make EMBEDMYMALLOC the default and provide PERL_POLLUTE_MALLOC to let
[p5sagit/p5-mst-13.2.git] / pod / perlsub.pod
1 =head1 NAME
2
3 perlsub - Perl subroutines
4
5 =head1 SYNOPSIS
6
7 To declare subroutines:
8
9     sub NAME;             # A "forward" declaration.
10     sub NAME(PROTO);      #  ditto, but with prototypes
11
12     sub NAME BLOCK        # A declaration and a definition.
13     sub NAME(PROTO) BLOCK #  ditto, but with prototypes
14
15 To define an anonymous subroutine at runtime:
16
17     $subref = sub BLOCK;            # no proto
18     $subref = sub (PROTO) BLOCK;    # with proto
19
20 To import subroutines:
21
22     use PACKAGE qw(NAME1 NAME2 NAME3);
23
24 To call subroutines:
25
26     NAME(LIST);    # & is optional with parentheses.
27     NAME LIST;     # Parentheses optional if predeclared/imported.
28     &NAME;         # Makes current @_ visible to called subroutine.
29
30 =head1 DESCRIPTION
31
32 Like many languages, Perl provides for user-defined subroutines.  These
33 may be located anywhere in the main program, loaded in from other files
34 via the C<do>, C<require>, or C<use> keywords, or even generated on the
35 fly using C<eval> or anonymous subroutines (closures).  You can even call
36 a function indirectly using a variable containing its name or a CODE reference
37 to it.
38
39 The Perl model for function call and return values is simple: all
40 functions are passed as parameters one single flat list of scalars, and
41 all functions likewise return to their caller one single flat list of
42 scalars.  Any arrays or hashes in these call and return lists will
43 collapse, losing their identities--but you may always use
44 pass-by-reference instead to avoid this.  Both call and return lists may
45 contain as many or as few scalar elements as you'd like.  (Often a
46 function without an explicit return statement is called a subroutine, but
47 there's really no difference from the language's perspective.)
48
49 Any arguments passed to the routine come in as the array C<@_>.  Thus if you
50 called a function with two arguments, those would be stored in C<$_[0]>
51 and C<$_[1]>.  The array C<@_> is a local array, but its elements are
52 aliases for the actual scalar parameters.  In particular, if an element
53 C<$_[0]> is updated, the corresponding argument is updated (or an error
54 occurs if it is not updatable).  If an argument is an array or hash
55 element which did not exist when the function was called, that element is
56 created only when (and if) it is modified or if a reference to it is
57 taken.  (Some earlier versions of Perl created the element whether or not
58 it was assigned to.)  Note that assigning to the whole array C<@_> removes
59 the aliasing, and does not update any arguments.
60
61 The return value of the subroutine is the value of the last expression
62 evaluated.  Alternatively, a C<return> statement may be used to exit the
63 subroutine, optionally specifying the returned value, which will be
64 evaluated in the appropriate context (list, scalar, or void) depending
65 on the context of the subroutine call.  If you specify no return value,
66 the subroutine will return an empty list in a list context, an undefined
67 value in a scalar context, or nothing in a void context.  If you return
68 one or more arrays and/or hashes, these will be flattened together into
69 one large indistinguishable list.
70
71 Perl does not have named formal parameters, but in practice all you do is
72 assign to a C<my()> list of these.  Any variables you use in the function
73 that aren't declared private are global variables.  For the gory details
74 on creating private variables, see
75 L<"Private Variables via my()"> and L<"Temporary Values via local()">.
76 To create protected environments for a set of functions in a separate
77 package (and probably a separate file), see L<perlmod/"Packages">.
78
79 Example:
80
81     sub max {
82         my $max = shift(@_);
83         foreach $foo (@_) {
84             $max = $foo if $max < $foo;
85         }
86         return $max;
87     }
88     $bestday = max($mon,$tue,$wed,$thu,$fri);
89
90 Example:
91
92     # get a line, combining continuation lines
93     #  that start with whitespace
94
95     sub get_line {
96         $thisline = $lookahead;  # GLOBAL VARIABLES!!
97         LINE: while (defined($lookahead = <STDIN>)) {
98             if ($lookahead =~ /^[ \t]/) {
99                 $thisline .= $lookahead;
100             }
101             else {
102                 last LINE;
103             }
104         }
105         $thisline;
106     }
107
108     $lookahead = <STDIN>;       # get first line
109     while ($_ = get_line()) {
110         ...
111     }
112
113 Use array assignment to a local list to name your formal arguments:
114
115     sub maybeset {
116         my($key, $value) = @_;
117         $Foo{$key} = $value unless $Foo{$key};
118     }
119
120 This also has the effect of turning call-by-reference into call-by-value,
121 because the assignment copies the values.  Otherwise a function is free to
122 do in-place modifications of C<@_> and change its caller's values.
123
124     upcase_in($v1, $v2);  # this changes $v1 and $v2
125     sub upcase_in {
126         for (@_) { tr/a-z/A-Z/ }
127     }
128
129 You aren't allowed to modify constants in this way, of course.  If an
130 argument were actually literal and you tried to change it, you'd take a
131 (presumably fatal) exception.   For example, this won't work:
132
133     upcase_in("frederick");
134
135 It would be much safer if the C<upcase_in()> function
136 were written to return a copy of its parameters instead
137 of changing them in place:
138
139     ($v3, $v4) = upcase($v1, $v2);  # this doesn't
140     sub upcase {
141         return unless defined wantarray;  # void context, do nothing
142         my @parms = @_;
143         for (@parms) { tr/a-z/A-Z/ }
144         return wantarray ? @parms : $parms[0];
145     }
146
147 Notice how this (unprototyped) function doesn't care whether it was passed
148 real scalars or arrays.  Perl will see everything as one big long flat C<@_>
149 parameter list.  This is one of the ways where Perl's simple
150 argument-passing style shines.  The C<upcase()> function would work perfectly
151 well without changing the C<upcase()> definition even if we fed it things
152 like this:
153
154     @newlist   = upcase(@list1, @list2);
155     @newlist   = upcase( split /:/, $var );
156
157 Do not, however, be tempted to do this:
158
159     (@a, @b)   = upcase(@list1, @list2);
160
161 Because like its flat incoming parameter list, the return list is also
162 flat.  So all you have managed to do here is stored everything in C<@a> and
163 made C<@b> an empty list.  See L<Pass by Reference> for alternatives.
