mintest will pass if I skip the correct number of tests. D'oh!
[p5sagit/p5-mst-13.2.git] / pod / perlsub.pod
1 =head1 NAME
2
3 perlsub - Perl subroutines
4
5 =head1 SYNOPSIS
6
7 To declare subroutines:
8
9     sub NAME;                     # A "forward" declaration.
10     sub NAME(PROTO);              #  ditto, but with prototypes
11     sub NAME : ATTRS;             #  with attributes
12     sub NAME(PROTO) : ATTRS;      #  with attributes and prototypes
13
14     sub NAME BLOCK                # A declaration and a definition.
15     sub NAME(PROTO) BLOCK         #  ditto, but with prototypes
16     sub NAME : ATTRS BLOCK        #  with attributes
17     sub NAME(PROTO) : ATTRS BLOCK #  with prototypes and attributes
18
19 To define an anonymous subroutine at runtime:
20
21     $subref = sub BLOCK;                 # no proto
22     $subref = sub (PROTO) BLOCK;         # with proto
23     $subref = sub : ATTRS BLOCK;         # with attributes
24     $subref = sub (PROTO) : ATTRS BLOCK; # with proto and attributes
25
26 To import subroutines:
27
28     use MODULE qw(NAME1 NAME2 NAME3);
29
30 To call subroutines:
31
32     NAME(LIST);    # & is optional with parentheses.
33     NAME LIST;     # Parentheses optional if predeclared/imported.
34     &NAME(LIST);   # Circumvent prototypes.
35     &NAME;         # Makes current @_ visible to called subroutine.
36
37 =head1 DESCRIPTION
38
39 Like many languages, Perl provides for user-defined subroutines.
40 These may be located anywhere in the main program, loaded in from
41 other files via the C<do>, C<require>, or C<use> keywords, or
42 generated on the fly using C<eval> or anonymous subroutines.
43 You can even call a function indirectly using a variable containing
44 its name or a CODE reference.
45
46 The Perl model for function call and return values is simple: all
47 functions are passed as parameters one single flat list of scalars, and
48 all functions likewise return to their caller one single flat list of
49 scalars.  Any arrays or hashes in these call and return lists will
50 collapse, losing their identities--but you may always use
51 pass-by-reference instead to avoid this.  Both call and return lists may
52 contain as many or as few scalar elements as you'd like.  (Often a
53 function without an explicit return statement is called a subroutine, but
54 there's really no difference from Perl's perspective.)
55
56 Any arguments passed in show up in the array C<@_>.  Therefore, if
57 you called a function with two arguments, those would be stored in
58 C<$_[0]> and C<$_[1]>.  The array C<@_> is a local array, but its
59 elements are aliases for the actual scalar parameters.  In particular,
60 if an element C<$_[0]> is updated, the corresponding argument is
61 updated (or an error occurs if it is not updatable).  If an argument
62 is an array or hash element which did not exist when the function
63 was called, that element is created only when (and if) it is modified
64 or a reference to it is taken.  (Some earlier versions of Perl
65 created the element whether or not the element was assigned to.)
66 Assigning to the whole array C<@_> removes that aliasing, and does
67 not update any arguments.
68
69 The return value of a subroutine is the value of the last expression
70 evaluated.  More explicitly, a C<return> statement may be used to exit the
71 subroutine, optionally specifying the returned value, which will be
72 evaluated in the appropriate context (list, scalar, or void) depending
73 on the context of the subroutine call.  If you specify no return value,
74 the subroutine returns an empty list in list context, the undefined
75 value in scalar context, or nothing in void context.  If you return
76 one or more aggregates (arrays and hashes), these will be flattened
77 together into one large indistinguishable list.
78
79 Perl does not have named formal parameters.  In practice all you
80 do is assign to a C<my()> list of these.  Variables that aren't
81 declared to be private are global variables.  For gory details
82 on creating private variables, see L<"Private Variables via my()">
83 and L<"Temporary Values via local()">.  To create protected
84 environments for a set of functions in a separate package (and
85 probably a separate file), see L<perlmod/"Packages">.
86
87 Example:
88
89     sub max {
90         my $max = shift(@_);
91         foreach $foo (@_) {
92             $max = $foo if $max < $foo;
93         }
94         return $max;
95     }
96     $bestday = max($mon,$tue,$wed,$thu,$fri);
97
98 Example:
99
100     # get a line, combining continuation lines
101     #  that start with whitespace
102
103     sub get_line {
104         $thisline = $lookahead;  # global variables!
105         LINE: while (defined($lookahead = <STDIN>)) {
106             if ($lookahead =~ /^[ \t]/) {
107                 $thisline .= $lookahead;
108             }
109             else {
110                 last LINE;
111             }
112         }
113         return $thisline;
114     }
115
116     $lookahead = <STDIN>;       # get first line
117     while (defined($line = get_line())) {
118         ...
119     }
120
121 Assigning to a list of private variables to name your arguments:
122
123     sub maybeset {
124         my($key, $value) = @_;
125         $Foo{$key} = $value unless $Foo{$key};
126     }
127
128 Because the assignment copies the values, this also has the effect
129 of turning call-by-reference into call-by-value.  Otherwise a
130 function is free to do in-place modifications of C<@_> and change
131 its caller's values.
132
133     upcase_in($v1, $v2);  # this changes $v1 and $v2
134     sub upcase_in {
135         for (@_) { tr/a-z/A-Z/ }
136     }
137
138 You aren't allowed to modify constants in this way, of course.  If an
139 argument were actually literal and you tried to change it, you'd take a
140 (presumably fatal) exception.   For example, this won't work:
141
142     upcase_in("frederick");
143
144 It would be much safer if the C<upcase_in()> function
145 were written to return a copy of its parameters instead
146 of changing them in place:
147
148     ($v3, $v4) = upcase($v1, $v2);  # this doesn't change $v1 and $v2
149     sub upcase {
150         return unless defined wantarray;  # void context, do nothing
151         my @parms = @_;
152         for (@parms) { tr/a-z/A-Z/ }
153         return wantarray ? @parms : $parms[0];
154     }
155
156 Notice how this (unprototyped) function doesn't care whether it was
157 passed real scalars or arrays.  Perl sees all arguments as one big,
158 long, flat parameter list in C<@_>.  This is one area where
159 Perl's simple argument-passing style shines.  The C<upcase()>
160 function would work perfectly well without changing the C<upcase()>
161 definition even if we fed it things like this:
162
163     @newlist   = upcase(@list1, @list2);
164     @newlist   = upcase( split /:/, $var );
165
166 Do not, however, be tempted to do this:
167
168     (@a, @b)   = upcase(@list1, @list2);
169
170 Like the flattened incoming parameter list, the return list is also
171 flattened on return.  So all you have managed to do here is stored
172 everything in C<@a> and made C<@b> empty.  See 
173 L<Pass by Reference> for alternatives.
174
175 A subroutine may be called using an explicit C<&> prefix.  The
176 C<&> is optional in modern Perl, as are parentheses if the
177 subroutine has been predeclared.  The C<&> is I<not> optional
178 when just naming the subroutine, such as when it's used as
179 an argument to defined() or undef().  Nor is it optional when you
180 want to do an indirect subroutine call with a subroutine name or
181 reference using the C<&$subref()> or C<&{$subref}()> constructs,
182 although the C<< $subref->() >> notation solves that problem.
