[DOCPATCH] perlfunc/read
[p5sagit/p5-mst-13.2.git] / pod / perlfunc.pod
1 =head1 NAME
2
3 perlfunc - Perl builtin functions
4
5 =head1 DESCRIPTION
6
7 The functions in this section can serve as terms in an expression.
8 They fall into two major categories: list operators and named unary
9 operators.  These differ in their precedence relationship with a
10 following comma.  (See the precedence table in L<perlop>.)  List
11 operators take more than one argument, while unary operators can never
12 take more than one argument.  Thus, a comma terminates the argument of
13 a unary operator, but merely separates the arguments of a list
14 operator.  A unary operator generally provides a scalar context to its
15 argument, while a list operator may provide either scalar or list
16 contexts for its arguments.  If it does both, the scalar arguments will
17 be first, and the list argument will follow.  (Note that there can ever
18 be only one such list argument.)  For instance, splice() has three scalar
19 arguments followed by a list, whereas gethostbyname() has four scalar
20 arguments.
21
22 In the syntax descriptions that follow, list operators that expect a
23 list (and provide list context for the elements of the list) are shown
24 with LIST as an argument.  Such a list may consist of any combination
25 of scalar arguments or list values; the list values will be included
26 in the list as if each individual element were interpolated at that
27 point in the list, forming a longer single-dimensional list value.
28 Elements of the LIST should be separated by commas.
29
30 Any function in the list below may be used either with or without
31 parentheses around its arguments.  (The syntax descriptions omit the
32 parentheses.)  If you use the parentheses, the simple (but occasionally
33 surprising) rule is this: It I<looks> like a function, therefore it I<is> a
34 function, and precedence doesn't matter.  Otherwise it's a list
35 operator or unary operator, and precedence does matter.  And whitespace
36 between the function and left parenthesis doesn't count--so you need to
37 be careful sometimes:
38
39     print 1+2+4;        # Prints 7.
40     print(1+2) + 4;     # Prints 3.
41     print (1+2)+4;      # Also prints 3!
42     print +(1+2)+4;     # Prints 7.
43     print ((1+2)+4);    # Prints 7.
44
45 If you run Perl with the B<-w> switch it can warn you about this.  For
46 example, the third line above produces:
47
48     print (...) interpreted as function at - line 1.
49     Useless use of integer addition in void context at - line 1.
50
51 A few functions take no arguments at all, and therefore work as neither
52 unary nor list operators.  These include such functions as C<time>
53 and C<endpwent>.  For example, C<time+86_400> always means
54 C<time() + 86_400>.
55
56 For functions that can be used in either a scalar or list context,
57 nonabortive failure is generally indicated in a scalar context by
58 returning the undefined value, and in a list context by returning the
59 null list.
60
61 Remember the following important rule: There is B<no rule> that relates
62 the behavior of an expression in list context to its behavior in scalar
63 context, or vice versa.  It might do two totally different things.
64 Each operator and function decides which sort of value it would be most
65 appropriate to return in scalar context.  Some operators return the
66 length of the list that would have been returned in list context.  Some
67 operators return the first value in the list.  Some operators return the
68 last value in the list.  Some operators return a count of successful
69 operations.  In general, they do what you want, unless you want
70 consistency.
71
72 A named array in scalar context is quite different from what would at
73 first glance appear to be a list in scalar context.  You can't get a list
74 like C<(1,2,3)> into being in scalar context, because the compiler knows
75 the context at compile time.  It would generate the scalar comma operator
76 there, not the list construction version of the comma.  That means it
77 was never a list to start with.
78
79 In general, functions in Perl that serve as wrappers for system calls
80 of the same name (like chown(2), fork(2), closedir(2), etc.) all return
81 true when they succeed and C<undef> otherwise, as is usually mentioned
82 in the descriptions below.  This is different from the C interfaces,
83 which return C<-1> on failure.  Exceptions to this rule are C<wait>,
84 C<waitpid>, and C<syscall>.  System calls also set the special C<$!>
85 variable on failure.  Other functions do not, except accidentally.
86
87 =head2 Perl Functions by Category
88
89 Here are Perl's functions (including things that look like
90 functions, like some keywords and named operators)
91 arranged by category.  Some functions appear in more
92 than one place.
93
94 =over 4
95
96 =item Functions for SCALARs or strings
97
98 C<chomp>, C<chop>, C<chr>, C<crypt>, C<hex>, C<index>, C<lc>, C<lcfirst>,
99 C<length>, C<oct>, C<ord>, C<pack>, C<q/STRING/>, C<qq/STRING/>, C<reverse>,
100 C<rindex>, C<sprintf>, C<substr>, C<tr///>, C<uc>, C<ucfirst>, C<y///>
101
102 =item Regular expressions and pattern matching
103
104 C<m//>, C<pos>, C<quotemeta>, C<s///>, C<split>, C<study>, C<qr//>
105
106 =item Numeric functions
107
108 C<abs>, C<atan2>, C<cos>, C<exp>, C<hex>, C<int>, C<log>, C<oct>, C<rand>,
109 C<sin>, C<sqrt>, C<srand>
110
111 =item Functions for real @ARRAYs
112
113 C<pop>, C<push>, C<shift>, C<splice>, C<unshift>
114
115 =item Functions for list data
116
117 C<grep>, C<join>, C<map>, C<qw/STRING/>, C<reverse>, C<sort>, C<unpack>
118
119 =item Functions for real %HASHes
120
121 C<delete>, C<each>, C<exists>, C<keys>, C<values>
122
123 =item Input and output functions
124
125 C<binmode>, C<close>, C<closedir>, C<dbmclose>, C<dbmopen>, C<die>, C<eof>,
126 C<fileno>, C<flock>, C<format>, C<getc>, C<print>, C<printf>, C<read>,
127 C<readdir>, C<rewinddir>, C<seek>, C<seekdir>, C<select>, C<syscall>,
128 C<sysread>, C<sysseek>, C<syswrite>, C<tell>, C<telldir>, C<truncate>,
129 C<warn>, C<write>
130
131 =item Functions for fixed length data or records
132
133 C<pack>, C<read>, C<syscall>, C<sysread>, C<syswrite>, C<unpack>, C<vec>
134
135 =item Functions for filehandles, files, or directories
136
137 C<-I<X>>, C<chdir>, C<chmod>, C<chown>, C<chroot>, C<fcntl>, C<glob>,
138 C<ioctl>, C<link>, C<lstat>, C<mkdir>, C<open>, C<opendir>,
139 C<readlink>, C<rename>, C<rmdir>, C<stat>, C<symlink>, C<sysopen>,
140 C<umask>, C<unlink>, C<utime>
141
142 =item Keywords related to the control flow of your perl program
143
144 C<caller>, C<continue>, C<die>, C<do>, C<dump>, C<eval>, C<exit>,
145 C<goto>, C<last>, C<next>, C<redo>, C<return>, C<sub>, C<wantarray>
146
147 =item Keywords related to scoping
148
149 C<caller>, C<import>, C<local>, C<my>, C<our>, C<package>, C<use>
150
151 =item Miscellaneous functions
152
153 C<defined>, C<dump>, C<eval>, C<formline>, C<local>, C<my>, C<our>, C<reset>,
154 C<scalar>, C<undef>, C<wantarray>
155
156 =item Functions for processes and process groups
157
158 C<alarm>, C<exec>, C<fork>, C<getpgrp>, C<getppid>, C<getpriority>, C<kill>,
159 C<pipe>, C<qx/STRING/>, C<setpgrp>, C<setpriority>, C<sleep>, C<system>,
160 C<times>, C<wait>, C<waitpid>
161
162 =item Keywords related to perl modules
163
164 C<do>, C<import>, C<no>, C<package>, C<require>, C<use>
165
166 =item Keywords related to classes and object-orientedness
167
168 C<bless>, C<dbmclose>, C<dbmopen>, C<package>, C<ref>, C<tie>, C<tied>,
169 C<untie>, C<use>
170
171 =item Low-level socket functions
172
173 C<accept>, C<bind>, C<connect>, C<getpeername>, C<getsockname>,
174 C<getsockopt>, C<listen>, C<recv>, C<send>, C<setsockopt>, C<shutdown>,
175 C<socket>, C<socketpair>
176
177 =item System V interprocess communication functions
178
179 C<msgctl>, C<msgget>, C<msgrcv>, C<msgsnd>, C<semctl>, C<semget>, C<semop>,
180 C<shmctl>, C<shmget>, C<shmread>, C<shmwrite>
181
182 =item Fetching user and group info
183
184 C<endgrent>, C<endhostent>, C<endnetent>, C<endpwent>, C<getgrent>,
185 C<getgrgid>, C<getgrnam>, C<getlogin>, C<getpwent>, C<getpwnam>,
186 C<getpwuid>, C<setgrent>, C<setpwent>
187
188 =item Fetching network info
189
190 C<endprotoent>, C<endservent>, C<gethostbyaddr>, C<gethostbyname>,
191 C<gethostent>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
192 C<getprotobyname>, C<getprotobynumber>, C<getprotoent>,
193 C<getservbyname>, C<getservbyport>, C<getservent>, C<sethostent>,
194 C<setnetent>, C<setprotoent>, C<setservent>
195
196 =item Time-related functions
197
198 C<gmtime>, C<localtime>, C<time>, C<times>
199
200 =item Functions new in perl5
201
202 C<abs>, C<bless>, C<chomp>, C<chr>, C<exists>, C<formline>, C<glob>,
203 C<import>, C<lc>, C<lcfirst>, C<map>, C<my>, C<no>, C<our>, C<prototype>,
204 C<qx>, C<qw>, C<readline>, C<readpipe>, C<ref>, C<sub*>, C<sysopen>, C<tie>,
205 C<tied>, C<uc>, C<ucfirst>, C<untie>, C<use>
206
207 * - C<sub> was a keyword in perl4, but in perl5 it is an
208 operator, which can be used in expressions.
209
210 =item Functions obsoleted in perl5
211
212 C<dbmclose>, C<dbmopen>
213
214 =back
215
216 =head2 Portability
217
218 Perl was born in Unix and can therefore access all common Unix
219 system calls.  In non-Unix environments, the functionality of some
220 Unix system calls may not be available, or details of the available
221 functionality may differ slightly.  The Perl functions affected
222 by this are:
223
224 C<-X>, C<binmode>, C<chmod>, C<chown>, C<chroot>, C<crypt>,
225 C<dbmclose>, C<dbmopen>, C<dump>, C<endgrent>, C<endhostent>,
226 C<endnetent>, C<endprotoent>, C<endpwent>, C<endservent>, C<exec>,
227 C<fcntl>, C<flock>, C<fork>, C<getgrent>, C<getgrgid>, C<gethostbyname>,
228 C<gethostent>, C<getlogin>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
229 C<getppid>, C<getprgp>, C<getpriority>, C<getprotobynumber>,
230 C<getprotoent>, C<getpwent>, C<getpwnam>, C<getpwuid>,
231 C<getservbyport>, C<getservent>, C<getsockopt>, C<glob>, C<ioctl>,
232 C<kill>, C<link>, C<lstat>, C<msgctl>, C<msgget>, C<msgrcv>,
233 C<msgsnd>, C<open>, C<pipe>, C<readlink>, C<rename>, C<select>, C<semctl>,
234 C<semget>, C<semop>, C<setgrent>, C<sethostent>, C<setnetent>,
235 C<setpgrp>, C<setpriority>, C<setprotoent>, C<setpwent>,
236 C<setservent>, C<setsockopt>, C<shmctl>, C<shmget>, C<shmread>,
237 C<shmwrite>, C<socket>, C<socketpair>,
238 C<stat>, C<symlink>, C<syscall>, C<sysopen>, C<system>,
239 C<times>, C<truncate>, C<umask>, C<unlink>,
240 C<utime>, C<wait>, C<waitpid>
241
242 For more information about the portability of these functions, see
243 L<perlport> and other available platform-specific documentation.
244
245 =head2 Alphabetical Listing of Perl Functions
246
247 =over 8
248
249 =item -X FILEHANDLE
250
251 =item -X EXPR
252
253 =item -X
254
255 A file test, where X is one of the letters listed below.  This unary
256 operator takes one argument, either a filename or a filehandle, and
257 tests the associated file to see if something is true about it.  If the
258 argument is omitted, tests C<$_>, except for C<-t>, which tests STDIN.
259 Unless otherwise documented, it returns C<1> for true and C<''> for false, or
260 the undefined value if the file doesn't exist.  Despite the funny
261 names, precedence is the same as any other named unary operator, and
262 the argument may be parenthesized like any other unary operator.  The
263 operator may be any of:
264 X<-r>X<-w>X<-x>X<-o>X<-R>X<-W>X<-X>X<-O>X<-e>X<-z>X<-s>X<-f>X<-d>X<-l>X<-p>
265 X<-S>X<-b>X<-c>X<-t>X<-u>X<-g>X<-k>X<-T>X<-B>X<-M>X<-A>X<-C>
266
267     -r  File is readable by effective uid/gid.
268     -w  File is writable by effective uid/gid.
269     -x  File is executable by effective uid/gid.
270     -o  File is owned by effective uid.
271
272     -R  File is readable by real uid/gid.
273     -W  File is writable by real uid/gid.
274     -X  File is executable by real uid/gid.
275     -O  File is owned by real uid.
276
277     -e  File exists.
278     -z  File has zero size (is empty).
279     -s  File has nonzero size (returns size in bytes).
280
281     -f  File is a plain file.
282     -d  File is a directory.
283     -l  File is a symbolic link.
284     -p  File is a named pipe (FIFO), or Filehandle is a pipe.
285     -S  File is a socket.
286     -b  File is a block special file.
287     -c  File is a character special file.
288     -t  Filehandle is opened to a tty.
289
290     -u  File has setuid bit set.
291     -g  File has setgid bit set.
292     -k  File has sticky bit set.
293
294     -T  File is an ASCII text file (heuristic guess).
295     -B  File is a "binary" file (opposite of -T).
296
297     -M  Script start time minus file modification time, in days.
298     -A  Same for access time.
299     -C  Same for inode change time (Unix, may differ for other platforms)
300
301 Example:
302
303     while (<>) {
304         chomp;
305         next unless -f $_;      # ignore specials
306         #...
307     }
308
309 The interpretation of the file permission operators C<-r>, C<-R>,
310 C<-w>, C<-W>, C<-x>, and C<-X> is by default based solely on the mode
311 of the file and the uids and gids of the user.  There may be other
312 reasons you can't actually read, write, or execute the file.  Such
313 reasons may be for example network filesystem access controls, ACLs
314 (access control lists), read-only filesystems, and unrecognized
315 executable formats.
316
317 Also note that, for the superuser on the local filesystems, the C<-r>,
318 C<-R>, C<-w>, and C<-W> tests always return 1, and C<-x> and C<-X> return 1
319 if any execute bit is set in the mode.  Scripts run by the superuser
320 may thus need to do a stat() to determine the actual mode of the file,
321 or temporarily set their effective uid to something else.
322
323 If you are using ACLs, there is a pragma called C<filetest> that may
324 produce more accurate results than the bare stat() mode bits.
325 When under the C<use filetest 'access'> the above-mentioned filetests
326 will test whether the permission can (not) be granted using the
327 access() family of system calls.  Also note that the C<-x> and C<-X> may
328 under this pragma return true even if there are no execute permission
329 bits set (nor any extra execute permission ACLs).  This strangeness is
330 due to the underlying system calls' definitions.  Read the
331 documentation for the C<filetest> pragma for more information.
332
333 Note that C<-s/a/b/> does not do a negated substitution.  Saying
334 C<-exp($foo)> still works as expected, however--only single letters
335 following a minus are interpreted as file tests.
336
337 The C<-T> and C<-B> switches work as follows.  The first block or so of the
338 file is examined for odd characters such as strange control codes or
339 characters with the high bit set.  If too many strange characters (>30%)
340 are found, it's a C<-B> file, otherwise it's a C<-T> file.  Also, any file
341 containing null in the first block is considered a binary file.  If C<-T>
342 or C<-B> is used on a filehandle, the current IO buffer is examined
343 rather than the first block.  Both C<-T> and C<-B> return true on a null
344 file, or a file at EOF when testing a filehandle.  Because you have to
345 read a file to do the C<-T> test, on most occasions you want to use a C<-f>
346 against the file first, as in C<next unless -f $file && -T $file>.
347
348 If any of the file tests (or either the C<stat> or C<lstat> operators) are given
349 the special filehandle consisting of a solitary underline, then the stat
350 structure of the previous file test (or stat operator) is used, saving
351 a system call.  (This doesn't work with C<-t>, and you need to remember
352 that lstat() and C<-l> will leave values in the stat structure for the
353 symbolic link, not the real file.)  (Also, if the stat buffer was filled by
354 a C<lstat> call, C<-T> and C<-B> will reset it with the results of C<stat _>).
355 Example:
356
357     print "Can do.\n" if -r $a || -w _ || -x _;
358
359     stat($filename);
360     print "Readable\n" if -r _;
361     print "Writable\n" if -w _;
362     print "Executable\n" if -x _;
363     print "Setuid\n" if -u _;
364     print "Setgid\n" if -g _;
365     print "Sticky\n" if -k _;
366     print "Text\n" if -T _;
367     print "Binary\n" if -B _;
368
369 =item abs VALUE
370
371 =item abs
372
373 Returns the absolute value of its argument.
374 If VALUE is omitted, uses C<$_>.
375
376 =item accept NEWSOCKET,GENERICSOCKET
377
378 Accepts an incoming socket connect, just as the accept(2) system call
379 does.  Returns the packed address if it succeeded, false otherwise.
380 See the example in L<perlipc/"Sockets: Client/Server Communication">.
381
382 On systems that support a close-on-exec flag on files, the flag will
383 be set for the newly opened file descriptor, as determined by the
384 value of $^F.  See L<perlvar/$^F>.
385
386 =item alarm SECONDS
387
388 =item alarm
389
390 Arranges to have a SIGALRM delivered to this process after the
391 specified number of wallclock seconds have elapsed.  If SECONDS is not
392 specified, the value stored in C<$_> is used. (On some machines,
393 unfortunately, the elapsed time may be up to one second less or more
394 than you specified because of how seconds are counted, and process
395 scheduling may delay the delivery of the signal even further.)
396
397 Only one timer may be counting at once.  Each call disables the
398 previous timer, and an argument of C<0> may be supplied to cancel the
399 previous timer without starting a new one.  The returned value is the
400 amount of time remaining on the previous timer.
401
402 For delays of finer granularity than one second, you may use Perl's
403 four-argument version of select() leaving the first three arguments
404 undefined, or you might be able to use the C<syscall> interface to
405 access setitimer(2) if your system supports it.  The Time::HiRes
406 module (from CPAN, and starting from Perl 5.8 part of the standard
407 distribution) may also prove useful.
408
409 It is usually a mistake to intermix C<alarm> and C<sleep> calls.
410 (C<sleep> may be internally implemented in your system with C<alarm>)
411
412 If you want to use C<alarm> to time out a system call you need to use an
413 C<eval>/C<die> pair.  You can't rely on the alarm causing the system call to
414 fail with C<$!> set to C<EINTR> because Perl sets up signal handlers to
415 restart system calls on some systems.  Using C<eval>/C<die> always works,
416 modulo the caveats given in L<perlipc/"Signals">.
417
418     eval {
419         local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
420         alarm $timeout;
421         $nread = sysread SOCKET, $buffer, $size;
422         alarm 0;
423     };
424     if ($@) {
425         die unless $@ eq "alarm\n";   # propagate unexpected errors
426         # timed out
427     }
428     else {
429         # didn't
430     }
431
432 For more information see L<perlipc>.
433
434 =item atan2 Y,X
435
436 Returns the arctangent of Y/X in the range -PI to PI.
437
438 For the tangent operation, you may use the C<Math::Trig::tan>
439 function, or use the familiar relation:
440
441     sub tan { sin($_[0]) / cos($_[0])  }
442
443 =item bind SOCKET,NAME
444
445 Binds a network address to a socket, just as the bind system call
446 does.  Returns true if it succeeded, false otherwise.  NAME should be a
447 packed address of the appropriate type for the socket.  See the examples in
448 L<perlipc/"Sockets: Client/Server Communication">.
449
450 =item binmode FILEHANDLE, LAYER
451
452 =item binmode FILEHANDLE
453
454 Arranges for FILEHANDLE to be read or written in "binary" or "text"
455 mode on systems where the run-time libraries distinguish between
456 binary and text files.  If FILEHANDLE is an expression, the value is
457 taken as the name of the filehandle.  Returns true on success,
458 otherwise it returns C<undef> and sets C<$!> (errno).
459
460 On some systems (in general, DOS and Windows-based systems) binmode()
461 is necessary when you're not working with a text file.  For the sake
462 of portability it is a good idea to always use it when appropriate,
463 and to never use it when it isn't appropriate.  Also, people can
464 set their I/O to be by default UTF-8 encoded Unicode, not bytes.
465
466 In other words: regardless of platform, use binmode() on binary data,
467 like for example images.
468
469 If LAYER is present it is a single string, but may contain multiple
470 directives. The directives alter the behaviour of the file handle.
471 When LAYER is present using binmode on text file makes sense.
472
473 If LAYER is omitted or specified as C<:raw> the filehandle is made
474 suitable for passing binary data. This includes turning off possible CRLF
475 translation and marking it as bytes (as opposed to Unicode characters).
476 Note that as despite what may be implied in I<"Programming Perl">
477 (the Camel) or elsewhere C<:raw> is I<not> the simply inverse of C<:crlf>
478 -- other layers which would affect binary nature of the stream are
479 I<also> disabled. See L<PerlIO>, L<perlrun> and the discussion about the
480 PERLIO environment variable.
481
482 The C<:bytes>, C<:crlf>, and C<:utf8>, and any other directives of the
483 form C<:...>, are called I/O I<layers>.  The C<open> pragma can be used to
484 establish default I/O layers.  See L<open>.
485
486 I<The LAYER parameter of the binmode() function is described as "DISCIPLINE"
487 in "Programming Perl, 3rd Edition".  However, since the publishing of this
488 book, by many known as "Camel III", the consensus of the naming of this
489 functionality has moved from "discipline" to "layer".  All documentation
490 of this version of Perl therefore refers to "layers" rather than to
491 "disciplines".  Now back to the regularly scheduled documentation...>
492
493 To mark FILEHANDLE as UTF-8, use C<:utf8>.
494
495 In general, binmode() should be called after open() but before any I/O
496 is done on the filehandle.  Calling binmode() will normally flush any
497 pending buffered output data (and perhaps pending input data) on the
498 handle.  An exception to this is the C<:encoding> layer that
499 changes the default character encoding of the handle, see L<open>.
500 The C<:encoding> layer sometimes needs to be called in
501 mid-stream, and it doesn't flush the stream.  The C<:encoding>
502 also implicitly pushes on top of itself the C<:utf8> layer because
503 internally Perl will operate on UTF-8 encoded Unicode characters.
504
505 The operating system, device drivers, C libraries, and Perl run-time
506 system all work together to let the programmer treat a single
507 character (C<\n>) as the line terminator, irrespective of the external
508 representation.  On many operating systems, the native text file
509 representation matches the internal representation, but on some
510 platforms the external representation of C<\n> is made up of more than
511 one character.
512
513 Mac OS, all variants of Unix, and Stream_LF files on VMS use a single
514 character to end each line in the external representation of text (even
515 though that single character is CARRIAGE RETURN on Mac OS and LINE FEED
516 on Unix and most VMS files). In other systems like OS/2, DOS and the
517 various flavors of MS-Windows your program sees a C<\n> as a simple C<\cJ>,
518 but what's stored in text files are the two characters C<\cM\cJ>.  That
519 means that, if you don't use binmode() on these systems, C<\cM\cJ>
520 sequences on disk will be converted to C<\n> on input, and any C<\n> in
521 your program will be converted back to C<\cM\cJ> on output.  This is what
522 you want for text files, but it can be disastrous for binary files.
523
524 Another consequence of using binmode() (on some systems) is that
525 special end-of-file markers will be seen as part of the data stream.
526 For systems from the Microsoft family this means that if your binary
527 data contains C<\cZ>, the I/O subsystem will regard it as the end of
528 the file, unless you use binmode().
529
530 binmode() is not only important for readline() and print() operations,
531 but also when using read(), seek(), sysread(), syswrite() and tell()
532 (see L<perlport> for more details).  See the C<$/> and C<$\> variables
533 in L<perlvar> for how to manually set your input and output
534 line-termination sequences.
535
536 =item bless REF,CLASSNAME
537
538 =item bless REF
539
540 This function tells the thingy referenced by REF that it is now an object
541 in the CLASSNAME package.  If CLASSNAME is omitted, the current package
542 is used.  Because a C<bless> is often the last thing in a constructor,
543 it returns the reference for convenience.  Always use the two-argument
544 version if the function doing the blessing might be inherited by a
545 derived class.  See L<perltoot> and L<perlobj> for more about the blessing
546 (and blessings) of objects.
547
548 Consider always blessing objects in CLASSNAMEs that are mixed case.
549 Namespaces with all lowercase names are considered reserved for
550 Perl pragmata.  Builtin types have all uppercase names, so to prevent
551 confusion, you may wish to avoid such package names as well.  Make sure
552 that CLASSNAME is a true value.
553
554 See L<perlmod/"Perl Modules">.
555
556 =item caller EXPR
557
558 =item caller
559
560 Returns the context of the current subroutine call.  In scalar context,
561 returns the caller's package name if there is a caller, that is, if
562 we're in a subroutine or C<eval> or C<require>, and the undefined value
563 otherwise.  In list context, returns
564
565     ($package, $filename, $line) = caller;
566
567 With EXPR, it returns some extra information that the debugger uses to
568 print a stack trace.  The value of EXPR indicates how many call frames
569 to go back before the current one.
570
571     ($package, $filename, $line, $subroutine, $hasargs,
572     $wantarray, $evaltext, $is_require, $hints, $bitmask) = caller($i);
573
574 Here $subroutine may be C<(eval)> if the frame is not a subroutine
575 call, but an C<eval>.  In such a case additional elements $evaltext and
576 C<$is_require> are set: C<$is_require> is true if the frame is created by a
577 C<require> or C<use> statement, $evaltext contains the text of the
578 C<eval EXPR> statement.  In particular, for an C<eval BLOCK> statement,
579 $filename is C<(eval)>, but $evaltext is undefined.  (Note also that
580 each C<use> statement creates a C<require> frame inside an C<eval EXPR>
581 frame.)  $subroutine may also be C<(unknown)> if this particular
582 subroutine happens to have been deleted from the symbol table.
583 C<$hasargs> is true if a new instance of C<@_> was set up for the frame.
584 C<$hints> and C<$bitmask> contain pragmatic hints that the caller was
585 compiled with.  The C<$hints> and C<$bitmask> values are subject to change
586 between versions of Perl, and are not meant for external use.
587
588 Furthermore, when called from within the DB package, caller returns more
589 detailed information: it sets the list variable C<@DB::args> to be the
590 arguments with which the subroutine was invoked.
591
592 Be aware that the optimizer might have optimized call frames away before
593 C<caller> had a chance to get the information.  That means that C<caller(N)>
594 might not return information about the call frame you expect it do, for
595 C<< N > 1 >>.  In particular, C<@DB::args> might have information from the
596 previous time C<caller> was called.
597
598 =item chdir EXPR
599
600 Changes the working directory to EXPR, if possible. If EXPR is omitted,
601 changes to the directory specified by C<$ENV{HOME}>, if set; if not,
602 changes to the directory specified by C<$ENV{LOGDIR}>. (Under VMS, the
603 variable C<$ENV{SYS$LOGIN}> is also checked, and used if it is set.) If
604 neither is set, C<chdir> does nothing. It returns true upon success,
605 false otherwise. See the example under C<die>.
606
607 =item chmod LIST
608
609 Changes the permissions of a list of files.  The first element of the
610 list must be the numerical mode, which should probably be an octal
611 number, and which definitely should I<not> a string of octal digits:
612 C<0644> is okay, C<'0644'> is not.  Returns the number of files
613 successfully changed.  See also L</oct>, if all you have is a string.
614
615     $cnt = chmod 0755, 'foo', 'bar';
616     chmod 0755, @executables;
617     $mode = '0644'; chmod $mode, 'foo';      # !!! sets mode to
618                                              # --w----r-T
619     $mode = '0644'; chmod oct($mode), 'foo'; # this is better
620     $mode = 0644;   chmod $mode, 'foo';      # this is best
621
622 You can also import the symbolic C<S_I*> constants from the Fcntl
623 module:
624
625     use Fcntl ':mode';
626
627     chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
628     # This is identical to the chmod 0755 of the above example.
629
630 =item chomp VARIABLE
631
632 =item chomp( LIST )
633
634 =item chomp
635
636 This safer version of L</chop> removes any trailing string
637 that corresponds to the current value of C<$/> (also known as
638 $INPUT_RECORD_SEPARATOR in the C<English> module).  It returns the total
639 number of characters removed from all its arguments.  It's often used to
640 remove the newline from the end of an input record when you're worried
641 that the final record may be missing its newline.  When in paragraph
642 mode (C<$/ = "">), it removes all trailing newlines from the string.
643 When in slurp mode (C<$/ = undef>) or fixed-length record mode (C<$/> is
644 a reference to an integer or the like, see L<perlvar>) chomp() won't
645 remove anything.
646 If VARIABLE is omitted, it chomps C<$_>.  Example:
647
648     while (<>) {
649         chomp;  # avoid \n on last field
650         @array = split(/:/);
651         # ...
652     }
653
654 If VARIABLE is a hash, it chomps the hash's values, but not its keys.
655
656 You can actually chomp anything that's an lvalue, including an assignment:
657
658     chomp($cwd = `pwd`);
659     chomp($answer = <STDIN>);
660
661 If you chomp a list, each element is chomped, and the total number of
662 characters removed is returned.
663
664 Note that parentheses are necessary when you're chomping anything
665 that is not a simple variable.  This is because C<chomp $cwd = `pwd`;>
666 is interpreted as C<(chomp $cwd) = `pwd`;>, rather than as
667 C<chomp( $cwd = `pwd` )> which you might expect.  Similarly,
668 C<chomp $a, $b> is interpreted as C<chomp($a), $b> rather than
669 as C<chomp($a, $b)>.
670
671 =item chop VARIABLE
672
673 =item chop( LIST )
674
675 =item chop
676
677 Chops off the last character of a string and returns the character
678 chopped.  It is much more efficient than C<s/.$//s> because it neither
679 scans nor copies the string.  If VARIABLE is omitted, chops C<$_>.
680 If VARIABLE is a hash, it chops the hash's values, but not its keys.
681
682 You can actually chop anything that's an lvalue, including an assignment.
683
684 If you chop a list, each element is chopped.  Only the value of the
685 last C<chop> is returned.
686
687 Note that C<chop> returns the last character.  To return all but the last
688 character, use C<substr($string, 0, -1)>.
689
690 See also L</chomp>.
691
692 =item chown LIST
693
694 Changes the owner (and group) of a list of files.  The first two
695 elements of the list must be the I<numeric> uid and gid, in that
696 order.  A value of -1 in either position is interpreted by most
697 systems to leave that value unchanged.  Returns the number of files
698 successfully changed.
699
700     $cnt = chown $uid, $gid, 'foo', 'bar';
701     chown $uid, $gid, @filenames;
702
703 Here's an example that looks up nonnumeric uids in the passwd file:
704
705     print "User: ";
706     chomp($user = <STDIN>);
707     print "Files: ";
708     chomp($pattern = <STDIN>);
709
710     ($login,$pass,$uid,$gid) = getpwnam($user)
711         or die "$user not in passwd file";
712
713     @ary = glob($pattern);      # expand filenames
714     chown $uid, $gid, @ary;
715
716 On most systems, you are not allowed to change the ownership of the
717 file unless you're the superuser, although you should be able to change
718 the group to any of your secondary groups.  On insecure systems, these
719 restrictions may be relaxed, but this is not a portable assumption.
720 On POSIX systems, you can detect this condition this way:
721
722     use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
723     $can_chown_giveaway = not sysconf(_PC_CHOWN_RESTRICTED);
724
725 =item chr NUMBER
726
727 =item chr
728
729 Returns the character represented by that NUMBER in the character set.
730 For example, C<chr(65)> is C<"A"> in either ASCII or Unicode, and
731 chr(0x263a) is a Unicode smiley face.  Note that characters from 127
732 to 255 (inclusive) are by default not encoded in Unicode for backward
733 compatibility reasons (but see L<encoding>).
734
735 If NUMBER is omitted, uses C<$_>.
736
737 For the reverse, use L</ord>.
738
739 Note that under the C<bytes> pragma the NUMBER is masked to
740 the low eight bits.
741
742 See L<perlunicode> and L<encoding> for more about Unicode.
743
744 =item chroot FILENAME
745
746 =item chroot
747
748 This function works like the system call by the same name: it makes the
749 named directory the new root directory for all further pathnames that
750 begin with a C</> by your process and all its children.  (It doesn't
751 change your current working directory, which is unaffected.)  For security
752 reasons, this call is restricted to the superuser.  If FILENAME is
753 omitted, does a C<chroot> to C<$_>.
754
755 =item close FILEHANDLE
756
757 =item close
758
759 Closes the file or pipe associated with the file handle, returning
760 true only if IO buffers are successfully flushed and closes the system
761 file descriptor.  Closes the currently selected filehandle if the
762 argument is omitted.
763
764 You don't have to close FILEHANDLE if you are immediately going to do
765 another C<open> on it, because C<open> will close it for you.  (See
766 C<open>.)  However, an explicit C<close> on an input file resets the line
767 counter (C<$.>), while the implicit close done by C<open> does not.
768
769 If the file handle came from a piped open C<close> will additionally
770 return false if one of the other system calls involved fails or if the
771 program exits with non-zero status.  (If the only problem was that the
772 program exited non-zero C<$!> will be set to C<0>.)  Closing a pipe
773 also waits for the process executing on the pipe to complete, in case you
774 want to look at the output of the pipe afterwards, and
775 implicitly puts the exit status value of that command into C<$?>.