164
165 A subroutine may be called using the "C<&>" prefix.  The "C<&>" is optional
166 in modern Perls, and so are the parentheses if the subroutine has been
167 predeclared.  (Note, however, that the "C<&>" is I<NOT> optional when
168 you're just naming the subroutine, such as when it's used as an
169 argument to C<defined()> or C<undef()>.  Nor is it optional when you want to
170 do an indirect subroutine call with a subroutine name or reference
171 using the C<&$subref()> or C<&{$subref}()> constructs.  See L<perlref>
172 for more on that.)
173
174 Subroutines may be called recursively.  If a subroutine is called using
175 the "C<&>" form, the argument list is optional, and if omitted, no C<@_> array is
176 set up for the subroutine: the C<@_> array at the time of the call is
177 visible to subroutine instead.  This is an efficiency mechanism that
178 new users may wish to avoid.
179
180     &foo(1,2,3);        # pass three arguments
181     foo(1,2,3);         # the same
182
183     foo();              # pass a null list
184     &foo();             # the same
185
186     &foo;               # foo() get current args, like foo(@_) !!
187     foo;                # like foo() IFF sub foo predeclared, else "foo"
188
189 Not only does the "C<&>" form make the argument list optional, but it also
190 disables any prototype checking on the arguments you do provide.  This
191 is partly for historical reasons, and partly for having a convenient way
192 to cheat if you know what you're doing.  See the section on Prototypes below.
193
194 Function whose names are in all upper case are reserved to the Perl core,
195 just as are modules whose names are in all lower case.  A function in
196 all capitals is a loosely-held convention meaning it will be called
197 indirectly by the run-time system itself.  Functions that do special,
198 pre-defined things are C<BEGIN>, C<END>, C<AUTOLOAD>, and C<DESTROY>--plus all the
199 functions mentioned in L<perltie>.  The 5.005 release adds C<INIT>
200 to this list.
201
202 =head2 Private Variables via my()
203
204 Synopsis:
205
206     my $foo;            # declare $foo lexically local
207     my (@wid, %get);    # declare list of variables local
208     my $foo = "flurp";  # declare $foo lexical, and init it
209     my @oof = @bar;     # declare @oof lexical, and init it
210
211 A "C<my>" declares the listed variables to be confined (lexically) to the
212 enclosing block, conditional (C<if/unless/elsif/else>), loop
213 (C<for/foreach/while/until/continue>), subroutine, C<eval>, or
214 C<do/require/use>'d file.  If more than one value is listed, the list
215 must be placed in parentheses.  All listed elements must be legal lvalues.
216 Only alphanumeric identifiers may be lexically scoped--magical
217 builtins like C<$/> must currently be C<local>ize with "C<local>" instead.
218
219 Unlike dynamic variables created by the "C<local>" operator, lexical
220 variables declared with "C<my>" are totally hidden from the outside world,
221 including any called subroutines (even if it's the same subroutine called
222 from itself or elsewhere--every call gets its own copy).
223
224 This doesn't mean that a C<my()> variable declared in a statically
225 I<enclosing> lexical scope would be invisible.  Only the dynamic scopes
226 are cut off.   For example, the C<bumpx()> function below has access to the
227 lexical C<$x> variable because both the my and the sub occurred at the same
228 scope, presumably the file scope.
229
230     my $x = 10;
231     sub bumpx { $x++ } 
232
233 (An C<eval()>, however, can see the lexical variables of the scope it is
234 being evaluated in so long as the names aren't hidden by declarations within
235 the C<eval()> itself.  See L<perlref>.)
236
237 The parameter list to C<my()> may be assigned to if desired, which allows you
238 to initialize your variables.  (If no initializer is given for a
239 particular variable, it is created with the undefined value.)  Commonly
240 this is used to name the parameters to a subroutine.  Examples:
241
242     $arg = "fred";        # "global" variable
243     $n = cube_root(27);
244     print "$arg thinks the root is $n\n";
245  fred thinks the root is 3
246
247     sub cube_root {
248         my $arg = shift;  # name doesn't matter
249         $arg **= 1/3;
250         return $arg;
251     }
252
253 The "C<my>" is simply a modifier on something you might assign to.  So when
254 you do assign to the variables in its argument list, the "C<my>" doesn't
255 change whether those variables are viewed as a scalar or an array.  So
256
257     my ($foo) = <STDIN>;                # WRONG?
258     my @FOO = <STDIN>;
259
260 both supply a list context to the right-hand side, while
261
262     my $foo = <STDIN>;
263
264 supplies a scalar context.  But the following declares only one variable:
265
266     my $foo, $bar = 1;                  # WRONG
267
268 That has the same effect as
269
270     my $foo;
271     $bar = 1;
272
273 The declared variable is not introduced (is not visible) until after
274 the current statement.  Thus,
275
276     my $x = $x;
277
278 can be used to initialize the new $x with the value of the old C<$x>, and
279 the expression
280
281     my $x = 123 and $x == 123
282
283 is false unless the old C<$x> happened to have the value C<123>.