183 See L<perlref> for more about all that.
184
185 Subroutines may be called recursively.  If a subroutine is called
186 using the C<&> form, the argument list is optional, and if omitted,
187 no C<@_> array is set up for the subroutine: the C<@_> array at the
188 time of the call is visible to subroutine instead.  This is an
189 efficiency mechanism that new users may wish to avoid.
190
191     &foo(1,2,3);        # pass three arguments
192     foo(1,2,3);         # the same
193
194     foo();              # pass a null list
195     &foo();             # the same
196
197     &foo;               # foo() get current args, like foo(@_) !!
198     foo;                # like foo() IFF sub foo predeclared, else "foo"
199
200 Not only does the C<&> form make the argument list optional, it also
201 disables any prototype checking on arguments you do provide.  This
202 is partly for historical reasons, and partly for having a convenient way
203 to cheat if you know what you're doing.  See L<Prototypes> below.
204
205 Subroutines whose names are in all upper case are reserved to the Perl
206 core, as are modules whose names are in all lower case.  A subroutine in
207 all capitals is a loosely-held convention meaning it will be called
208 indirectly by the run-time system itself, usually due to a triggered event.
209 Subroutines that do special, pre-defined things include C<AUTOLOAD>, C<CLONE>,
210 C<DESTROY> plus all functions mentioned in L<perltie> and L<PerlIO::via>.
211
212 The C<BEGIN>, C<CHECK>, C<INIT> and C<END> subroutines are not so much
213 subroutines as named special code blocks, of which you can have more
214 than one in a package, and which you can B<not> call explicitely.  See
215 L<perlmod/"BEGIN, CHECK, INIT and END">
216
217 =head2 Private Variables via my()
218
219 Synopsis:
220
221     my $foo;            # declare $foo lexically local
222     my (@wid, %get);    # declare list of variables local
223     my $foo = "flurp";  # declare $foo lexical, and init it
224     my @oof = @bar;     # declare @oof lexical, and init it
225     my $x : Foo = $y;   # similar, with an attribute applied
226
227 B<WARNING>: The use of attribute lists on C<my> declarations is still
228 evolving.  The current semantics and interface are subject to change.
229 See L<attributes> and L<Attribute::Handlers>.
230
231 The C<my> operator declares the listed variables to be lexically
232 confined to the enclosing block, conditional (C<if/unless/elsif/else>),
233 loop (C<for/foreach/while/until/continue>), subroutine, C<eval>,
234 or C<do/require/use>'d file.  If more than one value is listed, the
235 list must be placed in parentheses.  All listed elements must be
236 legal lvalues.  Only alphanumeric identifiers may be lexically
237 scoped--magical built-ins like C<$/> must currently be C<local>ized
238 with C<local> instead.
239
240 Unlike dynamic variables created by the C<local> operator, lexical
241 variables declared with C<my> are totally hidden from the outside
242 world, including any called subroutines.  This is true if it's the
243 same subroutine called from itself or elsewhere--every call gets
244 its own copy.
245
246 This doesn't mean that a C<my> variable declared in a statically
247 enclosing lexical scope would be invisible.  Only dynamic scopes
248 are cut off.   For example, the C<bumpx()> function below has access
249 to the lexical $x variable because both the C<my> and the C<sub>
250 occurred at the same scope, presumably file scope.
251
252     my $x = 10;
253     sub bumpx { $x++ } 
254
255 An C<eval()>, however, can see lexical variables of the scope it is
256 being evaluated in, so long as the names aren't hidden by declarations within
257 the C<eval()> itself.  See L<perlref>.
258
259 The parameter list to my() may be assigned to if desired, which allows you
260 to initialize your variables.  (If no initializer is given for a
261 particular variable, it is created with the undefined value.)  Commonly
262 this is used to name input parameters to a subroutine.  Examples:
263
264     $arg = "fred";        # "global" variable
265     $n = cube_root(27);
266     print "$arg thinks the root is $n\n";
267  fred thinks the root is 3
268
269     sub cube_root {
270         my $arg = shift;  # name doesn't matter
271         $arg **= 1/3;
272         return $arg;
273     }
274
275 The C<my> is simply a modifier on something you might assign to.  So when
276 you do assign to variables in its argument list, C<my> doesn't
277 change whether those variables are viewed as a scalar or an array.  So
278
279     my ($foo) = <STDIN>;                # WRONG?
280     my @FOO = <STDIN>;
281
282 both supply a list context to the right-hand side, while
283
284     my $foo = <STDIN>;
285
286 supplies a scalar context.  But the following declares only one variable:
287
288     my $foo, $bar = 1;                  # WRONG
289
290 That has the same effect as
291
292     my $foo;
293     $bar = 1;
294
295 The declared variable is not introduced (is not visible) until after
296 the current statement.  Thus,
297
298     my $x = $x;
299
300 can be used to initialize a new $x with the value of the old $x, and
301 the expression
302
303     my $x = 123 and $x == 123
304
305 is false unless the old $x happened to have the value C<123>.
306
307 Lexical scopes of control structures are not bounded precisely by the
308 braces that delimit their controlled blocks; control expressions are
309 part of that scope, too.  Thus in the loop
310
311     while (my $line = <>) {
312         $line = lc $line;
313     } continue {
314         print $line;
315     }
316
317 the scope of $line extends from its declaration throughout the rest of
318 the loop construct (including the C<continue> clause), but not beyond
319 it.  Similarly, in the conditional
320
321     if ((my $answer = <STDIN>) =~ /^yes$/i) {
322         user_agrees();
323     } elsif ($answer =~ /^no$/i) {
324         user_disagrees();
325     } else {
326         chomp $answer;
327         die "'$answer' is neither 'yes' nor 'no'";
328     }
329
330 the scope of $answer extends from its declaration through the rest
331 of that conditional, including any C<elsif> and C<else> clauses, 
332 but not beyond it.  See L<perlsyn/"Simple statements"> for information
333 on the scope of variables in statements with modifiers.
334
335 The C<foreach> loop defaults to scoping its index variable dynamically
336 in the manner of C<local>.  However, if the index variable is
337 prefixed with the keyword C<my>, or if there is already a lexical
338 by that name in scope, then a new lexical is created instead.  Thus
339 in the loop
340
341     for my $i (1, 2, 3) {
342         some_function();
343     }
344
345 the scope of $i extends to the end of the loop, but not beyond it,
346 rendering the value of $i inaccessible within C<some_function()>.
