
793 The global variables, like C<@ARGV> or the punctuation variables, must be 
794 C<local>ized with C<local()>.  This block reads in F</etc/motd>, and splits
795 it up into chunks separated by lines of equal signs, which are placed
796 in C<@Fields>.
797
798     {
799         local @ARGV = ("/etc/motd");
800         local $/ = undef;
801         local $_ = <>;  
802         @Fields = split /^\s*=+\s*$/;
803     } 
804
805 It particular, it's important to C<local>ize $_ in any routine that assigns
806 to it.  Look out for implicit assignments in C<while> conditionals.
807
808 =item 2.
809
810 You need to create a local file or directory handle or a local function.
811
812 A function that needs a filehandle of its own must use
813 C<local()> on a complete typeglob.   This can be used to create new symbol
814 table entries:
815
816     sub ioqueue {
817         local  (*READER, *WRITER);    # not my!
818         pipe    (READER,  WRITER)     or die "pipe: $!";
819         return (*READER, *WRITER);
820     }
821     ($head, $tail) = ioqueue();
822
823 See the Symbol module for a way to create anonymous symbol table
824 entries.
825
826 Because assignment of a reference to a typeglob creates an alias, this
827 can be used to create what is effectively a local function, or at least,
828 a local alias.
829
830     {
831         local *grow = \&shrink; # only until this block exists
832         grow();                 # really calls shrink()
833         move();                 # if move() grow()s, it shrink()s too
834     }
835     grow();                     # get the real grow() again
836
837 See L<perlref/"Function Templates"> for more about manipulating
838 functions by name in this way.
839
840 =item 3.
841
842 You want to temporarily change just one element of an array or hash.
843
844 You can C<local>ize just one element of an aggregate.  Usually this
845 is done on dynamics:
846
847     {
848         local $SIG{INT} = 'IGNORE';
849         funct();                            # uninterruptible
850     } 
851     # interruptibility automatically restored here
852
853 But it also works on lexically declared aggregates.  Prior to 5.005,
854 this operation could on occasion misbehave.
855
856 =back
857
858 =head2 Pass by Reference
859 X<pass by reference> X<pass-by-reference> X<reference>
860
861 If you want to pass more than one array or hash into a function--or
862 return them from it--and have them maintain their integrity, then
863 you're going to have to use an explicit pass-by-reference.  Before you
864 do that, you need to understand references as detailed in L<perlref>.
865 This section may not make much sense to you otherwise.
866
867 Here are a few simple examples.  First, let's pass in several arrays
868 to a function and have it C<pop> all of then, returning a new list
869 of all their former last elements:
870
871     @tailings = popmany ( \@a, \@b, \@c, \@d );
872
873     sub popmany {
874         my $aref;
875         my @retlist = ();
876         foreach $aref ( @_ ) {
877             push @retlist, pop @$aref;
878         }
879         return @retlist;
880     }
881
882 Here's how you might write a function that returns a
883 list of keys occurring in all the hashes passed to it:
884
885     @common = inter( \%foo, \%bar, \%joe );
886     sub inter {
887         my ($k, $href, %seen); # locals
888         foreach $href (@_) {
889             while ( $k = each %$href ) {
890                 $seen{$k}++;
891             }
892         }
893         return grep { $seen{$_} == @_ } keys %seen;
894     }
895
896 So far, we're using just the normal list return mechanism.
897 What happens if you want to pass or return a hash?  Well,
898 if you're using only one of them, or you don't mind them
899 concatenating, then the normal calling convention is ok, although
900 a little expensive.
901
902 Where people get into trouble is here:
903
904     (@a, @b) = func(@c, @d);
905 or
906     (%a, %b) = func(%c, %d);
907
908 That syntax simply won't work.  It sets just C<@a> or C<%a> and
909 clears the C<@b> or C<%b>.  Plus the function didn't get passed
910 into two separate arrays or hashes: it got one long list in C<@_>,
911 as always.