284
285 Lexical scopes of control structures are not bounded precisely by the
286 braces that delimit their controlled blocks; control expressions are
287 part of the scope, too.  Thus in the loop
288
289     while (defined(my $line = <>)) {
290         $line = lc $line;
291     } continue {
292         print $line;
293     }
294
295 the scope of C<$line> extends from its declaration throughout the rest of
296 the loop construct (including the C<continue> clause), but not beyond
297 it.  Similarly, in the conditional
298
299     if ((my $answer = <STDIN>) =~ /^yes$/i) {
300         user_agrees();
301     } elsif ($answer =~ /^no$/i) {
302         user_disagrees();
303     } else {
304         chomp $answer;
305         die "'$answer' is neither 'yes' nor 'no'";
306     }
307
308 the scope of C<$answer> extends from its declaration throughout the rest
309 of the conditional (including C<elsif> and C<else> clauses, if any),
310 but not beyond it.
311
312 (None of the foregoing applies to C<if/unless> or C<while/until>
313 modifiers appended to simple statements.  Such modifiers are not
314 control structures and have no effect on scoping.)
315
316 The C<foreach> loop defaults to scoping its index variable dynamically
317 (in the manner of C<local>; see below).  However, if the index
318 variable is prefixed with the keyword "C<my>", then it is lexically
319 scoped instead.  Thus in the loop
320
321     for my $i (1, 2, 3) {
322         some_function();
323     }
324
325 the scope of C<$i> extends to the end of the loop, but not beyond it, and
326 so the value of C<$i> is unavailable in C<some_function()>.
327
328 Some users may wish to encourage the use of lexically scoped variables.
329 As an aid to catching implicit references to package variables,
330 if you say
331
332     use strict 'vars';
333
334 then any variable reference from there to the end of the enclosing
335 block must either refer to a lexical variable, or must be fully
336 qualified with the package name.  A compilation error results
337 otherwise.  An inner block may countermand this with S<"C<no strict 'vars'>">.
338
339 A C<my()> has both a compile-time and a run-time effect.  At compile time,
340 the compiler takes notice of it; the principle usefulness of this is to
341 quiet S<"C<use strict 'vars'>">.  The actual initialization is delayed until
342 run time, so it gets executed appropriately; every time through a loop,
343 for example.
344
345 Variables declared with "C<my>" are not part of any package and are therefore
346 never fully qualified with the package name.  In particular, you're not
347 allowed to try to make a package variable (or other global) lexical:
348
349     my $pack::var;      # ERROR!  Illegal syntax
350     my $_;              # also illegal (currently)
351
352 In fact, a dynamic variable (also known as package or global variables)
353 are still accessible using the fully qualified C<::> notation even while a
354 lexical of the same name is also visible:
355
356     package main;
357     local $x = 10;
358     my    $x = 20;
359     print "$x and $::x\n";
360
361 That will print out C<20> and C<10>.
362
363 You may declare "C<my>" variables at the outermost scope of a file to hide
364 any such identifiers totally from the outside world.  This is similar
365 to C's static variables at the file level.  To do this with a subroutine
366 requires the use of a closure (anonymous function with lexical access).
367 If a block (such as an C<eval()>, function, or C<package>) wants to create
368 a private subroutine that cannot be called from outside that block,
369 it can declare a lexical variable containing an anonymous sub reference:
370
371     my $secret_version = '1.001-beta';
372     my $secret_sub = sub { print $secret_version };
373     &$secret_sub();
374
375 As long as the reference is never returned by any function within the
376 module, no outside module can see the subroutine, because its name is not in
377 any package's symbol table.  Remember that it's not I<REALLY> called
378 C<$some_pack::secret_version> or anything; it's just C<$secret_version>,
379 unqualified and unqualifiable.
380
381 This does not work with object methods, however; all object methods have
382 to be in the symbol table of some package to be found.
383
384 =head2 Peristent Private Variables
385
386 Just because a lexical variable is lexically (also called statically)
387 scoped to its enclosing block, C<eval>, or C<do> FILE, this doesn't mean that
388 within a function it works like a C static.  It normally works more
389 like a C auto, but with implicit garbage collection.  
390
391 Unlike local variables in C or C++, Perl's lexical variables don't
392 necessarily get recycled just because their scope has exited.
393 If something more permanent is still aware of the lexical, it will
394 stick around.  So long as something else references a lexical, that
395 lexical won't be freed--which is as it should be.  You wouldn't want
396 memory being free until you were done using it, or kept around once you
397 were done.  Automatic garbage collection takes care of this for you.
398
399 This means that you can pass back or save away references to lexical
400 variables, whereas to return a pointer to a C auto is a grave error.
401 It also gives us a way to simulate C's function statics.  Here's a
402 mechanism for giving a function private variables with both lexical
403 scoping and a static lifetime.  If you do want to create something like
404 C's static variables, just enclose the whole function in an extra block,
405 and put the static variable outside the function but in the block.
406
407     {
408         my $secret_val = 0;
409         sub gimme_another {
410             return ++$secret_val;
411         }
412     }
413     # $secret_val now becomes unreachable by the outside
414     # world, but retains its value between calls to gimme_another
415
416 If this function is being sourced in from a separate file
417 via C<require> or C<use>, then this is probably just fine.  If it's
418 all in the main program, you'll need to arrange for the C<my()>
419 to be executed early, either by putting the whole block above
420 your main program, or more likely, placing merely a C<BEGIN>
421 sub around it to make sure it gets executed before your program
422 starts to run:
423
424     sub BEGIN {
425         my $secret_val = 0;
426         sub gimme_another {
427             return ++$secret_val;
428         }
429     }
430
431 See L<perlmod/"Package Constructors and Destructors"> about the C<BEGIN> function.
432
433 If declared at the outermost scope, the file scope, then lexicals work
434 someone like C's file statics.  They are available to all functions in
435 that same file declared below them, but are inaccessible from outside of
436 the file.  This is sometimes used in modules to create private variables
437 for the whole module.