347
348 Some users may wish to encourage the use of lexically scoped variables.
349 As an aid to catching implicit uses to package variables,
350 which are always global, if you say
351
352     use strict 'vars';
353
354 then any variable mentioned from there to the end of the enclosing
355 block must either refer to a lexical variable, be predeclared via
356 C<our> or C<use vars>, or else must be fully qualified with the package name.
357 A compilation error results otherwise.  An inner block may countermand
358 this with C<no strict 'vars'>.
359
360 A C<my> has both a compile-time and a run-time effect.  At compile
361 time, the compiler takes notice of it.  The principal usefulness
362 of this is to quiet C<use strict 'vars'>, but it is also essential
363 for generation of closures as detailed in L<perlref>.  Actual
364 initialization is delayed until run time, though, so it gets executed
365 at the appropriate time, such as each time through a loop, for
366 example.
367
368 Variables declared with C<my> are not part of any package and are therefore
369 never fully qualified with the package name.  In particular, you're not
370 allowed to try to make a package variable (or other global) lexical:
371
372     my $pack::var;      # ERROR!  Illegal syntax
373     my $_;              # also illegal (currently)
374
375 In fact, a dynamic variable (also known as package or global variables)
376 are still accessible using the fully qualified C<::> notation even while a
377 lexical of the same name is also visible:
378
379     package main;
380     local $x = 10;
381     my    $x = 20;
382     print "$x and $::x\n";
383
384 That will print out C<20> and C<10>.
385
386 You may declare C<my> variables at the outermost scope of a file
387 to hide any such identifiers from the world outside that file.  This
388 is similar in spirit to C's static variables when they are used at
389 the file level.  To do this with a subroutine requires the use of
390 a closure (an anonymous function that accesses enclosing lexicals).
391 If you want to create a private subroutine that cannot be called
392 from outside that block, it can declare a lexical variable containing
393 an anonymous sub reference:
394
395     my $secret_version = '1.001-beta';
396     my $secret_sub = sub { print $secret_version };
397     &$secret_sub();
398
399 As long as the reference is never returned by any function within the
400 module, no outside module can see the subroutine, because its name is not in
401 any package's symbol table.  Remember that it's not I<REALLY> called
402 C<$some_pack::secret_version> or anything; it's just $secret_version,
403 unqualified and unqualifiable.
404
405 This does not work with object methods, however; all object methods
406 have to be in the symbol table of some package to be found.  See
407 L<perlref/"Function Templates"> for something of a work-around to
408 this.
409
410 =head2 Persistent Private Variables
411
412 Just because a lexical variable is lexically (also called statically)
413 scoped to its enclosing block, C<eval>, or C<do> FILE, this doesn't mean that
414 within a function it works like a C static.  It normally works more
415 like a C auto, but with implicit garbage collection.  
416
417 Unlike local variables in C or C++, Perl's lexical variables don't
418 necessarily get recycled just because their scope has exited.
419 If something more permanent is still aware of the lexical, it will
420 stick around.  So long as something else references a lexical, that
421 lexical won't be freed--which is as it should be.  You wouldn't want
422 memory being free until you were done using it, or kept around once you
423 were done.  Automatic garbage collection takes care of this for you.
424
425 This means that you can pass back or save away references to lexical
426 variables, whereas to return a pointer to a C auto is a grave error.
427 It also gives us a way to simulate C's function statics.  Here's a
428 mechanism for giving a function private variables with both lexical
429 scoping and a static lifetime.  If you do want to create something like
430 C's static variables, just enclose the whole function in an extra block,
431 and put the static variable outside the function but in the block.
432
433     {
434         my $secret_val = 0;
435         sub gimme_another {
436             return ++$secret_val;
437         }
438     }
439     # $secret_val now becomes unreachable by the outside
440     # world, but retains its value between calls to gimme_another
441
442 If this function is being sourced in from a separate file
443 via C<require> or C<use>, then this is probably just fine.  If it's
444 all in the main program, you'll need to arrange for the C<my>
445 to be executed early, either by putting the whole block above
446 your main program, or more likely, placing merely a C<BEGIN>
447 code block around it to make sure it gets executed before your program
448 starts to run:
449
450     BEGIN {
451         my $secret_val = 0;
452         sub gimme_another {
453             return ++$secret_val;
454         }
455     }
456
457 See L<perlmod/"BEGIN, CHECK, INIT and END"> about the
458 special triggered code blocks, C<BEGIN>, C<CHECK>, C<INIT> and C<END>.
459
460 If declared at the outermost scope (the file scope), then lexicals
461 work somewhat like C's file statics.  They are available to all
462 functions in that same file declared below them, but are inaccessible
463 from outside that file.  This strategy is sometimes used in modules
464 to create private variables that the whole module can see.
465
466 =head2 Temporary Values via local()
467
468 B<WARNING>: In general, you should be using C<my> instead of C<local>, because
469 it's faster and safer.  Exceptions to this include the global punctuation
470 variables, global filehandles and formats, and direct manipulation of the
471 Perl symbol table itself.  C<local> is mostly used when the current value
472 of a variable must be visible to called subroutines.
473
474 Synopsis:
475
476     # localization of values
477
478     local $foo;                 # make $foo dynamically local
479     local (@wid, %get);         # make list of variables local
480     local $foo = "flurp";       # make $foo dynamic, and init it
481     local @oof = @bar;          # make @oof dynamic, and init it
482
483     local $hash{key} = "val";   # sets a local value for this hash entry
484     local ($cond ? $v1 : $v2);  # several types of lvalues support
485                                 # localization
486
487     # localization of symbols
488
489     local *FH;                  # localize $FH, @FH, %FH, &FH  ...
490     local *merlyn = *randal;    # now $merlyn is really $randal, plus
491                                 #     @merlyn is really @randal, etc
492     local *merlyn = 'randal';   # SAME THING: promote 'randal' to *randal
493     local *merlyn = \$randal;   # just alias $merlyn, not @merlyn etc
494
495 A C<local> modifies its listed variables to be "local" to the
496 enclosing block, C<eval>, or C<do FILE>--and to I<any subroutine
497 called from within that block>.  A C<local> just gives temporary
498 values to global (meaning package) variables.  It does I<not> create
499 a local variable.  This is known as dynamic scoping.  Lexical scoping
500 is done with C<my>, which works more like C's auto declarations.
501
502 Some types of lvalues can be localized as well : hash and array elements
503 and slices, conditionals (provided that their result is always
504 localizable), and symbolic references.  As for simple variables, this
505 creates new, dynamically scoped values.