776
777 Prematurely closing the read end of a pipe (i.e. before the process
778 writing to it at the other end has closed it) will result in a
779 SIGPIPE being delivered to the writer.  If the other end can't
780 handle that, be sure to read all the data before closing the pipe.
781
782 Example:
783
784     open(OUTPUT, '|sort >foo')  # pipe to sort
785         or die "Can't start sort: $!";
786     #...                        # print stuff to output
787     close OUTPUT                # wait for sort to finish
788         or warn $! ? "Error closing sort pipe: $!"
789                    : "Exit status $? from sort";
790     open(INPUT, 'foo')          # get sort's results
791         or die "Can't open 'foo' for input: $!";
792
793 FILEHANDLE may be an expression whose value can be used as an indirect
794 filehandle, usually the real filehandle name.
795
796 =item closedir DIRHANDLE
797
798 Closes a directory opened by C<opendir> and returns the success of that
799 system call.
800
801 =item connect SOCKET,NAME
802
803 Attempts to connect to a remote socket, just as the connect system call
804 does.  Returns true if it succeeded, false otherwise.  NAME should be a
805 packed address of the appropriate type for the socket.  See the examples in
806 L<perlipc/"Sockets: Client/Server Communication">.
807
808 =item continue BLOCK
809
810 Actually a flow control statement rather than a function.  If there is a
811 C<continue> BLOCK attached to a BLOCK (typically in a C<while> or
812 C<foreach>), it is always executed just before the conditional is about to
813 be evaluated again, just like the third part of a C<for> loop in C.  Thus
814 it can be used to increment a loop variable, even when the loop has been
815 continued via the C<next> statement (which is similar to the C C<continue>
816 statement).
817
818 C<last>, C<next>, or C<redo> may appear within a C<continue>
819 block.  C<last> and C<redo> will behave as if they had been executed within
820 the main block.  So will C<next>, but since it will execute a C<continue>
821 block, it may be more entertaining.
822
823     while (EXPR) {
824         ### redo always comes here
825         do_something;
826     } continue {
827         ### next always comes here
828         do_something_else;
829         # then back the top to re-check EXPR
830     }
831     ### last always comes here
832
833 Omitting the C<continue> section is semantically equivalent to using an
834 empty one, logically enough.  In that case, C<next> goes directly back
835 to check the condition at the top of the loop.
836
837 =item cos EXPR
838
839 =item cos
840
841 Returns the cosine of EXPR (expressed in radians).  If EXPR is omitted,
842 takes cosine of C<$_>.
843
844 For the inverse cosine operation, you may use the C<Math::Trig::acos()>
845 function, or use this relation:
846
847     sub acos { atan2( sqrt(1 - $_[0] * $_[0]), $_[0] ) }
848
849 =item crypt PLAINTEXT,SALT
850
851 Encrypts a string exactly like the crypt(3) function in the C library
852 (assuming that you actually have a version there that has not been
853 extirpated as a potential munition).  This can prove useful for checking
854 the password file for lousy passwords, amongst other things.  Only the
855 guys wearing white hats should do this.
856
857 Note that L<crypt|/crypt> is intended to be a one-way function, much like
858 breaking eggs to make an omelette.  There is no (known) corresponding
859 decrypt function (in other words, the crypt() is a one-way hash
860 function).  As a result, this function isn't all that useful for
861 cryptography.  (For that, see your nearby CPAN mirror.)
862
863 When verifying an existing encrypted string you should use the
864 encrypted text as the salt (like C<crypt($plain, $crypted) eq
865 $crypted>).  This allows your code to work with the standard L<crypt|/crypt>
866 and with more exotic implementations.  In other words, do not assume
867 anything about the returned string itself, or how many bytes in
868 the encrypted string matter.
869
870 Traditionally the result is a string of 13 bytes: two first bytes of
871 the salt, followed by 11 bytes from the set C<[./0-9A-Za-z]>, and only
872 the first eight bytes of the encrypted string mattered, but
873 alternative hashing schemes (like MD5), higher level security schemes
874 (like C2), and implementations on non-UNIX platforms may produce
875 different strings.
876
877 When choosing a new salt create a random two character string whose
878 characters come from the set C<[./0-9A-Za-z]> (like C<join '', ('.',
879 '/', 0..9, 'A'..'Z', 'a'..'z')[rand 64, rand 64]>).  This set of
880 characters is just a recommendation; the characters allowed in
881 the salt depend solely on your system's crypt library, and Perl can't
882 restrict what salts C<crypt()> accepts.
883
884 Here's an example that makes sure that whoever runs this program knows
885 their own password:
886
887     $pwd = (getpwuid($<))[1];
888
889     system "stty -echo";
890     print "Password: ";
891     chomp($word = <STDIN>);
892     print "\n";
893     system "stty echo";
894
895     if (crypt($word, $pwd) ne $pwd) {
896         die "Sorry...\n";
897     } else {
898         print "ok\n";
899     }
900
901 Of course, typing in your own password to whoever asks you
902 for it is unwise.
903
904 The L<crypt|/crypt> function is unsuitable for encrypting large quantities
905 of data, not least of all because you can't get the information
906 back.  Look at the F<by-module/Crypt> and F<by-module/PGP> directories
907 on your favorite CPAN mirror for a slew of potentially useful
908 modules.
909
910 If using crypt() on a Unicode string (which I<potentially> has
911 characters with codepoints above 255), Perl tries to make sense
912 of the situation by trying to downgrade (a copy of the string)
913 the string back to an eight-bit byte string before calling crypt()
914 (on that copy).  If that works, good.  If not, crypt() dies with
915 C<Wide character in crypt>.
916
917 =item dbmclose HASH
918
919 [This function has been largely superseded by the C<untie> function.]
920
921 Breaks the binding between a DBM file and a hash.
922
923 =item dbmopen HASH,DBNAME,MASK
924
925 [This function has been largely superseded by the C<tie> function.]
926
927 This binds a dbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a
928 hash.  HASH is the name of the hash.  (Unlike normal C<open>, the first
929 argument is I<not> a filehandle, even though it looks like one).  DBNAME
930 is the name of the database (without the F<.dir> or F<.pag> extension if
931 any).  If the database does not exist, it is created with protection
932 specified by MASK (as modified by the C<umask>).  If your system supports
933 only the older DBM functions, you may perform only one C<dbmopen> in your
934 program.  In older versions of Perl, if your system had neither DBM nor
935 ndbm, calling C<dbmopen> produced a fatal error; it now falls back to
936 sdbm(3).
937
938 If you don't have write access to the DBM file, you can only read hash
939 variables, not set them.  If you want to test whether you can write,
940 either use file tests or try setting a dummy hash entry inside an C<eval>,
941 which will trap the error.
942
943 Note that functions such as C<keys> and C<values> may return huge lists
944 when used on large DBM files.  You may prefer to use the C<each>
945 function to iterate over large DBM files.  Example:
946
947     # print out history file offsets
948     dbmopen(%HIST,'/usr/lib/news/history',0666);
949     while (($key,$val) = each %HIST) {
950         print $key, ' = ', unpack('L',$val), "\n";
951     }
952     dbmclose(%HIST);
953
954 See also L<AnyDBM_File> for a more general description of the pros and
955 cons of the various dbm approaches, as well as L<DB_File> for a particularly
956 rich implementation.
957
958 You can control which DBM library you use by loading that library
959 before you call dbmopen():
960
961     use DB_File;
962     dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")
963         or die "Can't open netscape history file: $!";
964
965 =item defined EXPR
966
967 =item defined
968
969 Returns a Boolean value telling whether EXPR has a value other than
970 the undefined value C<undef>.  If EXPR is not present, C<$_> will be
971 checked.
972
973 Many operations return C<undef> to indicate failure, end of file,
974 system error, uninitialized variable, and other exceptional
975 conditions.  This function allows you to distinguish C<undef> from
976 other values.  (A simple Boolean test will not distinguish among
977 C<undef>, zero, the empty string, and C<"0">, which are all equally
978 false.)  Note that since C<undef> is a valid scalar, its presence
979 doesn't I<necessarily> indicate an exceptional condition: C<pop>
980 returns C<undef> when its argument is an empty array, I<or> when the
981 element to return happens to be C<undef>.
982
983 You may also use C<defined(&func)> to check whether subroutine C<&func>
984 has ever been defined.  The return value is unaffected by any forward
985 declarations of C<&func>.  Note that a subroutine which is not defined
986 may still be callable: its package may have an C<AUTOLOAD> method that
987 makes it spring into existence the first time that it is called -- see
988 L<perlsub>.
989
990 Use of C<defined> on aggregates (hashes and arrays) is deprecated.  It
991 used to report whether memory for that aggregate has ever been
992 allocated.  This behavior may disappear in future versions of Perl.
993 You should instead use a simple test for size:
994
995     if (@an_array) { print "has array elements\n" }
996     if (%a_hash)   { print "has hash members\n"   }
997
998 When used on a hash element, it tells you whether the value is defined,
999 not whether the key exists in the hash.  Use L</exists> for the latter
1000 purpose.
1001
1002 Examples:
1003
1004     print if defined $switch{'D'};
1005     print "$val\n" while defined($val = pop(@ary));
1006     die "Can't readlink $sym: $!"
1007         unless defined($value = readlink $sym);
1008     sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
1009     $debugging = 0 unless defined $debugging;
1010
1011 Note:  Many folks tend to overuse C<defined>, and then are surprised to
1012 discover that the number C<0> and C<""> (the zero-length string) are, in fact,
1013 defined values.  For example, if you say
1014
1015     "ab" =~ /a(.*)b/;
1016
1017 The pattern match succeeds, and C<$1> is defined, despite the fact that it
1018 matched "nothing".  But it didn't really match nothing--rather, it
1019 matched something that happened to be zero characters long.  This is all
1020 very above-board and honest.  When a function returns an undefined value,
1021 it's an admission that it couldn't give you an honest answer.  So you
1022 should use C<defined> only when you're questioning the integrity of what
1023 you're trying to do.  At other times, a simple comparison to C<0> or C<""> is
1024 what you want.
1025
1026 See also L</undef>, L</exists>, L</ref>.
1027
1028 =item delete EXPR
1029
1030 Given an expression that specifies a hash element, array element, hash slice,
1031 or array slice, deletes the specified element(s) from the hash or array.
1032 In the case of an array, if the array elements happen to be at the end,
1033 the size of the array will shrink to the highest element that tests
1034 true for exists() (or 0 if no such element exists).
1035
1036 Returns each element so deleted or the undefined value if there was no such
1037 element.  Deleting from C<$ENV{}> modifies the environment.  Deleting from
1038 a hash tied to a DBM file deletes the entry from the DBM file.  Deleting
1039 from a C<tie>d hash or array may not necessarily return anything.
1040
1041 Deleting an array element effectively returns that position of the array
1042 to its initial, uninitialized state.  Subsequently testing for the same
1043 element with exists() will return false.  Note that deleting array
1044 elements in the middle of an array will not shift the index of the ones
1045 after them down--use splice() for that.  See L</exists>.
1046
1047 The following (inefficiently) deletes all the values of %HASH and @ARRAY:
1048
1049     foreach $key (keys %HASH) {
1050         delete $HASH{$key};
1051     }
1052
1053     foreach $index (0 .. $#ARRAY) {
1054         delete $ARRAY[$index];
1055     }
1056
1057 And so do these:
1058
1059     delete @HASH{keys %HASH};
1060
1061     delete @ARRAY[0 .. $#ARRAY];
1062
1063 But both of these are slower than just assigning the empty list
1064 or undefining %HASH or @ARRAY:
1065
1066     %HASH = ();         # completely empty %HASH
1067     undef %HASH;        # forget %HASH ever existed
1068
1069     @ARRAY = ();        # completely empty @ARRAY
1070     undef @ARRAY;       # forget @ARRAY ever existed
1071
1072 Note that the EXPR can be arbitrarily complicated as long as the final
1073 operation is a hash element, array element,  hash slice, or array slice
1074 lookup:
1075
1076     delete $ref->[$x][$y]{$key};
1077     delete @{$ref->[$x][$y]}{$key1, $key2, @morekeys};
1078
1079     delete $ref->[$x][$y][$index];
1080     delete @{$ref->[$x][$y]}[$index1, $index2, @moreindices];
1081
1082 =item die LIST
1083
1084 Outside an C<eval>, prints the value of LIST to C<STDERR> and
1085 exits with the current value of C<$!> (errno).  If C<$!> is C<0>,
1086 exits with the value of C<<< ($? >> 8) >>> (backtick `command`
1087 status).  If C<<< ($? >> 8) >>> is C<0>, exits with C<255>.  Inside
1088 an C<eval(),> the error message is stuffed into C<$@> and the
1089 C<eval> is terminated with the undefined value.  This makes
1090 C<die> the way to raise an exception.
1091
1092 Equivalent examples:
1093
1094     die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
1095     chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"
1096
1097 If the last element of LIST does not end in a newline, the current
1098 script line number and input line number (if any) are also printed,
1099 and a newline is supplied.  Note that the "input line number" (also
1100 known as "chunk") is subject to whatever notion of "line" happens to
1101 be currently in effect, and is also available as the special variable
1102 C<$.>.  See L<perlvar/"$/"> and L<perlvar/"$.">.
1103
1104 Hint: sometimes appending C<", stopped"> to your message will cause it
1105 to make better sense when the string C<"at foo line 123"> is appended.
1106 Suppose you are running script "canasta".
1107
1108     die "/etc/games is no good";
1109     die "/etc/games is no good, stopped";
1110
1111 produce, respectively
1112
1113     /etc/games is no good at canasta line 123.
1114     /etc/games is no good, stopped at canasta line 123.
1115
1116 See also exit(), warn(), and the Carp module.
1117
1118 If LIST is empty and C<$@> already contains a value (typically from a
1119 previous eval) that value is reused after appending C<"\t...propagated">.
1120 This is useful for propagating exceptions:
1121
1122     eval { ... };
1123     die unless $@ =~ /Expected exception/;
1124
1125 If LIST is empty and C<$@> contains an object reference that has a
1126 C<PROPAGATE> method, that method will be called with additional file
1127 and line number parameters.  The return value replaces the value in
1128 C<$@>.  ie. as if C<< $@ = eval { $@->PROPAGATE(__FILE__, __LINE__) }; >>
1129 were called.
1130
1131 If C<$@> is empty then the string C<"Died"> is used.
1132
1133 die() can also be called with a reference argument.  If this happens to be
1134 trapped within an eval(), $@ contains the reference.  This behavior permits
1135 a more elaborate exception handling implementation using objects that
1136 maintain arbitrary state about the nature of the exception.  Such a scheme
1137 is sometimes preferable to matching particular string values of $@ using
1138 regular expressions.  Here's an example:
1139
1140     eval { ... ; die Some::Module::Exception->new( FOO => "bar" ) };
1141     if ($@) {
1142         if (ref($@) && UNIVERSAL::isa($@,"Some::Module::Exception")) {
1143             # handle Some::Module::Exception
1144         }
1145         else {
1146             # handle all other possible exceptions
1147         }
1148     }
1149
1150 Because perl will stringify uncaught exception messages before displaying
1151 them, you may want to overload stringification operations on such custom
1152 exception objects.  See L<overload> for details about that.
1153
1154 You can arrange for a callback to be run just before the C<die>
1155 does its deed, by setting the C<$SIG{__DIE__}> hook.  The associated
1156 handler will be called with the error text and can change the error
1157 message, if it sees fit, by calling C<die> again.  See
1158 L<perlvar/$SIG{expr}> for details on setting C<%SIG> entries, and
1159 L<"eval BLOCK"> for some examples.  Although this feature was meant
1160 to be run only right before your program was to exit, this is not
1161 currently the case--the C<$SIG{__DIE__}> hook is currently called
1162 even inside eval()ed blocks/strings!  If one wants the hook to do
1163 nothing in such situations, put
1164
1165         die @_ if $^S;
1166
1167 as the first line of the handler (see L<perlvar/$^S>).  Because
1168 this promotes strange action at a distance, this counterintuitive
1169 behavior may be fixed in a future release.
1170
1171 =item do BLOCK
1172
1173 Not really a function.  Returns the value of the last command in the
1174 sequence of commands indicated by BLOCK.  When modified by a loop
1175 modifier, executes the BLOCK once before testing the loop condition.
1176 (On other statements the loop modifiers test the conditional first.)
1177
1178 C<do BLOCK> does I<not> count as a loop, so the loop control statements
1179 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1180 See L<perlsyn> for alternative strategies.
1181
1182 =item do SUBROUTINE(LIST)
1183
1184 A deprecated form of subroutine call.  See L<perlsub>.
1185
1186 =item do EXPR
1187
1188 Uses the value of EXPR as a filename and executes the contents of the
1189 file as a Perl script.  Its primary use is to include subroutines
1190 from a Perl subroutine library.
1191
1192     do 'stat.pl';
1193
1194 is just like
1195
1196     eval `cat stat.pl`;
1197
1198 except that it's more efficient and concise, keeps track of the current
1199 filename for error messages, searches the @INC libraries, and updates
1200 C<%INC> if the file is found.  See L<perlvar/Predefined Names> for these
1201 variables.  It also differs in that code evaluated with C<do FILENAME>
1202 cannot see lexicals in the enclosing scope; C<eval STRING> does.  It's the
1203 same, however, in that it does reparse the file every time you call it,
1204 so you probably don't want to do this inside a loop.
1205
1206 If C<do> cannot read the file, it returns undef and sets C<$!> to the
1207 error.  If C<do> can read the file but cannot compile it, it
1208 returns undef and sets an error message in C<$@>.   If the file is
1209 successfully compiled, C<do> returns the value of the last expression
1210 evaluated.
1211
1212 Note that inclusion of library modules is better done with the
1213 C<use> and C<require> operators, which also do automatic error checking
1214 and raise an exception if there's a problem.
1215
1216 You might like to use C<do> to read in a program configuration
1217 file.  Manual error checking can be done this way:
1218
1219     # read in config files: system first, then user
1220     for $file ("/share/prog/defaults.rc",
1221                "$ENV{HOME}/.someprogrc")
1222    {
1223         unless ($return = do $file) {
1224             warn "couldn't parse $file: $@" if $@;
1225             warn "couldn't do $file: $!"    unless defined $return;
1226             warn "couldn't run $file"       unless $return;
1227         }
1228     }
1229
1230 =item dump LABEL
1231
1232 =item dump
1233
1234 This function causes an immediate core dump.  See also the B<-u>
1235 command-line switch in L<perlrun>, which does the same thing.
1236 Primarily this is so that you can use the B<undump> program (not
1237 supplied) to turn your core dump into an executable binary after
1238 having initialized all your variables at the beginning of the
1239 program.  When the new binary is executed it will begin by executing
1240 a C<goto LABEL> (with all the restrictions that C<goto> suffers).
1241 Think of it as a goto with an intervening core dump and reincarnation.
1242 If C<LABEL> is omitted, restarts the program from the top.
1243
1244 B<WARNING>: Any files opened at the time of the dump will I<not>
1245 be open any more when the program is reincarnated, with possible
1246 resulting confusion on the part of Perl.
1247
1248 This function is now largely obsolete, partly because it's very
1249 hard to convert a core file into an executable, and because the
1250 real compiler backends for generating portable bytecode and compilable
1251 C code have superseded it.  That's why you should now invoke it as
1252 C<CORE::dump()>, if you don't want to be warned against a possible
1253 typo.
1254
1255 If you're looking to use L<dump> to speed up your program, consider
1256 generating bytecode or native C code as described in L<perlcc>.  If
1257 you're just trying to accelerate a CGI script, consider using the
1258 C<mod_perl> extension to B<Apache>, or the CPAN module, CGI::Fast.
1259 You might also consider autoloading or selfloading, which at least
1260 make your program I<appear> to run faster.
1261
1262 =item each HASH
1263
1264 When called in list context, returns a 2-element list consisting of the
1265 key and value for the next element of a hash, so that you can iterate over
1266 it.  When called in scalar context, returns only the key for the next
1267 element in the hash.
1268
1269 Entries are returned in an apparently random order.  The actual random
1270 order is subject to change in future versions of perl, but it is
1271 guaranteed to be in the same order as either the C<keys> or C<values>
1272 function would produce on the same (unmodified) hash.
1273
1274 When the hash is entirely read, a null array is returned in list context
1275 (which when assigned produces a false (C<0>) value), and C<undef> in
1276 scalar context.  The next call to C<each> after that will start iterating
1277 again.  There is a single iterator for each hash, shared by all C<each>,
1278 C<keys>, and C<values> function calls in the program; it can be reset by
1279 reading all the elements from the hash, or by evaluating C<keys HASH> or
1280 C<values HASH>.  If you add or delete elements of a hash while you're
1281 iterating over it, you may get entries skipped or duplicated, so
1282 don't.  Exception: It is always safe to delete the item most recently
1283 returned by C<each()>, which means that the following code will work:
1284
1285         while (($key, $value) = each %hash) {
1286           print $key, "\n";
1287           delete $hash{$key};   # This is safe
1288         }
1289
1290 The following prints out your environment like the printenv(1) program,
1291 only in a different order:
1292
1293     while (($key,$value) = each %ENV) {
1294         print "$key=$value\n";
1295     }
1296
1297 See also C<keys>, C<values> and C<sort>.
1298
1299 =item eof FILEHANDLE
1300
1301 =item eof ()
1302
1303 =item eof
1304
1305 Returns 1 if the next read on FILEHANDLE will return end of file, or if
1306 FILEHANDLE is not open.  FILEHANDLE may be an expression whose value
1307 gives the real filehandle.  (Note that this function actually
1308 reads a character and then C<ungetc>s it, so isn't very useful in an
1309 interactive context.)  Do not read from a terminal file (or call
1310 C<eof(FILEHANDLE)> on it) after end-of-file is reached.  File types such
1311 as terminals may lose the end-of-file condition if you do.
1312
1313 An C<eof> without an argument uses the last file read.  Using C<eof()>
1314 with empty parentheses is very different.  It refers to the pseudo file
1315 formed from the files listed on the command line and accessed via the
1316 C<< <> >> operator.  Since C<< <> >> isn't explicitly opened,
1317 as a normal filehandle is, an C<eof()> before C<< <> >> has been
1318 used will cause C<@ARGV> to be examined to determine if input is
1319 available.   Similarly, an C<eof()> after C<< <> >> has returned
1320 end-of-file will assume you are processing another C<@ARGV> list,
1321 and if you haven't set C<@ARGV>, will read input from C<STDIN>;
1322 see L<perlop/"I/O Operators">.
1323
1324 In a C<< while (<>) >> loop, C<eof> or C<eof(ARGV)> can be used to
1325 detect the end of each file, C<eof()> will only detect the end of the
1326 last file.  Examples:
1327
1328     # reset line numbering on each input file
1329     while (<>) {
1330         next if /^\s*#/;        # skip comments
1331         print "$.\t$_";
1332     } continue {
1333         close ARGV  if eof;     # Not eof()!
1334     }
1335
1336     # insert dashes just before last line of last file
1337     while (<>) {
1338         if (eof()) {            # check for end of last file
1339             print "--------------\n";
1340         }
1341         print;
1342         last if eof();          # needed if we're reading from a terminal
1343     }
1344
1345 Practical hint: you almost never need to use C<eof> in Perl, because the
1346 input operators typically return C<undef> when they run out of data, or if
1347 there was an error.
1348
1349 =item eval EXPR
1350
1351 =item eval BLOCK
1352
1353 In the first form, the return value of EXPR is parsed and executed as if it
1354 were a little Perl program.  The value of the expression (which is itself
1355 determined within scalar context) is first parsed, and if there weren't any
1356 errors, executed in the lexical context of the current Perl program, so
1357 that any variable settings or subroutine and format definitions remain
1358 afterwards.  Note that the value is parsed every time the eval executes.
1359 If EXPR is omitted, evaluates C<$_>.  This form is typically used to
1360 delay parsing and subsequent execution of the text of EXPR until run time.
1361
1362 In the second form, the code within the BLOCK is parsed only once--at the
1363 same time the code surrounding the eval itself was parsed--and executed
1364 within the context of the current Perl program.  This form is typically
1365 used to trap exceptions more efficiently than the first (see below), while
1366 also providing the benefit of checking the code within BLOCK at compile
1367 time.
1368
1369 The final semicolon, if any, may be omitted from the value of EXPR or within
1370 the BLOCK.
1371
1372 In both forms, the value returned is the value of the last expression
1373 evaluated inside the mini-program; a return statement may be also used, just
1374 as with subroutines.  The expression providing the return value is evaluated
1375 in void, scalar, or list context, depending on the context of the eval itself.
1376 See L</wantarray> for more on how the evaluation context can be determined.
1377
1378 If there is a syntax error or runtime error, or a C<die> statement is
1379 executed, an undefined value is returned by C<eval>, and C<$@> is set to the
1380 error message.  If there was no error, C<$@> is guaranteed to be a null
1381 string.  Beware that using C<eval> neither silences perl from printing
1382 warnings to STDERR, nor does it stuff the text of warning messages into C<$@>.
1383 To do either of those, you have to use the C<$SIG{__WARN__}> facility, or
1384 turn off warnings inside the BLOCK or EXPR using S<C<no warnings 'all'>>.
1385 See L</warn>, L<perlvar>, L<warnings> and L<perllexwarn>.
1386
1387 Note that, because C<eval> traps otherwise-fatal errors, it is useful for
1388 determining whether a particular feature (such as C<socket> or C<symlink>)
1389 is implemented.  It is also Perl's exception trapping mechanism, where
1390 the die operator is used to raise exceptions.
1391
1392 If the code to be executed doesn't vary, you may use the eval-BLOCK
1393 form to trap run-time errors without incurring the penalty of
1394 recompiling each time.  The error, if any, is still returned in C<$@>.
1395 Examples:
1396
1397     # make divide-by-zero nonfatal
1398     eval { $answer = $a / $b; }; warn $@ if $@;
1399
1400     # same thing, but less efficient
1401     eval '$answer = $a / $b'; warn $@ if $@;
1402
1403     # a compile-time error
1404     eval { $answer = };                 # WRONG
1405
1406     # a run-time error
1407     eval '$answer =';   # sets $@
1408
1409 Due to the current arguably broken state of C<__DIE__> hooks, when using
1410 the C<eval{}> form as an exception trap in libraries, you may wish not
1411 to trigger any C<__DIE__> hooks that user code may have installed.
1412 You can use the C<local $SIG{__DIE__}> construct for this purpose,
1413 as shown in this example:
1414
1415     # a very private exception trap for divide-by-zero
1416     eval { local $SIG{'__DIE__'}; $answer = $a / $b; };
1417     warn $@ if $@;
1418
1419 This is especially significant, given that C<__DIE__> hooks can call
1420 C<die> again, which has the effect of changing their error messages:
1421
1422     # __DIE__ hooks may modify error messages
1423     {
1424        local $SIG{'__DIE__'} =
1425               sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x };
1426        eval { die "foo lives here" };
1427        print $@ if $@;                # prints "bar lives here"
1428     }
1429
1430 Because this promotes action at a distance, this counterintuitive behavior
1431 may be fixed in a future release.
1432
1433 With an C<eval>, you should be especially careful to remember what's
1434 being looked at when:
1435
1436     eval $x;            # CASE 1
1437     eval "$x";          # CASE 2
1438
1439     eval '$x';          # CASE 3
1440     eval { $x };        # CASE 4
1441
1442     eval "\$$x++";      # CASE 5
1443     $$x++;              # CASE 6
1444
1445 Cases 1 and 2 above behave identically: they run the code contained in
1446 the variable $x.  (Although case 2 has misleading double quotes making
1447 the reader wonder what else might be happening (nothing is).)  Cases 3
1448 and 4 likewise behave in the same way: they run the code C<'$x'>, which
1449 does nothing but return the value of $x.  (Case 4 is preferred for
1450 purely visual reasons, but it also has the advantage of compiling at
1451 compile-time instead of at run-time.)  Case 5 is a place where
1452 normally you I<would> like to use double quotes, except that in this
1453 particular situation, you can just use symbolic references instead, as
1454 in case 6.
1455
1456 C<eval BLOCK> does I<not> count as a loop, so the loop control statements
1457 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1458
1459 Note that as a very special case, an C<eval ''> executed within the C<DB>
1460 package doesn't see the usual surrounding lexical scope, but rather the
1461 scope of the first non-DB piece of code that called it. You don't normally
1462 need to worry about this unless you are writing a Perl debugger.
1463
1464 =item exec LIST
1465
1466 =item exec PROGRAM LIST
1467
1468 The C<exec> function executes a system command I<and never returns>--
1469 use C<system> instead of C<exec> if you want it to return.  It fails and
1470 returns false only if the command does not exist I<and> it is executed
1471 directly instead of via your system's command shell (see below).
1472
1473 Since it's a common mistake to use C<exec> instead of C<system>, Perl
1474 warns you if there is a following statement which isn't C<die>, C<warn>,
1475 or C<exit> (if C<-w> is set  -  but you always do that).   If you
1476 I<really> want to follow an C<exec> with some other statement, you
1477 can use one of these styles to avoid the warning:
1478
1479     exec ('foo')   or print STDERR "couldn't exec foo: $!";
1480     { exec ('foo') }; print STDERR "couldn't exec foo: $!";
1481
1482 If there is more than one argument in LIST, or if LIST is an array
1483 with more than one value, calls execvp(3) with the arguments in LIST.
1484 If there is only one scalar argument or an array with one element in it,
1485 the argument is checked for shell metacharacters, and if there are any,
1486 the entire argument is passed to the system's command shell for parsing
1487 (this is C</bin/sh -c> on Unix platforms, but varies on other platforms).
1488 If there are no shell metacharacters in the argument, it is split into
1489 words and passed directly to C<execvp>, which is more efficient.
1490 Examples:
1491
1492     exec '/bin/echo', 'Your arguments are: ', @ARGV;
1493     exec "sort $outfile | uniq";
1494
1495 If you don't really want to execute the first argument, but want to lie
1496 to the program you are executing about its own name, you can specify
1497 the program you actually want to run as an "indirect object" (without a
1498 comma) in front of the LIST.  (This always forces interpretation of the
1499 LIST as a multivalued list, even if there is only a single scalar in
1500 the list.)  Example:
1501
1502     $shell = '/bin/csh';
1503     exec $shell '-sh';          # pretend it's a login shell
1504
1505 or, more directly,
1506
1507     exec {'/bin/csh'} '-sh';    # pretend it's a login shell
1508
1509 When the arguments get executed via the system shell, results will
1510 be subject to its quirks and capabilities.  See L<perlop/"`STRING`">
1511 for details.
1512
1513 Using an indirect object with C<exec> or C<system> is also more
1514 secure.  This usage (which also works fine with system()) forces
1515 interpretation of the arguments as a multivalued list, even if the
1516 list had just one argument.  That way you're safe from the shell
1517 expanding wildcards or splitting up words with whitespace in them.
1518
1519     @args = ( "echo surprise" );
1520
1521     exec @args;               # subject to shell escapes
1522                                 # if @args == 1
1523     exec { $args[0] } @args;  # safe even with one-arg list
1524
1525 The first version, the one without the indirect object, ran the I<echo>
1526 program, passing it C<"surprise"> an argument.  The second version
1527 didn't--it tried to run a program literally called I<"echo surprise">,
1528 didn't find it, and set C<$?> to a non-zero value indicating failure.
1529
1530 Beginning with v5.6.0, Perl will attempt to flush all files opened for
1531 output before the exec, but this may not be supported on some platforms
1532 (see L<perlport>).  To be safe, you may need to set C<$|> ($AUTOFLUSH
1533 in English) or call the C<autoflush()> method of C<IO::Handle> on any
1534 open handles in order to avoid lost output.
1535
1536 Note that C<exec> will not call your C<END> blocks, nor will it call
1537 any C<DESTROY> methods in your objects.
1538
1539 =item exists EXPR
1540
1541 Given an expression that specifies a hash element or array element,
1542 returns true if the specified element in the hash or array has ever
1543 been initialized, even if the corresponding value is undefined.  The
1544 element is not autovivified if it doesn't exist.
1545
1546     print "Exists\n"    if exists $hash{$key};
1547     print "Defined\n"   if defined $hash{$key};
1548     print "True\n"      if $hash{$key};
1549
1550     print "Exists\n"    if exists $array[$index];
1551     print "Defined\n"   if defined $array[$index];
1552     print "True\n"      if $array[$index];
1553
1554 A hash or array element can be true only if it's defined, and defined if
1555 it exists, but the reverse doesn't necessarily hold true.
1556
1557 Given an expression that specifies the name of a subroutine,
1558 returns true if the specified subroutine has ever been declared, even
1559 if it is undefined.  Mentioning a subroutine name for exists or defined
1560 does not count as declaring it.  Note that a subroutine which does not
1561 exist may still be callable: its package may have an C<AUTOLOAD>
1562 method that makes it spring into existence the first time that it is
1563 called -- see L<perlsub>.
1564
1565     print "Exists\n"    if exists &subroutine;
1566     print "Defined\n"   if defined &subroutine;
1567
1568 Note that the EXPR can be arbitrarily complicated as long as the final
1569 operation is a hash or array key lookup or subroutine name:
1570
1571     if (exists $ref->{A}->{B}->{$key})  { }
1572     if (exists $hash{A}{B}{$key})       { }
1573
1574     if (exists $ref->{A}->{B}->[$ix])   { }
1575     if (exists $hash{A}{B}[$ix])        { }
1576
1577     if (exists &{$ref->{A}{B}{$key}})   { }
1578
1579 Although the deepest nested array or hash will not spring into existence
1580 just because its existence was tested, any intervening ones will.
1581 Thus C<< $ref->{"A"} >> and C<< $ref->{"A"}->{"B"} >> will spring
1582 into existence due to the existence test for the $key element above.
1583 This happens anywhere the arrow operator is used, including even:
1584
1585     undef $ref;
1586     if (exists $ref->{"Some key"})      { }
1587     print $ref;             # prints HASH(0x80d3d5c)
1588
1589 This surprising autovivification in what does not at first--or even
1590 second--glance appear to be an lvalue context may be fixed in a future
1591 release.