438
439 =head2 Temporary Values via local()
440
441 B<NOTE>: In general, you should be using "C<my>" instead of "C<local>", because
442 it's faster and safer.  Exceptions to this include the global punctuation
443 variables, filehandles and formats, and direct manipulation of the Perl
444 symbol table itself.  Format variables often use "C<local>" though, as do
445 other variables whose current value must be visible to called
446 subroutines.
447
448 Synopsis:
449
450     local $foo;                 # declare $foo dynamically local
451     local (@wid, %get);         # declare list of variables local
452     local $foo = "flurp";       # declare $foo dynamic, and init it
453     local @oof = @bar;          # declare @oof dynamic, and init it
454
455     local *FH;                  # localize $FH, @FH, %FH, &FH  ...
456     local *merlyn = *randal;    # now $merlyn is really $randal, plus
457                                 #     @merlyn is really @randal, etc
458     local *merlyn = 'randal';   # SAME THING: promote 'randal' to *randal
459     local *merlyn = \$randal;   # just alias $merlyn, not @merlyn etc
460
461 A C<local()> modifies its listed variables to be "local" to the enclosing
462 block, C<eval>, or C<do FILE>--and to I<any subroutine called from within that block>.
463 A C<local()> just gives temporary values to global (meaning package)
464 variables.  It does B<not> create a local variable.  This is known as
465 dynamic scoping.  Lexical scoping is done with "C<my>", which works more
466 like C's auto declarations.
467
468 If more than one variable is given to C<local()>, they must be placed in
469 parentheses.  All listed elements must be legal lvalues.  This operator works
470 by saving the current values of those variables in its argument list on a
471 hidden stack and restoring them upon exiting the block, subroutine, or
472 eval.  This means that called subroutines can also reference the local
473 variable, but not the global one.  The argument list may be assigned to if
474 desired, which allows you to initialize your local variables.  (If no
475 initializer is given for a particular variable, it is created with an
476 undefined value.)  Commonly this is used to name the parameters to a
477 subroutine.  Examples:
478
479     for $i ( 0 .. 9 ) {
480         $digits{$i} = $i;
481     }
482     # assume this function uses global %digits hash
483     parse_num();
484
485     # now temporarily add to %digits hash
486     if ($base12) {
487         # (NOTE: not claiming this is efficient!)
488         local %digits  = (%digits, 't' => 10, 'e' => 11);
489         parse_num();  # parse_num gets this new %digits!
490     }
491     # old %digits restored here
492
493 Because C<local()> is a run-time command, it gets executed every time
494 through a loop.  In releases of Perl previous to 5.0, this used more stack
495 storage each time until the loop was exited.  Perl now reclaims the space
496 each time through, but it's still more efficient to declare your variables
497 outside the loop.
498
499 A C<local> is simply a modifier on an lvalue expression.  When you assign to
500 a C<local>ized variable, the C<local> doesn't change whether its list is viewed
501 as a scalar or an array.  So
502
503     local($foo) = <STDIN>;
504     local @FOO = <STDIN>;
505
506 both supply a list context to the right-hand side, while
507
508     local $foo = <STDIN>;
509
510 supplies a scalar context.
511
512 A note about C<local()> and composite types is in order.  Something
513 like C<local(%foo)> works by temporarily placing a brand new hash in
514 the symbol table.  The old hash is left alone, but is hidden "behind"
515 the new one.
516
517 This means the old variable is completely invisible via the symbol
518 table (i.e. the hash entry in the C<*foo> typeglob) for the duration
519 of the dynamic scope within which the C<local()> was seen.  This
520 has the effect of allowing one to temporarily occlude any magic on
521 composite types.  For instance, this will briefly alter a tied
522 hash to some other implementation:
523
524     tie %ahash, 'APackage';
525     [...]
526     {
527        local %ahash;
528        tie %ahash, 'BPackage';
529        [..called code will see %ahash tied to 'BPackage'..]
530        {
531           local %ahash;
532           [..%ahash is a normal (untied) hash here..]
533        }
534     }
535     [..%ahash back to its initial tied self again..]
536
537 As another example, a custom implementation of C<%ENV> might look
538 like this:
539
540     {
541         local %ENV;
542         tie %ENV, 'MyOwnEnv';
543         [..do your own fancy %ENV manipulation here..]
544     }
545     [..normal %ENV behavior here..]
546
547 It's also worth taking a moment to explain what happens when you
548 C<local>ize a member of a composite type (i.e. an array or hash element).
549 In this case, the element is C<local>ized I<by name>. This means that
550 when the scope of the C<local()> ends, the saved value will be
551 restored to the hash element whose key was named in the C<local()>, or
552 the array element whose index was named in the C<local()>.  If that
553 element was deleted while the C<local()> was in effect (e.g. by a
554 C<delete()> from a hash or a C<shift()> of an array), it will spring
555 back into existence, possibly extending an array and filling in the
556 skipped elements with C<undef>.  For instance, if you say
557
558     %hash = ( 'This' => 'is', 'a' => 'test' );
559     @ary  = ( 0..5 );
560     {
561          local($ary[5]) = 6;
562          local($hash{'a'}) = 'drill';
563          while (my $e = pop(@ary)) {
564              print "$e . . .\n";
565              last unless $e > 3;
566          }
567          if (@ary) {
568              $hash{'only a'} = 'test';
569              delete $hash{'a'};
570          }
571     }
572     print join(' ', map { "$_ $hash{$_}" } sort keys %hash),".\n";
573     print "The array has ",scalar(@ary)," elements: ",
574           join(', ', map { defined $_ ? $_ : 'undef' } @ary),"\n";
575
576 Perl will print
577
578     6 . . .