506
507 If more than one variable or expression is given to C<local>, they must be
508 placed in parentheses.  This operator works
509 by saving the current values of those variables in its argument list on a
510 hidden stack and restoring them upon exiting the block, subroutine, or
511 eval.  This means that called subroutines can also reference the local
512 variable, but not the global one.  The argument list may be assigned to if
513 desired, which allows you to initialize your local variables.  (If no
514 initializer is given for a particular variable, it is created with an
515 undefined value.)
516
517 Because C<local> is a run-time operator, it gets executed each time
518 through a loop.  Consequently, it's more efficient to localize your
519 variables outside the loop.
520
521 =head3 Grammatical note on local()
522
523 A C<local> is simply a modifier on an lvalue expression.  When you assign to
524 a C<local>ized variable, the C<local> doesn't change whether its list is viewed
525 as a scalar or an array.  So
526
527     local($foo) = <STDIN>;
528     local @FOO = <STDIN>;
529
530 both supply a list context to the right-hand side, while
531
532     local $foo = <STDIN>;
533
534 supplies a scalar context.
535
536 =head3 Localization of special variables
537
538 If you localize a special variable, you'll be giving a new value to it,
539 but its magic won't go away.  That means that all side-effects related
540 to this magic still work with the localized value.
541
542 This feature allows code like this to work :
543
544     # Read the whole contents of FILE in $slurp
545     { local $/ = undef; $slurp = <FILE>; }
546
547 Note, however, that this restricts localization of some values ; for
548 example, the following statement dies, as of perl 5.9.0, with an error
549 I<Modification of a read-only value attempted>, because the $1 variable is
550 magical and read-only :
551
552     local $1 = 2;
553
554 Similarly, but in a way more difficult to spot, the following snippet will
555 die in perl 5.9.0 :
556
557     sub f { local $_ = "foo"; print }
558     for ($1) {
559         # now $_ is aliased to $1, thus is magic and readonly
560         f();
561     }
562
563 See next section for an alternative to this situation.
564
565 B<WARNING>: Localization of tied arrays and hashes does not currently
566 work as described.
567 This will be fixed in a future release of Perl; in the meantime, avoid
568 code that relies on any particular behaviour of localising tied arrays
569 or hashes (localising individual elements is still okay).
570 See L<perl58delta/"Localising Tied Arrays and Hashes Is Broken"> for more
571 details.
572
573 =head3 Localization of globs
574
575 The construct
576
577     local *name;
578
579 creates a whole new symbol table entry for the glob C<name> in the
580 current package.  That means that all variables in its glob slot ($name,
581 @name, %name, &name, and the C<name> filehandle) are dynamically reset.
582
583 This implies, among other things, that any magic eventually carried by
584 those variables is locally lost.  In other words, saying C<local */>
585 will not have any effect on the internal value of the input record
586 separator.
587
588 Notably, if you want to work with a brand new value of the default scalar
589 $_, and avoid the potential problem listed above about $_ previously
590 carrying a magic value, you should use C<local *_> instead of C<local $_>.
591 As of perl 5.9.1, you can also use the lexical form of C<$_> (declaring it
592 with C<my $_>), which avoids completely this problem.
593
594 =head3 Localization of elements of composite types
595
596 It's also worth taking a moment to explain what happens when you
597 C<local>ize a member of a composite type (i.e. an array or hash element).
598 In this case, the element is C<local>ized I<by name>. This means that
599 when the scope of the C<local()> ends, the saved value will be
600 restored to the hash element whose key was named in the C<local()>, or
601 the array element whose index was named in the C<local()>.  If that
602 element was deleted while the C<local()> was in effect (e.g. by a
603 C<delete()> from a hash or a C<shift()> of an array), it will spring
604 back into existence, possibly extending an array and filling in the
605 skipped elements with C<undef>.  For instance, if you say
606
607     %hash = ( 'This' => 'is', 'a' => 'test' );
608     @ary  = ( 0..5 );
609     {
610          local($ary[5]) = 6;
611          local($hash{'a'}) = 'drill';
612          while (my $e = pop(@ary)) {
613              print "$e . . .\n";
614              last unless $e > 3;
615          }
616          if (@ary) {
617              $hash{'only a'} = 'test';
618              delete $hash{'a'};
619          }
620     }
621     print join(' ', map { "$_ $hash{$_}" } sort keys %hash),".\n";
622     print "The array has ",scalar(@ary)," elements: ",
623           join(', ', map { defined $_ ? $_ : 'undef' } @ary),"\n";
624
625 Perl will print
626
627     6 . . .
628     4 . . .
629     3 . . .
630     This is a test only a test.
631     The array has 6 elements: 0, 1, 2, undef, undef, 5
632
633 The behavior of local() on non-existent members of composite
634 types is subject to change in future.
635
636 =head2 Lvalue subroutines
637
638 B<WARNING>: Lvalue subroutines are still experimental and the
639 implementation may change in future versions of Perl.
640
641 It is possible to return a modifiable value from a subroutine.
642 To do this, you have to declare the subroutine to return an lvalue.
643
644     my $val;
645     sub canmod : lvalue {
646         # return $val; this doesn't work, don't say "return"
647         $val;
648     }
649     sub nomod {
650         $val;
651     }
652
653     canmod() = 5;   # assigns to $val
654     nomod()  = 5;   # ERROR
655
656 The scalar/list context for the subroutine and for the right-hand
657 side of assignment is determined as if the subroutine call is replaced
658 by a scalar. For example, consider:
659
660     data(2,3) = get_data(3,4);
661
662 Both subroutines here are called in a scalar context, while in:
663
664     (data(2,3)) = get_data(3,4);
665
666 and in:
667
668     (data(2),data(3)) = get_data(3,4);
669
670 all the subroutines are called in a list context.
671
672 =over 4
673
674 =item Lvalue subroutines are EXPERIMENTAL
675
676 They appear to be convenient, but there are several reasons to be
677 circumspect.
678
679 You can't use the return keyword, you must pass out the value before
680 falling out of subroutine scope. (see comment in example above).  This
681 is usually not a problem, but it disallows an explicit return out of a
682 deeply nested loop, which is sometimes a nice way out.
683
684 They violate encapsulation.  A normal mutator can check the supplied
685 argument before setting the attribute it is protecting, an lvalue
686 subroutine never gets that chance.  Consider;
687
688     my $some_array_ref = [];    # protected by mutators ??
689
690     sub set_arr {               # normal mutator
691         my $val = shift;
692         die("expected array, you supplied ", ref $val)
693            unless ref $val eq 'ARRAY';
694         $some_array_ref = $val;
695     }
696     sub set_arr_lv : lvalue {   # lvalue mutator
697         $some_array_ref;
698     }
699
700     # set_arr_lv cannot stop this !