1592
1593 Use of a subroutine call, rather than a subroutine name, as an argument
1594 to exists() is an error.
1595
1596     exists &sub;        # OK
1597     exists &sub();      # Error
1598
1599 =item exit EXPR
1600
1601 Evaluates EXPR and exits immediately with that value.    Example:
1602
1603     $ans = <STDIN>;
1604     exit 0 if $ans =~ /^[Xx]/;
1605
1606 See also C<die>.  If EXPR is omitted, exits with C<0> status.  The only
1607 universally recognized values for EXPR are C<0> for success and C<1>
1608 for error; other values are subject to interpretation depending on the
1609 environment in which the Perl program is running.  For example, exiting
1610 69 (EX_UNAVAILABLE) from a I<sendmail> incoming-mail filter will cause
1611 the mailer to return the item undelivered, but that's not true everywhere.
1612
1613 Don't use C<exit> to abort a subroutine if there's any chance that
1614 someone might want to trap whatever error happened.  Use C<die> instead,
1615 which can be trapped by an C<eval>.
1616
1617 The exit() function does not always exit immediately.  It calls any
1618 defined C<END> routines first, but these C<END> routines may not
1619 themselves abort the exit.  Likewise any object destructors that need to
1620 be called are called before the real exit.  If this is a problem, you
1621 can call C<POSIX:_exit($status)> to avoid END and destructor processing.
1622 See L<perlmod> for details.
1623
1624 =item exp EXPR
1625
1626 =item exp
1627
1628 Returns I<e> (the natural logarithm base) to the power of EXPR.
1629 If EXPR is omitted, gives C<exp($_)>.
1630
1631 =item fcntl FILEHANDLE,FUNCTION,SCALAR
1632
1633 Implements the fcntl(2) function.  You'll probably have to say
1634
1635     use Fcntl;
1636
1637 first to get the correct constant definitions.  Argument processing and
1638 value return works just like C<ioctl> below.
1639 For example:
1640
1641     use Fcntl;
1642     fcntl($filehandle, F_GETFL, $packed_return_buffer)
1643         or die "can't fcntl F_GETFL: $!";
1644
1645 You don't have to check for C<defined> on the return from C<fnctl>.
1646 Like C<ioctl>, it maps a C<0> return from the system call into
1647 C<"0 but true"> in Perl.  This string is true in boolean context and C<0>
1648 in numeric context.  It is also exempt from the normal B<-w> warnings
1649 on improper numeric conversions.
1650
1651 Note that C<fcntl> will produce a fatal error if used on a machine that
1652 doesn't implement fcntl(2).  See the Fcntl module or your fcntl(2)
1653 manpage to learn what functions are available on your system.
1654
1655 =item fileno FILEHANDLE
1656
1657 Returns the file descriptor for a filehandle, or undefined if the
1658 filehandle is not open.  This is mainly useful for constructing
1659 bitmaps for C<select> and low-level POSIX tty-handling operations.
1660 If FILEHANDLE is an expression, the value is taken as an indirect
1661 filehandle, generally its name.
1662
1663 You can use this to find out whether two handles refer to the
1664 same underlying descriptor:
1665
1666     if (fileno(THIS) == fileno(THAT)) {
1667         print "THIS and THAT are dups\n";
1668     }
1669
1670 (Filehandles connected to memory objects via new features of C<open> may
1671 return undefined even though they are open.)
1672
1673
1674 =item flock FILEHANDLE,OPERATION
1675
1676 Calls flock(2), or an emulation of it, on FILEHANDLE.  Returns true
1677 for success, false on failure.  Produces a fatal error if used on a
1678 machine that doesn't implement flock(2), fcntl(2) locking, or lockf(3).
1679 C<flock> is Perl's portable file locking interface, although it locks
1680 only entire files, not records.
1681
1682 Two potentially non-obvious but traditional C<flock> semantics are
1683 that it waits indefinitely until the lock is granted, and that its locks
1684 B<merely advisory>.  Such discretionary locks are more flexible, but offer
1685 fewer guarantees.  This means that files locked with C<flock> may be
1686 modified by programs that do not also use C<flock>.  See L<perlport>,
1687 your port's specific documentation, or your system-specific local manpages
1688 for details.  It's best to assume traditional behavior if you're writing
1689 portable programs.  (But if you're not, you should as always feel perfectly
1690 free to write for your own system's idiosyncrasies (sometimes called
1691 "features").  Slavish adherence to portability concerns shouldn't get
1692 in the way of your getting your job done.)
1693
1694 OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with
1695 LOCK_NB.  These constants are traditionally valued 1, 2, 8 and 4, but
1696 you can use the symbolic names if you import them from the Fcntl module,
1697 either individually, or as a group using the ':flock' tag.  LOCK_SH
1698 requests a shared lock, LOCK_EX requests an exclusive lock, and LOCK_UN
1699 releases a previously requested lock.  If LOCK_NB is bitwise-or'ed with
1700 LOCK_SH or LOCK_EX then C<flock> will return immediately rather than blocking
1701 waiting for the lock (check the return status to see if you got it).
1702
1703 To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE
1704 before locking or unlocking it.
1705
1706 Note that the emulation built with lockf(3) doesn't provide shared
1707 locks, and it requires that FILEHANDLE be open with write intent.  These
1708 are the semantics that lockf(3) implements.  Most if not all systems
1709 implement lockf(3) in terms of fcntl(2) locking, though, so the
1710 differing semantics shouldn't bite too many people.
1711
1712 Note that the fcntl(2) emulation of flock(3) requires that FILEHANDLE
1713 be open with read intent to use LOCK_SH and requires that it be open
1714 with write intent to use LOCK_EX.
1715
1716 Note also that some versions of C<flock> cannot lock things over the
1717 network; you would need to use the more system-specific C<fcntl> for
1718 that.  If you like you can force Perl to ignore your system's flock(2)
1719 function, and so provide its own fcntl(2)-based emulation, by passing
1720 the switch C<-Ud_flock> to the F<Configure> program when you configure
1721 perl.
1722
1723 Here's a mailbox appender for BSD systems.
1724
1725     use Fcntl ':flock'; # import LOCK_* constants
1726
1727     sub lock {
1728         flock(MBOX,LOCK_EX);
1729         # and, in case someone appended
1730         # while we were waiting...
1731         seek(MBOX, 0, 2);
1732     }
1733
1734     sub unlock {
1735         flock(MBOX,LOCK_UN);
1736     }
1737
1738     open(MBOX, ">>/usr/spool/mail/$ENV{'USER'}")
1739             or die "Can't open mailbox: $!";
1740
1741     lock();
1742     print MBOX $msg,"\n\n";
1743     unlock();
1744
1745 On systems that support a real flock(), locks are inherited across fork()
1746 calls, whereas those that must resort to the more capricious fcntl()
1747 function lose the locks, making it harder to write servers.
1748
1749 See also L<DB_File> for other flock() examples.
1750
1751 =item fork
1752
1753 Does a fork(2) system call to create a new process running the
1754 same program at the same point.  It returns the child pid to the
1755 parent process, C<0> to the child process, or C<undef> if the fork is
1756 unsuccessful.  File descriptors (and sometimes locks on those descriptors)
1757 are shared, while everything else is copied.  On most systems supporting
1758 fork(), great care has gone into making it extremely efficient (for
1759 example, using copy-on-write technology on data pages), making it the
1760 dominant paradigm for multitasking over the last few decades.
1761
1762 Beginning with v5.6.0, Perl will attempt to flush all files opened for
1763 output before forking the child process, but this may not be supported
1764 on some platforms (see L<perlport>).  To be safe, you may need to set
1765 C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method of
1766 C<IO::Handle> on any open handles in order to avoid duplicate output.
1767
1768 If you C<fork> without ever waiting on your children, you will
1769 accumulate zombies.  On some systems, you can avoid this by setting
1770 C<$SIG{CHLD}> to C<"IGNORE">.  See also L<perlipc> for more examples of
1771 forking and reaping moribund children.
1772
1773 Note that if your forked child inherits system file descriptors like
1774 STDIN and STDOUT that are actually connected by a pipe or socket, even
1775 if you exit, then the remote server (such as, say, a CGI script or a
1776 backgrounded job launched from a remote shell) won't think you're done.
1777 You should reopen those to F</dev/null> if it's any issue.
1778
1779 =item format
1780
1781 Declare a picture format for use by the C<write> function.  For
1782 example:
1783
1784     format Something =
1785         Test: @<<<<<<<< @||||| @>>>>>
1786               $str,     $%,    '$' . int($num)
1787     .
1788
1789     $str = "widget";
1790     $num = $cost/$quantity;
1791     $~ = 'Something';
1792     write;
1793
1794 See L<perlform> for many details and examples.
1795
1796 =item formline PICTURE,LIST
1797
1798 This is an internal function used by C<format>s, though you may call it,
1799 too.  It formats (see L<perlform>) a list of values according to the
1800 contents of PICTURE, placing the output into the format output
1801 accumulator, C<$^A> (or C<$ACCUMULATOR> in English).
1802 Eventually, when a C<write> is done, the contents of
1803 C<$^A> are written to some filehandle, but you could also read C<$^A>
1804 yourself and then set C<$^A> back to C<"">.  Note that a format typically
1805 does one C<formline> per line of form, but the C<formline> function itself
1806 doesn't care how many newlines are embedded in the PICTURE.  This means
1807 that the C<~> and C<~~> tokens will treat the entire PICTURE as a single line.
1808 You may therefore need to use multiple formlines to implement a single
1809 record format, just like the format compiler.
1810
1811 Be careful if you put double quotes around the picture, because an C<@>
1812 character may be taken to mean the beginning of an array name.
1813 C<formline> always returns true.  See L<perlform> for other examples.
1814
1815 =item getc FILEHANDLE
1816
1817 =item getc
1818
1819 Returns the next character from the input file attached to FILEHANDLE,
1820 or the undefined value at end of file, or if there was an error (in
1821 the latter case C<$!> is set).  If FILEHANDLE is omitted, reads from
1822 STDIN.  This is not particularly efficient.  However, it cannot be
1823 used by itself to fetch single characters without waiting for the user
1824 to hit enter.  For that, try something more like:
1825
1826     if ($BSD_STYLE) {
1827         system "stty cbreak </dev/tty >/dev/tty 2>&1";
1828     }
1829     else {
1830         system "stty", '-icanon', 'eol', "\001";
1831     }
1832
1833     $key = getc(STDIN);
1834
1835     if ($BSD_STYLE) {
1836         system "stty -cbreak </dev/tty >/dev/tty 2>&1";
1837     }
1838     else {
1839         system "stty", 'icanon', 'eol', '^@'; # ASCII null
1840     }
1841     print "\n";
1842
1843 Determination of whether $BSD_STYLE should be set
1844 is left as an exercise to the reader.
1845
1846 The C<POSIX::getattr> function can do this more portably on
1847 systems purporting POSIX compliance.  See also the C<Term::ReadKey>
1848 module from your nearest CPAN site; details on CPAN can be found on
1849 L<perlmodlib/CPAN>.
1850
1851 =item getlogin
1852
1853 Implements the C library function of the same name, which on most
1854 systems returns the current login from F</etc/utmp>, if any.  If null,
1855 use C<getpwuid>.
1856
1857     $login = getlogin || getpwuid($<) || "Kilroy";
1858
1859 Do not consider C<getlogin> for authentication: it is not as
1860 secure as C<getpwuid>.
1861
1862 =item getpeername SOCKET
1863
1864 Returns the packed sockaddr address of other end of the SOCKET connection.
1865
1866     use Socket;
1867     $hersockaddr    = getpeername(SOCK);
1868     ($port, $iaddr) = sockaddr_in($hersockaddr);
1869     $herhostname    = gethostbyaddr($iaddr, AF_INET);
1870     $herstraddr     = inet_ntoa($iaddr);
1871
1872 =item getpgrp PID
1873
1874 Returns the current process group for the specified PID.  Use
1875 a PID of C<0> to get the current process group for the
1876 current process.  Will raise an exception if used on a machine that
1877 doesn't implement getpgrp(2).  If PID is omitted, returns process
1878 group of current process.  Note that the POSIX version of C<getpgrp>
1879 does not accept a PID argument, so only C<PID==0> is truly portable.
1880
1881 =item getppid
1882
1883 Returns the process id of the parent process.
1884
1885 Note for Linux users: on Linux, the C functions C<getpid()> and
1886 C<getppid()> return different values from different threads. In order to
1887 be portable, this behavior is not reflected by the perl-level function
1888 C<getppid()>, that returns a consistent value across threads. If you want
1889 to call the underlying C<getppid()>, you may use the CPAN module
1890 C<Linux::Pid>.
1891
1892 =item getpriority WHICH,WHO
1893
1894 Returns the current priority for a process, a process group, or a user.
1895 (See L<getpriority(2)>.)  Will raise a fatal exception if used on a
1896 machine that doesn't implement getpriority(2).
1897
1898 =item getpwnam NAME
1899
1900 =item getgrnam NAME
1901
1902 =item gethostbyname NAME
1903
1904 =item getnetbyname NAME
1905
1906 =item getprotobyname NAME
1907
1908 =item getpwuid UID
1909
1910 =item getgrgid GID
1911
1912 =item getservbyname NAME,PROTO
1913
1914 =item gethostbyaddr ADDR,ADDRTYPE
1915
1916 =item getnetbyaddr ADDR,ADDRTYPE
1917
1918 =item getprotobynumber NUMBER
1919
1920 =item getservbyport PORT,PROTO
1921
1922 =item getpwent
1923
1924 =item getgrent
1925
1926 =item gethostent
1927
1928 =item getnetent
1929
1930 =item getprotoent
1931
1932 =item getservent
1933
1934 =item setpwent
1935
1936 =item setgrent
1937
1938 =item sethostent STAYOPEN
1939
1940 =item setnetent STAYOPEN
1941
1942 =item setprotoent STAYOPEN
1943
1944 =item setservent STAYOPEN
1945
1946 =item endpwent
1947
1948 =item endgrent
1949
1950 =item endhostent
1951
1952 =item endnetent
1953
1954 =item endprotoent
1955
1956 =item endservent
1957
1958 These routines perform the same functions as their counterparts in the
1959 system library.  In list context, the return values from the
1960 various get routines are as follows:
1961
1962     ($name,$passwd,$uid,$gid,
1963        $quota,$comment,$gcos,$dir,$shell,$expire) = getpw*
1964     ($name,$passwd,$gid,$members) = getgr*
1965     ($name,$aliases,$addrtype,$length,@addrs) = gethost*
1966     ($name,$aliases,$addrtype,$net) = getnet*
1967     ($name,$aliases,$proto) = getproto*
1968     ($name,$aliases,$port,$proto) = getserv*
1969
1970 (If the entry doesn't exist you get a null list.)
1971
1972 The exact meaning of the $gcos field varies but it usually contains
1973 the real name of the user (as opposed to the login name) and other
1974 information pertaining to the user.  Beware, however, that in many
1975 system users are able to change this information and therefore it
1976 cannot be trusted and therefore the $gcos is tainted (see
1977 L<perlsec>).  The $passwd and $shell, user's encrypted password and
1978 login shell, are also tainted, because of the same reason.
1979
1980 In scalar context, you get the name, unless the function was a
1981 lookup by name, in which case you get the other thing, whatever it is.
1982 (If the entry doesn't exist you get the undefined value.)  For example:
1983
1984     $uid   = getpwnam($name);
1985     $name  = getpwuid($num);
1986     $name  = getpwent();
1987     $gid   = getgrnam($name);
1988     $name  = getgrgid($num);
1989     $name  = getgrent();
1990     #etc.
1991
1992 In I<getpw*()> the fields $quota, $comment, and $expire are special
1993 cases in the sense that in many systems they are unsupported.  If the
1994 $quota is unsupported, it is an empty scalar.  If it is supported, it
1995 usually encodes the disk quota.  If the $comment field is unsupported,
1996 it is an empty scalar.  If it is supported it usually encodes some
1997 administrative comment about the user.  In some systems the $quota
1998 field may be $change or $age, fields that have to do with password
1999 aging.  In some systems the $comment field may be $class.  The $expire
2000 field, if present, encodes the expiration period of the account or the
2001 password.  For the availability and the exact meaning of these fields
2002 in your system, please consult your getpwnam(3) documentation and your
2003 F<pwd.h> file.  You can also find out from within Perl what your
2004 $quota and $comment fields mean and whether you have the $expire field
2005 by using the C<Config> module and the values C<d_pwquota>, C<d_pwage>,
2006 C<d_pwchange>, C<d_pwcomment>, and C<d_pwexpire>.  Shadow password
2007 files are only supported if your vendor has implemented them in the
2008 intuitive fashion that calling the regular C library routines gets the
2009 shadow versions if you're running under privilege or if there exists
2010 the shadow(3) functions as found in System V ( this includes Solaris
2011 and Linux.)  Those systems which implement a proprietary shadow password
2012 facility are unlikely to be supported.
2013
2014 The $members value returned by I<getgr*()> is a space separated list of
2015 the login names of the members of the group.
2016
2017 For the I<gethost*()> functions, if the C<h_errno> variable is supported in
2018 C, it will be returned to you via C<$?> if the function call fails.  The
2019 C<@addrs> value returned by a successful call is a list of the raw
2020 addresses returned by the corresponding system library call.  In the
2021 Internet domain, each address is four bytes long and you can unpack it
2022 by saying something like:
2023
2024     ($a,$b,$c,$d) = unpack('C4',$addr[0]);
2025
2026 The Socket library makes this slightly easier:
2027
2028     use Socket;
2029     $iaddr = inet_aton("127.1"); # or whatever address
2030     $name  = gethostbyaddr($iaddr, AF_INET);
2031
2032     # or going the other way
2033     $straddr = inet_ntoa($iaddr);
2034
2035 If you get tired of remembering which element of the return list
2036 contains which return value, by-name interfaces are provided
2037 in standard modules: C<File::stat>, C<Net::hostent>, C<Net::netent>,
2038 C<Net::protoent>, C<Net::servent>, C<Time::gmtime>, C<Time::localtime>,
2039 and C<User::grent>.  These override the normal built-ins, supplying
2040 versions that return objects with the appropriate names
2041 for each field.  For example:
2042
2043    use File::stat;
2044    use User::pwent;
2045    $is_his = (stat($filename)->uid == pwent($whoever)->uid);
2046
2047 Even though it looks like they're the same method calls (uid),
2048 they aren't, because a C<File::stat> object is different from
2049 a C<User::pwent> object.
2050
2051 =item getsockname SOCKET
2052
2053 Returns the packed sockaddr address of this end of the SOCKET connection,
2054 in case you don't know the address because you have several different
2055 IPs that the connection might have come in on.
2056
2057     use Socket;
2058     $mysockaddr = getsockname(SOCK);
2059     ($port, $myaddr) = sockaddr_in($mysockaddr);
2060     printf "Connect to %s [%s]\n",
2061        scalar gethostbyaddr($myaddr, AF_INET),
2062        inet_ntoa($myaddr);
2063
2064 =item getsockopt SOCKET,LEVEL,OPTNAME
2065
2066 Returns the socket option requested, or undef if there is an error.
2067
2068 =item glob EXPR
2069
2070 =item glob
2071
2072 In list context, returns a (possibly empty) list of filename expansions on
2073 the value of EXPR such as the standard Unix shell F</bin/csh> would do. In
2074 scalar context, glob iterates through such filename expansions, returning
2075 undef when the list is exhausted. This is the internal function
2076 implementing the C<< <*.c> >> operator, but you can use it directly. If
2077 EXPR is omitted, C<$_> is used.  The C<< <*.c> >> operator is discussed in
2078 more detail in L<perlop/"I/O Operators">.
2079
2080 Beginning with v5.6.0, this operator is implemented using the standard
2081 C<File::Glob> extension.  See L<File::Glob> for details.
2082
2083 =item gmtime EXPR
2084
2085 Converts a time as returned by the time function to an 8-element list
2086 with the time localized for the standard Greenwich time zone.
2087 Typically used as follows:
2088
2089     #  0    1    2     3     4    5     6     7
2090     ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday) =
2091                                             gmtime(time);
2092
2093 All list elements are numeric, and come straight out of the C `struct
2094 tm'.  $sec, $min, and $hour are the seconds, minutes, and hours of the
2095 specified time.  $mday is the day of the month, and $mon is the month
2096 itself, in the range C<0..11> with 0 indicating January and 11
2097 indicating December.  $year is the number of years since 1900.  That
2098 is, $year is C<123> in year 2023.  $wday is the day of the week, with
2099 0 indicating Sunday and 3 indicating Wednesday.  $yday is the day of
2100 the year, in the range C<0..364> (or C<0..365> in leap years.)
2101
2102 Note that the $year element is I<not> simply the last two digits of
2103 the year.  If you assume it is, then you create non-Y2K-compliant
2104 programs--and you wouldn't want to do that, would you?
2105
2106 The proper way to get a complete 4-digit year is simply:
2107
2108         $year += 1900;
2109
2110 And to get the last two digits of the year (e.g., '01' in 2001) do:
2111
2112         $year = sprintf("%02d", $year % 100);
2113
2114 If EXPR is omitted, C<gmtime()> uses the current time (C<gmtime(time)>).
2115
2116 In scalar context, C<gmtime()> returns the ctime(3) value:
2117
2118     $now_string = gmtime;  # e.g., "Thu Oct 13 04:54:34 1994"
2119
2120 Also see the C<timegm> function provided by the C<Time::Local> module,
2121 and the strftime(3) function available via the POSIX module.
2122
2123 This scalar value is B<not> locale dependent (see L<perllocale>), but
2124 is instead a Perl builtin.  Also see the C<Time::Local> module, and the
2125 strftime(3) and mktime(3) functions available via the POSIX module.  To
2126 get somewhat similar but locale dependent date strings, set up your
2127 locale environment variables appropriately (please see L<perllocale>)
2128 and try for example:
2129
2130     use POSIX qw(strftime);
2131     $now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;
2132
2133 Note that the C<%a> and C<%b> escapes, which represent the short forms
2134 of the day of the week and the month of the year, may not necessarily
2135 be three characters wide in all locales.
2136
2137 =item goto LABEL
2138
2139 =item goto EXPR
2140
2141 =item goto &NAME
2142
2143 The C<goto-LABEL> form finds the statement labeled with LABEL and resumes
2144 execution there.  It may not be used to go into any construct that
2145 requires initialization, such as a subroutine or a C<foreach> loop.  It
2146 also can't be used to go into a construct that is optimized away,
2147 or to get out of a block or subroutine given to C<sort>.
2148 It can be used to go almost anywhere else within the dynamic scope,
2149 including out of subroutines, but it's usually better to use some other
2150 construct such as C<last> or C<die>.  The author of Perl has never felt the
2151 need to use this form of C<goto> (in Perl, that is--C is another matter).
2152 (The difference being that C does not offer named loops combined with
2153 loop control.  Perl does, and this replaces most structured uses of C<goto>
2154 in other languages.)
2155
2156 The C<goto-EXPR> form expects a label name, whose scope will be resolved
2157 dynamically.  This allows for computed C<goto>s per FORTRAN, but isn't
2158 necessarily recommended if you're optimizing for maintainability:
2159
2160     goto ("FOO", "BAR", "GLARCH")[$i];
2161
2162 The C<goto-&NAME> form is quite different from the other forms of
2163 C<goto>.  In fact, it isn't a goto in the normal sense at all, and
2164 doesn't have the stigma associated with other gotos.  Instead, it
2165 exits the current subroutine (losing any changes set by local()) and
2166 immediately calls in its place the named subroutine using the current
2167 value of @_.  This is used by C<AUTOLOAD> subroutines that wish to
2168 load another subroutine and then pretend that the other subroutine had
2169 been called in the first place (except that any modifications to C<@_>
2170 in the current subroutine are propagated to the other subroutine.)
2171 After the C<goto>, not even C<caller> will be able to tell that this
2172 routine was called first.
2173
2174 NAME needn't be the name of a subroutine; it can be a scalar variable
2175 containing a code reference, or a block which evaluates to a code
2176 reference.
2177
2178 =item grep BLOCK LIST
2179
2180 =item grep EXPR,LIST
2181
2182 This is similar in spirit to, but not the same as, grep(1) and its
2183 relatives.  In particular, it is not limited to using regular expressions.
2184
2185 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
2186 C<$_> to each element) and returns the list value consisting of those
2187 elements for which the expression evaluated to true.  In scalar
2188 context, returns the number of times the expression was true.
2189
2190     @foo = grep(!/^#/, @bar);    # weed out comments
2191
2192 or equivalently,
2193
2194     @foo = grep {!/^#/} @bar;    # weed out comments
2195
2196 Note that C<$_> is an alias to the list value, so it can be used to
2197 modify the elements of the LIST.  While this is useful and supported,
2198 it can cause bizarre results if the elements of LIST are not variables.
2199 Similarly, grep returns aliases into the original list, much as a for
2200 loop's index variable aliases the list elements.  That is, modifying an
2201 element of a list returned by grep (for example, in a C<foreach>, C<map>
2202 or another C<grep>) actually modifies the element in the original list.
2203 This is usually something to be avoided when writing clear code.
2204
2205 See also L</map> for a list composed of the results of the BLOCK or EXPR.
2206
2207 =item hex EXPR
2208
2209 =item hex
2210
2211 Interprets EXPR as a hex string and returns the corresponding value.
2212 (To convert strings that might start with either 0, 0x, or 0b, see
2213 L</oct>.)  If EXPR is omitted, uses C<$_>.
2214
2215     print hex '0xAf'; # prints '175'
2216     print hex 'aF';   # same
2217
2218 Hex strings may only represent integers.  Strings that would cause
2219 integer overflow trigger a warning.  Leading whitespace is not stripped,
2220 unlike oct().
2221
2222 =item import
2223
2224 There is no builtin C<import> function.  It is just an ordinary
2225 method (subroutine) defined (or inherited) by modules that wish to export
2226 names to another module.  The C<use> function calls the C<import> method
2227 for the package used.  See also L</use>, L<perlmod>, and L<Exporter>.
2228
2229 =item index STR,SUBSTR,POSITION
2230
2231 =item index STR,SUBSTR
2232
2233 The index function searches for one string within another, but without
2234 the wildcard-like behavior of a full regular-expression pattern match.
2235 It returns the position of the first occurrence of SUBSTR in STR at
2236 or after POSITION.  If POSITION is omitted, starts searching from the
2237 beginning of the string.  The return value is based at C<0> (or whatever
2238 you've set the C<$[> variable to--but don't do that).  If the substring
2239 is not found, returns one less than the base, ordinarily C<-1>.
2240
2241 =item int EXPR
2242
2243 =item int
2244
2245 Returns the integer portion of EXPR.  If EXPR is omitted, uses C<$_>.
2246 You should not use this function for rounding: one because it truncates
2247 towards C<0>, and two because machine representations of floating point
2248 numbers can sometimes produce counterintuitive results.  For example,
2249 C<int(-6.725/0.025)> produces -268 rather than the correct -269; that's
2250 because it's really more like -268.99999999999994315658 instead.  Usually,
2251 the C<sprintf>, C<printf>, or the C<POSIX::floor> and C<POSIX::ceil>
2252 functions will serve you better than will int().
2253
2254 =item ioctl FILEHANDLE,FUNCTION,SCALAR
2255
2256 Implements the ioctl(2) function.  You'll probably first have to say
2257
2258     require "ioctl.ph"; # probably in /usr/local/lib/perl/ioctl.ph
2259
2260 to get the correct function definitions.  If F<ioctl.ph> doesn't
2261 exist or doesn't have the correct definitions you'll have to roll your
2262 own, based on your C header files such as F<< <sys/ioctl.h> >>.
2263 (There is a Perl script called B<h2ph> that comes with the Perl kit that
2264 may help you in this, but it's nontrivial.)  SCALAR will be read and/or
2265 written depending on the FUNCTION--a pointer to the string value of SCALAR
2266 will be passed as the third argument of the actual C<ioctl> call.  (If SCALAR
2267 has no string value but does have a numeric value, that value will be
2268 passed rather than a pointer to the string value.  To guarantee this to be
2269 true, add a C<0> to the scalar before using it.)  The C<pack> and C<unpack>
2270 functions may be needed to manipulate the values of structures used by
2271 C<ioctl>.
2272
2273 The return value of C<ioctl> (and C<fcntl>) is as follows:
2274
2275         if OS returns:          then Perl returns:
2276             -1                    undefined value
2277              0                  string "0 but true"
2278         anything else               that number
2279
2280 Thus Perl returns true on success and false on failure, yet you can
2281 still easily determine the actual value returned by the operating
2282 system:
2283
2284     $retval = ioctl(...) || -1;
2285     printf "System returned %d\n", $retval;
2286
2287 The special string "C<0> but true" is exempt from B<-w> complaints
2288 about improper numeric conversions.
2289
2290 Here's an example of setting a filehandle named C<REMOTE> to be
2291 non-blocking at the system level.  You'll have to negotiate C<$|>
2292 on your own, though.
2293
2294     use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);
2295
2296     $flags = fcntl(REMOTE, F_GETFL, 0)
2297                 or die "Can't get flags for the socket: $!\n";
2298
2299     $flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
2300                 or die "Can't set flags for the socket: $!\n";
2301
2302 =item join EXPR,LIST
2303
2304 Joins the separate strings of LIST into a single string with fields
2305 separated by the value of EXPR, and returns that new string.  Example:
2306
2307     $rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);
2308
2309 Beware that unlike C<split>, C<join> doesn't take a pattern as its
2310 first argument.  Compare L</split>.
2311
2312 =item keys HASH
2313
2314 Returns a list consisting of all the keys of the named hash.
2315 (In scalar context, returns the number of keys.)
2316
2317 The keys are returned in an apparently random order.  The actual
2318 random order is subject to change in future versions of perl, but it
2319 is guaranteed to be the same order as either the C<values> or C<each>
2320 function produces (given that the hash has not been modified).
2321 Attacks">).
2322
2323 As a side effect, calling keys() resets the HASH's internal iterator,
2324 see L</each>.
2325
2326 Here is yet another way to print your environment:
2327
2328     @keys = keys %ENV;
2329     @values = values %ENV;
2330     while (@keys) {
2331         print pop(@keys), '=', pop(@values), "\n";
2332     }
2333
2334 or how about sorted by key:
2335
2336     foreach $key (sort(keys %ENV)) {
2337         print $key, '=', $ENV{$key}, "\n";
2338     }
2339
2340 The returned values are copies of the original keys in the hash, so
2341 modifying them will not affect the original hash.  Compare L</values>.
2342
2343 To sort a hash by value, you'll need to use a C<sort> function.
2344 Here's a descending numeric sort of a hash by its values:
2345
2346     foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
2347         printf "%4d %s\n", $hash{$key}, $key;
2348     }
2349
2350 As an lvalue C<keys> allows you to increase the number of hash buckets
2351 allocated for the given hash.  This can gain you a measure of efficiency if
2352 you know the hash is going to get big.  (This is similar to pre-extending
2353 an array by assigning a larger number to $#array.)  If you say
2354
2355     keys %hash = 200;
2356
2357 then C<%hash> will have at least 200 buckets allocated for it--256 of them,
2358 in fact, since it rounds up to the next power of two.  These
2359 buckets will be retained even if you do C<%hash = ()>, use C<undef
2360 %hash> if you want to free the storage while C<%hash> is still in scope.
2361 You can't shrink the number of buckets allocated for the hash using
2362 C<keys> in this way (but you needn't worry about doing this by accident,
2363 as trying has no effect).
2364
2365 See also C<each>, C<values> and C<sort>.
2366
2367 =item kill SIGNAL, LIST
2368
2369 Sends a signal to a list of processes.  Returns the number of
2370 processes successfully signaled (which is not necessarily the
2371 same as the number actually killed).
2372
2373     $cnt = kill 1, $child1, $child2;
2374     kill 9, @goners;
2375
2376 If SIGNAL is zero, no signal is sent to the process.  This is a
2377 useful way to check that the process is alive and hasn't changed
2378 its UID.  See L<perlport> for notes on the portability of this
2379 construct.
2380
2381 Unlike in the shell, if SIGNAL is negative, it kills
2382 process groups instead of processes.  (On System V, a negative I<PROCESS>
2383 number will also kill process groups, but that's not portable.)  That
2384 means you usually want to use positive not negative signals.  You may also
2385 use a signal name in quotes.  See L<perlipc/"Signals"> for details.
2386
2387 =item last LABEL
2388
2389 =item last
2390
2391 The C<last> command is like the C<break> statement in C (as used in
2392 loops); it immediately exits the loop in question.  If the LABEL is
2393 omitted, the command refers to the innermost enclosing loop.  The
2394 C<continue> block, if any, is not executed:
2395
2396     LINE: while (<STDIN>) {
2397         last LINE if /^$/;      # exit when done with header
2398         #...
2399     }
2400
2401 C<last> cannot be used to exit a block which returns a value such as
2402 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
2403 a grep() or map() operation.
2404
2405 Note that a block by itself is semantically identical to a loop
2406 that executes once.  Thus C<last> can be used to effect an early
2407 exit out of such a block.
2408
2409 See also L</continue> for an illustration of how C<last>, C<next>, and
2410 C<redo> work.
2411
2412 =item lc EXPR
2413
2414 =item lc
2415
2416 Returns a lowercased version of EXPR.  This is the internal function
2417 implementing the C<\L> escape in double-quoted strings.  Respects
2418 current LC_CTYPE locale if C<use locale> in force.  See L<perllocale>
2419 and L<perlunicode> for more details about locale and Unicode support.
2420
2421 If EXPR is omitted, uses C<$_>.
2422
2423 =item lcfirst EXPR
2424
2425 =item lcfirst
2426
2427 Returns the value of EXPR with the first character lowercased.  This
2428 is the internal function implementing the C<\l> escape in
2429 double-quoted strings.  Respects current LC_CTYPE locale if C<use
2430 locale> in force.  See L<perllocale> and L<perlunicode> for more
2431 details about locale and Unicode support.