579     4 . . .
580     3 . . .
581     This is a test only a test.
582     The array has 6 elements: 0, 1, 2, undef, undef, 5
583
584 =head2 Passing Symbol Table Entries (typeglobs)
585
586 [Note:  The mechanism described in this section was originally the only
587 way to simulate pass-by-reference in older versions of Perl.  While it
588 still works fine in modern versions, the new reference mechanism is
589 generally easier to work with.  See below.]
590
591 Sometimes you don't want to pass the value of an array to a subroutine
592 but rather the name of it, so that the subroutine can modify the global
593 copy of it rather than working with a local copy.  In perl you can
594 refer to all objects of a particular name by prefixing the name
595 with a star: C<*foo>.  This is often known as a "typeglob", because the
596 star on the front can be thought of as a wildcard match for all the
597 funny prefix characters on variables and subroutines and such.
598
599 When evaluated, the typeglob produces a scalar value that represents
600 all the objects of that name, including any filehandle, format, or
601 subroutine.  When assigned to, it causes the name mentioned to refer to
602 whatever "C<*>" value was assigned to it.  Example:
603
604     sub doubleary {
605         local(*someary) = @_;
606         foreach $elem (@someary) {
607             $elem *= 2;
608         }
609     }
610     doubleary(*foo);
611     doubleary(*bar);
612
613 Note that scalars are already passed by reference, so you can modify
614 scalar arguments without using this mechanism by referring explicitly
615 to C<$_[0]> etc.  You can modify all the elements of an array by passing
616 all the elements as scalars, but you have to use the C<*> mechanism (or
617 the equivalent reference mechanism) to C<push>, C<pop>, or change the size of
618 an array.  It will certainly be faster to pass the typeglob (or reference).
619
620 Even if you don't want to modify an array, this mechanism is useful for
621 passing multiple arrays in a single LIST, because normally the LIST
622 mechanism will merge all the array values so that you can't extract out
623 the individual arrays.  For more on typeglobs, see
624 L<perldata/"Typeglobs and Filehandles">.
625
626 =head2 When to Still Use local()
627
628 Despite the existence of C<my()>, there are still three places where the
629 C<local()> operator still shines.  In fact, in these three places, you
630 I<must> use C<local> instead of C<my>.
631
632 =over
633
634 =item 1. You need to give a global variable a temporary value, especially C<$_>.
635
636 The global variables, like C<@ARGV> or the punctuation variables, must be 
637 C<local>ized with C<local()>.  This block reads in F</etc/motd>, and splits
638 it up into chunks separated by lines of equal signs, which are placed
639 in C<@Fields>.
640
641     {
642         local @ARGV = ("/etc/motd");
643         local $/ = undef;
644         local $_ = <>;  
645         @Fields = split /^\s*=+\s*$/;
646     } 
647
648 It particular, it's important to C<local>ize C<$_> in any routine that assigns
649 to it.  Look out for implicit assignments in C<while> conditionals.
650
651 =item 2. You need to create a local file or directory handle or a local function.
652
653 A function that needs a filehandle of its own must use C<local()> uses
654 C<local()> on complete typeglob.   This can be used to create new symbol
655 table entries:
656
657     sub ioqueue {
658         local  (*READER, *WRITER);    # not my!
659         pipe    (READER,  WRITER);    or die "pipe: $!";
660         return (*READER, *WRITER);
661     }
662     ($head, $tail) = ioqueue();
663
664 See the Symbol module for a way to create anonymous symbol table
665 entries.
666
667 Because assignment of a reference to a typeglob creates an alias, this
668 can be used to create what is effectively a local function, or at least,
669 a local alias.
670
671     {
672         local *grow = \&shrink; # only until this block exists
673         grow();                 # really calls shrink()
674         move();                 # if move() grow()s, it shrink()s too
675     }
676     grow();                     # get the real grow() again
677
678 See L<perlref/"Function Templates"> for more about manipulating
679 functions by name in this way.
680
681 =item 3. You want to temporarily change just one element of an array or hash.
682
683 You can C<local>ize just one element of an aggregate.  Usually this
684 is done on dynamics:
685
686     {
687         local $SIG{INT} = 'IGNORE';
688         funct();                            # uninterruptible
689     } 
690     # interruptibility automatically restored here
691
692 But it also works on lexically declared aggregates.  Prior to 5.005,
693 this operation could on occasion misbehave.
694
695 =back
696
697 =head2 Pass by Reference
698
699 If you want to pass more than one array or hash into a function--or
700 return them from it--and have them maintain their integrity, then
701 you're going to have to use an explicit pass-by-reference.  Before you
702 do that, you need to understand references as detailed in L<perlref>.
703 This section may not make much sense to you otherwise.
704
705 Here are a few simple examples.  First, let's pass in several
706 arrays to a function and have it C<pop> all of then, return a new
707 list of all their former last elements:
708
709     @tailings = popmany ( \@a, \@b, \@c, \@d );
710
711     sub popmany {
712         my $aref;
713         my @retlist = ();
714         foreach $aref ( @_ ) {
715             push @retlist, pop @$aref;
716         }
717         return @retlist;
718     }
719
720 Here's how you might write a function that returns a
721 list of keys occurring in all the hashes passed to it:
722
723     @common = inter( \%foo, \%bar, \%joe );
724     sub inter {
725         my ($k, $href, %seen); # locals
726         foreach $href (@_) {
727             while ( $k = each %$href ) {
728                 $seen{$k}++;
729             }
730         }
731         return grep { $seen{$_} == @_ } keys %seen;
732     }
733
734 So far, we're using just the normal list return mechanism.
735 What happens if you want to pass or return a hash?  Well,
736 if you're using only one of them, or you don't mind them
737 concatenating, then the normal calling convention is ok, although
738 a little expensive.