912
913 If you can arrange for everyone to deal with this through references, it's
914 cleaner code, although not so nice to look at.  Here's a function that
915 takes two array references as arguments, returning the two array elements
916 in order of how many elements they have in them:
917
918     ($aref, $bref) = func(\@c, \@d);
919     print "@$aref has more than @$bref\n";
920     sub func {
921         my ($cref, $dref) = @_;
922         if (@$cref > @$dref) {
923             return ($cref, $dref);
924         } else {
925             return ($dref, $cref);
926         }
927     }
928
929 It turns out that you can actually do this also:
930
931     (*a, *b) = func(\@c, \@d);
932     print "@a has more than @b\n";
933     sub func {
934         local (*c, *d) = @_;
935         if (@c > @d) {
936             return (\@c, \@d);
937         } else {
938             return (\@d, \@c);
939         }
940     }
941
942 Here we're using the typeglobs to do symbol table aliasing.  It's
943 a tad subtle, though, and also won't work if you're using C<my>
944 variables, because only globals (even in disguise as C<local>s)
945 are in the symbol table.
946
947 If you're passing around filehandles, you could usually just use the bare
948 typeglob, like C<*STDOUT>, but typeglobs references work, too.
949 For example:
950
951     splutter(\*STDOUT);
952     sub splutter {
953         my $fh = shift;
954         print $fh "her um well a hmmm\n";
955     }
956
957     $rec = get_rec(\*STDIN);
958     sub get_rec {
959         my $fh = shift;
960         return scalar <$fh>;
961     }
962
963 If you're planning on generating new filehandles, you could do this.
964 Notice to pass back just the bare *FH, not its reference.
965
966     sub openit {
967         my $path = shift;
968         local *FH;
969         return open (FH, $path) ? *FH : undef;
970     }
971
972 =head2 Prototypes
973 X<prototype> X<subroutine, prototype>
974
975 Perl supports a very limited kind of compile-time argument checking
976 using function prototyping.  If you declare
977
978     sub mypush (\@@)
979
980 then C<mypush()> takes arguments exactly like C<push()> does.  The
981 function declaration must be visible at compile time.  The prototype
982 affects only interpretation of new-style calls to the function,
983 where new-style is defined as not using the C<&> character.  In
984 other words, if you call it like a built-in function, then it behaves
985 like a built-in function.  If you call it like an old-fashioned
986 subroutine, then it behaves like an old-fashioned subroutine.  It
987 naturally falls out from this rule that prototypes have no influence
988 on subroutine references like C<\&foo> or on indirect subroutine
989 calls like C<&{$subref}> or C<< $subref->() >>.
990
991 Method calls are not influenced by prototypes either, because the
992 function to be called is indeterminate at compile time, since
993 the exact code called depends on inheritance.
994
995 Because the intent of this feature is primarily to let you define
996 subroutines that work like built-in functions, here are prototypes
997 for some other functions that parse almost exactly like the
998 corresponding built-in.
999
1000     Declared as                 Called as
1001
1002     sub mylink ($$)          mylink $old, $new
1003     sub myvec ($$$)          myvec $var, $offset, 1
1004     sub myindex ($$;$)       myindex &getstring, "substr"
1005     sub mysyswrite ($$$;$)   mysyswrite $buf, 0, length($buf) - $off, $off
1006     sub myreverse (@)        myreverse $a, $b, $c
1007     sub myjoin ($@)          myjoin ":", $a, $b, $c
1008     sub mypop (\@)           mypop @array
1009     sub mysplice (\@$$@)     mysplice @array, @array, 0, @pushme
1010     sub mykeys (\%)          mykeys %{$hashref}
1011     sub myopen (*;$)         myopen HANDLE, $name
1012     sub mypipe (**)          mypipe READHANDLE, WRITEHANDLE
1013     sub mygrep (&@)          mygrep { /foo/ } $a, $b, $c
1014     sub myrand ($)           myrand 42
1015     sub mytime ()            mytime
1016
1017 Any backslashed prototype character represents an actual argument
1018 that absolutely must start with that character.  The value passed
1019 as part of C<@_> will be a reference to the actual argument given
1020 in the subroutine call, obtained by applying C<\> to that argument.
1021
1022 You can also backslash several argument types simultaneously by using
1023 the C<\[]> notation:
1024
1025     sub myref (\[$@%&*])
1026
1027 will allow calling myref() as
1028
1029     myref $var
1030     myref @array
1031     myref %hash
1032     myref &sub
1033     myref *glob
1034
1035 and the first argument of myref() will be a reference to
1036 a scalar, an array, a hash, a code, or a glob.