2432
2433 If EXPR is omitted, uses C<$_>.
2434
2435 =item length EXPR
2436
2437 =item length
2438
2439 Returns the length in I<characters> of the value of EXPR.  If EXPR is
2440 omitted, returns length of C<$_>.  Note that this cannot be used on
2441 an entire array or hash to find out how many elements these have.
2442 For that, use C<scalar @array> and C<scalar keys %hash> respectively.
2443
2444 Note the I<characters>: if the EXPR is in Unicode, you will get the
2445 number of characters, not the number of bytes.  To get the length
2446 in bytes, use C<do { use bytes; length(EXPR) }>, see L<bytes>.
2447
2448 =item link OLDFILE,NEWFILE
2449
2450 Creates a new filename linked to the old filename.  Returns true for
2451 success, false otherwise.
2452
2453 =item listen SOCKET,QUEUESIZE
2454
2455 Does the same thing that the listen system call does.  Returns true if
2456 it succeeded, false otherwise.  See the example in
2457 L<perlipc/"Sockets: Client/Server Communication">.
2458
2459 =item local EXPR
2460
2461 You really probably want to be using C<my> instead, because C<local> isn't
2462 what most people think of as "local".  See
2463 L<perlsub/"Private Variables via my()"> for details.
2464
2465 A local modifies the listed variables to be local to the enclosing
2466 block, file, or eval.  If more than one value is listed, the list must
2467 be placed in parentheses.  See L<perlsub/"Temporary Values via local()">
2468 for details, including issues with tied arrays and hashes.
2469
2470 =item localtime EXPR
2471
2472 Converts a time as returned by the time function to a 9-element list
2473 with the time analyzed for the local time zone.  Typically used as
2474 follows:
2475
2476     #  0    1    2     3     4    5     6     7     8
2477     ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
2478                                                 localtime(time);
2479
2480 All list elements are numeric, and come straight out of the C `struct
2481 tm'.  $sec, $min, and $hour are the seconds, minutes, and hours of the
2482 specified time.  $mday is the day of the month, and $mon is the month
2483 itself, in the range C<0..11> with 0 indicating January and 11
2484 indicating December.  $year is the number of years since 1900.  That
2485 is, $year is C<123> in year 2023.  $wday is the day of the week, with
2486 0 indicating Sunday and 3 indicating Wednesday.  $yday is the day of
2487 the year, in the range C<0..364> (or C<0..365> in leap years.)  $isdst
2488 is true if the specified time occurs during daylight savings time,
2489 false otherwise.
2490
2491 Note that the $year element is I<not> simply the last two digits of
2492 the year.  If you assume it is, then you create non-Y2K-compliant
2493 programs--and you wouldn't want to do that, would you?
2494
2495 The proper way to get a complete 4-digit year is simply:
2496
2497         $year += 1900;
2498
2499 And to get the last two digits of the year (e.g., '01' in 2001) do:
2500
2501         $year = sprintf("%02d", $year % 100);
2502
2503 If EXPR is omitted, C<localtime()> uses the current time (C<localtime(time)>).
2504
2505 In scalar context, C<localtime()> returns the ctime(3) value:
2506
2507     $now_string = localtime;  # e.g., "Thu Oct 13 04:54:34 1994"
2508
2509 This scalar value is B<not> locale dependent, see L<perllocale>, but
2510 instead a Perl builtin.  Also see the C<Time::Local> module
2511 (to convert the second, minutes, hours, ... back to seconds since the
2512 stroke of midnight the 1st of January 1970, the value returned by
2513 time()), and the strftime(3) and mktime(3) functions available via the
2514 POSIX module.  To get somewhat similar but locale dependent date
2515 strings, set up your locale environment variables appropriately
2516 (please see L<perllocale>) and try for example:
2517
2518     use POSIX qw(strftime);
2519     $now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
2520
2521 Note that the C<%a> and C<%b>, the short forms of the day of the week
2522 and the month of the year, may not necessarily be three characters wide.
2523
2524 =item lock THING
2525
2526 This function places an advisory lock on a shared variable, or referenced
2527 object contained in I<THING> until the lock goes out of scope.
2528
2529 lock() is a "weak keyword" : this means that if you've defined a function
2530 by this name (before any calls to it), that function will be called
2531 instead. (However, if you've said C<use threads>, lock() is always a
2532 keyword.) See L<threads>.
2533
2534 =item log EXPR
2535
2536 =item log
2537
2538 Returns the natural logarithm (base I<e>) of EXPR.  If EXPR is omitted,
2539 returns log of C<$_>.  To get the log of another base, use basic algebra:
2540 The base-N log of a number is equal to the natural log of that number
2541 divided by the natural log of N.  For example:
2542
2543     sub log10 {
2544         my $n = shift;
2545         return log($n)/log(10);
2546     }
2547
2548 See also L</exp> for the inverse operation.
2549
2550 =item lstat EXPR
2551
2552 =item lstat
2553
2554 Does the same thing as the C<stat> function (including setting the
2555 special C<_> filehandle) but stats a symbolic link instead of the file
2556 the symbolic link points to.  If symbolic links are unimplemented on
2557 your system, a normal C<stat> is done.  For much more detailed
2558 information, please see the documentation for C<stat>.
2559
2560 If EXPR is omitted, stats C<$_>.
2561
2562 =item m//
2563
2564 The match operator.  See L<perlop>.
2565
2566 =item map BLOCK LIST
2567
2568 =item map EXPR,LIST
2569
2570 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
2571 C<$_> to each element) and returns the list value composed of the
2572 results of each such evaluation.  In scalar context, returns the
2573 total number of elements so generated.  Evaluates BLOCK or EXPR in
2574 list context, so each element of LIST may produce zero, one, or
2575 more elements in the returned value.
2576
2577     @chars = map(chr, @nums);
2578
2579 translates a list of numbers to the corresponding characters.  And
2580
2581     %hash = map { getkey($_) => $_ } @array;
2582
2583 is just a funny way to write
2584
2585     %hash = ();
2586     foreach $_ (@array) {
2587         $hash{getkey($_)} = $_;
2588     }
2589
2590 Note that C<$_> is an alias to the list value, so it can be used to
2591 modify the elements of the LIST.  While this is useful and supported,
2592 it can cause bizarre results if the elements of LIST are not variables.
2593 Using a regular C<foreach> loop for this purpose would be clearer in
2594 most cases.  See also L</grep> for an array composed of those items of
2595 the original list for which the BLOCK or EXPR evaluates to true.
2596
2597 C<{> starts both hash references and blocks, so C<map { ...> could be either
2598 the start of map BLOCK LIST or map EXPR, LIST. Because perl doesn't look
2599 ahead for the closing C<}> it has to take a guess at which its dealing with
2600 based what it finds just after the C<{>. Usually it gets it right, but if it
2601 doesn't it won't realize something is wrong until it gets to the C<}> and
2602 encounters the missing (or unexpected) comma. The syntax error will be
2603 reported close to the C<}> but you'll need to change something near the C<{>
2604 such as using a unary C<+> to give perl some help:
2605
2606     %hash = map {  "\L$_", 1  } @array  # perl guesses EXPR.  wrong
2607     %hash = map { +"\L$_", 1  } @array  # perl guesses BLOCK. right
2608     %hash = map { ("\L$_", 1) } @array  # this also works
2609     %hash = map {  lc($_), 1  } @array  # as does this.
2610     %hash = map +( lc($_), 1 ), @array  # this is EXPR and works!
2611
2612     %hash = map  ( lc($_), 1 ), @array  # evaluates to (1, @array)
2613
2614 or to force an anon hash constructor use C<+{>
2615
2616    @hashes = map +{ lc($_), 1 }, @array # EXPR, so needs , at end
2617
2618 and you get list of anonymous hashes each with only 1 entry.
2619
2620 =item mkdir FILENAME,MASK
2621
2622 =item mkdir FILENAME
2623
2624 Creates the directory specified by FILENAME, with permissions
2625 specified by MASK (as modified by C<umask>).  If it succeeds it
2626 returns true, otherwise it returns false and sets C<$!> (errno).
2627 If omitted, MASK defaults to 0777.
2628
2629 In general, it is better to create directories with permissive MASK,
2630 and let the user modify that with their C<umask>, than it is to supply
2631 a restrictive MASK and give the user no way to be more permissive.
2632 The exceptions to this rule are when the file or directory should be
2633 kept private (mail files, for instance).  The perlfunc(1) entry on
2634 C<umask> discusses the choice of MASK in more detail.
2635
2636 Note that according to the POSIX 1003.1-1996 the FILENAME may have any
2637 number of trailing slashes.  Some operating and filesystems do not get
2638 this right, so Perl automatically removes all trailing slashes to keep
2639 everyone happy.
2640
2641 =item msgctl ID,CMD,ARG
2642
2643 Calls the System V IPC function msgctl(2).  You'll probably have to say
2644
2645     use IPC::SysV;
2646
2647 first to get the correct constant definitions.  If CMD is C<IPC_STAT>,
2648 then ARG must be a variable which will hold the returned C<msqid_ds>
2649 structure.  Returns like C<ioctl>: the undefined value for error,
2650 C<"0 but true"> for zero, or the actual return value otherwise.  See also
2651 L<perlipc/"SysV IPC">, C<IPC::SysV>, and C<IPC::Semaphore> documentation.
2652
2653 =item msgget KEY,FLAGS
2654
2655 Calls the System V IPC function msgget(2).  Returns the message queue
2656 id, or the undefined value if there is an error.  See also
2657 L<perlipc/"SysV IPC"> and C<IPC::SysV> and C<IPC::Msg> documentation.
2658
2659 =item msgrcv ID,VAR,SIZE,TYPE,FLAGS
2660
2661 Calls the System V IPC function msgrcv to receive a message from
2662 message queue ID into variable VAR with a maximum message size of
2663 SIZE.  Note that when a message is received, the message type as a
2664 native long integer will be the first thing in VAR, followed by the
2665 actual message.  This packing may be opened with C<unpack("l! a*")>.
2666 Taints the variable.  Returns true if successful, or false if there is
2667 an error.  See also L<perlipc/"SysV IPC">, C<IPC::SysV>, and
2668 C<IPC::SysV::Msg> documentation.
2669
2670 =item msgsnd ID,MSG,FLAGS
2671
2672 Calls the System V IPC function msgsnd to send the message MSG to the
2673 message queue ID.  MSG must begin with the native long integer message
2674 type, and be followed by the length of the actual message, and finally
2675 the message itself.  This kind of packing can be achieved with
2676 C<pack("l! a*", $type, $message)>.  Returns true if successful,
2677 or false if there is an error.  See also C<IPC::SysV>
2678 and C<IPC::SysV::Msg> documentation.
2679
2680 =item my EXPR
2681
2682 =item my TYPE EXPR
2683
2684 =item my EXPR : ATTRS
2685
2686 =item my TYPE EXPR : ATTRS
2687
2688 A C<my> declares the listed variables to be local (lexically) to the
2689 enclosing block, file, or C<eval>.  If more than one value is listed,
2690 the list must be placed in parentheses.
2691
2692 The exact semantics and interface of TYPE and ATTRS are still
2693 evolving.  TYPE is currently bound to the use of C<fields> pragma,
2694 and attributes are handled using the C<attributes> pragma, or starting
2695 from Perl 5.8.0 also via the C<Attribute::Handlers> module.  See
2696 L<perlsub/"Private Variables via my()"> for details, and L<fields>,
2697 L<attributes>, and L<Attribute::Handlers>.
2698
2699 =item next LABEL
2700
2701 =item next
2702
2703 The C<next> command is like the C<continue> statement in C; it starts
2704 the next iteration of the loop:
2705
2706     LINE: while (<STDIN>) {
2707         next LINE if /^#/;      # discard comments
2708         #...
2709     }
2710
2711 Note that if there were a C<continue> block on the above, it would get
2712 executed even on discarded lines.  If the LABEL is omitted, the command
2713 refers to the innermost enclosing loop.
2714
2715 C<next> cannot be used to exit a block which returns a value such as
2716 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
2717 a grep() or map() operation.
2718
2719 Note that a block by itself is semantically identical to a loop
2720 that executes once.  Thus C<next> will exit such a block early.
2721
2722 See also L</continue> for an illustration of how C<last>, C<next>, and
2723 C<redo> work.
2724
2725 =item no Module VERSION LIST
2726
2727 =item no Module VERSION
2728
2729 =item no Module LIST
2730
2731 =item no Module
2732
2733 See the C<use> function, which C<no> is the opposite of.
2734
2735 =item oct EXPR
2736
2737 =item oct
2738
2739 Interprets EXPR as an octal string and returns the corresponding
2740 value.  (If EXPR happens to start off with C<0x>, interprets it as a
2741 hex string.  If EXPR starts off with C<0b>, it is interpreted as a
2742 binary string.  Leading whitespace is ignored in all three cases.)
2743 The following will handle decimal, binary, octal, and hex in the standard
2744 Perl or C notation:
2745
2746     $val = oct($val) if $val =~ /^0/;
2747
2748 If EXPR is omitted, uses C<$_>.   To go the other way (produce a number
2749 in octal), use sprintf() or printf():
2750
2751     $perms = (stat("filename"))[2] & 07777;
2752     $oct_perms = sprintf "%lo", $perms;
2753
2754 The oct() function is commonly used when a string such as C<644> needs
2755 to be converted into a file mode, for example. (Although perl will
2756 automatically convert strings into numbers as needed, this automatic
2757 conversion assumes base 10.)
2758
2759 =item open FILEHANDLE,EXPR
2760
2761 =item open FILEHANDLE,MODE,EXPR
2762
2763 =item open FILEHANDLE,MODE,EXPR,LIST
2764
2765 =item open FILEHANDLE,MODE,REFERENCE
2766
2767 =item open FILEHANDLE
2768
2769 Opens the file whose filename is given by EXPR, and associates it with
2770 FILEHANDLE.
2771
2772 (The following is a comprehensive reference to open(): for a gentler
2773 introduction you may consider L<perlopentut>.)
2774
2775 If FILEHANDLE is an undefined scalar variable (or array or hash element)
2776 the variable is assigned a reference to a new anonymous filehandle,
2777 otherwise if FILEHANDLE is an expression, its value is used as the name of
2778 the real filehandle wanted.  (This is considered a symbolic reference, so
2779 C<use strict 'refs'> should I<not> be in effect.)
2780
2781 If EXPR is omitted, the scalar variable of the same name as the
2782 FILEHANDLE contains the filename.  (Note that lexical variables--those
2783 declared with C<my>--will not work for this purpose; so if you're
2784 using C<my>, specify EXPR in your call to open.)
2785
2786 If three or more arguments are specified then the mode of opening and
2787 the file name are separate. If MODE is C<< '<' >> or nothing, the file
2788 is opened for input.  If MODE is C<< '>' >>, the file is truncated and
2789 opened for output, being created if necessary.  If MODE is C<<< '>>' >>>,
2790 the file is opened for appending, again being created if necessary.
2791
2792 You can put a C<'+'> in front of the C<< '>' >> or C<< '<' >> to
2793 indicate that you want both read and write access to the file; thus
2794 C<< '+<' >> is almost always preferred for read/write updates--the C<<
2795 '+>' >> mode would clobber the file first.  You can't usually use
2796 either read-write mode for updating textfiles, since they have
2797 variable length records.  See the B<-i> switch in L<perlrun> for a
2798 better approach.  The file is created with permissions of C<0666>
2799 modified by the process' C<umask> value.
2800
2801 These various prefixes correspond to the fopen(3) modes of C<'r'>,
2802 C<'r+'>, C<'w'>, C<'w+'>, C<'a'>, and C<'a+'>.
2803
2804 In the 2-arguments (and 1-argument) form of the call the mode and
2805 filename should be concatenated (in this order), possibly separated by
2806 spaces.  It is possible to omit the mode in these forms if the mode is
2807 C<< '<' >>.
2808
2809 If the filename begins with C<'|'>, the filename is interpreted as a
2810 command to which output is to be piped, and if the filename ends with a
2811 C<'|'>, the filename is interpreted as a command which pipes output to
2812 us.  See L<perlipc/"Using open() for IPC">
2813 for more examples of this.  (You are not allowed to C<open> to a command
2814 that pipes both in I<and> out, but see L<IPC::Open2>, L<IPC::Open3>,
2815 and L<perlipc/"Bidirectional Communication with Another Process">
2816 for alternatives.)
2817
2818 For three or more arguments if MODE is C<'|-'>, the filename is
2819 interpreted as a command to which output is to be piped, and if MODE
2820 is C<'-|'>, the filename is interpreted as a command which pipes
2821 output to us.  In the 2-arguments (and 1-argument) form one should
2822 replace dash (C<'-'>) with the command.
2823 See L<perlipc/"Using open() for IPC"> for more examples of this.
2824 (You are not allowed to C<open> to a command that pipes both in I<and>
2825 out, but see L<IPC::Open2>, L<IPC::Open3>, and
2826 L<perlipc/"Bidirectional Communication"> for alternatives.)
2827
2828 In the three-or-more argument form of pipe opens, if LIST is specified
2829 (extra arguments after the command name) then LIST becomes arguments
2830 to the command invoked if the platform supports it.  The meaning of
2831 C<open> with more than three arguments for non-pipe modes is not yet
2832 specified. Experimental "layers" may give extra LIST arguments
2833 meaning.
2834
2835 In the 2-arguments (and 1-argument) form opening C<'-'> opens STDIN
2836 and opening C<< '>-' >> opens STDOUT.
2837
2838 You may use the three-argument form of open to specify IO "layers"
2839 (sometimes also referred to as "disciplines") to be applied to the handle
2840 that affect how the input and output are processed (see L<open> and
2841 L<PerlIO> for more details). For example
2842
2843   open(FH, "<:utf8", "file")
2844
2845 will open the UTF-8 encoded file containing Unicode characters,
2846 see L<perluniintro>. (Note that if layers are specified in the
2847 three-arg form then default layers set by the C<open> pragma are
2848 ignored.)
2849
2850 Open returns nonzero upon success, the undefined value otherwise.  If
2851 the C<open> involved a pipe, the return value happens to be the pid of
2852 the subprocess.
2853
2854 If you're running Perl on a system that distinguishes between text
2855 files and binary files, then you should check out L</binmode> for tips
2856 for dealing with this.  The key distinction between systems that need
2857 C<binmode> and those that don't is their text file formats.  Systems
2858 like Unix, Mac OS, and Plan 9, which delimit lines with a single
2859 character, and which encode that character in C as C<"\n">, do not
2860 need C<binmode>.  The rest need it.
2861
2862 When opening a file, it's usually a bad idea to continue normal execution
2863 if the request failed, so C<open> is frequently used in connection with
2864 C<die>.  Even if C<die> won't do what you want (say, in a CGI script,
2865 where you want to make a nicely formatted error message (but there are
2866 modules that can help with that problem)) you should always check
2867 the return value from opening a file.  The infrequent exception is when
2868 working with an unopened filehandle is actually what you want to do.
2869
2870 As a special case the 3 arg form with a read/write mode and the third
2871 argument being C<undef>:
2872
2873     open(TMP, "+>", undef) or die ...
2874
2875 opens a filehandle to an anonymous temporary file.  Also using "+<"
2876 works for symmetry, but you really should consider writing something
2877 to the temporary file first.  You will need to seek() to do the
2878 reading.
2879
2880 File handles can be opened to "in memory" files held in Perl scalars via:
2881
2882     open($fh, '>', \$variable) || ..
2883
2884 Though if you try to re-open C<STDOUT> or C<STDERR> as an "in memory"
2885 file, you have to close it first:
2886
2887     close STDOUT;
2888     open STDOUT, '>', \$variable or die "Can't open STDOUT: $!";
2889
2890 Examples:
2891
2892     $ARTICLE = 100;
2893     open ARTICLE or die "Can't find article $ARTICLE: $!\n";
2894     while (<ARTICLE>) {...
2895
2896     open(LOG, '>>/usr/spool/news/twitlog');     # (log is reserved)
2897     # if the open fails, output is discarded
2898
2899     open(DBASE, '+<', 'dbase.mine')             # open for update
2900         or die "Can't open 'dbase.mine' for update: $!";
2901
2902     open(DBASE, '+<dbase.mine')                 # ditto
2903         or die "Can't open 'dbase.mine' for update: $!";
2904
2905     open(ARTICLE, '-|', "caesar <$article")     # decrypt article
2906         or die "Can't start caesar: $!";
2907
2908     open(ARTICLE, "caesar <$article |")         # ditto
2909         or die "Can't start caesar: $!";
2910
2911     open(EXTRACT, "|sort >/tmp/Tmp$$")          # $$ is our process id
2912         or die "Can't start sort: $!";
2913
2914     # in memory files
2915     open(MEMORY,'>', \$var)
2916         or die "Can't open memory file: $!";
2917     print MEMORY "foo!\n";                      # output will end up in $var
2918
2919     # process argument list of files along with any includes
2920
2921     foreach $file (@ARGV) {
2922         process($file, 'fh00');
2923     }
2924
2925     sub process {
2926         my($filename, $input) = @_;
2927         $input++;               # this is a string increment
2928         unless (open($input, $filename)) {
2929             print STDERR "Can't open $filename: $!\n";
2930             return;
2931         }
2932
2933         local $_;
2934         while (<$input>) {              # note use of indirection
2935             if (/^#include "(.*)"/) {
2936                 process($1, $input);
2937                 next;
2938             }
2939             #...                # whatever
2940         }
2941     }
2942
2943 You may also, in the Bourne shell tradition, specify an EXPR beginning
2944 with C<< '>&' >>, in which case the rest of the string is interpreted as the
2945 name of a filehandle (or file descriptor, if numeric) to be
2946 duped and opened.  You may use C<&> after C<< > >>, C<<< >> >>>,
2947 C<< < >>, C<< +> >>, C<<< +>> >>>, and C<< +< >>.  The
2948 mode you specify should match the mode of the original filehandle.
2949 (Duping a filehandle does not take into account any existing contents of
2950 IO buffers.) If you use the 3 arg form then you can pass either a number,
2951 the name of a filehandle or the normal "reference to a glob".
2952
2953 Here is a script that saves, redirects, and restores C<STDOUT> and
2954 C<STDERR> using various methods:
2955
2956     #!/usr/bin/perl
2957     open my $oldout, ">&STDOUT"     or die "Can't dup STDOUT: $!";
2958     open OLDERR,     ">&", \*STDERR or die "Can't dup STDERR: $!";
2959
2960     open STDOUT, '>', "foo.out" or die "Can't redirect STDOUT: $!";
2961     open STDERR, ">&STDOUT"     or die "Can't dup STDOUT: $!";
2962
2963     select STDERR; $| = 1;      # make unbuffered
2964     select STDOUT; $| = 1;      # make unbuffered
2965
2966     print STDOUT "stdout 1\n";  # this works for
2967     print STDERR "stderr 1\n";  # subprocesses too
2968
2969     close STDOUT;
2970     close STDERR;
2971
2972     open STDOUT, ">&", $oldout or die "Can't dup \$oldout: $!";
2973     open STDERR, ">&OLDERR"    or die "Can't dup OLDERR: $!";
2974
2975     print STDOUT "stdout 2\n";
2976     print STDERR "stderr 2\n";
2977
2978 If you specify C<< '<&=N' >>, where C<N> is a number, then Perl will
2979 do an equivalent of C's C<fdopen> of that file descriptor; this is
2980 more parsimonious of file descriptors.  For example:
2981
2982     open(FILEHANDLE, "<&=$fd")
2983
2984 or
2985
2986     open(FILEHANDLE, "<&=", $fd)
2987
2988 Note that if Perl is using the standard C libraries' fdopen() then on
2989 many UNIX systems, fdopen() is known to fail when file descriptors
2990 exceed a certain value, typically 255. If you need more file
2991 descriptors than that, consider rebuilding Perl to use the C<PerlIO>.
2992
2993 You can see whether Perl has been compiled with PerlIO or not by
2994 running C<perl -V> and looking for C<useperlio=> line.  If C<useperlio>
2995 is C<define>, you have PerlIO, otherwise you don't.
2996
2997 If you open a pipe on the command C<'-'>, i.e., either C<'|-'> or C<'-|'>
2998 with 2-arguments (or 1-argument) form of open(), then
2999 there is an implicit fork done, and the return value of open is the pid
3000 of the child within the parent process, and C<0> within the child
3001 process.  (Use C<defined($pid)> to determine whether the open was successful.)
3002 The filehandle behaves normally for the parent, but i/o to that
3003 filehandle is piped from/to the STDOUT/STDIN of the child process.
3004 In the child process the filehandle isn't opened--i/o happens from/to
3005 the new STDOUT or STDIN.  Typically this is used like the normal
3006 piped open when you want to exercise more control over just how the
3007 pipe command gets executed, such as when you are running setuid, and
3008 don't want to have to scan shell commands for metacharacters.
3009 The following triples are more or less equivalent:
3010
3011     open(FOO, "|tr '[a-z]' '[A-Z]'");
3012     open(FOO, '|-', "tr '[a-z]' '[A-Z]'");
3013     open(FOO, '|-') || exec 'tr', '[a-z]', '[A-Z]';
3014     open(FOO, '|-', "tr", '[a-z]', '[A-Z]');
3015
3016     open(FOO, "cat -n '$file'|");
3017     open(FOO, '-|', "cat -n '$file'");
3018     open(FOO, '-|') || exec 'cat', '-n', $file;
3019     open(FOO, '-|', "cat", '-n', $file);
3020
3021 The last example in each block shows the pipe as "list form", which is
3022 not yet supported on all platforms.  A good rule of thumb is that if
3023 your platform has true C<fork()> (in other words, if your platform is
3024 UNIX) you can use the list form.
3025
3026 See L<perlipc/"Safe Pipe Opens"> for more examples of this.
3027
3028 Beginning with v5.6.0, Perl will attempt to flush all files opened for
3029 output before any operation that may do a fork, but this may not be
3030 supported on some platforms (see L<perlport>).  To be safe, you may need
3031 to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
3032 of C<IO::Handle> on any open handles.
3033
3034 On systems that support a close-on-exec flag on files, the flag will
3035 be set for the newly opened file descriptor as determined by the value
3036 of $^F.  See L<perlvar/$^F>.
3037
3038 Closing any piped filehandle causes the parent process to wait for the
3039 child to finish, and returns the status value in C<$?>.
3040
3041 The filename passed to 2-argument (or 1-argument) form of open() will
3042 have leading and trailing whitespace deleted, and the normal
3043 redirection characters honored.  This property, known as "magic open",
3044 can often be used to good effect.  A user could specify a filename of
3045 F<"rsh cat file |">, or you could change certain filenames as needed:
3046
3047     $filename =~ s/(.*\.gz)\s*$/gzip -dc < $1|/;
3048     open(FH, $filename) or die "Can't open $filename: $!";
3049
3050 Use 3-argument form to open a file with arbitrary weird characters in it,
3051
3052     open(FOO, '<', $file);
3053
3054 otherwise it's necessary to protect any leading and trailing whitespace:
3055
3056     $file =~ s#^(\s)#./$1#;
3057     open(FOO, "< $file\0");
3058
3059 (this may not work on some bizarre filesystems).  One should
3060 conscientiously choose between the I<magic> and 3-arguments form
3061 of open():
3062
3063     open IN, $ARGV[0];
3064
3065 will allow the user to specify an argument of the form C<"rsh cat file |">,
3066 but will not work on a filename which happens to have a trailing space, while
3067
3068     open IN, '<', $ARGV[0];
3069
3070 will have exactly the opposite restrictions.
3071
3072 If you want a "real" C C<open> (see L<open(2)> on your system), then you
3073 should use the C<sysopen> function, which involves no such magic (but
3074 may use subtly different filemodes than Perl open(), which is mapped
3075 to C fopen()).  This is
3076 another way to protect your filenames from interpretation.  For example:
3077
3078     use IO::Handle;
3079     sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)
3080         or die "sysopen $path: $!";
3081     $oldfh = select(HANDLE); $| = 1; select($oldfh);
3082     print HANDLE "stuff $$\n";
3083     seek(HANDLE, 0, 0);
3084     print "File contains: ", <HANDLE>;
3085
3086 Using the constructor from the C<IO::Handle> package (or one of its
3087 subclasses, such as C<IO::File> or C<IO::Socket>), you can generate anonymous
3088 filehandles that have the scope of whatever variables hold references to
3089 them, and automatically close whenever and however you leave that scope:
3090
3091     use IO::File;
3092     #...
3093     sub read_myfile_munged {
3094         my $ALL = shift;
3095         my $handle = new IO::File;
3096         open($handle, "myfile") or die "myfile: $!";
3097         $first = <$handle>
3098             or return ();     # Automatically closed here.
3099         mung $first or die "mung failed";       # Or here.
3100         return $first, <$handle> if $ALL;       # Or here.
3101         $first;                                 # Or here.
3102     }
3103
3104 See L</seek> for some details about mixing reading and writing.
3105
3106 =item opendir DIRHANDLE,EXPR
3107
3108 Opens a directory named EXPR for processing by C<readdir>, C<telldir>,
3109 C<seekdir>, C<rewinddir>, and C<closedir>.  Returns true if successful.
3110 DIRHANDLE may be an expression whose value can be used as an indirect
3111 dirhandle, usually the real dirhandle name.  If DIRHANDLE is an undefined
3112 scalar variable (or array or hash element), the variable is assigned a
3113 reference to a new anonymous dirhandle.
3114 DIRHANDLEs have their own namespace separate from FILEHANDLEs.
3115
3116 =item ord EXPR
3117
3118 =item ord
3119
3120 Returns the numeric (the native 8-bit encoding, like ASCII or EBCDIC,
3121 or Unicode) value of the first character of EXPR.  If EXPR is omitted,
3122 uses C<$_>.
3123
3124 For the reverse, see L</chr>.
3125 See L<perlunicode> and L<encoding> for more about Unicode.
3126
3127 =item our EXPR
3128
3129 =item our EXPR TYPE
3130
3131 =item our EXPR : ATTRS
3132
3133 =item our TYPE EXPR : ATTRS
3134
3135 An C<our> declares the listed variables to be valid globals within
3136 the enclosing block, file, or C<eval>.  That is, it has the same
3137 scoping rules as a "my" declaration, but does not create a local
3138 variable.  If more than one value is listed, the list must be placed
3139 in parentheses.  The C<our> declaration has no semantic effect unless
3140 "use strict vars" is in effect, in which case it lets you use the
3141 declared global variable without qualifying it with a package name.
3142 (But only within the lexical scope of the C<our> declaration.  In this
3143 it differs from "use vars", which is package scoped.)
3144
3145 An C<our> declaration declares a global variable that will be visible
3146 across its entire lexical scope, even across package boundaries.  The
3147 package in which the variable is entered is determined at the point
3148 of the declaration, not at the point of use.  This means the following
3149 behavior holds:
3150
3151     package Foo;
3152     our $bar;           # declares $Foo::bar for rest of lexical scope
3153     $bar = 20;
3154
3155     package Bar;
3156     print $bar;         # prints 20
3157
3158 Multiple C<our> declarations in the same lexical scope are allowed
3159 if they are in different packages.  If they happened to be in the same
3160 package, Perl will emit warnings if you have asked for them.
3161
3162     use warnings;
3163     package Foo;
3164     our $bar;           # declares $Foo::bar for rest of lexical scope
3165     $bar = 20;
3166
3167     package Bar;
3168     our $bar = 30;      # declares $Bar::bar for rest of lexical scope
3169     print $bar;         # prints 30
3170
3171     our $bar;           # emits warning
3172
3173 An C<our> declaration may also have a list of attributes associated
3174 with it.
3175
3176 The exact semantics and interface of TYPE and ATTRS are still
3177 evolving.  TYPE is currently bound to the use of C<fields> pragma,
3178 and attributes are handled using the C<attributes> pragma, or starting
3179 from Perl 5.8.0 also via the C<Attribute::Handlers> module.  See
3180 L<perlsub/"Private Variables via my()"> for details, and L<fields>,
3181 L<attributes>, and L<Attribute::Handlers>.
3182
3183 The only currently recognized C<our()> attribute is C<unique> which
3184 indicates that a single copy of the global is to be used by all
3185 interpreters should the program happen to be running in a
3186 multi-interpreter environment. (The default behaviour would be for
3187 each interpreter to have its own copy of the global.)  Examples:
3188
3189     our @EXPORT : unique = qw(foo);
3190     our %EXPORT_TAGS : unique = (bar => [qw(aa bb cc)]);
3191     our $VERSION : unique = "1.00";
3192
3193 Note that this attribute also has the effect of making the global
3194 readonly when the first new interpreter is cloned (for example,
3195 when the first new thread is created).
3196
3197 Multi-interpreter environments can come to being either through the
3198 fork() emulation on Windows platforms, or by embedding perl in a
3199 multi-threaded application.  The C<unique> attribute does nothing in
3200 all other environments.
3201
3202 =item pack TEMPLATE,LIST
3203
3204 Takes a LIST of values and converts it into a string using the rules
3205 given by the TEMPLATE.  The resulting string is the concatenation of
3206 the converted values.  Typically, each converted value looks
3207 like its machine-level representation.  For example, on 32-bit machines
3208 a converted integer may be represented by a sequence of 4 bytes.
3209
3210 The TEMPLATE is a sequence of characters that give the order and type
3211 of values, as follows:
3212
3213     a   A string with arbitrary binary data, will be null padded.
3214     A   A text (ASCII) string, will be space padded.
3215     Z   A null terminated (ASCIZ) string, will be null padded.
3216
3217     b   A bit string (ascending bit order inside each byte, like vec()).
3218     B   A bit string (descending bit order inside each byte).
3219     h   A hex string (low nybble first).
3220     H   A hex string (high nybble first).
3221
3222     c   A signed char value.
3223     C   An unsigned char value.  Only does bytes.  See U for Unicode.
3224
3225     s   A signed short value.
3226     S   An unsigned short value.
3227           (This 'short' is _exactly_ 16 bits, which may differ from
3228            what a local C compiler calls 'short'.  If you want
3229            native-length shorts, use the '!' suffix.)