701     set_arr_lv() = { a => 1 };
702
703 =back
704
705 =head2 Passing Symbol Table Entries (typeglobs)
706
707 B<WARNING>: The mechanism described in this section was originally
708 the only way to simulate pass-by-reference in older versions of
709 Perl.  While it still works fine in modern versions, the new reference
710 mechanism is generally easier to work with.  See below.
711
712 Sometimes you don't want to pass the value of an array to a subroutine
713 but rather the name of it, so that the subroutine can modify the global
714 copy of it rather than working with a local copy.  In perl you can
715 refer to all objects of a particular name by prefixing the name
716 with a star: C<*foo>.  This is often known as a "typeglob", because the
717 star on the front can be thought of as a wildcard match for all the
718 funny prefix characters on variables and subroutines and such.
719
720 When evaluated, the typeglob produces a scalar value that represents
721 all the objects of that name, including any filehandle, format, or
722 subroutine.  When assigned to, it causes the name mentioned to refer to
723 whatever C<*> value was assigned to it.  Example:
724
725     sub doubleary {
726         local(*someary) = @_;
727         foreach $elem (@someary) {
728             $elem *= 2;
729         }
730     }
731     doubleary(*foo);
732     doubleary(*bar);
733
734 Scalars are already passed by reference, so you can modify
735 scalar arguments without using this mechanism by referring explicitly
736 to C<$_[0]> etc.  You can modify all the elements of an array by passing
737 all the elements as scalars, but you have to use the C<*> mechanism (or
738 the equivalent reference mechanism) to C<push>, C<pop>, or change the size of
739 an array.  It will certainly be faster to pass the typeglob (or reference).
740
741 Even if you don't want to modify an array, this mechanism is useful for
742 passing multiple arrays in a single LIST, because normally the LIST
743 mechanism will merge all the array values so that you can't extract out
744 the individual arrays.  For more on typeglobs, see
745 L<perldata/"Typeglobs and Filehandles">.
746
747 =head2 When to Still Use local()
748
749 Despite the existence of C<my>, there are still three places where the
750 C<local> operator still shines.  In fact, in these three places, you
751 I<must> use C<local> instead of C<my>.
752
753 =over 4
754
755 =item 1.
756
757 You need to give a global variable a temporary value, especially $_.
758
759 The global variables, like C<@ARGV> or the punctuation variables, must be 
760 C<local>ized with C<local()>.  This block reads in F</etc/motd>, and splits
761 it up into chunks separated by lines of equal signs, which are placed
762 in C<@Fields>.
763
764     {
765         local @ARGV = ("/etc/motd");
766         local $/ = undef;
767         local $_ = <>;  
768         @Fields = split /^\s*=+\s*$/;
769     } 
770
771 It particular, it's important to C<local>ize $_ in any routine that assigns
772 to it.  Look out for implicit assignments in C<while> conditionals.
773
774 =item 2.
775
776 You need to create a local file or directory handle or a local function.
777
778 A function that needs a filehandle of its own must use
779 C<local()> on a complete typeglob.   This can be used to create new symbol
780 table entries:
781
782     sub ioqueue {
783         local  (*READER, *WRITER);    # not my!
784         pipe    (READER,  WRITER)     or die "pipe: $!";
785         return (*READER, *WRITER);
786     }
787     ($head, $tail) = ioqueue();
788
789 See the Symbol module for a way to create anonymous symbol table
790 entries.
791
792 Because assignment of a reference to a typeglob creates an alias, this
793 can be used to create what is effectively a local function, or at least,
794 a local alias.
795
796     {
797         local *grow = \&shrink; # only until this block exists
798         grow();                 # really calls shrink()
799         move();                 # if move() grow()s, it shrink()s too
800     }
801     grow();                     # get the real grow() again
802
803 See L<perlref/"Function Templates"> for more about manipulating
804 functions by name in this way.
805
806 =item 3.
807
808 You want to temporarily change just one element of an array or hash.
809
810 You can C<local>ize just one element of an aggregate.  Usually this
811 is done on dynamics:
812
813     {
814         local $SIG{INT} = 'IGNORE';
815         funct();                            # uninterruptible
816     } 
817     # interruptibility automatically restored here
818
819 But it also works on lexically declared aggregates.  Prior to 5.005,
820 this operation could on occasion misbehave.
821
822 =back
823
824 =head2 Pass by Reference
825
826 If you want to pass more than one array or hash into a function--or
827 return them from it--and have them maintain their integrity, then
828 you're going to have to use an explicit pass-by-reference.  Before you
829 do that, you need to understand references as detailed in L<perlref>.
830 This section may not make much sense to you otherwise.
831
832 Here are a few simple examples.  First, let's pass in several arrays
833 to a function and have it C<pop> all of then, returning a new list
834 of all their former last elements:
835
836     @tailings = popmany ( \@a, \@b, \@c, \@d );
837
838     sub popmany {
839         my $aref;
840         my @retlist = ();
841         foreach $aref ( @_ ) {
842             push @retlist, pop @$aref;
843         }
844         return @retlist;
845     }
846
847 Here's how you might write a function that returns a
848 list of keys occurring in all the hashes passed to it:
849
850     @common = inter( \%foo, \%bar, \%joe );
851     sub inter {
852         my ($k, $href, %seen); # locals
853         foreach $href (@_) {
854             while ( $k = each %$href ) {
855                 $seen{$k}++;
856             }
857         }
858         return grep { $seen{$_} == @_ } keys %seen;
859     }
860
861 So far, we're using just the normal list return mechanism.
862 What happens if you want to pass or return a hash?  Well,
863 if you're using only one of them, or you don't mind them
864 concatenating, then the normal calling convention is ok, although
865 a little expensive.
866
867 Where people get into trouble is here:
868
869     (@a, @b) = func(@c, @d);
870 or
871     (%a, %b) = func(%c, %d);
872
873 That syntax simply won't work.  It sets just C<@a> or C<%a> and
874 clears the C<@b> or C<%b>.  Plus the function didn't get passed
875 into two separate arrays or hashes: it got one long list in C<@_>,
876 as always.
877
878 If you can arrange for everyone to deal with this through references, it's
879 cleaner code, although not so nice to look at.  Here's a function that
880 takes two array references as arguments, returning the two array elements
881 in order of how many elements they have in them:
882
883     ($aref, $bref) = func(\@c, \@d);
884     print "@$aref has more than @$bref\n";
885     sub func {
886         my ($cref, $dref) = @_;
887         if (@$cref > @$dref) {
888             return ($cref, $dref);
889         } else {
890             return ($dref, $cref);
891         }
892     }
893
894 It turns out that you can actually do this also:
895
896     (*a, *b) = func(\@c, \@d);
897     print "@a has more than @b\n";
898     sub func {
899         local (*c, *d) = @_;
900         if (@c > @d) {
901             return (\@c, \@d);
902         } else {
903             return (\@d, \@c);
904         }
905     }
906
907 Here we're using the typeglobs to do symbol table aliasing.  It's
908 a tad subtle, though, and also won't work if you're using C<my>
909 variables, because only globals (even in disguise as C<local>s)
910 are in the symbol table.