1037
1038 Unbackslashed prototype characters have special meanings.  Any
1039 unbackslashed C<@> or C<%> eats all remaining arguments, and forces
1040 list context.  An argument represented by C<$> forces scalar context.  An
1041 C<&> requires an anonymous subroutine, which, if passed as the first
1042 argument, does not require the C<sub> keyword or a subsequent comma.
1043
1044 A C<*> allows the subroutine to accept a bareword, constant, scalar expression,
1045 typeglob, or a reference to a typeglob in that slot.  The value will be
1046 available to the subroutine either as a simple scalar, or (in the latter
1047 two cases) as a reference to the typeglob.  If you wish to always convert
1048 such arguments to a typeglob reference, use Symbol::qualify_to_ref() as
1049 follows:
1050
1051     use Symbol 'qualify_to_ref';
1052
1053     sub foo (*) {
1054         my $fh = qualify_to_ref(shift, caller);
1055         ...
1056     }
1057
1058 A semicolon separates mandatory arguments from optional arguments.
1059 It is redundant before C<@> or C<%>, which gobble up everything else.
1060
1061 Note how the last three examples in the table above are treated
1062 specially by the parser.  C<mygrep()> is parsed as a true list
1063 operator, C<myrand()> is parsed as a true unary operator with unary
1064 precedence the same as C<rand()>, and C<mytime()> is truly without
1065 arguments, just like C<time()>.  That is, if you say
1066
1067     mytime +2;
1068
1069 you'll get C<mytime() + 2>, not C<mytime(2)>, which is how it would be parsed
1070 without a prototype.
1071
1072 The interesting thing about C<&> is that you can generate new syntax with it,
1073 provided it's in the initial position:
1074 X<&>
1075
1076     sub try (&@) {
1077         my($try,$catch) = @_;
1078         eval { &$try };
1079         if ($@) {
1080             local $_ = $@;
1081             &$catch;
1082         }
1083     }
1084     sub catch (&) { $_[0] }
1085
1086     try {
1087         die "phooey";
1088     } catch {
1089         /phooey/ and print "unphooey\n";
1090     };
1091
1092 That prints C<"unphooey">.  (Yes, there are still unresolved
1093 issues having to do with visibility of C<@_>.  I'm ignoring that
1094 question for the moment.  (But note that if we make C<@_> lexically
1095 scoped, those anonymous subroutines can act like closures... (Gee,
1096 is this sounding a little Lispish?  (Never mind.))))
1097
1098 And here's a reimplementation of the Perl C<grep> operator:
1099 X<grep>
1100
1101     sub mygrep (&@) {
1102         my $code = shift;
1103         my @result;
1104         foreach $_ (@_) {
1105             push(@result, $_) if &$code;
1106         }
1107         @result;
1108     }
1109
1110 Some folks would prefer full alphanumeric prototypes.  Alphanumerics have
1111 been intentionally left out of prototypes for the express purpose of
1112 someday in the future adding named, formal parameters.  The current
1113 mechanism's main goal is to let module writers provide better diagnostics
1114 for module users.  Larry feels the notation quite understandable to Perl
1115 programmers, and that it will not intrude greatly upon the meat of the
1116 module, nor make it harder to read.  The line noise is visually
1117 encapsulated into a small pill that's easy to swallow.
1118
1119 If you try to use an alphanumeric sequence in a prototype you will
1120 generate an optional warning - "Illegal character in prototype...".
1121 Unfortunately earlier versions of Perl allowed the prototype to be
1122 used as long as its prefix was a valid prototype.  The warning may be
1123 upgraded to a fatal error in a future version of Perl once the
1124 majority of offending code is fixed.
1125
1126 It's probably best to prototype new functions, not retrofit prototyping
1127 into older ones.  That's because you must be especially careful about
1128 silent impositions of differing list versus scalar contexts.  For example,
1129 if you decide that a function should take just one parameter, like this:
1130
1131     sub func ($) {
1132         my $n = shift;
1133         print "you gave me $n\n";
1134     }
1135
1136 and someone has been calling it with an array or expression
1137 returning a list:
1138
1139     func(@foo);
1140     func( split /:/ );
1141
1142 Then you've just supplied an automatic C<scalar> in front of their
1143 argument, which can be more than a bit surprising.  The old C<@foo>
1144 which used to hold one thing doesn't get passed in.  Instead,
1145 C<func()> now gets passed in a C<1>; that is, the number of elements
1146 in C<@foo>.  And the C<split> gets called in scalar context so it
1147 starts scribbling on your C<@_> parameter list.  Ouch!