3230
3231     i   A signed integer value.
3232     I   An unsigned integer value.
3233           (This 'integer' is _at_least_ 32 bits wide.  Its exact
3234            size depends on what a local C compiler calls 'int',
3235            and may even be larger than the 'long' described in
3236            the next item.)
3237
3238     l   A signed long value.
3239     L   An unsigned long value.
3240           (This 'long' is _exactly_ 32 bits, which may differ from
3241            what a local C compiler calls 'long'.  If you want
3242            native-length longs, use the '!' suffix.)
3243
3244     n   An unsigned short in "network" (big-endian) order.
3245     N   An unsigned long in "network" (big-endian) order.
3246     v   An unsigned short in "VAX" (little-endian) order.
3247     V   An unsigned long in "VAX" (little-endian) order.
3248           (These 'shorts' and 'longs' are _exactly_ 16 bits and
3249            _exactly_ 32 bits, respectively.)
3250
3251     q   A signed quad (64-bit) value.
3252     Q   An unsigned quad value.
3253           (Quads are available only if your system supports 64-bit
3254            integer values _and_ if Perl has been compiled to support those.
3255            Causes a fatal error otherwise.)
3256
3257     j   A signed integer value (a Perl internal integer, IV).
3258     J   An unsigned integer value (a Perl internal unsigned integer, UV).
3259
3260     f   A single-precision float in the native format.
3261     d   A double-precision float in the native format.
3262
3263     F   A floating point value in the native native format
3264            (a Perl internal floating point value, NV).
3265     D   A long double-precision float in the native format.
3266           (Long doubles are available only if your system supports long
3267            double values _and_ if Perl has been compiled to support those.
3268            Causes a fatal error otherwise.)
3269
3270     p   A pointer to a null-terminated string.
3271     P   A pointer to a structure (fixed-length string).
3272
3273     u   A uuencoded string.
3274     U   A Unicode character number.  Encodes to UTF-8 internally
3275         (or UTF-EBCDIC in EBCDIC platforms).
3276
3277     w   A BER compressed integer.  Its bytes represent an unsigned
3278         integer in base 128, most significant digit first, with as
3279         few digits as possible.  Bit eight (the high bit) is set
3280         on each byte except the last.
3281
3282     x   A null byte.
3283     X   Back up a byte.
3284     @   Null fill to absolute position, counted from the start of
3285         the innermost ()-group.
3286     (   Start of a ()-group.
3287
3288 The following rules apply:
3289
3290 =over 8
3291
3292 =item *
3293
3294 Each letter may optionally be followed by a number giving a repeat
3295 count.  With all types except C<a>, C<A>, C<Z>, C<b>, C<B>, C<h>,
3296 C<H>, C<@>, C<x>, C<X> and C<P> the pack function will gobble up that
3297 many values from the LIST.  A C<*> for the repeat count means to use
3298 however many items are left, except for C<@>, C<x>, C<X>, where it is
3299 equivalent to C<0>, and C<u>, where it is equivalent to 1 (or 45, what
3300 is the same).  A numeric repeat count may optionally be enclosed in
3301 brackets, as in C<pack 'C[80]', @arr>.
3302
3303 One can replace the numeric repeat count by a template enclosed in brackets;
3304 then the packed length of this template in bytes is used as a count.
3305 For example, C<x[L]> skips a long (it skips the number of bytes in a long);
3306 the template C<$t X[$t] $t> unpack()s twice what $t unpacks.
3307 If the template in brackets contains alignment commands (such as C<x![d]>),
3308 its packed length is calculated as if the start of the template has the maximal
3309 possible alignment.
3310
3311 When used with C<Z>, C<*> results in the addition of a trailing null
3312 byte (so the packed result will be one longer than the byte C<length>
3313 of the item).
3314
3315 The repeat count for C<u> is interpreted as the maximal number of bytes
3316 to encode per line of output, with 0 and 1 replaced by 45.
3317
3318 =item *
3319
3320 The C<a>, C<A>, and C<Z> types gobble just one value, but pack it as a
3321 string of length count, padding with nulls or spaces as necessary.  When
3322 unpacking, C<A> strips trailing spaces and nulls, C<Z> strips everything
3323 after the first null, and C<a> returns data verbatim.  When packing,
3324 C<a>, and C<Z> are equivalent.
3325
3326 If the value-to-pack is too long, it is truncated.  If too long and an
3327 explicit count is provided, C<Z> packs only C<$count-1> bytes, followed
3328 by a null byte.  Thus C<Z> always packs a trailing null byte under
3329 all circumstances.
3330
3331 =item *
3332
3333 Likewise, the C<b> and C<B> fields pack a string that many bits long.
3334 Each byte of the input field of pack() generates 1 bit of the result.
3335 Each result bit is based on the least-significant bit of the corresponding
3336 input byte, i.e., on C<ord($byte)%2>.  In particular, bytes C<"0"> and
3337 C<"1"> generate bits 0 and 1, as do bytes C<"\0"> and C<"\1">.
3338
3339 Starting from the beginning of the input string of pack(), each 8-tuple
3340 of bytes is converted to 1 byte of output.  With format C<b>
3341 the first byte of the 8-tuple determines the least-significant bit of a
3342 byte, and with format C<B> it determines the most-significant bit of
3343 a byte.
3344
3345 If the length of the input string is not exactly divisible by 8, the
3346 remainder is packed as if the input string were padded by null bytes
3347 at the end.  Similarly, during unpack()ing the "extra" bits are ignored.
3348
3349 If the input string of pack() is longer than needed, extra bytes are ignored.
3350 A C<*> for the repeat count of pack() means to use all the bytes of
3351 the input field.  On unpack()ing the bits are converted to a string
3352 of C<"0">s and C<"1">s.
3353
3354 =item *
3355
3356 The C<h> and C<H> fields pack a string that many nybbles (4-bit groups,
3357 representable as hexadecimal digits, 0-9a-f) long.
3358
3359 Each byte of the input field of pack() generates 4 bits of the result.
3360 For non-alphabetical bytes the result is based on the 4 least-significant
3361 bits of the input byte, i.e., on C<ord($byte)%16>.  In particular,
3362 bytes C<"0"> and C<"1"> generate nybbles 0 and 1, as do bytes
3363 C<"\0"> and C<"\1">.  For bytes C<"a".."f"> and C<"A".."F"> the result
3364 is compatible with the usual hexadecimal digits, so that C<"a"> and
3365 C<"A"> both generate the nybble C<0xa==10>.  The result for bytes
3366 C<"g".."z"> and C<"G".."Z"> is not well-defined.
3367
3368 Starting from the beginning of the input string of pack(), each pair
3369 of bytes is converted to 1 byte of output.  With format C<h> the
3370 first byte of the pair determines the least-significant nybble of the
3371 output byte, and with format C<H> it determines the most-significant
3372 nybble.
3373
3374 If the length of the input string is not even, it behaves as if padded
3375 by a null byte at the end.  Similarly, during unpack()ing the "extra"
3376 nybbles are ignored.
3377
3378 If the input string of pack() is longer than needed, extra bytes are ignored.
3379 A C<*> for the repeat count of pack() means to use all the bytes of
3380 the input field.  On unpack()ing the bits are converted to a string
3381 of hexadecimal digits.
3382
3383 =item *
3384
3385 The C<p> type packs a pointer to a null-terminated string.  You are
3386 responsible for ensuring the string is not a temporary value (which can
3387 potentially get deallocated before you get around to using the packed result).
3388 The C<P> type packs a pointer to a structure of the size indicated by the
3389 length.  A NULL pointer is created if the corresponding value for C<p> or
3390 C<P> is C<undef>, similarly for unpack().
3391
3392 =item *
3393
3394 The C</> template character allows packing and unpacking of strings where
3395 the packed structure contains a byte count followed by the string itself.
3396 You write I<length-item>C</>I<string-item>.
3397
3398 The I<length-item> can be any C<pack> template letter, and describes
3399 how the length value is packed.  The ones likely to be of most use are
3400 integer-packing ones like C<n> (for Java strings), C<w> (for ASN.1 or
3401 SNMP) and C<N> (for Sun XDR).
3402
3403 For C<pack>, the I<string-item> must, at present, be C<"A*">, C<"a*"> or
3404 C<"Z*">. For C<unpack> the length of the string is obtained from the
3405 I<length-item>, but if you put in the '*' it will be ignored. For all other
3406 codes, C<unpack> applies the length value to the next item, which must not
3407 have a repeat count.
3408
3409     unpack 'C/a', "\04Gurusamy";        gives 'Guru'
3410     unpack 'a3/A* A*', '007 Bond  J ';  gives (' Bond','J')
3411     pack 'n/a* w/a*','hello,','world';  gives "\000\006hello,\005world"
3412
3413 The I<length-item> is not returned explicitly from C<unpack>.
3414
3415 Adding a count to the I<length-item> letter is unlikely to do anything
3416 useful, unless that letter is C<A>, C<a> or C<Z>.  Packing with a
3417 I<length-item> of C<a> or C<Z> may introduce C<"\000"> characters,
3418 which Perl does not regard as legal in numeric strings.
3419
3420 =item *
3421
3422 The integer types C<s>, C<S>, C<l>, and C<L> may be
3423 immediately followed by a C<!> suffix to signify native shorts or
3424 longs--as you can see from above for example a bare C<l> does mean
3425 exactly 32 bits, the native C<long> (as seen by the local C compiler)
3426 may be larger.  This is an issue mainly in 64-bit platforms.  You can
3427 see whether using C<!> makes any difference by
3428
3429         print length(pack("s")), " ", length(pack("s!")), "\n";
3430         print length(pack("l")), " ", length(pack("l!")), "\n";
3431
3432 C<i!> and C<I!> also work but only because of completeness;
3433 they are identical to C<i> and C<I>.
3434
3435 The actual sizes (in bytes) of native shorts, ints, longs, and long
3436 longs on the platform where Perl was built are also available via
3437 L<Config>:
3438
3439        use Config;
3440        print $Config{shortsize},    "\n";
3441        print $Config{intsize},      "\n";
3442        print $Config{longsize},     "\n";
3443        print $Config{longlongsize}, "\n";
3444
3445 (The C<$Config{longlongsize}> will be undefined if your system does
3446 not support long longs.)
3447
3448 =item *
3449
3450 The integer formats C<s>, C<S>, C<i>, C<I>, C<l>, C<L>, C<j>, and C<J>
3451 are inherently non-portable between processors and operating systems
3452 because they obey the native byteorder and endianness.  For example a
3453 4-byte integer 0x12345678 (305419896 decimal) would be ordered natively
3454 (arranged in and handled by the CPU registers) into bytes as
3455
3456         0x12 0x34 0x56 0x78     # big-endian
3457         0x78 0x56 0x34 0x12     # little-endian
3458
3459 Basically, the Intel and VAX CPUs are little-endian, while everybody
3460 else, for example Motorola m68k/88k, PPC, Sparc, HP PA, Power, and
3461 Cray are big-endian.  Alpha and MIPS can be either: Digital/Compaq
3462 used/uses them in little-endian mode; SGI/Cray uses them in big-endian
3463 mode.
3464
3465 The names `big-endian' and `little-endian' are comic references to
3466 the classic "Gulliver's Travels" (via the paper "On Holy Wars and a
3467 Plea for Peace" by Danny Cohen, USC/ISI IEN 137, April 1, 1980) and
3468 the egg-eating habits of the Lilliputians.
3469
3470 Some systems may have even weirder byte orders such as
3471
3472         0x56 0x78 0x12 0x34
3473         0x34 0x12 0x78 0x56
3474
3475 You can see your system's preference with
3476
3477         print join(" ", map { sprintf "%#02x", $_ }
3478                             unpack("C*",pack("L",0x12345678))), "\n";
3479
3480 The byteorder on the platform where Perl was built is also available
3481 via L<Config>:
3482
3483         use Config;
3484         print $Config{byteorder}, "\n";
3485
3486 Byteorders C<'1234'> and C<'12345678'> are little-endian, C<'4321'>
3487 and C<'87654321'> are big-endian.
3488
3489 If you want portable packed integers use the formats C<n>, C<N>,
3490 C<v>, and C<V>, their byte endianness and size are known.
3491 See also L<perlport>.
3492
3493 =item *
3494
3495 Real numbers (floats and doubles) are in the native machine format only;
3496 due to the multiplicity of floating formats around, and the lack of a
3497 standard "network" representation, no facility for interchange has been
3498 made.  This means that packed floating point data written on one machine
3499 may not be readable on another - even if both use IEEE floating point
3500 arithmetic (as the endian-ness of the memory representation is not part
3501 of the IEEE spec).  See also L<perlport>.
3502
3503 Note that Perl uses doubles internally for all numeric calculation, and
3504 converting from double into float and thence back to double again will
3505 lose precision (i.e., C<unpack("f", pack("f", $foo)>) will not in general
3506 equal $foo).
3507
3508 =item *
3509
3510 If the pattern begins with a C<U>, the resulting string will be treated
3511 as Unicode-encoded. You can force UTF8 encoding on in a string with an
3512 initial C<U0>, and the bytes that follow will be interpreted as Unicode
3513 characters. If you don't want this to happen, you can begin your pattern
3514 with C<C0> (or anything else) to force Perl not to UTF8 encode your
3515 string, and then follow this with a C<U*> somewhere in your pattern.
3516
3517 =item *
3518
3519 You must yourself do any alignment or padding by inserting for example
3520 enough C<'x'>es while packing.  There is no way to pack() and unpack()
3521 could know where the bytes are going to or coming from.  Therefore
3522 C<pack> (and C<unpack>) handle their output and input as flat
3523 sequences of bytes.
3524
3525 =item *
3526
3527 A ()-group is a sub-TEMPLATE enclosed in parentheses.  A group may
3528 take a repeat count, both as postfix, and for unpack() also via the C</>
3529 template character. Within each repetition of a group, positioning with
3530 C<@> starts again at 0. Therefore, the result of
3531
3532     pack( '@1A((@2A)@3A)', 'a', 'b', 'c' )
3533
3534 is the string "\0a\0\0bc".
3535
3536
3537 =item *
3538
3539 C<x> and C<X> accept C<!> modifier.  In this case they act as
3540 alignment commands: they jump forward/back to the closest position
3541 aligned at a multiple of C<count> bytes.  For example, to pack() or
3542 unpack() C's C<struct {char c; double d; char cc[2]}> one may need to
3543 use the template C<C x![d] d C[2]>; this assumes that doubles must be
3544 aligned on the double's size.
3545
3546 For alignment commands C<count> of 0 is equivalent to C<count> of 1;
3547 both result in no-ops.
3548
3549 =item *
3550
3551 A comment in a TEMPLATE starts with C<#> and goes to the end of line.
3552 White space may be used to separate pack codes from each other, but
3553 a C<!> modifier and a repeat count must follow immediately.
3554
3555 =item *
3556
3557 If TEMPLATE requires more arguments to pack() than actually given, pack()
3558 assumes additional C<""> arguments.  If TEMPLATE requires less arguments
3559 to pack() than actually given, extra arguments are ignored.
3560
3561 =back
3562
3563 Examples:
3564
3565     $foo = pack("CCCC",65,66,67,68);
3566     # foo eq "ABCD"
3567     $foo = pack("C4",65,66,67,68);
3568     # same thing
3569     $foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
3570     # same thing with Unicode circled letters
3571
3572     $foo = pack("ccxxcc",65,66,67,68);
3573     # foo eq "AB\0\0CD"
3574
3575     # note: the above examples featuring "C" and "c" are true
3576     # only on ASCII and ASCII-derived systems such as ISO Latin 1
3577     # and UTF-8.  In EBCDIC the first example would be
3578     # $foo = pack("CCCC",193,194,195,196);
3579
3580     $foo = pack("s2",1,2);
3581     # "\1\0\2\0" on little-endian
3582     # "\0\1\0\2" on big-endian
3583
3584     $foo = pack("a4","abcd","x","y","z");
3585     # "abcd"
3586
3587     $foo = pack("aaaa","abcd","x","y","z");
3588     # "axyz"
3589
3590     $foo = pack("a14","abcdefg");
3591     # "abcdefg\0\0\0\0\0\0\0"
3592
3593     $foo = pack("i9pl", gmtime);
3594     # a real struct tm (on my system anyway)
3595
3596     $utmp_template = "Z8 Z8 Z16 L";
3597     $utmp = pack($utmp_template, @utmp1);
3598     # a struct utmp (BSDish)
3599
3600     @utmp2 = unpack($utmp_template, $utmp);
3601     # "@utmp1" eq "@utmp2"
3602
3603     sub bintodec {
3604         unpack("N", pack("B32", substr("0" x 32 . shift, -32)));
3605     }
3606
3607     $foo = pack('sx2l', 12, 34);
3608     # short 12, two zero bytes padding, long 34
3609     $bar = pack('s@4l', 12, 34);
3610     # short 12, zero fill to position 4, long 34
3611     # $foo eq $bar
3612
3613 The same template may generally also be used in unpack().
3614
3615 =item package NAMESPACE
3616
3617 =item package
3618
3619 Declares the compilation unit as being in the given namespace.  The scope
3620 of the package declaration is from the declaration itself through the end
3621 of the enclosing block, file, or eval (the same as the C<my> operator).
3622 All further unqualified dynamic identifiers will be in this namespace.
3623 A package statement affects only dynamic variables--including those
3624 you've used C<local> on--but I<not> lexical variables, which are created
3625 with C<my>.  Typically it would be the first declaration in a file to
3626 be included by the C<require> or C<use> operator.  You can switch into a
3627 package in more than one place; it merely influences which symbol table
3628 is used by the compiler for the rest of that block.  You can refer to
3629 variables and filehandles in other packages by prefixing the identifier
3630 with the package name and a double colon:  C<$Package::Variable>.
3631 If the package name is null, the C<main> package as assumed.  That is,
3632 C<$::sail> is equivalent to C<$main::sail> (as well as to C<$main'sail>,
3633 still seen in older code).
3634
3635 If NAMESPACE is omitted, then there is no current package, and all
3636 identifiers must be fully qualified or lexicals.  However, you are
3637 strongly advised not to make use of this feature. Its use can cause
3638 unexpected behaviour, even crashing some versions of Perl. It is
3639 deprecated, and will be removed from a future release.
3640
3641 See L<perlmod/"Packages"> for more information about packages, modules,
3642 and classes.  See L<perlsub> for other scoping issues.
3643
3644 =item pipe READHANDLE,WRITEHANDLE
3645
3646 Opens a pair of connected pipes like the corresponding system call.
3647 Note that if you set up a loop of piped processes, deadlock can occur
3648 unless you are very careful.  In addition, note that Perl's pipes use
3649 IO buffering, so you may need to set C<$|> to flush your WRITEHANDLE
3650 after each command, depending on the application.
3651
3652 See L<IPC::Open2>, L<IPC::Open3>, and L<perlipc/"Bidirectional Communication">
3653 for examples of such things.
3654
3655 On systems that support a close-on-exec flag on files, the flag will be set
3656 for the newly opened file descriptors as determined by the value of $^F.
3657 See L<perlvar/$^F>.
3658
3659 =item pop ARRAY
3660
3661 =item pop
3662
3663 Pops and returns the last value of the array, shortening the array by
3664 one element.  Has an effect similar to
3665
3666     $ARRAY[$#ARRAY--]
3667
3668 If there are no elements in the array, returns the undefined value
3669 (although this may happen at other times as well).  If ARRAY is
3670 omitted, pops the C<@ARGV> array in the main program, and the C<@_>
3671 array in subroutines, just like C<shift>.
3672
3673 =item pos SCALAR
3674
3675 =item pos
3676
3677 Returns the offset of where the last C<m//g> search left off for the variable
3678 in question (C<$_> is used when the variable is not specified).  May be
3679 modified to change that offset.  Such modification will also influence
3680 the C<\G> zero-width assertion in regular expressions.  See L<perlre> and
3681 L<perlop>.
3682
3683 =item print FILEHANDLE LIST
3684
3685 =item print LIST
3686
3687 =item print
3688
3689 Prints a string or a list of strings.  Returns true if successful.
3690 FILEHANDLE may be a scalar variable name, in which case the variable
3691 contains the name of or a reference to the filehandle, thus introducing
3692 one level of indirection.  (NOTE: If FILEHANDLE is a variable and
3693 the next token is a term, it may be misinterpreted as an operator
3694 unless you interpose a C<+> or put parentheses around the arguments.)
3695 If FILEHANDLE is omitted, prints by default to standard output (or
3696 to the last selected output channel--see L</select>).  If LIST is
3697 also omitted, prints C<$_> to the currently selected output channel.
3698 To set the default output channel to something other than STDOUT
3699 use the select operation.  The current value of C<$,> (if any) is
3700 printed between each LIST item.  The current value of C<$\> (if
3701 any) is printed after the entire LIST has been printed.  Because
3702 print takes a LIST, anything in the LIST is evaluated in list
3703 context, and any subroutine that you call will have one or more of
3704 its expressions evaluated in list context.  Also be careful not to
3705 follow the print keyword with a left parenthesis unless you want
3706 the corresponding right parenthesis to terminate the arguments to
3707 the print--interpose a C<+> or put parentheses around all the
3708 arguments.
3709
3710 Note that if you're storing FILEHANDLES in an array or other expression,
3711 you will have to use a block returning its value instead:
3712
3713     print { $files[$i] } "stuff\n";
3714     print { $OK ? STDOUT : STDERR } "stuff\n";
3715
3716 =item printf FILEHANDLE FORMAT, LIST
3717
3718 =item printf FORMAT, LIST
3719
3720 Equivalent to C<print FILEHANDLE sprintf(FORMAT, LIST)>, except that C<$\>
3721 (the output record separator) is not appended.  The first argument
3722 of the list will be interpreted as the C<printf> format. See C<sprintf>
3723 for an explanation of the format argument. If C<use locale> is in effect,
3724 the character used for the decimal point in formatted real numbers is
3725 affected by the LC_NUMERIC locale.  See L<perllocale>.
3726
3727 Don't fall into the trap of using a C<printf> when a simple
3728 C<print> would do.  The C<print> is more efficient and less
3729 error prone.
3730
3731 =item prototype FUNCTION
3732
3733 Returns the prototype of a function as a string (or C<undef> if the
3734 function has no prototype).  FUNCTION is a reference to, or the name of,
3735 the function whose prototype you want to retrieve.
3736
3737 If FUNCTION is a string starting with C<CORE::>, the rest is taken as a
3738 name for Perl builtin.  If the builtin is not I<overridable> (such as
3739 C<qw//>) or its arguments cannot be expressed by a prototype (such as
3740 C<system>) returns C<undef> because the builtin does not really behave
3741 like a Perl function.  Otherwise, the string describing the equivalent
3742 prototype is returned.
3743
3744 =item push ARRAY,LIST
3745
3746 Treats ARRAY as a stack, and pushes the values of LIST
3747 onto the end of ARRAY.  The length of ARRAY increases by the length of
3748 LIST.  Has the same effect as
3749
3750     for $value (LIST) {
3751         $ARRAY[++$#ARRAY] = $value;
3752     }
3753
3754 but is more efficient.  Returns the new number of elements in the array.
3755
3756 =item q/STRING/
3757
3758 =item qq/STRING/
3759
3760 =item qr/STRING/
3761
3762 =item qx/STRING/
3763
3764 =item qw/STRING/
3765
3766 Generalized quotes.  See L<perlop/"Regexp Quote-Like Operators">.
3767
3768 =item quotemeta EXPR
3769
3770 =item quotemeta
3771
3772 Returns the value of EXPR with all non-"word"
3773 characters backslashed.  (That is, all characters not matching
3774 C</[A-Za-z_0-9]/> will be preceded by a backslash in the
3775 returned string, regardless of any locale settings.)
3776 This is the internal function implementing
3777 the C<\Q> escape in double-quoted strings.
3778
3779 If EXPR is omitted, uses C<$_>.
3780
3781 =item rand EXPR
3782
3783 =item rand
3784
3785 Returns a random fractional number greater than or equal to C<0> and less
3786 than the value of EXPR.  (EXPR should be positive.)  If EXPR is
3787 omitted, the value C<1> is used.  Currently EXPR with the value C<0> is
3788 also special-cased as C<1> - this has not been documented before perl 5.8.0
3789 and is subject to change in future versions of perl.  Automatically calls
3790 C<srand> unless C<srand> has already been called.  See also C<srand>.
3791
3792 Apply C<int()> to the value returned by C<rand()> if you want random
3793 integers instead of random fractional numbers.  For example,
3794
3795     int(rand(10))
3796
3797 returns a random integer between C<0> and C<9>, inclusive.
3798
3799 (Note: If your rand function consistently returns numbers that are too
3800 large or too small, then your version of Perl was probably compiled
3801 with the wrong number of RANDBITS.)
3802
3803 =item read FILEHANDLE,SCALAR,LENGTH,OFFSET
3804
3805 =item read FILEHANDLE,SCALAR,LENGTH
3806
3807 Attempts to read LENGTH I<characters> of data into variable SCALAR
3808 from the specified FILEHANDLE.  Returns the number of characters
3809 actually read, C<0> at end of file, or undef if there was an error (in
3810 the latter case C<$!> is also set).  SCALAR will be grown or shrunk 
3811 so that the last character actually read is the last character of the
3812 scalar after the read.
3813
3814 An OFFSET may be specified to place the read data at some place in the
3815 string other than the beginning.  A negative OFFSET specifies
3816 placement at that many characters counting backwards from the end of
3817 the string.  A positive OFFSET greater than the length of SCALAR
3818 results in the string being padded to the required size with C<"\0">
3819 bytes before the result of the read is appended.
3820
3821 The call is actually implemented in terms of either Perl's or system's
3822 fread() call.  To get a true read(2) system call, see C<sysread>.
3823
3824 Note the I<characters>: depending on the status of the filehandle,
3825 either (8-bit) bytes or characters are read.  By default all
3826 filehandles operate on bytes, but for example if the filehandle has
3827 been opened with the C<:utf8> I/O layer (see L</open>, and the C<open>
3828 pragma, L<open>), the I/O will operate on UTF-8 encoded Unicode
3829 characters, not bytes.  Similarly for the C<:encoding> pragma:
3830 in that case pretty much any characters can be read.
3831
3832 =item readdir DIRHANDLE
3833
3834 Returns the next directory entry for a directory opened by C<opendir>.
3835 If used in list context, returns all the rest of the entries in the
3836 directory.  If there are no more entries, returns an undefined value in
3837 scalar context or a null list in list context.
3838
3839 If you're planning to filetest the return values out of a C<readdir>, you'd
3840 better prepend the directory in question.  Otherwise, because we didn't
3841 C<chdir> there, it would have been testing the wrong file.
3842
3843     opendir(DIR, $some_dir) || die "can't opendir $some_dir: $!";
3844     @dots = grep { /^\./ && -f "$some_dir/$_" } readdir(DIR);
3845     closedir DIR;
3846
3847 =item readline EXPR
3848
3849 Reads from the filehandle whose typeglob is contained in EXPR.  In scalar
3850 context, each call reads and returns the next line, until end-of-file is
3851 reached, whereupon the subsequent call returns undef.  In list context,
3852 reads until end-of-file is reached and returns a list of lines.  Note that
3853 the notion of "line" used here is however you may have defined it
3854 with C<$/> or C<$INPUT_RECORD_SEPARATOR>).  See L<perlvar/"$/">.
3855
3856 When C<$/> is set to C<undef>, when readline() is in scalar
3857 context (i.e. file slurp mode), and when an empty file is read, it
3858 returns C<''> the first time, followed by C<undef> subsequently.
3859
3860 This is the internal function implementing the C<< <EXPR> >>
3861 operator, but you can use it directly.  The C<< <EXPR> >>
3862 operator is discussed in more detail in L<perlop/"I/O Operators">.
3863
3864     $line = <STDIN>;
3865     $line = readline(*STDIN);           # same thing
3866
3867 If readline encounters an operating system error, C<$!> will be set with the
3868 corresponding error message.  It can be helpful to check C<$!> when you are
3869 reading from filehandles you don't trust, such as a tty or a socket.  The
3870 following example uses the operator form of C<readline>, and takes the necessary
3871 steps to ensure that C<readline> was successful.
3872
3873     for (;;) {
3874         undef $!;
3875         unless (defined( $line = <> )) {
3876             die $! if $!;
3877             last; # reached EOF
3878         }
3879         # ...
3880     }
3881
3882 =item readlink EXPR
3883
3884 =item readlink
3885
3886 Returns the value of a symbolic link, if symbolic links are
3887 implemented.  If not, gives a fatal error.  If there is some system
3888 error, returns the undefined value and sets C<$!> (errno).  If EXPR is
3889 omitted, uses C<$_>.
3890
3891 =item readpipe EXPR
3892
3893 EXPR is executed as a system command.
3894 The collected standard output of the command is returned.
3895 In scalar context, it comes back as a single (potentially
3896 multi-line) string.  In list context, returns a list of lines
3897 (however you've defined lines with C<$/> or C<$INPUT_RECORD_SEPARATOR>).
3898 This is the internal function implementing the C<qx/EXPR/>
3899 operator, but you can use it directly.  The C<qx/EXPR/>
3900 operator is discussed in more detail in L<perlop/"I/O Operators">.
3901
3902 =item recv SOCKET,SCALAR,LENGTH,FLAGS
3903
3904 Receives a message on a socket.  Attempts to receive LENGTH characters
3905 of data into variable SCALAR from the specified SOCKET filehandle.
3906 SCALAR will be grown or shrunk to the length actually read.  Takes the
3907 same flags as the system call of the same name.  Returns the address
3908 of the sender if SOCKET's protocol supports this; returns an empty
3909 string otherwise.  If there's an error, returns the undefined value.
3910 This call is actually implemented in terms of recvfrom(2) system call.
3911 See L<perlipc/"UDP: Message Passing"> for examples.
3912
3913 Note the I<characters>: depending on the status of the socket, either
3914 (8-bit) bytes or characters are received.  By default all sockets
3915 operate on bytes, but for example if the socket has been changed using
3916 binmode() to operate with the C<:utf8> I/O layer (see the C<open>
3917 pragma, L<open>), the I/O will operate on UTF-8 encoded Unicode
3918 characters, not bytes.  Similarly for the C<:encoding> pragma:
3919 in that case pretty much any characters can be read.
3920
3921 =item redo LABEL
3922
3923 =item redo
3924
3925 The C<redo> command restarts the loop block without evaluating the
3926 conditional again.  The C<continue> block, if any, is not executed.  If
3927 the LABEL is omitted, the command refers to the innermost enclosing
3928 loop.  This command is normally used by programs that want to lie to
3929 themselves about what was just input:
3930
3931     # a simpleminded Pascal comment stripper
3932     # (warning: assumes no { or } in strings)
3933     LINE: while (<STDIN>) {
3934         while (s|({.*}.*){.*}|$1 |) {}
3935         s|{.*}| |;
3936         if (s|{.*| |) {
3937             $front = $_;
3938             while (<STDIN>) {
3939                 if (/}/) {      # end of comment?
3940                     s|^|$front\{|;
3941                     redo LINE;
3942                 }
3943             }
3944         }
3945         print;
3946     }
3947
3948 C<redo> cannot be used to retry a block which returns a value such as
3949 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
3950 a grep() or map() operation.
3951
3952 Note that a block by itself is semantically identical to a loop
3953 that executes once.  Thus C<redo> inside such a block will effectively
3954 turn it into a looping construct.
3955
3956 See also L</continue> for an illustration of how C<last>, C<next>, and
3957 C<redo> work.
3958
3959 =item ref EXPR
3960
3961 =item ref
3962
3963 Returns a true value if EXPR is a reference, false otherwise.  If EXPR
3964 is not specified, C<$_> will be used.  The value returned depends on the
3965 type of thing the reference is a reference to.
3966 Builtin types include:
3967
3968     SCALAR
3969     ARRAY
3970     HASH
3971     CODE
3972     REF
3973     GLOB
3974     LVALUE
3975
3976 If the referenced object has been blessed into a package, then that package
3977 name is returned instead.  You can think of C<ref> as a C<typeof> operator.
3978
3979     if (ref($r) eq "HASH") {
3980         print "r is a reference to a hash.\n";
3981     }
3982     unless (ref($r)) {
3983         print "r is not a reference at all.\n";
3984     }
3985     if (UNIVERSAL::isa($r, "HASH")) {  # for subclassing
3986         print "r is a reference to something that isa hash.\n";
3987     }
3988
3989 See also L<perlref>.
3990
3991 =item rename OLDNAME,NEWNAME
3992
3993 Changes the name of a file; an existing file NEWNAME will be
3994 clobbered.  Returns true for success, false otherwise.
3995
3996 Behavior of this function varies wildly depending on your system
3997 implementation.  For example, it will usually not work across file system
3998 boundaries, even though the system I<mv> command sometimes compensates
3999 for this.  Other restrictions include whether it works on directories,
4000 open files, or pre-existing files.  Check L<perlport> and either the
4001 rename(2) manpage or equivalent system documentation for details.
4002
4003 =item require VERSION
4004
4005 =item require EXPR
4006
4007 =item require
4008
4009 Demands a version of Perl specified by VERSION, or demands some semantics
4010 specified by EXPR or by C<$_> if EXPR is not supplied.
4011
4012 VERSION may be either a numeric argument such as 5.006, which will be
4013 compared to C<$]>, or a literal of the form v5.6.1, which will be compared
4014 to C<$^V> (aka $PERL_VERSION).  A fatal error is produced at run time if
4015 VERSION is greater than the version of the current Perl interpreter.
4016 Compare with L</use>, which can do a similar check at compile time.
4017
4018 Specifying VERSION as a literal of the form v5.6.1 should generally be
4019 avoided, because it leads to misleading error messages under earlier
4020 versions of Perl which do not support this syntax.  The equivalent numeric
4021 version should be used instead.