739
740 Where people get into trouble is here:
741
742     (@a, @b) = func(@c, @d);
743 or
744     (%a, %b) = func(%c, %d);
745
746 That syntax simply won't work.  It sets just C<@a> or C<%a> and clears the C<@b> or
747 C<%b>.  Plus the function didn't get passed into two separate arrays or
748 hashes: it got one long list in C<@_>, as always.
749
750 If you can arrange for everyone to deal with this through references, it's
751 cleaner code, although not so nice to look at.  Here's a function that
752 takes two array references as arguments, returning the two array elements
753 in order of how many elements they have in them:
754
755     ($aref, $bref) = func(\@c, \@d);
756     print "@$aref has more than @$bref\n";
757     sub func {
758         my ($cref, $dref) = @_;
759         if (@$cref > @$dref) {
760             return ($cref, $dref);
761         } else {
762             return ($dref, $cref);
763         }
764     }
765
766 It turns out that you can actually do this also:
767
768     (*a, *b) = func(\@c, \@d);
769     print "@a has more than @b\n";
770     sub func {
771         local (*c, *d) = @_;
772         if (@c > @d) {
773             return (\@c, \@d);
774         } else {
775             return (\@d, \@c);
776         }
777     }
778
779 Here we're using the typeglobs to do symbol table aliasing.  It's
780 a tad subtle, though, and also won't work if you're using C<my()>
781 variables, because only globals (well, and C<local()>s) are in the symbol table.
782
783 If you're passing around filehandles, you could usually just use the bare
784 typeglob, like C<*STDOUT>, but typeglobs references would be better because
785 they'll still work properly under S<C<use strict 'refs'>>.  For example:
786
787     splutter(\*STDOUT);
788     sub splutter {
789         my $fh = shift;
790         print $fh "her um well a hmmm\n";
791     }
792
793     $rec = get_rec(\*STDIN);
794     sub get_rec {
795         my $fh = shift;
796         return scalar <$fh>;
797     }
798
799 Another way to do this is using C<*HANDLE{IO}>, see L<perlref> for usage
800 and caveats.
801
802 If you're planning on generating new filehandles, you could do this:
803
804     sub openit {
805         my $name = shift;
806         local *FH;
807         return open (FH, $path) ? *FH : undef;
808     }
809
810 Although that will actually produce a small memory leak.  See the bottom
811 of L<perlfunc/open()> for a somewhat cleaner way using the C<IO::Handle>
812 package.
813
814 =head2 Prototypes
815
816 As of the 5.002 release of perl, if you declare
817
818     sub mypush (\@@)
819
820 then C<mypush()> takes arguments exactly like C<push()> does.  The declaration
821 of the function to be called must be visible at compile time.  The prototype
822 affects only the interpretation of new-style calls to the function, where
823 new-style is defined as not using the C<&> character.  In other words,
824 if you call it like a builtin function, then it behaves like a builtin
825 function.  If you call it like an old-fashioned subroutine, then it
826 behaves like an old-fashioned subroutine.  It naturally falls out from
827 this rule that prototypes have no influence on subroutine references
828 like C<\&foo> or on indirect subroutine calls like C<&{$subref}> or
829 C<$subref-E<gt>()>. 
830
831 Method calls are not influenced by prototypes either, because the
832 function to be called is indeterminate at compile time, because it depends
833 on inheritance.
834
835 Because the intent is primarily to let you define subroutines that work
836 like builtin commands, here are the prototypes for some other functions
837 that parse almost exactly like the corresponding builtins.
838
839     Declared as                 Called as
840
841     sub mylink ($$)          mylink $old, $new
842     sub myvec ($$$)          myvec $var, $offset, 1
843     sub myindex ($$;$)       myindex &getstring, "substr"
844     sub mysyswrite ($$$;$)   mysyswrite $buf, 0, length($buf) - $off, $off
845     sub myreverse (@)        myreverse $a, $b, $c
846     sub myjoin ($@)          myjoin ":", $a, $b, $c
847     sub mypop (\@)           mypop @array
848     sub mysplice (\@$$@)     mysplice @array, @array, 0, @pushme
849     sub mykeys (\%)          mykeys %{$hashref}
850     sub myopen (*;$)         myopen HANDLE, $name
851     sub mypipe (**)          mypipe READHANDLE, WRITEHANDLE
852     sub mygrep (&@)          mygrep { /foo/ } $a, $b, $c
853     sub myrand ($)           myrand 42
854     sub mytime ()            mytime
855
856 Any backslashed prototype character represents an actual argument
857 that absolutely must start with that character.  The value passed
858 to the subroutine (as part of C<@_>) will be a reference to the
859 actual argument given in the subroutine call, obtained by applying
860 C<\> to that argument.
861
862 Unbackslashed prototype characters have special meanings.  Any
863 unbackslashed C<@> or C<%> eats all the rest of the arguments, and forces
864 list context.  An argument represented by C<$> forces scalar context.  An
865 C<&> requires an anonymous subroutine, which, if passed as the first
866 argument, does not require the "C<sub>" keyword or a subsequent comma.  A
867 C<*> does whatever it has to do to turn the argument into a reference to a
868 symbol table entry.