1148
1149 This is all very powerful, of course, and should be used only in moderation
1150 to make the world a better place.
1151
1152 =head2 Constant Functions
1153 X<constant>
1154
1155 Functions with a prototype of C<()> are potential candidates for
1156 inlining.  If the result after optimization and constant folding
1157 is either a constant or a lexically-scoped scalar which has no other
1158 references, then it will be used in place of function calls made
1159 without C<&>.  Calls made using C<&> are never inlined.  (See
1160 F<constant.pm> for an easy way to declare most constants.)
1161
1162 The following functions would all be inlined:
1163
1164     sub pi ()           { 3.14159 }             # Not exact, but close.
1165     sub PI ()           { 4 * atan2 1, 1 }      # As good as it gets,
1166                                                 # and it's inlined, too!
1167     sub ST_DEV ()       { 0 }
1168     sub ST_INO ()       { 1 }
1169
1170     sub FLAG_FOO ()     { 1 << 8 }
1171     sub FLAG_BAR ()     { 1 << 9 }
1172     sub FLAG_MASK ()    { FLAG_FOO | FLAG_BAR }
1173
1174     sub OPT_BAZ ()      { not (0x1B58 & FLAG_MASK) }
1175
1176     sub N () { int(OPT_BAZ) / 3 }
1177
1178     sub FOO_SET () { 1 if FLAG_MASK & FLAG_FOO }
1179
1180 Be aware that these will not be inlined; as they contain inner scopes,
1181 the constant folding doesn't reduce them to a single constant:
1182
1183     sub foo_set () { if (FLAG_MASK & FLAG_FOO) { 1 } }
1184
1185     sub baz_val () {
1186         if (OPT_BAZ) {
1187             return 23;
1188         }
1189         else {
1190             return 42;
1191         }
1192     }
1193
1194 If you redefine a subroutine that was eligible for inlining, you'll get
1195 a mandatory warning.  (You can use this warning to tell whether or not a
1196 particular subroutine is considered constant.)  The warning is
1197 considered severe enough not to be optional because previously compiled
1198 invocations of the function will still be using the old value of the
1199 function.  If you need to be able to redefine the subroutine, you need to
1200 ensure that it isn't inlined, either by dropping the C<()> prototype
1201 (which changes calling semantics, so beware) or by thwarting the
1202 inlining mechanism in some other way, such as
1203
1204     sub not_inlined () {
1205         23 if $];
1206     }
1207
1208 =head2 Overriding Built-in Functions
1209 X<built-in> X<override> X<CORE> X<CORE::GLOBAL>
1210
1211 Many built-in functions may be overridden, though this should be tried
1212 only occasionally and for good reason.  Typically this might be
1213 done by a package attempting to emulate missing built-in functionality
1214 on a non-Unix system.
1215
1216 Overriding may be done only by importing the name from a module at
1217 compile time--ordinary predeclaration isn't good enough.  However, the
1218 C<use subs> pragma lets you, in effect, predeclare subs
1219 via the import syntax, and these names may then override built-in ones:
1220
1221     use subs 'chdir', 'chroot', 'chmod', 'chown';
1222     chdir $somewhere;
1223     sub chdir { ... }
1224
1225 To unambiguously refer to the built-in form, precede the
1226 built-in name with the special package qualifier C<CORE::>.  For example,
1227 saying C<CORE::open()> always refers to the built-in C<open()>, even
1228 if the current package has imported some other subroutine called
1229 C<&open()> from elsewhere.  Even though it looks like a regular
1230 function call, it isn't: you can't take a reference to it, such as
1231 the incorrect C<\&CORE::open> might appear to produce.
1232
1233 Library modules should not in general export built-in names like C<open>
1234 or C<chdir> as part of their default C<@EXPORT> list, because these may
1235 sneak into someone else's namespace and change the semantics unexpectedly.
1236 Instead, if the module adds that name to C<@EXPORT_OK>, then it's
1237 possible for a user to import the name explicitly, but not implicitly.
1238 That is, they could say
1239
1240     use Module 'open';
1241
1242 and it would import the C<open> override.  But if they said
1243
1244     use Module;
1245
1246 they would get the default imports without overrides.