4022
4023     require v5.6.1;     # run time version check
4024     require 5.6.1;      # ditto
4025     require 5.006_001;  # ditto; preferred for backwards compatibility
4026
4027 Otherwise, demands that a library file be included if it hasn't already
4028 been included.  The file is included via the do-FILE mechanism, which is
4029 essentially just a variety of C<eval>.  Has semantics similar to the following
4030 subroutine:
4031
4032     sub require {
4033         my($filename) = @_;
4034         return 1 if $INC{$filename};
4035         my($realfilename,$result);
4036         ITER: {
4037             foreach $prefix (@INC) {
4038                 $realfilename = "$prefix/$filename";
4039                 if (-f $realfilename) {
4040                     $INC{$filename} = $realfilename;
4041                     $result = do $realfilename;
4042                     last ITER;
4043                 }
4044             }
4045             die "Can't find $filename in \@INC";
4046         }
4047         delete $INC{$filename} if $@ || !$result;
4048         die $@ if $@;
4049         die "$filename did not return true value" unless $result;
4050         return $result;
4051     }
4052
4053 Note that the file will not be included twice under the same specified
4054 name.  The file must return true as the last statement to indicate
4055 successful execution of any initialization code, so it's customary to
4056 end such a file with C<1;> unless you're sure it'll return true
4057 otherwise.  But it's better just to put the C<1;>, in case you add more
4058 statements.
4059
4060 If EXPR is a bareword, the require assumes a "F<.pm>" extension and
4061 replaces "F<::>" with "F</>" in the filename for you,
4062 to make it easy to load standard modules.  This form of loading of
4063 modules does not risk altering your namespace.
4064
4065 In other words, if you try this:
4066
4067         require Foo::Bar;    # a splendid bareword
4068
4069 The require function will actually look for the "F<Foo/Bar.pm>" file in the
4070 directories specified in the C<@INC> array.
4071
4072 But if you try this:
4073
4074         $class = 'Foo::Bar';
4075         require $class;      # $class is not a bareword
4076     #or
4077         require "Foo::Bar";  # not a bareword because of the ""
4078
4079 The require function will look for the "F<Foo::Bar>" file in the @INC array and
4080 will complain about not finding "F<Foo::Bar>" there.  In this case you can do:
4081
4082         eval "require $class";
4083
4084 Now that you understand how C<require> looks for files in the case of
4085 a bareword argument, there is a little extra functionality going on
4086 behind the scenes.  Before C<require> looks for a "F<.pm>" extension,
4087 it will first look for a filename with a "F<.pmc>" extension.  A file
4088 with this extension is assumed to be Perl bytecode generated by
4089 L<B::Bytecode|B::Bytecode>.  If this file is found, and it's modification
4090 time is newer than a coinciding "F<.pm>" non-compiled file, it will be
4091 loaded in place of that non-compiled file ending in a "F<.pm>" extension.
4092
4093 You can also insert hooks into the import facility, by putting directly
4094 Perl code into the @INC array.  There are three forms of hooks: subroutine
4095 references, array references and blessed objects.
4096
4097 Subroutine references are the simplest case.  When the inclusion system
4098 walks through @INC and encounters a subroutine, this subroutine gets
4099 called with two parameters, the first being a reference to itself, and the
4100 second the name of the file to be included (e.g. "F<Foo/Bar.pm>").  The
4101 subroutine should return C<undef> or a filehandle, from which the file to
4102 include will be read.  If C<undef> is returned, C<require> will look at
4103 the remaining elements of @INC.
4104
4105 If the hook is an array reference, its first element must be a subroutine
4106 reference.  This subroutine is called as above, but the first parameter is
4107 the array reference.  This enables to pass indirectly some arguments to
4108 the subroutine.
4109
4110 In other words, you can write:
4111
4112     push @INC, \&my_sub;
4113     sub my_sub {
4114         my ($coderef, $filename) = @_;  # $coderef is \&my_sub
4115         ...
4116     }
4117
4118 or:
4119
4120     push @INC, [ \&my_sub, $x, $y, ... ];
4121     sub my_sub {
4122         my ($arrayref, $filename) = @_;
4123         # Retrieve $x, $y, ...
4124         my @parameters = @$arrayref[1..$#$arrayref];
4125         ...
4126     }
4127
4128 If the hook is an object, it must provide an INC method, that will be
4129 called as above, the first parameter being the object itself.  (Note that
4130 you must fully qualify the sub's name, as it is always forced into package
4131 C<main>.)  Here is a typical code layout:
4132
4133     # In Foo.pm
4134     package Foo;
4135     sub new { ... }
4136     sub Foo::INC {
4137         my ($self, $filename) = @_;
4138         ...
4139     }
4140
4141     # In the main program
4142     push @INC, new Foo(...);
4143
4144 Note that these hooks are also permitted to set the %INC entry
4145 corresponding to the files they have loaded. See L<perlvar/%INC>.
4146
4147 For a yet-more-powerful import facility, see L</use> and L<perlmod>.
4148
4149 =item reset EXPR
4150
4151 =item reset
4152
4153 Generally used in a C<continue> block at the end of a loop to clear
4154 variables and reset C<??> searches so that they work again.  The
4155 expression is interpreted as a list of single characters (hyphens
4156 allowed for ranges).  All variables and arrays beginning with one of
4157 those letters are reset to their pristine state.  If the expression is
4158 omitted, one-match searches (C<?pattern?>) are reset to match again.  Resets
4159 only variables or searches in the current package.  Always returns
4160 1.  Examples:
4161
4162     reset 'X';          # reset all X variables
4163     reset 'a-z';        # reset lower case variables
4164     reset;              # just reset ?one-time? searches
4165
4166 Resetting C<"A-Z"> is not recommended because you'll wipe out your
4167 C<@ARGV> and C<@INC> arrays and your C<%ENV> hash.  Resets only package
4168 variables--lexical variables are unaffected, but they clean themselves
4169 up on scope exit anyway, so you'll probably want to use them instead.
4170 See L</my>.
4171
4172 =item return EXPR
4173
4174 =item return
4175
4176 Returns from a subroutine, C<eval>, or C<do FILE> with the value
4177 given in EXPR.  Evaluation of EXPR may be in list, scalar, or void
4178 context, depending on how the return value will be used, and the context
4179 may vary from one execution to the next (see C<wantarray>).  If no EXPR
4180 is given, returns an empty list in list context, the undefined value in
4181 scalar context, and (of course) nothing at all in a void context.
4182
4183 (Note that in the absence of an explicit C<return>, a subroutine, eval,
4184 or do FILE will automatically return the value of the last expression
4185 evaluated.)
4186
4187 =item reverse LIST
4188
4189 In list context, returns a list value consisting of the elements
4190 of LIST in the opposite order.  In scalar context, concatenates the
4191 elements of LIST and returns a string value with all characters
4192 in the opposite order.
4193
4194     print reverse <>;           # line tac, last line first
4195
4196     undef $/;                   # for efficiency of <>
4197     print scalar reverse <>;    # character tac, last line tsrif
4198
4199 This operator is also handy for inverting a hash, although there are some
4200 caveats.  If a value is duplicated in the original hash, only one of those
4201 can be represented as a key in the inverted hash.  Also, this has to
4202 unwind one hash and build a whole new one, which may take some time
4203 on a large hash, such as from a DBM file.
4204
4205     %by_name = reverse %by_address;     # Invert the hash
4206
4207 =item rewinddir DIRHANDLE
4208
4209 Sets the current position to the beginning of the directory for the
4210 C<readdir> routine on DIRHANDLE.
4211
4212 =item rindex STR,SUBSTR,POSITION
4213
4214 =item rindex STR,SUBSTR
4215
4216 Works just like index() except that it returns the position of the LAST
4217 occurrence of SUBSTR in STR.  If POSITION is specified, returns the
4218 last occurrence at or before that position.
4219
4220 =item rmdir FILENAME
4221
4222 =item rmdir
4223
4224 Deletes the directory specified by FILENAME if that directory is
4225 empty.  If it succeeds it returns true, otherwise it returns false and
4226 sets C<$!> (errno).  If FILENAME is omitted, uses C<$_>.
4227
4228 =item s///
4229
4230 The substitution operator.  See L<perlop>.
4231
4232 =item scalar EXPR
4233
4234 Forces EXPR to be interpreted in scalar context and returns the value
4235 of EXPR.
4236
4237     @counts = ( scalar @a, scalar @b, scalar @c );
4238
4239 There is no equivalent operator to force an expression to
4240 be interpolated in list context because in practice, this is never
4241 needed.  If you really wanted to do so, however, you could use
4242 the construction C<@{[ (some expression) ]}>, but usually a simple
4243 C<(some expression)> suffices.
4244
4245 Because C<scalar> is unary operator, if you accidentally use for EXPR a
4246 parenthesized list, this behaves as a scalar comma expression, evaluating
4247 all but the last element in void context and returning the final element
4248 evaluated in scalar context.  This is seldom what you want.
4249
4250 The following single statement:
4251
4252         print uc(scalar(&foo,$bar)),$baz;
4253
4254 is the moral equivalent of these two:
4255
4256         &foo;
4257         print(uc($bar),$baz);
4258
4259 See L<perlop> for more details on unary operators and the comma operator.
4260
4261 =item seek FILEHANDLE,POSITION,WHENCE
4262
4263 Sets FILEHANDLE's position, just like the C<fseek> call of C<stdio>.
4264 FILEHANDLE may be an expression whose value gives the name of the
4265 filehandle.  The values for WHENCE are C<0> to set the new position
4266 I<in bytes> to POSITION, C<1> to set it to the current position plus
4267 POSITION, and C<2> to set it to EOF plus POSITION (typically
4268 negative).  For WHENCE you may use the constants C<SEEK_SET>,
4269 C<SEEK_CUR>, and C<SEEK_END> (start of the file, current position, end
4270 of the file) from the Fcntl module.  Returns C<1> upon success, C<0>
4271 otherwise.
4272
4273 Note the I<in bytes>: even if the filehandle has been set to
4274 operate on characters (for example by using the C<:utf8> open
4275 layer), tell() will return byte offsets, not character offsets
4276 (because implementing that would render seek() and tell() rather slow).
4277
4278 If you want to position file for C<sysread> or C<syswrite>, don't use
4279 C<seek>--buffering makes its effect on the file's system position
4280 unpredictable and non-portable.  Use C<sysseek> instead.
4281
4282 Due to the rules and rigors of ANSI C, on some systems you have to do a
4283 seek whenever you switch between reading and writing.  Amongst other
4284 things, this may have the effect of calling stdio's clearerr(3).
4285 A WHENCE of C<1> (C<SEEK_CUR>) is useful for not moving the file position:
4286
4287     seek(TEST,0,1);
4288
4289 This is also useful for applications emulating C<tail -f>.  Once you hit
4290 EOF on your read, and then sleep for a while, you might have to stick in a
4291 seek() to reset things.  The C<seek> doesn't change the current position,
4292 but it I<does> clear the end-of-file condition on the handle, so that the
4293 next C<< <FILE> >> makes Perl try again to read something.  We hope.
4294
4295 If that doesn't work (some IO implementations are particularly
4296 cantankerous), then you may need something more like this:
4297
4298     for (;;) {
4299         for ($curpos = tell(FILE); $_ = <FILE>;
4300              $curpos = tell(FILE)) {
4301             # search for some stuff and put it into files
4302         }
4303         sleep($for_a_while);
4304         seek(FILE, $curpos, 0);
4305     }
4306
4307 =item seekdir DIRHANDLE,POS
4308
4309 Sets the current position for the C<readdir> routine on DIRHANDLE.  POS
4310 must be a value returned by C<telldir>.  Has the same caveats about
4311 possible directory compaction as the corresponding system library
4312 routine.
4313
4314 =item select FILEHANDLE
4315
4316 =item select
4317
4318 Returns the currently selected filehandle.  Sets the current default
4319 filehandle for output, if FILEHANDLE is supplied.  This has two
4320 effects: first, a C<write> or a C<print> without a filehandle will
4321 default to this FILEHANDLE.  Second, references to variables related to
4322 output will refer to this output channel.  For example, if you have to
4323 set the top of form format for more than one output channel, you might
4324 do the following:
4325
4326     select(REPORT1);
4327     $^ = 'report1_top';
4328     select(REPORT2);
4329     $^ = 'report2_top';
4330
4331 FILEHANDLE may be an expression whose value gives the name of the
4332 actual filehandle.  Thus:
4333
4334     $oldfh = select(STDERR); $| = 1; select($oldfh);
4335
4336 Some programmers may prefer to think of filehandles as objects with
4337 methods, preferring to write the last example as:
4338
4339     use IO::Handle;
4340     STDERR->autoflush(1);
4341
4342 =item select RBITS,WBITS,EBITS,TIMEOUT
4343
4344 This calls the select(2) system call with the bit masks specified, which
4345 can be constructed using C<fileno> and C<vec>, along these lines:
4346
4347     $rin = $win = $ein = '';
4348     vec($rin,fileno(STDIN),1) = 1;
4349     vec($win,fileno(STDOUT),1) = 1;
4350     $ein = $rin | $win;
4351
4352 If you want to select on many filehandles you might wish to write a
4353 subroutine:
4354
4355     sub fhbits {
4356         my(@fhlist) = split(' ',$_[0]);
4357         my($bits);
4358         for (@fhlist) {
4359             vec($bits,fileno($_),1) = 1;
4360         }
4361         $bits;
4362     }
4363     $rin = fhbits('STDIN TTY SOCK');
4364
4365 The usual idiom is:
4366
4367     ($nfound,$timeleft) =
4368       select($rout=$rin, $wout=$win, $eout=$ein, $timeout);
4369
4370 or to block until something becomes ready just do this
4371
4372     $nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);
4373
4374 Most systems do not bother to return anything useful in $timeleft, so
4375 calling select() in scalar context just returns $nfound.
4376
4377 Any of the bit masks can also be undef.  The timeout, if specified, is
4378 in seconds, which may be fractional.  Note: not all implementations are
4379 capable of returning the $timeleft.  If not, they always return
4380 $timeleft equal to the supplied $timeout.
4381
4382 You can effect a sleep of 250 milliseconds this way:
4383
4384     select(undef, undef, undef, 0.25);
4385
4386 Note that whether C<select> gets restarted after signals (say, SIGALRM)
4387 is implementation-dependent.
4388
4389 B<WARNING>: One should not attempt to mix buffered I/O (like C<read>
4390 or <FH>) with C<select>, except as permitted by POSIX, and even
4391 then only on POSIX systems.  You have to use C<sysread> instead.
4392
4393 =item semctl ID,SEMNUM,CMD,ARG
4394
4395 Calls the System V IPC function C<semctl>.  You'll probably have to say
4396
4397     use IPC::SysV;
4398
4399 first to get the correct constant definitions.  If CMD is IPC_STAT or
4400 GETALL, then ARG must be a variable which will hold the returned
4401 semid_ds structure or semaphore value array.  Returns like C<ioctl>:
4402 the undefined value for error, "C<0 but true>" for zero, or the actual
4403 return value otherwise.  The ARG must consist of a vector of native
4404 short integers, which may be created with C<pack("s!",(0)x$nsem)>.
4405 See also L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::Semaphore>
4406 documentation.
4407
4408 =item semget KEY,NSEMS,FLAGS
4409
4410 Calls the System V IPC function semget.  Returns the semaphore id, or
4411 the undefined value if there is an error.  See also
4412 L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::SysV::Semaphore>
4413 documentation.
4414
4415 =item semop KEY,OPSTRING
4416
4417 Calls the System V IPC function semop to perform semaphore operations
4418 such as signalling and waiting.  OPSTRING must be a packed array of
4419 semop structures.  Each semop structure can be generated with
4420 C<pack("s!3", $semnum, $semop, $semflag)>.  The number of semaphore
4421 operations is implied by the length of OPSTRING.  Returns true if
4422 successful, or false if there is an error.  As an example, the
4423 following code waits on semaphore $semnum of semaphore id $semid:
4424
4425     $semop = pack("s!3", $semnum, -1, 0);
4426     die "Semaphore trouble: $!\n" unless semop($semid, $semop);
4427
4428 To signal the semaphore, replace C<-1> with C<1>.  See also
4429 L<perlipc/"SysV IPC">, C<IPC::SysV>, and C<IPC::SysV::Semaphore>
4430 documentation.
4431
4432 =item send SOCKET,MSG,FLAGS,TO
4433
4434 =item send SOCKET,MSG,FLAGS
4435
4436 Sends a message on a socket.  Attempts to send the scalar MSG to the
4437 SOCKET filehandle.  Takes the same flags as the system call of the
4438 same name.  On unconnected sockets you must specify a destination to
4439 send TO, in which case it does a C C<sendto>.  Returns the number of
4440 characters sent, or the undefined value if there is an error.  The C
4441 system call sendmsg(2) is currently unimplemented.  See
4442 L<perlipc/"UDP: Message Passing"> for examples.
4443
4444 Note the I<characters>: depending on the status of the socket, either
4445 (8-bit) bytes or characters are sent.  By default all sockets operate
4446 on bytes, but for example if the socket has been changed using
4447 binmode() to operate with the C<:utf8> I/O layer (see L</open>, or the
4448 C<open> pragma, L<open>), the I/O will operate on UTF-8 encoded
4449 Unicode characters, not bytes.  Similarly for the C<:encoding> pragma:
4450 in that case pretty much any characters can be sent.
4451
4452 =item setpgrp PID,PGRP
4453
4454 Sets the current process group for the specified PID, C<0> for the current
4455 process.  Will produce a fatal error if used on a machine that doesn't
4456 implement POSIX setpgid(2) or BSD setpgrp(2).  If the arguments are omitted,
4457 it defaults to C<0,0>.  Note that the BSD 4.2 version of C<setpgrp> does not
4458 accept any arguments, so only C<setpgrp(0,0)> is portable.  See also
4459 C<POSIX::setsid()>.
4460
4461 =item setpriority WHICH,WHO,PRIORITY
4462
4463 Sets the current priority for a process, a process group, or a user.
4464 (See setpriority(2).)  Will produce a fatal error if used on a machine
4465 that doesn't implement setpriority(2).
4466
4467 =item setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
4468
4469 Sets the socket option requested.  Returns undefined if there is an
4470 error.  OPTVAL may be specified as C<undef> if you don't want to pass an
4471 argument.
4472
4473 =item shift ARRAY
4474
4475 =item shift
4476
4477 Shifts the first value of the array off and returns it, shortening the
4478 array by 1 and moving everything down.  If there are no elements in the
4479 array, returns the undefined value.  If ARRAY is omitted, shifts the
4480 C<@_> array within the lexical scope of subroutines and formats, and the
4481 C<@ARGV> array at file scopes or within the lexical scopes established by
4482 the C<eval ''>, C<BEGIN {}>, C<INIT {}>, C<CHECK {}>, and C<END {}>
4483 constructs.
4484
4485 See also C<unshift>, C<push>, and C<pop>.  C<shift> and C<unshift> do the
4486 same thing to the left end of an array that C<pop> and C<push> do to the
4487 right end.
4488
4489 =item shmctl ID,CMD,ARG
4490
4491 Calls the System V IPC function shmctl.  You'll probably have to say
4492
4493     use IPC::SysV;
4494
4495 first to get the correct constant definitions.  If CMD is C<IPC_STAT>,
4496 then ARG must be a variable which will hold the returned C<shmid_ds>
4497 structure.  Returns like ioctl: the undefined value for error, "C<0> but
4498 true" for zero, or the actual return value otherwise.
4499 See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
4500
4501 =item shmget KEY,SIZE,FLAGS
4502
4503 Calls the System V IPC function shmget.  Returns the shared memory
4504 segment id, or the undefined value if there is an error.
4505 See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
4506
4507 =item shmread ID,VAR,POS,SIZE
4508
4509 =item shmwrite ID,STRING,POS,SIZE
4510
4511 Reads or writes the System V shared memory segment ID starting at
4512 position POS for size SIZE by attaching to it, copying in/out, and
4513 detaching from it.  When reading, VAR must be a variable that will
4514 hold the data read.  When writing, if STRING is too long, only SIZE
4515 bytes are used; if STRING is too short, nulls are written to fill out
4516 SIZE bytes.  Return true if successful, or false if there is an error.
4517 shmread() taints the variable. See also L<perlipc/"SysV IPC">,
4518 C<IPC::SysV> documentation, and the C<IPC::Shareable> module from CPAN.
4519
4520 =item shutdown SOCKET,HOW
4521
4522 Shuts down a socket connection in the manner indicated by HOW, which
4523 has the same interpretation as in the system call of the same name.
4524
4525     shutdown(SOCKET, 0);    # I/we have stopped reading data
4526     shutdown(SOCKET, 1);    # I/we have stopped writing data
4527     shutdown(SOCKET, 2);    # I/we have stopped using this socket
4528
4529 This is useful with sockets when you want to tell the other
4530 side you're done writing but not done reading, or vice versa.
4531 It's also a more insistent form of close because it also
4532 disables the file descriptor in any forked copies in other
4533 processes.
4534
4535 =item sin EXPR
4536
4537 =item sin
4538
4539 Returns the sine of EXPR (expressed in radians).  If EXPR is omitted,
4540 returns sine of C<$_>.
4541
4542 For the inverse sine operation, you may use the C<Math::Trig::asin>
4543 function, or use this relation:
4544
4545     sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }
4546
4547 =item sleep EXPR
4548
4549 =item sleep
4550
4551 Causes the script to sleep for EXPR seconds, or forever if no EXPR.
4552 May be interrupted if the process receives a signal such as C<SIGALRM>.
4553 Returns the number of seconds actually slept.  You probably cannot
4554 mix C<alarm> and C<sleep> calls, because C<sleep> is often implemented
4555 using C<alarm>.
4556
4557 On some older systems, it may sleep up to a full second less than what
4558 you requested, depending on how it counts seconds.  Most modern systems
4559 always sleep the full amount.  They may appear to sleep longer than that,
4560 however, because your process might not be scheduled right away in a
4561 busy multitasking system.
4562
4563 For delays of finer granularity than one second, you may use Perl's
4564 C<syscall> interface to access setitimer(2) if your system supports
4565 it, or else see L</select> above.  The Time::HiRes module (from CPAN,
4566 and starting from Perl 5.8 part of the standard distribution) may also
4567 help.
4568
4569 See also the POSIX module's C<pause> function.
4570
4571 =item socket SOCKET,DOMAIN,TYPE,PROTOCOL
4572
4573 Opens a socket of the specified kind and attaches it to filehandle
4574 SOCKET.  DOMAIN, TYPE, and PROTOCOL are specified the same as for
4575 the system call of the same name.  You should C<use Socket> first
4576 to get the proper definitions imported.  See the examples in
4577 L<perlipc/"Sockets: Client/Server Communication">.
4578
4579 On systems that support a close-on-exec flag on files, the flag will
4580 be set for the newly opened file descriptor, as determined by the
4581 value of $^F.  See L<perlvar/$^F>.
4582
4583 =item socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
4584
4585 Creates an unnamed pair of sockets in the specified domain, of the
4586 specified type.  DOMAIN, TYPE, and PROTOCOL are specified the same as
4587 for the system call of the same name.  If unimplemented, yields a fatal
4588 error.  Returns true if successful.
4589
4590 On systems that support a close-on-exec flag on files, the flag will
4591 be set for the newly opened file descriptors, as determined by the value
4592 of $^F.  See L<perlvar/$^F>.
4593
4594 Some systems defined C<pipe> in terms of C<socketpair>, in which a call
4595 to C<pipe(Rdr, Wtr)> is essentially:
4596
4597     use Socket;
4598     socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
4599     shutdown(Rdr, 1);        # no more writing for reader
4600     shutdown(Wtr, 0);        # no more reading for writer
4601
4602 See L<perlipc> for an example of socketpair use.  Perl 5.8 and later will
4603 emulate socketpair using IP sockets to localhost if your system implements
4604 sockets but not socketpair.
4605
4606 =item sort SUBNAME LIST
4607
4608 =item sort BLOCK LIST
4609
4610 =item sort LIST
4611
4612 In list context, this sorts the LIST and returns the sorted list value.
4613 In scalar context, the behaviour of C<sort()> is undefined.
4614
4615 If SUBNAME or BLOCK is omitted, C<sort>s in standard string comparison
4616 order.  If SUBNAME is specified, it gives the name of a subroutine
4617 that returns an integer less than, equal to, or greater than C<0>,
4618 depending on how the elements of the list are to be ordered.  (The C<<
4619 <=> >> and C<cmp> operators are extremely useful in such routines.)
4620 SUBNAME may be a scalar variable name (unsubscripted), in which case
4621 the value provides the name of (or a reference to) the actual
4622 subroutine to use.  In place of a SUBNAME, you can provide a BLOCK as
4623 an anonymous, in-line sort subroutine.
4624
4625 If the subroutine's prototype is C<($$)>, the elements to be compared
4626 are passed by reference in C<@_>, as for a normal subroutine.  This is
4627 slower than unprototyped subroutines, where the elements to be
4628 compared are passed into the subroutine
4629 as the package global variables $a and $b (see example below).  Note that
4630 in the latter case, it is usually counter-productive to declare $a and
4631 $b as lexicals.
4632
4633 In either case, the subroutine may not be recursive.  The values to be
4634 compared are always passed by reference, so don't modify them.
4635
4636 You also cannot exit out of the sort block or subroutine using any of the
4637 loop control operators described in L<perlsyn> or with C<goto>.
4638
4639 When C<use locale> is in effect, C<sort LIST> sorts LIST according to the
4640 current collation locale.  See L<perllocale>.
4641
4642 Perl 5.6 and earlier used a quicksort algorithm to implement sort.
4643 That algorithm was not stable, and I<could> go quadratic.  (A I<stable> sort
4644 preserves the input order of elements that compare equal.  Although
4645 quicksort's run time is O(NlogN) when averaged over all arrays of
4646 length N, the time can be O(N**2), I<quadratic> behavior, for some
4647 inputs.)  In 5.7, the quicksort implementation was replaced with
4648 a stable mergesort algorithm whose worst case behavior is O(NlogN).
4649 But benchmarks indicated that for some inputs, on some platforms,
4650 the original quicksort was faster.  5.8 has a sort pragma for
4651 limited control of the sort.  Its rather blunt control of the
4652 underlying algorithm may not persist into future perls, but the
4653 ability to characterize the input or output in implementation
4654 independent ways quite probably will.  See L<sort>.
4655
4656 Examples:
4657
4658     # sort lexically
4659     @articles = sort @files;
4660
4661     # same thing, but with explicit sort routine
4662     @articles = sort {$a cmp $b} @files;
4663
4664     # now case-insensitively
4665     @articles = sort {uc($a) cmp uc($b)} @files;
4666
4667     # same thing in reversed order
4668     @articles = sort {$b cmp $a} @files;
4669
4670     # sort numerically ascending
4671     @articles = sort {$a <=> $b} @files;
4672
4673     # sort numerically descending
4674     @articles = sort {$b <=> $a} @files;
4675
4676     # this sorts the %age hash by value instead of key
4677     # using an in-line function
4678     @eldest = sort { $age{$b} <=> $age{$a} } keys %age;
4679
4680     # sort using explicit subroutine name
4681     sub byage {
4682         $age{$a} <=> $age{$b};  # presuming numeric
4683     }
4684     @sortedclass = sort byage @class;
4685
4686     sub backwards { $b cmp $a }
4687     @harry  = qw(dog cat x Cain Abel);
4688     @george = qw(gone chased yz Punished Axed);
4689     print sort @harry;
4690             # prints AbelCaincatdogx
4691     print sort backwards @harry;
4692             # prints xdogcatCainAbel
4693     print sort @george, 'to', @harry;
4694             # prints AbelAxedCainPunishedcatchaseddoggonetoxyz
4695
4696     # inefficiently sort by descending numeric compare using
4697     # the first integer after the first = sign, or the
4698     # whole record case-insensitively otherwise
4699
4700     @new = sort {
4701         ($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]
4702                             ||
4703                     uc($a)  cmp  uc($b)
4704     } @old;
4705
4706     # same thing, but much more efficiently;
4707     # we'll build auxiliary indices instead
4708     # for speed
4709     @nums = @caps = ();
4710     for (@old) {
4711         push @nums, /=(\d+)/;
4712         push @caps, uc($_);
4713     }
4714
4715     @new = @old[ sort {
4716                         $nums[$b] <=> $nums[$a]
4717                                  ||
4718                         $caps[$a] cmp $caps[$b]
4719                        } 0..$#old
4720                ];
4721
4722     # same thing, but without any temps
4723     @new = map { $_->[0] }
4724            sort { $b->[1] <=> $a->[1]
4725                            ||
4726                   $a->[2] cmp $b->[2]
4727            } map { [$_, /=(\d+)/, uc($_)] } @old;
4728
4729     # using a prototype allows you to use any comparison subroutine
4730     # as a sort subroutine (including other package's subroutines)
4731     package other;
4732     sub backwards ($$) { $_[1] cmp $_[0]; }     # $a and $b are not set here
4733
4734     package main;
4735     @new = sort other::backwards @old;
4736
4737     # guarantee stability, regardless of algorithm
4738     use sort 'stable';
4739     @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;
4740
4741     # force use of mergesort (not portable outside Perl 5.8)
4742     use sort '_mergesort';  # note discouraging _
4743     @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;
4744
4745 If you're using strict, you I<must not> declare $a
4746 and $b as lexicals.  They are package globals.  That means
4747 if you're in the C<main> package and type
4748
4749     @articles = sort {$b <=> $a} @files;
4750
4751 then C<$a> and C<$b> are C<$main::a> and C<$main::b> (or C<$::a> and C<$::b>),
4752 but if you're in the C<FooPack> package, it's the same as typing
4753
4754     @articles = sort {$FooPack::b <=> $FooPack::a} @files;
4755
4756 The comparison function is required to behave.  If it returns
4757 inconsistent results (sometimes saying C<$x[1]> is less than C<$x[2]> and
4758 sometimes saying the opposite, for example) the results are not
4759 well-defined.
4760
4761 =item splice ARRAY,OFFSET,LENGTH,LIST
4762
4763 =item splice ARRAY,OFFSET,LENGTH
4764
4765 =item splice ARRAY,OFFSET
4766
4767 =item splice ARRAY
4768
4769 Removes the elements designated by OFFSET and LENGTH from an array, and
4770 replaces them with the elements of LIST, if any.  In list context,
4771 returns the elements removed from the array.  In scalar context,
4772 returns the last element removed, or C<undef> if no elements are
4773 removed.  The array grows or shrinks as necessary.
4774 If OFFSET is negative then it starts that far from the end of the array.
4775 If LENGTH is omitted, removes everything from OFFSET onward.
4776 If LENGTH is negative, removes the elements from OFFSET onward
4777 except for -LENGTH elements at the end of the array.
4778 If both OFFSET and LENGTH are omitted, removes everything. If OFFSET is
4779 past the end of the array, perl issues a warning, and splices at the
4780 end of the array.
4781
4782 The following equivalences hold (assuming C<< $[ == 0 and $#a >= $i >> )
4783
4784     push(@a,$x,$y)      splice(@a,@a,0,$x,$y)
4785     pop(@a)             splice(@a,-1)
4786     shift(@a)           splice(@a,0,1)
4787     unshift(@a,$x,$y)   splice(@a,0,0,$x,$y)
4788     $a[$i] = $y         splice(@a,$i,1,$y)
4789
4790 Example, assuming array lengths are passed before arrays:
4791
4792     sub aeq {   # compare two list values
4793         my(@a) = splice(@_,0,shift);
4794         my(@b) = splice(@_,0,shift);
4795         return 0 unless @a == @b;       # same len?
4796         while (@a) {
4797             return 0 if pop(@a) ne pop(@b);
4798         }
4799         return 1;
4800     }
4801     if (&aeq($len,@foo[1..$len],0+@bar,@bar)) { ... }
4802
4803 =item split /PATTERN/,EXPR,LIMIT
4804
4805 =item split /PATTERN/,EXPR
4806
4807 =item split /PATTERN/
4808
4809 =item split
4810
4811 Splits a string into a list of strings and returns that list.  By default,
4812 empty leading fields are preserved, and empty trailing ones are deleted.
4813
4814 In scalar context, returns the number of fields found and splits into
4815 the C<@_> array.  Use of split in scalar context is deprecated, however,
4816 because it clobbers your subroutine arguments.
4817
4818 If EXPR is omitted, splits the C<$_> string.  If PATTERN is also omitted,
4819 splits on whitespace (after skipping any leading whitespace).  Anything
4820 matching PATTERN is taken to be a delimiter separating the fields.  (Note
4821 that the delimiter may be longer than one character.)
4822
4823 If LIMIT is specified and positive, it represents the maximum number
4824 of fields the EXPR will be split into, though the actual number of
4825 fields returned depends on the number of times PATTERN matches within
4826 EXPR.  If LIMIT is unspecified or zero, trailing null fields are
4827 stripped (which potential users of C<pop> would do well to remember).
4828 If LIMIT is negative, it is treated as if an arbitrarily large LIMIT
4829 had been specified.  Note that splitting an EXPR that evaluates to the
4830 empty string always returns the empty list, regardless of the LIMIT
4831 specified.
4832
4833 A pattern matching the null string (not to be confused with
4834 a null pattern C<//>, which is just one member of the set of patterns
4835 matching a null string) will split the value of EXPR into separate
4836 characters at each point it matches that way.  For example:
4837
4838     print join(':', split(/ */, 'hi there'));
4839
4840 produces the output 'h:i:t:h:e:r:e'.
4841
4842 Using the empty pattern C<//> specifically matches the null string, and is
4843 not be confused with the use of C<//> to mean "the last successful pattern
4844 match".
4845
4846 Empty leading (or trailing) fields are produced when there are positive width
4847 matches at the beginning (or end) of the string; a zero-width match at the
4848 beginning (or end) of the string does not produce an empty field.  For
4849 example:
4850
4851    print join(':', split(/(?=\w)/, 'hi there!'));
4852
4853 produces the output 'h:i :t:h:e:r:e!'.
4854
4855 The LIMIT parameter can be used to split a line partially
4856
4857     ($login, $passwd, $remainder) = split(/:/, $_, 3);
4858
4859 When assigning to a list, if LIMIT is omitted, Perl supplies a LIMIT
4860 one larger than the number of variables in the list, to avoid
4861 unnecessary work.  For the list above LIMIT would have been 4 by
4862 default.  In time critical applications it behooves you not to split
4863 into more fields than you really need.