911
912 If you're passing around filehandles, you could usually just use the bare
913 typeglob, like C<*STDOUT>, but typeglobs references work, too.
914 For example:
915
916     splutter(\*STDOUT);
917     sub splutter {
918         my $fh = shift;
919         print $fh "her um well a hmmm\n";
920     }
921
922     $rec = get_rec(\*STDIN);
923     sub get_rec {
924         my $fh = shift;
925         return scalar <$fh>;
926     }
927
928 If you're planning on generating new filehandles, you could do this.
929 Notice to pass back just the bare *FH, not its reference.
930
931     sub openit {
932         my $path = shift;
933         local *FH;
934         return open (FH, $path) ? *FH : undef;
935     }
936
937 =head2 Prototypes
938
939 Perl supports a very limited kind of compile-time argument checking
940 using function prototyping.  If you declare
941
942     sub mypush (\@@)
943
944 then C<mypush()> takes arguments exactly like C<push()> does.  The
945 function declaration must be visible at compile time.  The prototype
946 affects only interpretation of new-style calls to the function,
947 where new-style is defined as not using the C<&> character.  In
948 other words, if you call it like a built-in function, then it behaves
949 like a built-in function.  If you call it like an old-fashioned
950 subroutine, then it behaves like an old-fashioned subroutine.  It
951 naturally falls out from this rule that prototypes have no influence
952 on subroutine references like C<\&foo> or on indirect subroutine
953 calls like C<&{$subref}> or C<< $subref->() >>.
954
955 Method calls are not influenced by prototypes either, because the
956 function to be called is indeterminate at compile time, since
957 the exact code called depends on inheritance.
958
959 Because the intent of this feature is primarily to let you define
960 subroutines that work like built-in functions, here are prototypes
961 for some other functions that parse almost exactly like the
962 corresponding built-in.
963
964     Declared as                 Called as
965
966     sub mylink ($$)          mylink $old, $new
967     sub myvec ($$$)          myvec $var, $offset, 1
968     sub myindex ($$;$)       myindex &getstring, "substr"
969     sub mysyswrite ($$$;$)   mysyswrite $buf, 0, length($buf) - $off, $off
970     sub myreverse (@)        myreverse $a, $b, $c
971     sub myjoin ($@)          myjoin ":", $a, $b, $c
972     sub mypop (\@)           mypop @array
973     sub mysplice (\@$$@)     mysplice @array, @array, 0, @pushme
974     sub mykeys (\%)          mykeys %{$hashref}
975     sub myopen (*;$)         myopen HANDLE, $name
976     sub mypipe (**)          mypipe READHANDLE, WRITEHANDLE
977     sub mygrep (&@)          mygrep { /foo/ } $a, $b, $c
978     sub myrand ($)           myrand 42
979     sub mytime ()            mytime
980
981 Any backslashed prototype character represents an actual argument
982 that absolutely must start with that character.  The value passed
983 as part of C<@_> will be a reference to the actual argument given
984 in the subroutine call, obtained by applying C<\> to that argument.
985
986 You can also backslash several argument types simultaneously by using
987 the C<\[]> notation:
988
989     sub myref (\[$@%&*])
990
991 will allow calling myref() as
992
993     myref $var
994     myref @array
995     myref %hash
996     myref &sub
997     myref *glob
998
999 and the first argument of myref() will be a reference to
1000 a scalar, an array, a hash, a code, or a glob.
1001
1002 Unbackslashed prototype characters have special meanings.  Any
1003 unbackslashed C<@> or C<%> eats all remaining arguments, and forces
1004 list context.  An argument represented by C<$> forces scalar context.  An
1005 C<&> requires an anonymous subroutine, which, if passed as the first
1006 argument, does not require the C<sub> keyword or a subsequent comma.
1007
1008 A C<*> allows the subroutine to accept a bareword, constant, scalar expression,
1009 typeglob, or a reference to a typeglob in that slot.  The value will be
1010 available to the subroutine either as a simple scalar, or (in the latter
1011 two cases) as a reference to the typeglob.  If you wish to always convert
1012 such arguments to a typeglob reference, use Symbol::qualify_to_ref() as
1013 follows:
1014
1015     use Symbol 'qualify_to_ref';
1016
1017     sub foo (*) {
1018         my $fh = qualify_to_ref(shift, caller);
1019         ...
1020     }
1021
1022 A semicolon separates mandatory arguments from optional arguments.
1023 It is redundant before C<@> or C<%>, which gobble up everything else.
1024
1025 Note how the last three examples in the table above are treated
1026 specially by the parser.  C<mygrep()> is parsed as a true list
1027 operator, C<myrand()> is parsed as a true unary operator with unary
1028 precedence the same as C<rand()>, and C<mytime()> is truly without
1029 arguments, just like C<time()>.  That is, if you say
1030
1031     mytime +2;
1032
1033 you'll get C<mytime() + 2>, not C<mytime(2)>, which is how it would be parsed
1034 without a prototype.
1035
1036 The interesting thing about C<&> is that you can generate new syntax with it,
1037 provided it's in the initial position:
1038
1039     sub try (&@) {
1040         my($try,$catch) = @_;
1041         eval { &$try };
1042         if ($@) {
1043             local $_ = $@;
1044             &$catch;
1045         }
1046     }
1047     sub catch (&) { $_[0] }
1048
1049     try {
1050         die "phooey";
1051     } catch {
1052         /phooey/ and print "unphooey\n";
1053     };
1054
1055 That prints C<"unphooey">.  (Yes, there are still unresolved
1056 issues having to do with visibility of C<@_>.  I'm ignoring that
1057 question for the moment.  (But note that if we make C<@_> lexically
1058 scoped, those anonymous subroutines can act like closures... (Gee,
1059 is this sounding a little Lispish?  (Never mind.))))
1060
1061 And here's a reimplementation of the Perl C<grep> operator:
1062
1063     sub mygrep (&@) {
1064         my $code = shift;
1065         my @result;
1066         foreach $_ (@_) {
1067             push(@result, $_) if &$code;
1068         }
1069         @result;
1070     }
1071
1072 Some folks would prefer full alphanumeric prototypes.  Alphanumerics have
1073 been intentionally left out of prototypes for the express purpose of
1074 someday in the future adding named, formal parameters.  The current
1075 mechanism's main goal is to let module writers provide better diagnostics
1076 for module users.  Larry feels the notation quite understandable to Perl
1077 programmers, and that it will not intrude greatly upon the meat of the
1078 module, nor make it harder to read.  The line noise is visually
1079 encapsulated into a small pill that's easy to swallow.
1080
1081 If you try to use an alphanumeric sequence in a prototype you will
1082 generate an optional warning - "Illegal character in prototype...".