1247
1248 The foregoing mechanism for overriding built-in is restricted, quite
1249 deliberately, to the package that requests the import.  There is a second
1250 method that is sometimes applicable when you wish to override a built-in
1251 everywhere, without regard to namespace boundaries.  This is achieved by
1252 importing a sub into the special namespace C<CORE::GLOBAL::>.  Here is an
1253 example that quite brazenly replaces the C<glob> operator with something
1254 that understands regular expressions.
1255
1256     package REGlob;
1257     require Exporter;
1258     @ISA = 'Exporter';
1259     @EXPORT_OK = 'glob';
1260
1261     sub import {
1262         my $pkg = shift;
1263         return unless @_;
1264         my $sym = shift;
1265         my $where = ($sym =~ s/^GLOBAL_// ? 'CORE::GLOBAL' : caller(0));
1266         $pkg->export($where, $sym, @_);
1267     }
1268
1269     sub glob {
1270         my $pat = shift;
1271         my @got;
1272         local *D;
1273         if (opendir D, '.') { 
1274             @got = grep /$pat/, readdir D; 
1275             closedir D;   
1276         }
1277         return @got;
1278     }
1279     1;
1280
1281 And here's how it could be (ab)used:
1282
1283     #use REGlob 'GLOBAL_glob';      # override glob() in ALL namespaces
1284     package Foo;
1285     use REGlob 'glob';              # override glob() in Foo:: only
1286     print for <^[a-z_]+\.pm\$>;     # show all pragmatic modules
1287
1288 The initial comment shows a contrived, even dangerous example.
1289 By overriding C<glob> globally, you would be forcing the new (and
1290 subversive) behavior for the C<glob> operator for I<every> namespace,
1291 without the complete cognizance or cooperation of the modules that own
1292 those namespaces.  Naturally, this should be done with extreme caution--if
1293 it must be done at all.
1294
1295 The C<REGlob> example above does not implement all the support needed to
1296 cleanly override perl's C<glob> operator.  The built-in C<glob> has
1297 different behaviors depending on whether it appears in a scalar or list
1298 context, but our C<REGlob> doesn't.  Indeed, many perl built-in have such
1299 context sensitive behaviors, and these must be adequately supported by
1300 a properly written override.  For a fully functional example of overriding
1301 C<glob>, study the implementation of C<File::DosGlob> in the standard
1302 library.
1303
1304 When you override a built-in, your replacement should be consistent (if
1305 possible) with the built-in native syntax.  You can achieve this by using
1306 a suitable prototype.  To get the prototype of an overridable built-in,
1307 use the C<prototype> function with an argument of C<"CORE::builtin_name">
1308 (see L<perlfunc/prototype>).
1309
1310 Note however that some built-ins can't have their syntax expressed by a
1311 prototype (such as C<system> or C<chomp>).  If you override them you won't
1312 be able to fully mimic their original syntax.
1313
1314 The built-ins C<do>, C<require> and C<glob> can also be overridden, but due
1315 to special magic, their original syntax is preserved, and you don't have
1316 to define a prototype for their replacements.  (You can't override the
1317 C<do BLOCK> syntax, though).
1318
1319 C<require> has special additional dark magic: if you invoke your
1320 C<require> replacement as C<require Foo::Bar>, it will actually receive
1321 the argument C<"Foo/Bar.pm"> in @_.  See L<perlfunc/require>.
1322
1323 And, as you'll have noticed from the previous example, if you override
1324 C<glob>, the C<< <*> >> glob operator is overridden as well.
1325
1326 In a similar fashion, overriding the C<readline> function also overrides
1327 the equivalent I/O operator C<< <FILEHANDLE> >>.
1328
1329 Finally, some built-ins (e.g. C<exists> or C<grep>) can't be overridden.
1330
1331 =head2 Autoloading
1332 X<autoloading> X<AUTOLOAD>
1333
1334 If you call a subroutine that is undefined, you would ordinarily
1335 get an immediate, fatal error complaining that the subroutine doesn't
1336 exist.  (Likewise for subroutines being used as methods, when the
1337 method doesn't exist in any base class of the class's package.)