869
870 A semicolon separates mandatory arguments from optional arguments.
871 (It is redundant before C<@> or C<%>.)
872
873 Note how the last three examples above are treated specially by the parser.
874 C<mygrep()> is parsed as a true list operator, C<myrand()> is parsed as a
875 true unary operator with unary precedence the same as C<rand()>, and
876 C<mytime()> is truly without arguments, just like C<time()>.  That is, if you
877 say
878
879     mytime +2;
880
881 you'll get C<mytime() + 2>, not C<mytime(2)>, which is how it would be parsed
882 without the prototype.
883
884 The interesting thing about C<&> is that you can generate new syntax with it:
885
886     sub try (&@) {
887         my($try,$catch) = @_;
888         eval { &$try };
889         if ($@) {
890             local $_ = $@;
891             &$catch;
892         }
893     }
894     sub catch (&) { $_[0] }
895
896     try {
897         die "phooey";
898     } catch {
899         /phooey/ and print "unphooey\n";
900     };
901
902 That prints C<"unphooey">.  (Yes, there are still unresolved
903 issues having to do with the visibility of C<@_>.  I'm ignoring that
904 question for the moment.  (But note that if we make C<@_> lexically
905 scoped, those anonymous subroutines can act like closures... (Gee,
906 is this sounding a little Lispish?  (Never mind.))))
907
908 And here's a reimplementation of C<grep>:
909
910     sub mygrep (&@) {
911         my $code = shift;
912         my @result;
913         foreach $_ (@_) {
914             push(@result, $_) if &$code;
915         }
916         @result;
917     }
918
919 Some folks would prefer full alphanumeric prototypes.  Alphanumerics have
920 been intentionally left out of prototypes for the express purpose of
921 someday in the future adding named, formal parameters.  The current
922 mechanism's main goal is to let module writers provide better diagnostics
923 for module users.  Larry feels the notation quite understandable to Perl
924 programmers, and that it will not intrude greatly upon the meat of the
925 module, nor make it harder to read.  The line noise is visually
926 encapsulated into a small pill that's easy to swallow.
927
928 It's probably best to prototype new functions, not retrofit prototyping
929 into older ones.  That's because you must be especially careful about
930 silent impositions of differing list versus scalar contexts.  For example,
931 if you decide that a function should take just one parameter, like this:
932
933     sub func ($) {
934         my $n = shift;
935         print "you gave me $n\n";
936     }
937
938 and someone has been calling it with an array or expression
939 returning a list:
940
941     func(@foo);
942     func( split /:/ );
943
944 Then you've just supplied an automatic C<scalar()> in front of their
945 argument, which can be more than a bit surprising.  The old C<@foo>
946 which used to hold one thing doesn't get passed in.  Instead,
947 the C<func()> now gets passed in C<1>, that is, the number of elements
948 in C<@foo>.  And the C<split()> gets called in a scalar context and
949 starts scribbling on your C<@_> parameter list.
950
951 This is all very powerful, of course, and should be used only in moderation
952 to make the world a better place.
953
954 =head2 Constant Functions
955
956 Functions with a prototype of C<()> are potential candidates for
957 inlining.  If the result after optimization and constant folding is
958 either a constant or a lexically-scoped scalar which has no other
959 references, then it will be used in place of function calls made
960 without C<&> or C<do>. Calls made using C<&> or C<do> are never
961 inlined.  (See F<constant.pm> for an easy way to declare most
962 constants.)
963
964 The following functions would all be inlined:
965
966     sub pi ()           { 3.14159 }             # Not exact, but close.
967     sub PI ()           { 4 * atan2 1, 1 }      # As good as it gets,
968                                                 # and it's inlined, too!
969     sub ST_DEV ()       { 0 }
970     sub ST_INO ()       { 1 }
971
972     sub FLAG_FOO ()     { 1 << 8 }
973     sub FLAG_BAR ()     { 1 << 9 }
974     sub FLAG_MASK ()    { FLAG_FOO | FLAG_BAR }
975
976     sub OPT_BAZ ()      { not (0x1B58 & FLAG_MASK) }
977     sub BAZ_VAL () {
978         if (OPT_BAZ) {
979             return 23;
980         }
981         else {
982             return 42;
983         }
984     }
985
986     sub N () { int(BAZ_VAL) / 3 }
987     BEGIN {
988         my $prod = 1;
989         for (1..N) { $prod *= $_ }
990         sub N_FACTORIAL () { $prod }
991     }
992
993 If you redefine a subroutine that was eligible for inlining, you'll get
994 a mandatory warning.  (You can use this warning to tell whether or not a
995 particular subroutine is considered constant.)  The warning is
996 considered severe enough not to be optional because previously compiled
997 invocations of the function will still be using the old value of the
998 function.  If you need to be able to redefine the subroutine you need to
999 ensure that it isn't inlined, either by dropping the C<()> prototype
1000 (which changes the calling semantics, so beware) or by thwarting the
1001 inlining mechanism in some other way, such as
1002
1003     sub not_inlined () {
1004         23 if $];
1005     }
1006
1007 =head2 Overriding Builtin Functions
1008
1009 Many builtin functions may be overridden, though this should be tried
1010 only occasionally and for good reason.  Typically this might be
1011 done by a package attempting to emulate missing builtin functionality
1012 on a non-Unix system.