1083 Unfortunately earlier versions of Perl allowed the prototype to be
1084 used as long as its prefix was a valid prototype.  The warning may be
1085 upgraded to a fatal error in a future version of Perl once the
1086 majority of offending code is fixed.
1087
1088 It's probably best to prototype new functions, not retrofit prototyping
1089 into older ones.  That's because you must be especially careful about
1090 silent impositions of differing list versus scalar contexts.  For example,
1091 if you decide that a function should take just one parameter, like this:
1092
1093     sub func ($) {
1094         my $n = shift;
1095         print "you gave me $n\n";
1096     }
1097
1098 and someone has been calling it with an array or expression
1099 returning a list:
1100
1101     func(@foo);
1102     func( split /:/ );
1103
1104 Then you've just supplied an automatic C<scalar> in front of their
1105 argument, which can be more than a bit surprising.  The old C<@foo>
1106 which used to hold one thing doesn't get passed in.  Instead,
1107 C<func()> now gets passed in a C<1>; that is, the number of elements
1108 in C<@foo>.  And the C<split> gets called in scalar context so it
1109 starts scribbling on your C<@_> parameter list.  Ouch!
1110
1111 This is all very powerful, of course, and should be used only in moderation
1112 to make the world a better place.
1113
1114 =head2 Constant Functions
1115
1116 Functions with a prototype of C<()> are potential candidates for
1117 inlining.  If the result after optimization and constant folding
1118 is either a constant or a lexically-scoped scalar which has no other
1119 references, then it will be used in place of function calls made
1120 without C<&>.  Calls made using C<&> are never inlined.  (See
1121 F<constant.pm> for an easy way to declare most constants.)
1122
1123 The following functions would all be inlined:
1124
1125     sub pi ()           { 3.14159 }             # Not exact, but close.
1126     sub PI ()           { 4 * atan2 1, 1 }      # As good as it gets,
1127                                                 # and it's inlined, too!
1128     sub ST_DEV ()       { 0 }
1129     sub ST_INO ()       { 1 }
1130
1131     sub FLAG_FOO ()     { 1 << 8 }
1132     sub FLAG_BAR ()     { 1 << 9 }
1133     sub FLAG_MASK ()    { FLAG_FOO | FLAG_BAR }
1134
1135     sub OPT_BAZ ()      { not (0x1B58 & FLAG_MASK) }
1136
1137     sub N () { int(OPT_BAZ) / 3 }
1138
1139     sub FOO_SET () { 1 if FLAG_MASK & FLAG_FOO }
1140
1141 Be aware that these will not be inlined; as they contain inner scopes,
1142 the constant folding doesn't reduce them to a single constant:
1143
1144     sub foo_set () { if (FLAG_MASK & FLAG_FOO) { 1 } }
1145
1146     sub baz_val () {
1147         if (OPT_BAZ) {
1148             return 23;
1149         }
1150         else {
1151             return 42;
1152         }
1153     }
1154
1155 If you redefine a subroutine that was eligible for inlining, you'll get
1156 a mandatory warning.  (You can use this warning to tell whether or not a
1157 particular subroutine is considered constant.)  The warning is
1158 considered severe enough not to be optional because previously compiled
1159 invocations of the function will still be using the old value of the
1160 function.  If you need to be able to redefine the subroutine, you need to
1161 ensure that it isn't inlined, either by dropping the C<()> prototype
1162 (which changes calling semantics, so beware) or by thwarting the
1163 inlining mechanism in some other way, such as
1164
1165     sub not_inlined () {
1166         23 if $];
1167     }
1168
1169 =head2 Overriding Built-in Functions
1170
1171 Many built-in functions may be overridden, though this should be tried
1172 only occasionally and for good reason.  Typically this might be
1173 done by a package attempting to emulate missing built-in functionality
1174 on a non-Unix system.
1175
1176 Overriding may be done only by importing the name from a module at
1177 compile time--ordinary predeclaration isn't good enough.  However, the
1178 C<use subs> pragma lets you, in effect, predeclare subs
1179 via the import syntax, and these names may then override built-in ones:
1180
1181     use subs 'chdir', 'chroot', 'chmod', 'chown';
1182     chdir $somewhere;
1183     sub chdir { ... }
1184
1185 To unambiguously refer to the built-in form, precede the
1186 built-in name with the special package qualifier C<CORE::>.  For example,
1187 saying C<CORE::open()> always refers to the built-in C<open()>, even
1188 if the current package has imported some other subroutine called
1189 C<&open()> from elsewhere.  Even though it looks like a regular
1190 function call, it isn't: you can't take a reference to it, such as
1191 the incorrect C<\&CORE::open> might appear to produce.
1192
1193 Library modules should not in general export built-in names like C<open>
1194 or C<chdir> as part of their default C<@EXPORT> list, because these may
1195 sneak into someone else's namespace and change the semantics unexpectedly.
1196 Instead, if the module adds that name to C<@EXPORT_OK>, then it's
1197 possible for a user to import the name explicitly, but not implicitly.
1198 That is, they could say
1199
1200     use Module 'open';
1201
1202 and it would import the C<open> override.  But if they said
1203
1204     use Module;
1205
1206 they would get the default imports without overrides.
1207
1208 The foregoing mechanism for overriding built-in is restricted, quite
1209 deliberately, to the package that requests the import.  There is a second
1210 method that is sometimes applicable when you wish to override a built-in
1211 everywhere, without regard to namespace boundaries.  This is achieved by
1212 importing a sub into the special namespace C<CORE::GLOBAL::>.  Here is an
1213 example that quite brazenly replaces the C<glob> operator with something
1214 that understands regular expressions.
1215
1216     package REGlob;
1217     require Exporter;
1218     @ISA = 'Exporter';
1219     @EXPORT_OK = 'glob';
1220
1221     sub import {
1222         my $pkg = shift;
1223         return unless @_;
1224         my $sym = shift;
1225         my $where = ($sym =~ s/^GLOBAL_// ? 'CORE::GLOBAL' : caller(0));
1226         $pkg->export($where, $sym, @_);
1227     }
1228
1229     sub glob {
1230         my $pat = shift;
1231         my @got;
1232         local *D;
1233         if (opendir D, '.') { 
1234             @got = grep /$pat/, readdir D; 
1235             closedir D;   
1236         }
1237         return @got;
1238     }
1239     1;
1240
1241 And here's how it could be (ab)used:
1242
1243     #use REGlob 'GLOBAL_glob';      # override glob() in ALL namespaces
1244     package Foo;
1245     use REGlob 'glob';              # override glob() in Foo:: only
1246     print for <^[a-z_]+\.pm\$>;     # show all pragmatic modules
1247
1248 The initial comment shows a contrived, even dangerous example.
1249 By overriding C<glob> globally, you would be forcing the new (and
1250 subversive) behavior for the C<glob> operator for I<every> namespace,
1251 without the complete cognizance or cooperation of the modules that own
1252 those namespaces.  Naturally, this should be done with extreme caution--if
1253 it must be done at all.