1338 However, if an C<AUTOLOAD> subroutine is defined in the package or
1339 packages used to locate the original subroutine, then that
1340 C<AUTOLOAD> subroutine is called with the arguments that would have
1341 been passed to the original subroutine.  The fully qualified name
1342 of the original subroutine magically appears in the global $AUTOLOAD
1343 variable of the same package as the C<AUTOLOAD> routine.  The name
1344 is not passed as an ordinary argument because, er, well, just
1345 because, that's why.  (As an exception, a method call to a nonexistent
1346 C<import> or C<unimport> method is just skipped instead.)
1347
1348 Many C<AUTOLOAD> routines load in a definition for the requested
1349 subroutine using eval(), then execute that subroutine using a special
1350 form of goto() that erases the stack frame of the C<AUTOLOAD> routine
1351 without a trace.  (See the source to the standard module documented
1352 in L<AutoLoader>, for example.)  But an C<AUTOLOAD> routine can
1353 also just emulate the routine and never define it.   For example,
1354 let's pretend that a function that wasn't defined should just invoke
1355 C<system> with those arguments.  All you'd do is:
1356
1357     sub AUTOLOAD {
1358         my $program = $AUTOLOAD;
1359         $program =~ s/.*:://;
1360         system($program, @_);
1361     }
1362     date();
1363     who('am', 'i');
1364     ls('-l');
1365
1366 In fact, if you predeclare functions you want to call that way, you don't
1367 even need parentheses:
1368
1369     use subs qw(date who ls);
1370     date;
1371     who "am", "i";
1372     ls '-l';
1373
1374 A more complete example of this is the standard Shell module, which
1375 can treat undefined subroutine calls as calls to external programs.
1376
1377 Mechanisms are available to help modules writers split their modules
1378 into autoloadable files.  See the standard AutoLoader module
1379 described in L<AutoLoader> and in L<AutoSplit>, the standard
1380 SelfLoader modules in L<SelfLoader>, and the document on adding C
1381 functions to Perl code in L<perlxs>.
1382
1383 =head2 Subroutine Attributes
1384 X<attribute> X<subroutine, attribute> X<attrs>
1385
1386 A subroutine declaration or definition may have a list of attributes
1387 associated with it.  If such an attribute list is present, it is
1388 broken up at space or colon boundaries and treated as though a
1389 C<use attributes> had been seen.  See L<attributes> for details
1390 about what attributes are currently supported.
1391 Unlike the limitation with the obsolescent C<use attrs>, the
1392 C<sub : ATTRLIST> syntax works to associate the attributes with
1393 a pre-declaration, and not just with a subroutine definition.
1394
1395 The attributes must be valid as simple identifier names (without any
1396 punctuation other than the '_' character).  They may have a parameter
1397 list appended, which is only checked for whether its parentheses ('(',')')
1398 nest properly.
1399
1400 Examples of valid syntax (even though the attributes are unknown):
1401
1402     sub fnord (&\%) : switch(10,foo(7,3))  :  expensive;
1403     sub plugh () : Ugly('\(") :Bad;
1404     sub xyzzy : _5x5 { ... }
1405
1406 Examples of invalid syntax:
1407
1408     sub fnord : switch(10,foo(); # ()-string not balanced
1409     sub snoid : Ugly('(');        # ()-string not balanced
1410     sub xyzzy : 5x5;              # "5x5" not a valid identifier
1411     sub plugh : Y2::north;        # "Y2::north" not a simple identifier
1412     sub snurt : foo + bar;        # "+" not a colon or space
1413
1414 The attribute list is passed as a list of constant strings to the code
1415 which associates them with the subroutine.  In particular, the second example
1416 of valid syntax above currently looks like this in terms of how it's
1417 parsed and invoked:
1418
1419     use attributes __PACKAGE__, \&plugh, q[Ugly('\(")], 'Bad';
1420
1421 For further details on attribute lists and their manipulation,
1422 see L<attributes> and L<Attribute::Handlers>.
1423
1424 =head1 SEE ALSO
1425
1426 See L<perlref/"Function Templates"> for more about references and closures.
1427 See L<perlxs> if you'd like to learn about calling C subroutines from Perl.  
1428 See L<perlembed> if you'd like to learn about calling Perl subroutines from C.  
1429 See L<perlmod> to learn about bundling up your functions in separate files.
1430 See L<perlmodlib> to learn what library modules come standard on your system.
1431 See L<perltoot> to learn how to make object method calls.