4864
4865 If the PATTERN contains parentheses, additional list elements are
4866 created from each matching substring in the delimiter.
4867
4868     split(/([,-])/, "1-10,20", 3);
4869
4870 produces the list value
4871
4872     (1, '-', 10, ',', 20)
4873
4874 If you had the entire header of a normal Unix email message in $header,
4875 you could split it up into fields and their values this way:
4876
4877     $header =~ s/\n\s+/ /g;  # fix continuation lines
4878     %hdrs   =  (UNIX_FROM => split /^(\S*?):\s*/m, $header);
4879
4880 The pattern C</PATTERN/> may be replaced with an expression to specify
4881 patterns that vary at runtime.  (To do runtime compilation only once,
4882 use C</$variable/o>.)
4883
4884 As a special case, specifying a PATTERN of space (S<C<' '>>) will split on
4885 white space just as C<split> with no arguments does.  Thus, S<C<split(' ')>> can
4886 be used to emulate B<awk>'s default behavior, whereas S<C<split(/ /)>>
4887 will give you as many null initial fields as there are leading spaces.
4888 A C<split> on C</\s+/> is like a S<C<split(' ')>> except that any leading
4889 whitespace produces a null first field.  A C<split> with no arguments
4890 really does a S<C<split(' ', $_)>> internally.
4891
4892 A PATTERN of C</^/> is treated as if it were C</^/m>, since it isn't
4893 much use otherwise.
4894
4895 Example:
4896
4897     open(PASSWD, '/etc/passwd');
4898     while (<PASSWD>) {
4899         chomp;
4900         ($login, $passwd, $uid, $gid,
4901          $gcos, $home, $shell) = split(/:/);
4902         #...
4903     }
4904
4905 As with regular pattern matching, any capturing parentheses that are not
4906 matched in a C<split()> will be set to C<undef> when returned:
4907
4908     @fields = split /(A)|B/, "1A2B3";
4909     # @fields is (1, 'A', 2, undef, 3)
4910
4911 =item sprintf FORMAT, LIST
4912
4913 Returns a string formatted by the usual C<printf> conventions of the C
4914 library function C<sprintf>.  See below for more details
4915 and see L<sprintf(3)> or L<printf(3)> on your system for an explanation of
4916 the general principles.
4917
4918 For example:
4919
4920         # Format number with up to 8 leading zeroes
4921         $result = sprintf("%08d", $number);
4922
4923         # Round number to 3 digits after decimal point
4924         $rounded = sprintf("%.3f", $number);
4925
4926 Perl does its own C<sprintf> formatting--it emulates the C
4927 function C<sprintf>, but it doesn't use it (except for floating-point
4928 numbers, and even then only the standard modifiers are allowed).  As a
4929 result, any non-standard extensions in your local C<sprintf> are not
4930 available from Perl.
4931
4932 Unlike C<printf>, C<sprintf> does not do what you probably mean when you
4933 pass it an array as your first argument. The array is given scalar context,
4934 and instead of using the 0th element of the array as the format, Perl will
4935 use the count of elements in the array as the format, which is almost never
4936 useful.
4937
4938 Perl's C<sprintf> permits the following universally-known conversions:
4939
4940    %%   a percent sign
4941    %c   a character with the given number
4942    %s   a string
4943    %d   a signed integer, in decimal
4944    %u   an unsigned integer, in decimal
4945    %o   an unsigned integer, in octal
4946    %x   an unsigned integer, in hexadecimal
4947    %e   a floating-point number, in scientific notation
4948    %f   a floating-point number, in fixed decimal notation
4949    %g   a floating-point number, in %e or %f notation
4950
4951 In addition, Perl permits the following widely-supported conversions:
4952
4953    %X   like %x, but using upper-case letters
4954    %E   like %e, but using an upper-case "E"
4955    %G   like %g, but with an upper-case "E" (if applicable)
4956    %b   an unsigned integer, in binary
4957    %p   a pointer (outputs the Perl value's address in hexadecimal)
4958    %n   special: *stores* the number of characters output so far
4959         into the next variable in the parameter list
4960
4961 Finally, for backward (and we do mean "backward") compatibility, Perl
4962 permits these unnecessary but widely-supported conversions:
4963
4964    %i   a synonym for %d
4965    %D   a synonym for %ld
4966    %U   a synonym for %lu
4967    %O   a synonym for %lo
4968    %F   a synonym for %f
4969
4970 Note that the number of exponent digits in the scientific notation produced
4971 by C<%e>, C<%E>, C<%g> and C<%G> for numbers with the modulus of the
4972 exponent less than 100 is system-dependent: it may be three or less
4973 (zero-padded as necessary).  In other words, 1.23 times ten to the
4974 99th may be either "1.23e99" or "1.23e099".
4975
4976 Between the C<%> and the format letter, you may specify a number of
4977 additional attributes controlling the interpretation of the format.
4978 In order, these are:
4979
4980 =over 4
4981
4982 =item format parameter index
4983
4984 An explicit format parameter index, such as C<2$>. By default sprintf
4985 will format the next unused argument in the list, but this allows you
4986 to take the arguments out of order. Eg:
4987
4988   printf '%2$d %1$d', 12, 34;      # prints "34 12"
4989   printf '%3$d %d %1$d', 1, 2, 3;  # prints "3 1 1"
4990
4991 =item flags
4992
4993 one or more of:
4994    space   prefix positive number with a space
4995    +       prefix positive number with a plus sign
4996    -       left-justify within the field
4997    0       use zeros, not spaces, to right-justify
4998    #       prefix non-zero octal with "0", non-zero hex with "0x",
4999            non-zero binary with "0b"
5000
5001 For example:
5002
5003   printf '<% d>', 12;   # prints "< 12>"
5004   printf '<%+d>', 12;   # prints "<+12>"
5005   printf '<%6s>', 12;   # prints "<    12>"
5006   printf '<%-6s>', 12;  # prints "<12    >"
5007   printf '<%06s>', 12;  # prints "<000012>"
5008   printf '<%#x>', 12;   # prints "<0xc>"
5009
5010 =item vector flag
5011
5012 The vector flag C<v>, optionally specifying the join string to use.
5013 This flag tells perl to interpret the supplied string as a vector
5014 of integers, one for each character in the string, separated by
5015 a given string (a dot C<.> by default). This can be useful for
5016 displaying ordinal values of characters in arbitrary strings:
5017
5018   printf "version is v%vd\n", $^V;     # Perl's version
5019
5020 Put an asterisk C<*> before the C<v> to override the string to
5021 use to separate the numbers:
5022
5023   printf "address is %*vX\n", ":", $addr;   # IPv6 address
5024   printf "bits are %0*v8b\n", " ", $bits;   # random bitstring
5025
5026 You can also explicitly specify the argument number to use for
5027 the join string using eg C<*2$v>:
5028
5029   printf '%*4$vX %*4$vX %*4$vX', @addr[1..3], ":";   # 3 IPv6 addresses
5030
5031 =item (minimum) width
5032
5033 Arguments are usually formatted to be only as wide as required to
5034 display the given value. You can override the width by putting
5035 a number here, or get the width from the next argument (with C<*>)
5036 or from a specified argument (with eg C<*2$>):
5037
5038   printf '<%s>', "a";       # prints "<a>"
5039   printf '<%6s>', "a";      # prints "<     a>"
5040   printf '<%*s>', 6, "a";   # prints "<     a>"
5041   printf '<%*2$s>', "a", 6; # prints "<     a>"
5042   printf '<%2s>', "long";   # prints "<long>" (does not truncate)
5043
5044 If a field width obtained through C<*> is negative, it has the same
5045 effect as the C<-> flag: left-justification.
5046
5047 =item precision, or maximum width
5048
5049 You can specify a precision (for numeric conversions) or a maximum
5050 width (for string conversions) by specifying a C<.> followed by a number.
5051 For floating point formats, with the exception of 'g' and 'G', this specifies
5052 the number of decimal places to show (the default being 6), eg:
5053
5054   # these examples are subject to system-specific variation
5055   printf '<%f>', 1;    # prints "<1.000000>"
5056   printf '<%.1f>', 1;  # prints "<1.0>"
5057   printf '<%.0f>', 1;  # prints "<1>"
5058   printf '<%e>', 10;   # prints "<1.000000e+01>"
5059   printf '<%.1e>', 10; # prints "<1.0e+01>"
5060
5061 For 'g' and 'G', this specifies the maximum number of digits to show,
5062 including prior to the decimal point as well as after it, eg:
5063
5064   # these examples are subject to system-specific variation
5065   printf '<%g>', 1;        # prints "<1>"
5066   printf '<%.10g>', 1;     # prints "<1>"
5067   printf '<%g>', 100;      # prints "<100>"
5068   printf '<%.1g>', 100;    # prints "<1e+02>"
5069   printf '<%.2g>', 100.01; # prints "<1e+02>"
5070   printf '<%.5g>', 100.01; # prints "<100.01>"
5071   printf '<%.4g>', 100.01; # prints "<100>"
5072
5073 For integer conversions, specifying a precision implies that the
5074 output of the number itself should be zero-padded to this width:
5075
5076   printf '<%.6x>', 1;      # prints "<000001>"
5077   printf '<%#.6x>', 1;     # prints "<0x000001>"
5078   printf '<%-10.6x>', 1;   # prints "<000001    >"
5079
5080 For string conversions, specifying a precision truncates the string
5081 to fit in the specified width:
5082
5083   printf '<%.5s>', "truncated";   # prints "<trunc>"
5084   printf '<%10.5s>', "truncated"; # prints "<     trunc>"
5085
5086 You can also get the precision from the next argument using C<.*>:
5087
5088   printf '<%.6x>', 1;       # prints "<000001>"
5089   printf '<%.*x>', 6, 1;    # prints "<000001>"
5090
5091 You cannot currently get the precision from a specified number,
5092 but it is intended that this will be possible in the future using
5093 eg C<.*2$>:
5094
5095   printf '<%.*2$x>', 1, 6;   # INVALID, but in future will print "<000001>"
5096
5097 =item size
5098
5099 For numeric conversions, you can specify the size to interpret the
5100 number as using C<l>, C<h>, C<V>, C<q>, C<L>, or C<ll>. For integer
5101 conversions (C<d u o x X b i D U O>), numbers are usually assumed to be
5102 whatever the default integer size is on your platform (usually 32 or 64
5103 bits), but you can override this to use instead one of the standard C types,
5104 as supported by the compiler used to build Perl:
5105
5106    l           interpret integer as C type "long" or "unsigned long"
5107    h           interpret integer as C type "short" or "unsigned short"
5108    q, L or ll  interpret integer as C type "long long", "unsigned long long".
5109                or "quads" (typically 64-bit integers)
5110
5111 The last will produce errors if Perl does not understand "quads" in your
5112 installation. (This requires that either the platform natively supports quads
5113 or Perl was specifically compiled to support quads.) You can find out
5114 whether your Perl supports quads via L<Config>:
5115
5116         use Config;
5117         ($Config{use64bitint} eq 'define' || $Config{longsize} >= 8) &&
5118                 print "quads\n";
5119
5120 For floating point conversions (C<e f g E F G>), numbers are usually assumed
5121 to be the default floating point size on your platform (double or long double),
5122 but you can force 'long double' with C<q>, C<L>, or C<ll> if your
5123 platform supports them. You can find out whether your Perl supports long
5124 doubles via L<Config>:
5125
5126         use Config;
5127         $Config{d_longdbl} eq 'define' && print "long doubles\n";
5128
5129 You can find out whether Perl considers 'long double' to be the default
5130 floating point size to use on your platform via L<Config>:
5131
5132         use Config;
5133         ($Config{uselongdouble} eq 'define') &&
5134                 print "long doubles by default\n";
5135
5136 It can also be the case that long doubles and doubles are the same thing:
5137
5138         use Config;
5139         ($Config{doublesize} == $Config{longdblsize}) &&
5140                 print "doubles are long doubles\n";
5141
5142 The size specifier C<V> has no effect for Perl code, but it is supported
5143 for compatibility with XS code; it means 'use the standard size for
5144 a Perl integer (or floating-point number)', which is already the
5145 default for Perl code.
5146
5147 =item order of arguments
5148
5149 Normally, sprintf takes the next unused argument as the value to
5150 format for each format specification. If the format specification
5151 uses C<*> to require additional arguments, these are consumed from
5152 the argument list in the order in which they appear in the format
5153 specification I<before> the value to format. Where an argument is
5154 specified using an explicit index, this does not affect the normal
5155 order for the arguments (even when the explicitly specified index
5156 would have been the next argument in any case).
5157
5158 So:
5159
5160   printf '<%*.*s>', $a, $b, $c;
5161
5162 would use C<$a> for the width, C<$b> for the precision and C<$c>
5163 as the value to format, while:
5164
5165   print '<%*1$.*s>', $a, $b;
5166
5167 would use C<$a> for the width and the precision, and C<$b> as the
5168 value to format.
5169
5170 Here are some more examples - beware that when using an explicit
5171 index, the C<$> may need to be escaped:
5172
5173   printf "%2\$d %d\n",    12, 34;               # will print "34 12\n"
5174   printf "%2\$d %d %d\n", 12, 34;               # will print "34 12 34\n"
5175   printf "%3\$d %d %d\n", 12, 34, 56;           # will print "56 12 34\n"
5176   printf "%2\$*3\$d %d\n", 12, 34, 3;           # will print " 34 12\n"
5177
5178 =back
5179
5180 If C<use locale> is in effect, the character used for the decimal
5181 point in formatted real numbers is affected by the LC_NUMERIC locale.
5182 See L<perllocale>.
5183
5184 =item sqrt EXPR
5185
5186 =item sqrt
5187
5188 Return the square root of EXPR.  If EXPR is omitted, returns square
5189 root of C<$_>.  Only works on non-negative operands, unless you've
5190 loaded the standard Math::Complex module.
5191
5192     use Math::Complex;
5193     print sqrt(-2);    # prints 1.4142135623731i
5194
5195 =item srand EXPR
5196
5197 =item srand
5198
5199 Sets the random number seed for the C<rand> operator.
5200
5201 The point of the function is to "seed" the C<rand> function so that
5202 C<rand> can produce a different sequence each time you run your
5203 program.
5204
5205 If srand() is not called explicitly, it is called implicitly at the
5206 first use of the C<rand> operator.  However, this was not the case in
5207 versions of Perl before 5.004, so if your script will run under older
5208 Perl versions, it should call C<srand>.
5209
5210 Most programs won't even call srand() at all, except those that
5211 need a cryptographically-strong starting point rather than the
5212 generally acceptable default, which is based on time of day,
5213 process ID, and memory allocation, or the F</dev/urandom> device,
5214 if available.
5215
5216 You can call srand($seed) with the same $seed to reproduce the
5217 I<same> sequence from rand(), but this is usually reserved for
5218 generating predictable results for testing or debugging.
5219 Otherwise, don't call srand() more than once in your program.
5220
5221 Do B<not> call srand() (i.e. without an argument) more than once in
5222 a script.  The internal state of the random number generator should
5223 contain more entropy than can be provided by any seed, so calling
5224 srand() again actually I<loses> randomness.
5225
5226 Most implementations of C<srand> take an integer and will silently
5227 truncate decimal numbers.  This means C<srand(42)> will usually
5228 produce the same results as C<srand(42.1)>.  To be safe, always pass
5229 C<srand> an integer.
5230
5231 In versions of Perl prior to 5.004 the default seed was just the
5232 current C<time>.  This isn't a particularly good seed, so many old
5233 programs supply their own seed value (often C<time ^ $$> or C<time ^
5234 ($$ + ($$ << 15))>), but that isn't necessary any more.
5235
5236 Note that you need something much more random than the default seed for
5237 cryptographic purposes.  Checksumming the compressed output of one or more
5238 rapidly changing operating system status programs is the usual method.  For
5239 example:
5240
5241     srand (time ^ $$ ^ unpack "%L*", `ps axww | gzip`);
5242
5243 If you're particularly concerned with this, see the C<Math::TrulyRandom>
5244 module in CPAN.
5245
5246 Frequently called programs (like CGI scripts) that simply use
5247
5248     time ^ $$
5249
5250 for a seed can fall prey to the mathematical property that
5251
5252     a^b == (a+1)^(b+1)
5253
5254 one-third of the time.  So don't do that.
5255
5256 =item stat FILEHANDLE
5257
5258 =item stat EXPR
5259
5260 =item stat
5261
5262 Returns a 13-element list giving the status info for a file, either
5263 the file opened via FILEHANDLE, or named by EXPR.  If EXPR is omitted,
5264 it stats C<$_>.  Returns a null list if the stat fails.  Typically used
5265 as follows:
5266
5267     ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
5268        $atime,$mtime,$ctime,$blksize,$blocks)
5269            = stat($filename);
5270
5271 Not all fields are supported on all filesystem types.  Here are the
5272 meaning of the fields:
5273
5274   0 dev      device number of filesystem
5275   1 ino      inode number
5276   2 mode     file mode  (type and permissions)
5277   3 nlink    number of (hard) links to the file
5278   4 uid      numeric user ID of file's owner
5279   5 gid      numeric group ID of file's owner
5280   6 rdev     the device identifier (special files only)
5281   7 size     total size of file, in bytes
5282   8 atime    last access time in seconds since the epoch
5283   9 mtime    last modify time in seconds since the epoch
5284  10 ctime    inode change time in seconds since the epoch (*)
5285  11 blksize  preferred block size for file system I/O
5286  12 blocks   actual number of blocks allocated
5287
5288 (The epoch was at 00:00 January 1, 1970 GMT.)
5289
5290 (*) The ctime field is non-portable, in particular you cannot expect
5291 it to be a "creation time", see L<perlport/"Files and Filesystems">
5292 for details.
5293
5294 If stat is passed the special filehandle consisting of an underline, no
5295 stat is done, but the current contents of the stat structure from the
5296 last stat or filetest are returned.  Example:
5297
5298     if (-x $file && (($d) = stat(_)) && $d < 0) {
5299         print "$file is executable NFS file\n";
5300     }
5301
5302 (This works on machines only for which the device number is negative
5303 under NFS.)
5304
5305 Because the mode contains both the file type and its permissions, you
5306 should mask off the file type portion and (s)printf using a C<"%o">
5307 if you want to see the real permissions.
5308
5309     $mode = (stat($filename))[2];
5310     printf "Permissions are %04o\n", $mode & 07777;
5311
5312 In scalar context, C<stat> returns a boolean value indicating success
5313 or failure, and, if successful, sets the information associated with
5314 the special filehandle C<_>.
5315
5316 The File::stat module provides a convenient, by-name access mechanism:
5317
5318     use File::stat;
5319     $sb = stat($filename);
5320     printf "File is %s, size is %s, perm %04o, mtime %s\n",
5321         $filename, $sb->size, $sb->mode & 07777,
5322         scalar localtime $sb->mtime;
5323
5324 You can import symbolic mode constants (C<S_IF*>) and functions
5325 (C<S_IS*>) from the Fcntl module:
5326
5327     use Fcntl ':mode';
5328
5329     $mode = (stat($filename))[2];
5330
5331     $user_rwx      = ($mode & S_IRWXU) >> 6;
5332     $group_read    = ($mode & S_IRGRP) >> 3;
5333     $other_execute =  $mode & S_IXOTH;
5334
5335     printf "Permissions are %04o\n", S_IMODE($mode), "\n";
5336
5337     $is_setuid     =  $mode & S_ISUID;
5338     $is_setgid     =  S_ISDIR($mode);
5339
5340 You could write the last two using the C<-u> and C<-d> operators.
5341 The commonly available S_IF* constants are
5342
5343     # Permissions: read, write, execute, for user, group, others.
5344
5345     S_IRWXU S_IRUSR S_IWUSR S_IXUSR
5346     S_IRWXG S_IRGRP S_IWGRP S_IXGRP
5347     S_IRWXO S_IROTH S_IWOTH S_IXOTH
5348
5349     # Setuid/Setgid/Stickiness/SaveText.
5350     # Note that the exact meaning of these is system dependent.
5351
5352     S_ISUID S_ISGID S_ISVTX S_ISTXT
5353
5354     # File types.  Not necessarily all are available on your system.
5355
5356     S_IFREG S_IFDIR S_IFLNK S_IFBLK S_ISCHR S_IFIFO S_IFSOCK S_IFWHT S_ENFMT
5357
5358     # The following are compatibility aliases for S_IRUSR, S_IWUSR, S_IXUSR.
5359
5360     S_IREAD S_IWRITE S_IEXEC
5361
5362 and the S_IF* functions are
5363
5364     S_IMODE($mode)      the part of $mode containing the permission bits
5365                         and the setuid/setgid/sticky bits
5366
5367     S_IFMT($mode)       the part of $mode containing the file type
5368                         which can be bit-anded with e.g. S_IFREG
5369                         or with the following functions
5370
5371     # The operators -f, -d, -l, -b, -c, -p, and -s.
5372
5373     S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
5374     S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)
5375
5376     # No direct -X operator counterpart, but for the first one
5377     # the -g operator is often equivalent.  The ENFMT stands for
5378     # record flocking enforcement, a platform-dependent feature.
5379
5380     S_ISENFMT($mode) S_ISWHT($mode)
5381
5382 See your native chmod(2) and stat(2) documentation for more details
5383 about the S_* constants.  To get status info for a symbolic link
5384 instead of the target file behind the link, use the C<lstat> function.
5385
5386 =item study SCALAR
5387
5388 =item study
5389
5390 Takes extra time to study SCALAR (C<$_> if unspecified) in anticipation of
5391 doing many pattern matches on the string before it is next modified.
5392 This may or may not save time, depending on the nature and number of
5393 patterns you are searching on, and on the distribution of character
5394 frequencies in the string to be searched--you probably want to compare
5395 run times with and without it to see which runs faster.  Those loops
5396 which scan for many short constant strings (including the constant
5397 parts of more complex patterns) will benefit most.  You may have only
5398 one C<study> active at a time--if you study a different scalar the first
5399 is "unstudied".  (The way C<study> works is this: a linked list of every
5400 character in the string to be searched is made, so we know, for
5401 example, where all the C<'k'> characters are.  From each search string,
5402 the rarest character is selected, based on some static frequency tables
5403 constructed from some C programs and English text.  Only those places
5404 that contain this "rarest" character are examined.)
5405
5406 For example, here is a loop that inserts index producing entries
5407 before any line containing a certain pattern:
5408
5409     while (<>) {
5410         study;
5411         print ".IX foo\n"       if /\bfoo\b/;
5412         print ".IX bar\n"       if /\bbar\b/;
5413         print ".IX blurfl\n"    if /\bblurfl\b/;
5414         # ...
5415         print;
5416     }
5417
5418 In searching for C</\bfoo\b/>, only those locations in C<$_> that contain C<f>
5419 will be looked at, because C<f> is rarer than C<o>.  In general, this is
5420 a big win except in pathological cases.  The only question is whether
5421 it saves you more time than it took to build the linked list in the
5422 first place.
5423
5424 Note that if you have to look for strings that you don't know till
5425 runtime, you can build an entire loop as a string and C<eval> that to
5426 avoid recompiling all your patterns all the time.  Together with
5427 undefining C<$/> to input entire files as one record, this can be very
5428 fast, often faster than specialized programs like fgrep(1).  The following
5429 scans a list of files (C<@files>) for a list of words (C<@words>), and prints
5430 out the names of those files that contain a match:
5431
5432     $search = 'while (<>) { study;';
5433     foreach $word (@words) {
5434         $search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
5435     }
5436     $search .= "}";
5437     @ARGV = @files;
5438     undef $/;
5439     eval $search;               # this screams
5440     $/ = "\n";          # put back to normal input delimiter
5441     foreach $file (sort keys(%seen)) {
5442         print $file, "\n";
5443     }
5444
5445 =item sub NAME BLOCK
5446
5447 =item sub NAME (PROTO) BLOCK
5448
5449 =item sub NAME : ATTRS BLOCK
5450
5451 =item sub NAME (PROTO) : ATTRS BLOCK
5452
5453 This is subroutine definition, not a real function I<per se>.
5454 Without a BLOCK it's just a forward declaration.  Without a NAME,
5455 it's an anonymous function declaration, and does actually return
5456 a value: the CODE ref of the closure you just created.
5457
5458 See L<perlsub> and L<perlref> for details about subroutines and
5459 references, and L<attributes> and L<Attribute::Handlers> for more
5460 information about attributes.
5461
5462 =item substr EXPR,OFFSET,LENGTH,REPLACEMENT
5463
5464 =item substr EXPR,OFFSET,LENGTH
5465
5466 =item substr EXPR,OFFSET
5467
5468 Extracts a substring out of EXPR and returns it.  First character is at
5469 offset C<0>, or whatever you've set C<$[> to (but don't do that).
5470 If OFFSET is negative (or more precisely, less than C<$[>), starts
5471 that far from the end of the string.  If LENGTH is omitted, returns
5472 everything to the end of the string.  If LENGTH is negative, leaves that
5473 many characters off the end of the string.
5474
5475 You can use the substr() function as an lvalue, in which case EXPR
5476 must itself be an lvalue.  If you assign something shorter than LENGTH,
5477 the string will shrink, and if you assign something longer than LENGTH,
5478 the string will grow to accommodate it.  To keep the string the same
5479 length you may need to pad or chop your value using C<sprintf>.
5480
5481 If OFFSET and LENGTH specify a substring that is partly outside the
5482 string, only the part within the string is returned.  If the substring
5483 is beyond either end of the string, substr() returns the undefined
5484 value and produces a warning.  When used as an lvalue, specifying a
5485 substring that is entirely outside the string is a fatal error.
5486 Here's an example showing the behavior for boundary cases:
5487
5488     my $name = 'fred';
5489     substr($name, 4) = 'dy';            # $name is now 'freddy'
5490     my $null = substr $name, 6, 2;      # returns '' (no warning)
5491     my $oops = substr $name, 7;         # returns undef, with warning
5492     substr($name, 7) = 'gap';           # fatal error
5493
5494 An alternative to using substr() as an lvalue is to specify the
5495 replacement string as the 4th argument.  This allows you to replace
5496 parts of the EXPR and return what was there before in one operation,
5497 just as you can with splice().
5498
5499 If the lvalue returned by substr is used after the EXPR is changed in
5500 any way, the behaviour may not be as expected and is subject to change.
5501 This caveat includes code such as C<print(substr($foo,$a,$b)=$bar)> or
5502 C<(substr($foo,$a,$b)=$bar)=$fud> (where $foo is changed via the
5503 substring assignment, and then the substr is used again), or where a
5504 substr() is aliased via a C<foreach> loop or passed as a parameter or
5505 a reference to it is taken and then the alias, parameter, or deref'd
5506 reference either is used after the original EXPR has been changed or
5507 is assigned to and then used a second time.
5508
5509 =item symlink OLDFILE,NEWFILE
5510
5511 Creates a new filename symbolically linked to the old filename.
5512 Returns C<1> for success, C<0> otherwise.  On systems that don't support
5513 symbolic links, produces a fatal error at run time.  To check for that,
5514 use eval:
5515
5516     $symlink_exists = eval { symlink("",""); 1 };
5517
5518 =item syscall LIST
5519
5520 Calls the system call specified as the first element of the list,
5521 passing the remaining elements as arguments to the system call.  If
5522 unimplemented, produces a fatal error.  The arguments are interpreted
5523 as follows: if a given argument is numeric, the argument is passed as
5524 an int.  If not, the pointer to the string value is passed.  You are
5525 responsible to make sure a string is pre-extended long enough to
5526 receive any result that might be written into a string.  You can't use a
5527 string literal (or other read-only string) as an argument to C<syscall>
5528 because Perl has to assume that any string pointer might be written
5529 through.  If your
5530 integer arguments are not literals and have never been interpreted in a
5531 numeric context, you may need to add C<0> to them to force them to look
5532 like numbers.  This emulates the C<syswrite> function (or vice versa):
5533
5534     require 'syscall.ph';               # may need to run h2ph
5535     $s = "hi there\n";
5536     syscall(&SYS_write, fileno(STDOUT), $s, length $s);
5537
5538 Note that Perl supports passing of up to only 14 arguments to your system call,
5539 which in practice should usually suffice.
5540
5541 Syscall returns whatever value returned by the system call it calls.
5542 If the system call fails, C<syscall> returns C<-1> and sets C<$!> (errno).
5543 Note that some system calls can legitimately return C<-1>.  The proper
5544 way to handle such calls is to assign C<$!=0;> before the call and
5545 check the value of C<$!> if syscall returns C<-1>.
5546
5547 There's a problem with C<syscall(&SYS_pipe)>: it returns the file
5548 number of the read end of the pipe it creates.  There is no way
5549 to retrieve the file number of the other end.  You can avoid this
5550 problem by using C<pipe> instead.
5551
5552 =item sysopen FILEHANDLE,FILENAME,MODE
5553
5554 =item sysopen FILEHANDLE,FILENAME,MODE,PERMS
5555
5556 Opens the file whose filename is given by FILENAME, and associates it
5557 with FILEHANDLE.  If FILEHANDLE is an expression, its value is used as
5558 the name of the real filehandle wanted.  This function calls the
5559 underlying operating system's C<open> function with the parameters
5560 FILENAME, MODE, PERMS.
5561
5562 The possible values and flag bits of the MODE parameter are
5563 system-dependent; they are available via the standard module C<Fcntl>.
5564 See the documentation of your operating system's C<open> to see which
5565 values and flag bits are available.  You may combine several flags
5566 using the C<|>-operator.
5567
5568 Some of the most common values are C<O_RDONLY> for opening the file in
5569 read-only mode, C<O_WRONLY> for opening the file in write-only mode,
5570 and C<O_RDWR> for opening the file in read-write mode, and.
5571
5572 For historical reasons, some values work on almost every system
5573 supported by perl: zero means read-only, one means write-only, and two
5574 means read/write.  We know that these values do I<not> work under
5575 OS/390 & VM/ESA Unix and on the Macintosh; you probably don't want to
5576 use them in new code.
5577
5578 If the file named by FILENAME does not exist and the C<open> call creates
5579 it (typically because MODE includes the C<O_CREAT> flag), then the value of
5580 PERMS specifies the permissions of the newly created file.  If you omit
5581 the PERMS argument to C<sysopen>, Perl uses the octal value C<0666>.
5582 These permission values need to be in octal, and are modified by your
5583 process's current C<umask>.
5584
5585 In many systems the C<O_EXCL> flag is available for opening files in
5586 exclusive mode.  This is B<not> locking: exclusiveness means here that
5587 if the file already exists, sysopen() fails.  The C<O_EXCL> wins
5588 C<O_TRUNC>.
5589
5590 Sometimes you may want to truncate an already-existing file: C<O_TRUNC>.
5591
5592 You should seldom if ever use C<0644> as argument to C<sysopen>, because
5593 that takes away the user's option to have a more permissive umask.
5594 Better to omit it.  See the perlfunc(1) entry on C<umask> for more
5595 on this.
5596
5597 Note that C<sysopen> depends on the fdopen() C library function.
5598 On many UNIX systems, fdopen() is known to fail when file descriptors
5599 exceed a certain value, typically 255. If you need more file
5600 descriptors than that, consider rebuilding Perl to use the C<sfio>
5601 library, or perhaps using the POSIX::open() function.
5602
5603 See L<perlopentut> for a kinder, gentler explanation of opening files.
5604
5605 =item sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
5606
5607 =item sysread FILEHANDLE,SCALAR,LENGTH
5608
5609 Attempts to read LENGTH bytes of data into variable SCALAR from the
5610 specified FILEHANDLE, using the system call read(2).  It bypasses
5611 buffered IO, so mixing this with other kinds of reads, C<print>,
5612 C<write>, C<seek>, C<tell>, or C<eof> can cause confusion because the
5613 perlio or stdio layers usually buffers data.  Returns the number of
5614 bytes actually read, C<0> at end of file, or undef if there was an
5615 error (in the latter case C<$!> is also set).  SCALAR will be grown or
5616 shrunk so that the last byte actually read is the last byte of the
5617 scalar after the read.
5618
5619 An OFFSET may be specified to place the read data at some place in the
5620 string other than the beginning.  A negative OFFSET specifies
5621 placement at that many characters counting backwards from the end of
5622 the string.  A positive OFFSET greater than the length of SCALAR
5623 results in the string being padded to the required size with C<"\0">
5624 bytes before the result of the read is appended.
5625
5626 There is no syseof() function, which is ok, since eof() doesn't work
5627 very well on device files (like ttys) anyway.  Use sysread() and check
5628 for a return value for 0 to decide whether you're done.
5629
5630 Note that if the filehandle has been marked as C<:utf8> Unicode
5631 characters are read instead of bytes (the LENGTH, OFFSET, and the
5632 return value of sysread() are in Unicode characters).
5633 The C<:encoding(...)> layer implicitly introduces the C<:utf8> layer.
5634 See L</binmode>, L</open>, and the C<open> pragma, L<open>.
5635
5636 =item sysseek FILEHANDLE,POSITION,WHENCE
5637
5638 Sets FILEHANDLE's system position in bytes using the system call
5639 lseek(2).  FILEHANDLE may be an expression whose value gives the name
5640 of the filehandle.  The values for WHENCE are C<0> to set the new
5641 position to POSITION, C<1> to set the it to the current position plus
5642 POSITION, and C<2> to set it to EOF plus POSITION (typically
5643 negative).
5644
5645 Note the I<in bytes>: even if the filehandle has been set to operate
5646 on characters (for example by using the C<:utf8> I/O layer), tell()
5647 will return byte offsets, not character offsets (because implementing
5648 that would render sysseek() very slow).