1254
1255 The C<REGlob> example above does not implement all the support needed to
1256 cleanly override perl's C<glob> operator.  The built-in C<glob> has
1257 different behaviors depending on whether it appears in a scalar or list
1258 context, but our C<REGlob> doesn't.  Indeed, many perl built-in have such
1259 context sensitive behaviors, and these must be adequately supported by
1260 a properly written override.  For a fully functional example of overriding
1261 C<glob>, study the implementation of C<File::DosGlob> in the standard
1262 library.
1263
1264 When you override a built-in, your replacement should be consistent (if
1265 possible) with the built-in native syntax.  You can achieve this by using
1266 a suitable prototype.  To get the prototype of an overridable built-in,
1267 use the C<prototype> function with an argument of C<"CORE::builtin_name">
1268 (see L<perlfunc/prototype>).
1269
1270 Note however that some built-ins can't have their syntax expressed by a
1271 prototype (such as C<system> or C<chomp>).  If you override them you won't
1272 be able to fully mimic their original syntax.
1273
1274 The built-ins C<do>, C<require> and C<glob> can also be overridden, but due
1275 to special magic, their original syntax is preserved, and you don't have
1276 to define a prototype for their replacements.  (You can't override the
1277 C<do BLOCK> syntax, though).
1278
1279 C<require> has special additional dark magic: if you invoke your
1280 C<require> replacement as C<require Foo::Bar>, it will actually receive
1281 the argument C<"Foo/Bar.pm"> in @_.  See L<perlfunc/require>.
1282
1283 And, as you'll have noticed from the previous example, if you override
1284 C<glob>, the C<< <*> >> glob operator is overridden as well.
1285
1286 In a similar fashion, overriding the C<readline> function also overrides
1287 the equivalent I/O operator C<< <FILEHANDLE> >>.
1288
1289 Finally, some built-ins (e.g. C<exists> or C<grep>) can't be overridden.
1290
1291 =head2 Autoloading
1292
1293 If you call a subroutine that is undefined, you would ordinarily
1294 get an immediate, fatal error complaining that the subroutine doesn't
1295 exist.  (Likewise for subroutines being used as methods, when the
1296 method doesn't exist in any base class of the class's package.)
1297 However, if an C<AUTOLOAD> subroutine is defined in the package or
1298 packages used to locate the original subroutine, then that
1299 C<AUTOLOAD> subroutine is called with the arguments that would have
1300 been passed to the original subroutine.  The fully qualified name
1301 of the original subroutine magically appears in the global $AUTOLOAD
1302 variable of the same package as the C<AUTOLOAD> routine.  The name
1303 is not passed as an ordinary argument because, er, well, just
1304 because, that's why.  (As an exception, a method call to a nonexistent
1305 C<import> or C<unimport> method is just skipped instead.)
1306
1307 Many C<AUTOLOAD> routines load in a definition for the requested
1308 subroutine using eval(), then execute that subroutine using a special
1309 form of goto() that erases the stack frame of the C<AUTOLOAD> routine
1310 without a trace.  (See the source to the standard module documented
1311 in L<AutoLoader>, for example.)  But an C<AUTOLOAD> routine can
1312 also just emulate the routine and never define it.   For example,
1313 let's pretend that a function that wasn't defined should just invoke
1314 C<system> with those arguments.  All you'd do is:
1315
1316     sub AUTOLOAD {
1317         my $program = $AUTOLOAD;
1318         $program =~ s/.*:://;
1319         system($program, @_);
1320     }
1321     date();
1322     who('am', 'i');
1323     ls('-l');
1324
1325 In fact, if you predeclare functions you want to call that way, you don't
1326 even need parentheses:
1327
1328     use subs qw(date who ls);
1329     date;
1330     who "am", "i";
1331     ls '-l';
1332
1333 A more complete example of this is the standard Shell module, which
1334 can treat undefined subroutine calls as calls to external programs.
1335
1336 Mechanisms are available to help modules writers split their modules
1337 into autoloadable files.  See the standard AutoLoader module
1338 described in L<AutoLoader> and in L<AutoSplit>, the standard
1339 SelfLoader modules in L<SelfLoader>, and the document on adding C
1340 functions to Perl code in L<perlxs>.
1341
1342 =head2 Subroutine Attributes
1343
1344 A subroutine declaration or definition may have a list of attributes
1345 associated with it.  If such an attribute list is present, it is
1346 broken up at space or colon boundaries and treated as though a
1347 C<use attributes> had been seen.  See L<attributes> for details
1348 about what attributes are currently supported.
1349 Unlike the limitation with the obsolescent C<use attrs>, the
1350 C<sub : ATTRLIST> syntax works to associate the attributes with
1351 a pre-declaration, and not just with a subroutine definition.
1352
1353 The attributes must be valid as simple identifier names (without any
1354 punctuation other than the '_' character).  They may have a parameter
1355 list appended, which is only checked for whether its parentheses ('(',')')
1356 nest properly.
1357
1358 Examples of valid syntax (even though the attributes are unknown):
1359
1360     sub fnord (&\%) : switch(10,foo(7,3))  :  expensive ;
1361     sub plugh () : Ugly('\(") :Bad ;
1362     sub xyzzy : _5x5 { ... }
1363
1364 Examples of invalid syntax:
1365
1366     sub fnord : switch(10,foo() ; # ()-string not balanced
1367     sub snoid : Ugly('(') ;       # ()-string not balanced
1368     sub xyzzy : 5x5 ;             # "5x5" not a valid identifier
1369     sub plugh : Y2::north ;       # "Y2::north" not a simple identifier
1370     sub snurt : foo + bar ;       # "+" not a colon or space
1371
1372 The attribute list is passed as a list of constant strings to the code
1373 which associates them with the subroutine.  In particular, the second example
1374 of valid syntax above currently looks like this in terms of how it's
1375 parsed and invoked:
1376
1377     use attributes __PACKAGE__, \&plugh, q[Ugly('\(")], 'Bad';
1378
1379 For further details on attribute lists and their manipulation,
1380 see L<attributes> and L<Attribute::Handlers>.
1381
1382 =head1 SEE ALSO
1383
1384 See L<perlref/"Function Templates"> for more about references and closures.
1385 See L<perlxs> if you'd like to learn about calling C subroutines from Perl.  
1386 See L<perlembed> if you'd like to learn about calling Perl subroutines from C.  
1387 See L<perlmod> to learn about bundling up your functions in separate files.
1388 See L<perlmodlib> to learn what library modules come standard on your system.
1389 See L<perltoot> to learn how to make object method calls.