1013
1014 Overriding may be done only by importing the name from a
1015 module--ordinary predeclaration isn't good enough.  However, the
1016 C<subs> pragma (compiler directive) lets you, in effect, predeclare subs
1017 via the import syntax, and these names may then override the builtin ones:
1018
1019     use subs 'chdir', 'chroot', 'chmod', 'chown';
1020     chdir $somewhere;
1021     sub chdir { ... }
1022
1023 To unambiguously refer to the builtin form, one may precede the
1024 builtin name with the special package qualifier C<CORE::>.  For example,
1025 saying C<CORE::open()> will always refer to the builtin C<open()>, even
1026 if the current package has imported some other subroutine called
1027 C<&open()> from elsewhere.
1028
1029 Library modules should not in general export builtin names like "C<open>"
1030 or "C<chdir>" as part of their default C<@EXPORT> list, because these may
1031 sneak into someone else's namespace and change the semantics unexpectedly.
1032 Instead, if the module adds the name to the C<@EXPORT_OK> list, then it's
1033 possible for a user to import the name explicitly, but not implicitly.
1034 That is, they could say
1035
1036     use Module 'open';
1037
1038 and it would import the C<open> override, but if they said
1039
1040     use Module;
1041
1042 they would get the default imports without the overrides.
1043
1044 The foregoing mechanism for overriding builtins is restricted, quite
1045 deliberately, to the package that requests the import.  There is a second
1046 method that is sometimes applicable when you wish to override a builtin
1047 everywhere, without regard to namespace boundaries.  This is achieved by
1048 importing a sub into the special namespace C<CORE::GLOBAL::>.  Here is an
1049 example that quite brazenly replaces the C<glob> operator with something
1050 that understands regular expressions.
1051
1052     package REGlob;
1053     require Exporter;
1054     @ISA = 'Exporter';
1055     @EXPORT_OK = 'glob';
1056
1057     sub import {
1058         my $pkg = shift;
1059         return unless @_;
1060         my $sym = shift;
1061         my $where = ($sym =~ s/^GLOBAL_// ? 'CORE::GLOBAL' : caller(0));
1062         $pkg->export($where, $sym, @_);
1063     }
1064
1065     sub glob {
1066         my $pat = shift;
1067         my @got;
1068         local(*D);
1069         if (opendir D, '.') { @got = grep /$pat/, readdir D; closedir D; }
1070         @got;
1071     }
1072     1;
1073
1074 And here's how it could be (ab)used:
1075
1076     #use REGlob 'GLOBAL_glob';      # override glob() in ALL namespaces
1077     package Foo;
1078     use REGlob 'glob';              # override glob() in Foo:: only
1079     print for <^[a-z_]+\.pm\$>;     # show all pragmatic modules
1080
1081 Note that the initial comment shows a contrived, even dangerous example.
1082 By overriding C<glob> globally, you would be forcing the new (and
1083 subversive) behavior for the C<glob> operator for B<every> namespace,
1084 without the complete cognizance or cooperation of the modules that own
1085 those namespaces.  Naturally, this should be done with extreme caution--if
1086 it must be done at all.
1087
1088 The C<REGlob> example above does not implement all the support needed to
1089 cleanly override perl's C<glob> operator.  The builtin C<glob> has
1090 different behaviors depending on whether it appears in a scalar or list
1091 context, but our C<REGlob> doesn't.  Indeed, many perl builtins have such
1092 context sensitive behaviors, and these must be adequately supported by
1093 a properly written override.  For a fully functional example of overriding
1094 C<glob>, study the implementation of C<File::DosGlob> in the standard
1095 library.
1096
1097
1098 =head2 Autoloading
1099
1100 If you call a subroutine that is undefined, you would ordinarily get an
1101 immediate fatal error complaining that the subroutine doesn't exist.
1102 (Likewise for subroutines being used as methods, when the method
1103 doesn't exist in any base class of the class package.) If,
1104 however, there is an C<AUTOLOAD> subroutine defined in the package or
1105 packages that were searched for the original subroutine, then that
1106 C<AUTOLOAD> subroutine is called with the arguments that would have been
1107 passed to the original subroutine.  The fully qualified name of the
1108 original subroutine magically appears in the C<$AUTOLOAD> variable in the
1109 same package as the C<AUTOLOAD> routine.  The name is not passed as an
1110 ordinary argument because, er, well, just because, that's why...
1111
1112 Most C<AUTOLOAD> routines will load in a definition for the subroutine in
1113 question using eval, and then execute that subroutine using a special
1114 form of "goto" that erases the stack frame of the C<AUTOLOAD> routine
1115 without a trace.  (See the standard C<AutoLoader> module, for example.)
1116 But an C<AUTOLOAD> routine can also just emulate the routine and never
1117 define it.   For example, let's pretend that a function that wasn't defined
1118 should just call C<system()> with those arguments.  All you'd do is this:
1119
1120     sub AUTOLOAD {
1121         my $program = $AUTOLOAD;
1122         $program =~ s/.*:://;
1123         system($program, @_);
1124     }
1125     date();
1126     who('am', 'i');
1127     ls('-l');
1128
1129 In fact, if you predeclare the functions you want to call that way, you don't
1130 even need the parentheses:
1131
1132     use subs qw(date who ls);
1133     date;
1134     who "am", "i";
1135     ls -l;
1136
1137 A more complete example of this is the standard Shell module, which
1138 can treat undefined subroutine calls as calls to Unix programs.
1139
1140 Mechanisms are available for modules writers to help split the modules
1141 up into autoloadable files.  See the standard AutoLoader module
1142 described in L<AutoLoader> and in L<AutoSplit>, the standard
1143 SelfLoader modules in L<SelfLoader>, and the document on adding C
1144 functions to perl code in L<perlxs>.
1145
1146 =head1 SEE ALSO
1147
1148 See L<perlref> for more about references and closures.  See L<perlxs> if
1149 you'd like to learn about calling C subroutines from perl.  See L<perlmod>
1150 to learn about bundling up your functions in separate files.