5649
5650 sysseek() bypasses normal buffered IO, so mixing this with reads (other
5651 than C<sysread>, for example &gt;&lt or read()) C<print>, C<write>,
5652 C<seek>, C<tell>, or C<eof> may cause confusion.
5653
5654 For WHENCE, you may also use the constants C<SEEK_SET>, C<SEEK_CUR>,
5655 and C<SEEK_END> (start of the file, current position, end of the file)
5656 from the Fcntl module.  Use of the constants is also more portable
5657 than relying on 0, 1, and 2.  For example to define a "systell" function:
5658
5659         use Fnctl 'SEEK_CUR';
5660         sub systell { sysseek($_[0], 0, SEEK_CUR) }
5661
5662 Returns the new position, or the undefined value on failure.  A position
5663 of zero is returned as the string C<"0 but true">; thus C<sysseek> returns
5664 true on success and false on failure, yet you can still easily determine
5665 the new position.
5666
5667 =item system LIST
5668
5669 =item system PROGRAM LIST
5670
5671 Does exactly the same thing as C<exec LIST>, except that a fork is
5672 done first, and the parent process waits for the child process to
5673 complete.  Note that argument processing varies depending on the
5674 number of arguments.  If there is more than one argument in LIST,
5675 or if LIST is an array with more than one value, starts the program
5676 given by the first element of the list with arguments given by the
5677 rest of the list.  If there is only one scalar argument, the argument
5678 is checked for shell metacharacters, and if there are any, the
5679 entire argument is passed to the system's command shell for parsing
5680 (this is C</bin/sh -c> on Unix platforms, but varies on other
5681 platforms).  If there are no shell metacharacters in the argument,
5682 it is split into words and passed directly to C<execvp>, which is
5683 more efficient.
5684
5685 Beginning with v5.6.0, Perl will attempt to flush all files opened for
5686 output before any operation that may do a fork, but this may not be
5687 supported on some platforms (see L<perlport>).  To be safe, you may need
5688 to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
5689 of C<IO::Handle> on any open handles.
5690
5691 The return value is the exit status of the program as returned by the
5692 C<wait> call.  To get the actual exit value shift right by eight (see below).
5693 See also L</exec>.  This is I<not> what you want to use to capture
5694 the output from a command, for that you should use merely backticks or
5695 C<qx//>, as described in L<perlop/"`STRING`">.  Return value of -1
5696 indicates a failure to start the program (inspect $! for the reason).
5697
5698 Like C<exec>, C<system> allows you to lie to a program about its name if
5699 you use the C<system PROGRAM LIST> syntax.  Again, see L</exec>.
5700
5701 Because C<system> and backticks block C<SIGINT> and C<SIGQUIT>,
5702 killing the program they're running doesn't actually interrupt
5703 your program.
5704
5705     @args = ("command", "arg1", "arg2");
5706     system(@args) == 0
5707          or die "system @args failed: $?"
5708
5709 You can check all the failure possibilities by inspecting
5710 C<$?> like this:
5711
5712     $exit_value  = $? >> 8;
5713     $signal_num  = $? & 127;
5714     $dumped_core = $? & 128;
5715
5716 or more portably by using the W*() calls of the POSIX extension;
5717 see L<perlport> for more information.
5718
5719 When the arguments get executed via the system shell, results
5720 and return codes will be subject to its quirks and capabilities.
5721 See L<perlop/"`STRING`"> and L</exec> for details.
5722
5723 =item syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
5724
5725 =item syswrite FILEHANDLE,SCALAR,LENGTH
5726
5727 =item syswrite FILEHANDLE,SCALAR
5728
5729 Attempts to write LENGTH bytes of data from variable SCALAR to the
5730 specified FILEHANDLE, using the system call write(2).  If LENGTH is
5731 not specified, writes whole SCALAR.  It bypasses buffered IO, so
5732 mixing this with reads (other than C<sysread())>, C<print>, C<write>,
5733 C<seek>, C<tell>, or C<eof> may cause confusion because the perlio and
5734 stdio layers usually buffers data.  Returns the number of bytes
5735 actually written, or C<undef> if there was an error (in this case the
5736 errno variable C<$!> is also set).  If the LENGTH is greater than the
5737 available data in the SCALAR after the OFFSET, only as much data as is
5738 available will be written.
5739
5740 An OFFSET may be specified to write the data from some part of the
5741 string other than the beginning.  A negative OFFSET specifies writing
5742 that many characters counting backwards from the end of the string.
5743 In the case the SCALAR is empty you can use OFFSET but only zero offset.
5744
5745 Note that if the filehandle has been marked as C<:utf8>, Unicode
5746 characters are written instead of bytes (the LENGTH, OFFSET, and the
5747 return value of syswrite() are in UTF-8 encoded Unicode characters).
5748 The C<:encoding(...)> layer implicitly introduces the C<:utf8> layer.
5749 See L</binmode>, L</open>, and the C<open> pragma, L<open>.
5750
5751 =item tell FILEHANDLE
5752
5753 =item tell
5754
5755 Returns the current position I<in bytes> for FILEHANDLE, or -1 on
5756 error.  FILEHANDLE may be an expression whose value gives the name of
5757 the actual filehandle.  If FILEHANDLE is omitted, assumes the file
5758 last read.
5759
5760 Note the I<in bytes>: even if the filehandle has been set to
5761 operate on characters (for example by using the C<:utf8> open
5762 layer), tell() will return byte offsets, not character offsets
5763 (because that would render seek() and tell() rather slow).
5764
5765 The return value of tell() for the standard streams like the STDIN
5766 depends on the operating system: it may return -1 or something else.
5767 tell() on pipes, fifos, and sockets usually returns -1.
5768
5769 There is no C<systell> function.  Use C<sysseek(FH, 0, 1)> for that.
5770
5771 Do not use tell() on a filehandle that has been opened using
5772 sysopen(), use sysseek() for that as described above.  Why?  Because
5773 sysopen() creates unbuffered, "raw", filehandles, while open() creates
5774 buffered filehandles.  sysseek() make sense only on the first kind,
5775 tell() only makes sense on the second kind.
5776
5777 =item telldir DIRHANDLE
5778
5779 Returns the current position of the C<readdir> routines on DIRHANDLE.
5780 Value may be given to C<seekdir> to access a particular location in a
5781 directory.  Has the same caveats about possible directory compaction as
5782 the corresponding system library routine.
5783
5784 =item tie VARIABLE,CLASSNAME,LIST
5785
5786 This function binds a variable to a package class that will provide the
5787 implementation for the variable.  VARIABLE is the name of the variable
5788 to be enchanted.  CLASSNAME is the name of a class implementing objects
5789 of correct type.  Any additional arguments are passed to the C<new>
5790 method of the class (meaning C<TIESCALAR>, C<TIEHANDLE>, C<TIEARRAY>,
5791 or C<TIEHASH>).  Typically these are arguments such as might be passed
5792 to the C<dbm_open()> function of C.  The object returned by the C<new>
5793 method is also returned by the C<tie> function, which would be useful
5794 if you want to access other methods in CLASSNAME.
5795
5796 Note that functions such as C<keys> and C<values> may return huge lists
5797 when used on large objects, like DBM files.  You may prefer to use the
5798 C<each> function to iterate over such.  Example:
5799
5800     # print out history file offsets
5801     use NDBM_File;
5802     tie(%HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
5803     while (($key,$val) = each %HIST) {
5804         print $key, ' = ', unpack('L',$val), "\n";
5805     }
5806     untie(%HIST);
5807
5808 A class implementing a hash should have the following methods:
5809
5810     TIEHASH classname, LIST
5811     FETCH this, key
5812     STORE this, key, value
5813     DELETE this, key
5814     CLEAR this
5815     EXISTS this, key
5816     FIRSTKEY this
5817     NEXTKEY this, lastkey
5818     DESTROY this
5819     UNTIE this
5820
5821 A class implementing an ordinary array should have the following methods:
5822
5823     TIEARRAY classname, LIST
5824     FETCH this, key
5825     STORE this, key, value
5826     FETCHSIZE this
5827     STORESIZE this, count
5828     CLEAR this
5829     PUSH this, LIST
5830     POP this
5831     SHIFT this
5832     UNSHIFT this, LIST
5833     SPLICE this, offset, length, LIST
5834     EXTEND this, count
5835     DESTROY this
5836     UNTIE this
5837
5838 A class implementing a file handle should have the following methods:
5839
5840     TIEHANDLE classname, LIST
5841     READ this, scalar, length, offset
5842     READLINE this
5843     GETC this
5844     WRITE this, scalar, length, offset
5845     PRINT this, LIST
5846     PRINTF this, format, LIST
5847     BINMODE this
5848     EOF this
5849     FILENO this
5850     SEEK this, position, whence
5851     TELL this
5852     OPEN this, mode, LIST
5853     CLOSE this
5854     DESTROY this
5855     UNTIE this
5856
5857 A class implementing a scalar should have the following methods:
5858
5859     TIESCALAR classname, LIST
5860     FETCH this,
5861     STORE this, value
5862     DESTROY this
5863     UNTIE this
5864
5865 Not all methods indicated above need be implemented.  See L<perltie>,
5866 L<Tie::Hash>, L<Tie::Array>, L<Tie::Scalar>, and L<Tie::Handle>.
5867
5868 Unlike C<dbmopen>, the C<tie> function will not use or require a module
5869 for you--you need to do that explicitly yourself.  See L<DB_File>
5870 or the F<Config> module for interesting C<tie> implementations.
5871
5872 For further details see L<perltie>, L<"tied VARIABLE">.
5873
5874 =item tied VARIABLE
5875
5876 Returns a reference to the object underlying VARIABLE (the same value
5877 that was originally returned by the C<tie> call that bound the variable
5878 to a package.)  Returns the undefined value if VARIABLE isn't tied to a
5879 package.
5880
5881 =item time
5882
5883 Returns the number of non-leap seconds since whatever time the system
5884 considers to be the epoch (that's 00:00:00, January 1, 1904 for Mac OS,
5885 and 00:00:00 UTC, January 1, 1970 for most other systems).
5886 Suitable for feeding to C<gmtime> and C<localtime>.
5887
5888 For measuring time in better granularity than one second,
5889 you may use either the Time::HiRes module (from CPAN, and starting from
5890 Perl 5.8 part of the standard distribution), or if you have
5891 gettimeofday(2), you may be able to use the C<syscall> interface of Perl.
5892 See L<perlfaq8> for details.
5893
5894 =item times
5895
5896 Returns a four-element list giving the user and system times, in
5897 seconds, for this process and the children of this process.
5898
5899     ($user,$system,$cuser,$csystem) = times;
5900
5901 In scalar context, C<times> returns C<$user>.
5902
5903 =item tr///
5904
5905 The transliteration operator.  Same as C<y///>.  See L<perlop>.
5906
5907 =item truncate FILEHANDLE,LENGTH
5908
5909 =item truncate EXPR,LENGTH
5910
5911 Truncates the file opened on FILEHANDLE, or named by EXPR, to the
5912 specified length.  Produces a fatal error if truncate isn't implemented
5913 on your system.  Returns true if successful, the undefined value
5914 otherwise.
5915
5916 The behavior is undefined if LENGTH is greater than the length of the
5917 file.
5918
5919 =item uc EXPR
5920
5921 =item uc
5922
5923 Returns an uppercased version of EXPR.  This is the internal function
5924 implementing the C<\U> escape in double-quoted strings.  Respects
5925 current LC_CTYPE locale if C<use locale> in force.  See L<perllocale>
5926 and L<perlunicode> for more details about locale and Unicode support.
5927 It does not attempt to do titlecase mapping on initial letters.  See
5928 C<ucfirst> for that.
5929
5930 If EXPR is omitted, uses C<$_>.
5931
5932 =item ucfirst EXPR
5933
5934 =item ucfirst
5935
5936 Returns the value of EXPR with the first character in uppercase
5937 (titlecase in Unicode).  This is the internal function implementing
5938 the C<\u> escape in double-quoted strings.  Respects current LC_CTYPE
5939 locale if C<use locale> in force.  See L<perllocale> and L<perlunicode>
5940 for more details about locale and Unicode support.
5941
5942 If EXPR is omitted, uses C<$_>.
5943
5944 =item umask EXPR
5945
5946 =item umask
5947
5948 Sets the umask for the process to EXPR and returns the previous value.
5949 If EXPR is omitted, merely returns the current umask.
5950
5951 The Unix permission C<rwxr-x---> is represented as three sets of three
5952 bits, or three octal digits: C<0750> (the leading 0 indicates octal
5953 and isn't one of the digits).  The C<umask> value is such a number
5954 representing disabled permissions bits.  The permission (or "mode")
5955 values you pass C<mkdir> or C<sysopen> are modified by your umask, so
5956 even if you tell C<sysopen> to create a file with permissions C<0777>,
5957 if your umask is C<0022> then the file will actually be created with
5958 permissions C<0755>.  If your C<umask> were C<0027> (group can't
5959 write; others can't read, write, or execute), then passing
5960 C<sysopen> C<0666> would create a file with mode C<0640> (C<0666 &~
5961 027> is C<0640>).
5962
5963 Here's some advice: supply a creation mode of C<0666> for regular
5964 files (in C<sysopen>) and one of C<0777> for directories (in
5965 C<mkdir>) and executable files.  This gives users the freedom of
5966 choice: if they want protected files, they might choose process umasks
5967 of C<022>, C<027>, or even the particularly antisocial mask of C<077>.
5968 Programs should rarely if ever make policy decisions better left to
5969 the user.  The exception to this is when writing files that should be
5970 kept private: mail files, web browser cookies, I<.rhosts> files, and
5971 so on.
5972
5973 If umask(2) is not implemented on your system and you are trying to
5974 restrict access for I<yourself> (i.e., (EXPR & 0700) > 0), produces a
5975 fatal error at run time.  If umask(2) is not implemented and you are
5976 not trying to restrict access for yourself, returns C<undef>.
5977
5978 Remember that a umask is a number, usually given in octal; it is I<not> a
5979 string of octal digits.  See also L</oct>, if all you have is a string.
5980
5981 =item undef EXPR
5982
5983 =item undef
5984
5985 Undefines the value of EXPR, which must be an lvalue.  Use only on a
5986 scalar value, an array (using C<@>), a hash (using C<%>), a subroutine
5987 (using C<&>), or a typeglob (using <*>).  (Saying C<undef $hash{$key}>
5988 will probably not do what you expect on most predefined variables or
5989 DBM list values, so don't do that; see L<delete>.)  Always returns the
5990 undefined value.  You can omit the EXPR, in which case nothing is
5991 undefined, but you still get an undefined value that you could, for
5992 instance, return from a subroutine, assign to a variable or pass as a
5993 parameter.  Examples:
5994
5995     undef $foo;
5996     undef $bar{'blurfl'};      # Compare to: delete $bar{'blurfl'};
5997     undef @ary;
5998     undef %hash;
5999     undef &mysub;
6000     undef *xyz;       # destroys $xyz, @xyz, %xyz, &xyz, etc.
6001     return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
6002     select undef, undef, undef, 0.25;
6003     ($a, $b, undef, $c) = &foo;       # Ignore third value returned
6004
6005 Note that this is a unary operator, not a list operator.
6006
6007 =item unlink LIST
6008
6009 =item unlink
6010
6011 Deletes a list of files.  Returns the number of files successfully
6012 deleted.
6013
6014     $cnt = unlink 'a', 'b', 'c';
6015     unlink @goners;
6016     unlink <*.bak>;
6017
6018 Note: C<unlink> will not delete directories unless you are superuser and
6019 the B<-U> flag is supplied to Perl.  Even if these conditions are
6020 met, be warned that unlinking a directory can inflict damage on your
6021 filesystem.  Use C<rmdir> instead.
6022
6023 If LIST is omitted, uses C<$_>.
6024
6025 =item unpack TEMPLATE,EXPR
6026
6027 =item unpack TEMPLATE
6028
6029 C<unpack> does the reverse of C<pack>: it takes a string
6030 and expands it out into a list of values.
6031 (In scalar context, it returns merely the first value produced.)
6032
6033 If EXPR is omitted, unpacks the C<$_> string.
6034
6035 The string is broken into chunks described by the TEMPLATE.  Each chunk
6036 is converted separately to a value.  Typically, either the string is a result
6037 of C<pack>, or the bytes of the string represent a C structure of some
6038 kind.
6039
6040 The TEMPLATE has the same format as in the C<pack> function.
6041 Here's a subroutine that does substring:
6042
6043     sub substr {
6044         my($what,$where,$howmuch) = @_;
6045         unpack("x$where a$howmuch", $what);
6046     }
6047
6048 and then there's
6049
6050     sub ordinal { unpack("c",$_[0]); } # same as ord()
6051
6052 In addition to fields allowed in pack(), you may prefix a field with
6053 a %<number> to indicate that
6054 you want a <number>-bit checksum of the items instead of the items
6055 themselves.  Default is a 16-bit checksum.  Checksum is calculated by
6056 summing numeric values of expanded values (for string fields the sum of
6057 C<ord($char)> is taken, for bit fields the sum of zeroes and ones).
6058
6059 For example, the following
6060 computes the same number as the System V sum program:
6061
6062     $checksum = do {
6063         local $/;  # slurp!
6064         unpack("%32C*",<>) % 65535;
6065     };
6066
6067 The following efficiently counts the number of set bits in a bit vector:
6068
6069     $setbits = unpack("%32b*", $selectmask);
6070
6071 The C<p> and C<P> formats should be used with care.  Since Perl
6072 has no way of checking whether the value passed to C<unpack()>
6073 corresponds to a valid memory location, passing a pointer value that's
6074 not known to be valid is likely to have disastrous consequences.
6075
6076 If there are more pack codes or if the repeat count of a field or a group
6077 is larger than what the remainder of the input string allows, the result
6078 is not well defined: in some cases, the repeat count is decreased, or
6079 C<unpack()> will produce null strings or zeroes, or terminate with an
6080 error. If the input string is longer than one described by the TEMPLATE,
6081 the rest is ignored.
6082
6083 See L</pack> for more examples and notes.
6084
6085 =item untie VARIABLE
6086
6087 Breaks the binding between a variable and a package.  (See C<tie>.)
6088 Has no effect if the variable is not tied.
6089
6090 =item unshift ARRAY,LIST
6091
6092 Does the opposite of a C<shift>.  Or the opposite of a C<push>,
6093 depending on how you look at it.  Prepends list to the front of the
6094 array, and returns the new number of elements in the array.
6095
6096     unshift(@ARGV, '-e') unless $ARGV[0] =~ /^-/;
6097
6098 Note the LIST is prepended whole, not one element at a time, so the
6099 prepended elements stay in the same order.  Use C<reverse> to do the
6100 reverse.
6101
6102 =item use Module VERSION LIST
6103
6104 =item use Module VERSION
6105
6106 =item use Module LIST
6107
6108 =item use Module
6109
6110 =item use VERSION
6111
6112 Imports some semantics into the current package from the named module,
6113 generally by aliasing certain subroutine or variable names into your
6114 package.  It is exactly equivalent to
6115
6116     BEGIN { require Module; import Module LIST; }
6117
6118 except that Module I<must> be a bareword.
6119
6120 VERSION may be either a numeric argument such as 5.006, which will be
6121 compared to C<$]>, or a literal of the form v5.6.1, which will be compared
6122 to C<$^V> (aka $PERL_VERSION.  A fatal error is produced if VERSION is
6123 greater than the version of the current Perl interpreter; Perl will not
6124 attempt to parse the rest of the file.  Compare with L</require>, which can
6125 do a similar check at run time.
6126
6127 Specifying VERSION as a literal of the form v5.6.1 should generally be
6128 avoided, because it leads to misleading error messages under earlier
6129 versions of Perl which do not support this syntax.  The equivalent numeric
6130 version should be used instead.
6131
6132     use v5.6.1;         # compile time version check
6133     use 5.6.1;          # ditto
6134     use 5.006_001;      # ditto; preferred for backwards compatibility
6135
6136 This is often useful if you need to check the current Perl version before
6137 C<use>ing library modules that have changed in incompatible ways from
6138 older versions of Perl.  (We try not to do this more than we have to.)
6139
6140 The C<BEGIN> forces the C<require> and C<import> to happen at compile time.  The
6141 C<require> makes sure the module is loaded into memory if it hasn't been
6142 yet.  The C<import> is not a builtin--it's just an ordinary static method
6143 call into the C<Module> package to tell the module to import the list of
6144 features back into the current package.  The module can implement its
6145 C<import> method any way it likes, though most modules just choose to
6146 derive their C<import> method via inheritance from the C<Exporter> class that
6147 is defined in the C<Exporter> module.  See L<Exporter>.  If no C<import>
6148 method can be found then the call is skipped.
6149
6150 If you do not want to call the package's C<import> method (for instance,
6151 to stop your namespace from being altered), explicitly supply the empty list:
6152
6153     use Module ();
6154
6155 That is exactly equivalent to
6156
6157     BEGIN { require Module }
6158
6159 If the VERSION argument is present between Module and LIST, then the
6160 C<use> will call the VERSION method in class Module with the given
6161 version as an argument.  The default VERSION method, inherited from
6162 the UNIVERSAL class, croaks if the given version is larger than the
6163 value of the variable C<$Module::VERSION>.
6164
6165 Again, there is a distinction between omitting LIST (C<import> called
6166 with no arguments) and an explicit empty LIST C<()> (C<import> not
6167 called).  Note that there is no comma after VERSION!
6168
6169 Because this is a wide-open interface, pragmas (compiler directives)
6170 are also implemented this way.  Currently implemented pragmas are:
6171
6172     use constant;
6173     use diagnostics;
6174     use integer;
6175     use sigtrap  qw(SEGV BUS);
6176     use strict   qw(subs vars refs);
6177     use subs     qw(afunc blurfl);
6178     use warnings qw(all);
6179     use sort     qw(stable _quicksort _mergesort);
6180
6181 Some of these pseudo-modules import semantics into the current
6182 block scope (like C<strict> or C<integer>, unlike ordinary modules,
6183 which import symbols into the current package (which are effective
6184 through the end of the file).
6185
6186 There's a corresponding C<no> command that unimports meanings imported
6187 by C<use>, i.e., it calls C<unimport Module LIST> instead of C<import>.
6188
6189     no integer;
6190     no strict 'refs';
6191     no warnings;
6192
6193 See L<perlmodlib> for a list of standard modules and pragmas.  See L<perlrun>
6194 for the C<-M> and C<-m> command-line options to perl that give C<use>
6195 functionality from the command-line.
6196
6197 =item utime LIST
6198
6199 Changes the access and modification times on each file of a list of
6200 files.  The first two elements of the list must be the NUMERICAL access
6201 and modification times, in that order.  Returns the number of files
6202 successfully changed.  The inode change time of each file is set
6203 to the current time.  For example, this code has the same effect as the
6204 Unix touch(1) command when the files I<already exist>.
6205
6206     #!/usr/bin/perl
6207     $now = time;
6208     utime $now, $now, @ARGV;
6209
6210 B<Note:>  Under NFS, touch(1) uses the time of the NFS server, not
6211 the time of the local machine.  If there is a time synchronization
6212 problem, the NFS server and local machine will have different times.
6213
6214 Since perl 5.7.2, if the first two elements of the list are C<undef>, then
6215 the utime(2) function in the C library will be called with a null second
6216 argument. On most systems, this will set the file's access and
6217 modification times to the current time (i.e. equivalent to the example
6218 above.)
6219
6220     utime undef, undef, @ARGV;
6221
6222 =item values HASH
6223
6224 Returns a list consisting of all the values of the named hash.
6225 (In a scalar context, returns the number of values.)
6226
6227 The values are returned in an apparently random order.  The actual
6228 random order is subject to change in future versions of perl, but it
6229 is guaranteed to be the same order as either the C<keys> or C<each>
6230 function would produce on the same (unmodified) hash.
6231
6232 As a side effect, calling values() resets the HASH's internal iterator,
6233 see L</each>.
6234
6235 Note that the values are not copied, which means modifying them will
6236 modify the contents of the hash:
6237
6238     for (values %hash)      { s/foo/bar/g }   # modifies %hash values
6239     for (@hash{keys %hash}) { s/foo/bar/g }   # same
6240
6241 See also C<keys>, C<each>, and C<sort>.
6242
6243 =item vec EXPR,OFFSET,BITS
6244
6245 Treats the string in EXPR as a bit vector made up of elements of
6246 width BITS, and returns the value of the element specified by OFFSET
6247 as an unsigned integer.  BITS therefore specifies the number of bits
6248 that are reserved for each element in the bit vector.  This must
6249 be a power of two from 1 to 32 (or 64, if your platform supports
6250 that).
6251
6252 If BITS is 8, "elements" coincide with bytes of the input string.
6253
6254 If BITS is 16 or more, bytes of the input string are grouped into chunks
6255 of size BITS/8, and each group is converted to a number as with
6256 pack()/unpack() with big-endian formats C<n>/C<N> (and analogously
6257 for BITS==64).  See L<"pack"> for details.
6258
6259 If bits is 4 or less, the string is broken into bytes, then the bits
6260 of each byte are broken into 8/BITS groups.  Bits of a byte are
6261 numbered in a little-endian-ish way, as in C<0x01>, C<0x02>,
6262 C<0x04>, C<0x08>, C<0x10>, C<0x20>, C<0x40>, C<0x80>.  For example,
6263 breaking the single input byte C<chr(0x36)> into two groups gives a list
6264 C<(0x6, 0x3)>; breaking it into 4 groups gives C<(0x2, 0x1, 0x3, 0x0)>.
6265
6266 C<vec> may also be assigned to, in which case parentheses are needed
6267 to give the expression the correct precedence as in
6268
6269     vec($image, $max_x * $x + $y, 8) = 3;
6270
6271 If the selected element is outside the string, the value 0 is returned.
6272 If an element off the end of the string is written to, Perl will first
6273 extend the string with sufficiently many zero bytes.   It is an error
6274 to try to write off the beginning of the string (i.e. negative OFFSET).
6275
6276 The string should not contain any character with the value > 255 (which
6277 can only happen if you're using UTF8 encoding).  If it does, it will be
6278 treated as something which is not UTF8 encoded.  When the C<vec> was
6279 assigned to, other parts of your program will also no longer consider the
6280 string to be UTF8 encoded.  In other words, if you do have such characters
6281 in your string, vec() will operate on the actual byte string, and not the
6282 conceptual character string.
6283
6284 Strings created with C<vec> can also be manipulated with the logical
6285 operators C<|>, C<&>, C<^>, and C<~>.  These operators will assume a bit
6286 vector operation is desired when both operands are strings.
6287 See L<perlop/"Bitwise String Operators">.
6288
6289 The following code will build up an ASCII string saying C<'PerlPerlPerl'>.
6290 The comments show the string after each step.  Note that this code works
6291 in the same way on big-endian or little-endian machines.
6292
6293     my $foo = '';
6294     vec($foo,  0, 32) = 0x5065726C;     # 'Perl'
6295
6296     # $foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
6297     print vec($foo, 0, 8);              # prints 80 == 0x50 == ord('P')
6298
6299     vec($foo,  2, 16) = 0x5065;         # 'PerlPe'
6300     vec($foo,  3, 16) = 0x726C;         # 'PerlPerl'
6301     vec($foo,  8,  8) = 0x50;           # 'PerlPerlP'
6302     vec($foo,  9,  8) = 0x65;           # 'PerlPerlPe'
6303     vec($foo, 20,  4) = 2;              # 'PerlPerlPe'   . "\x02"
6304     vec($foo, 21,  4) = 7;              # 'PerlPerlPer'
6305                                         # 'r' is "\x72"
6306     vec($foo, 45,  2) = 3;              # 'PerlPerlPer'  . "\x0c"
6307     vec($foo, 93,  1) = 1;              # 'PerlPerlPer'  . "\x2c"
6308     vec($foo, 94,  1) = 1;              # 'PerlPerlPerl'
6309                                         # 'l' is "\x6c"
6310
6311 To transform a bit vector into a string or list of 0's and 1's, use these:
6312
6313     $bits = unpack("b*", $vector);
6314     @bits = split(//, unpack("b*", $vector));
6315
6316 If you know the exact length in bits, it can be used in place of the C<*>.
6317
6318 Here is an example to illustrate how the bits actually fall in place:
6319
6320     #!/usr/bin/perl -wl
6321
6322     print <<'EOT';
6323                                       0         1         2         3
6324                        unpack("V",$_) 01234567890123456789012345678901
6325     ------------------------------------------------------------------
6326     EOT
6327
6328     for $w (0..3) {
6329         $width = 2**$w;
6330         for ($shift=0; $shift < $width; ++$shift) {
6331             for ($off=0; $off < 32/$width; ++$off) {
6332                 $str = pack("B*", "0"x32);
6333                 $bits = (1<<$shift);
6334                 vec($str, $off, $width) = $bits;
6335                 $res = unpack("b*",$str);
6336                 $val = unpack("V", $str);
6337                 write;
6338             }
6339         }
6340     }
6341
6342     format STDOUT =
6343     vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
6344     $off, $width, $bits, $val, $res
6345     .
6346     __END__
6347
6348 Regardless of the machine architecture on which it is run, the above
6349 example should print the following table:
6350
6351                                       0         1         2         3
6352                        unpack("V",$_) 01234567890123456789012345678901
6353     ------------------------------------------------------------------
6354     vec($_, 0, 1) = 1   ==          1 10000000000000000000000000000000
6355     vec($_, 1, 1) = 1   ==          2 01000000000000000000000000000000
6356     vec($_, 2, 1) = 1   ==          4 00100000000000000000000000000000
6357     vec($_, 3, 1) = 1   ==          8 00010000000000000000000000000000
6358     vec($_, 4, 1) = 1   ==         16 00001000000000000000000000000000
6359     vec($_, 5, 1) = 1   ==         32 00000100000000000000000000000000
6360     vec($_, 6, 1) = 1   ==         64 00000010000000000000000000000000
6361     vec($_, 7, 1) = 1   ==        128 00000001000000000000000000000000
6362     vec($_, 8, 1) = 1   ==        256 00000000100000000000000000000000
6363     vec($_, 9, 1) = 1   ==        512 00000000010000000000000000000000
6364     vec($_,10, 1) = 1   ==       1024 00000000001000000000000000000000
6365     vec($_,11, 1) = 1   ==       2048 00000000000100000000000000000000
6366     vec($_,12, 1) = 1   ==       4096 00000000000010000000000000000000
6367     vec($_,13, 1) = 1   ==       8192 00000000000001000000000000000000
6368     vec($_,14, 1) = 1   ==      16384 00000000000000100000000000000000
6369     vec($_,15, 1) = 1   ==      32768 00000000000000010000000000000000
6370     vec($_,16, 1) = 1   ==      65536 00000000000000001000000000000000
6371     vec($_,17, 1) = 1   ==     131072 00000000000000000100000000000000
6372     vec($_,18, 1) = 1   ==     262144 00000000000000000010000000000000
6373     vec($_,19, 1) = 1   ==     524288 00000000000000000001000000000000
6374     vec($_,20, 1) = 1   ==    1048576 00000000000000000000100000000000
6375     vec($_,21, 1) = 1   ==    2097152 00000000000000000000010000000000
6376     vec($_,22, 1) = 1   ==    4194304 00000000000000000000001000000000
6377     vec($_,23, 1) = 1   ==    8388608 00000000000000000000000100000000
6378     vec($_,24, 1) = 1   ==   16777216 00000000000000000000000010000000
6379     vec($_,25, 1) = 1   ==   33554432 00000000000000000000000001000000
6380     vec($_,26, 1) = 1   ==   67108864 00000000000000000000000000100000
6381     vec($_,27, 1) = 1   ==  134217728 00000000000000000000000000010000
6382     vec($_,28, 1) = 1   ==  268435456 00000000000000000000000000001000
6383     vec($_,29, 1) = 1   ==  536870912 00000000000000000000000000000100
6384     vec($_,30, 1) = 1   == 1073741824 00000000000000000000000000000010
6385     vec($_,31, 1) = 1   == 2147483648 00000000000000000000000000000001
6386     vec($_, 0, 2) = 1   ==          1 10000000000000000000000000000000
6387     vec($_, 1, 2) = 1   ==          4 00100000000000000000000000000000
6388     vec($_, 2, 2) = 1   ==         16 00001000000000000000000000000000
6389     vec($_, 3, 2) = 1   ==         64 00000010000000000000000000000000
6390     vec($_, 4, 2) = 1   ==        256 00000000100000000000000000000000
6391     vec($_, 5, 2) = 1   ==       1024 00000000001000000000000000000000
6392     vec($_, 6, 2) = 1   ==       4096 00000000000010000000000000000000
6393     vec($_, 7, 2) = 1   ==      16384 00000000000000100000000000000000
6394     vec($_, 8, 2) = 1   ==      65536 00000000000000001000000000000000
6395     vec($_, 9, 2) = 1   ==     262144 00000000000000000010000000000000
6396     vec($_,10, 2) = 1   ==    1048576 00000000000000000000100000000000
6397     vec($_,11, 2) = 1   ==    4194304 00000000000000000000001000000000
6398     vec($_,12, 2) = 1   ==   16777216 00000000000000000000000010000000
6399     vec($_,13, 2) = 1   ==   67108864 00000000000000000000000000100000
6400     vec($_,14, 2) = 1   ==  268435456 00000000000000000000000000001000
6401     vec($_,15, 2) = 1   == 1073741824 00000000000000000000000000000010
6402     vec($_, 0, 2) = 2   ==          2 01000000000000000000000000000000
6403     vec($_, 1, 2) = 2   ==          8 00010000000000000000000000000000
6404     vec($_, 2, 2) = 2   ==         32 00000100000000000000000000000000
6405     vec($_, 3, 2) = 2   ==        128 00000001000000000000000000000000
6406     vec($_, 4, 2) = 2   ==        512 00000000010000000000000000000000
6407     vec($_, 5, 2) = 2   ==       2048 00000000000100000000000000000000
6408     vec($_, 6, 2) = 2   ==       8192 00000000000001000000000000000000
6409     vec($_, 7, 2) = 2   ==      32768 00000000000000010000000000000000
6410     vec($_, 8, 2) = 2   ==     131072 00000000000000000100000000000000
6411     vec($_, 9, 2) = 2   ==     524288 00000000000000000001000000000000
6412     vec($_,10, 2) = 2   ==    2097152 00000000000000000000010000000000
6413     vec($_,11, 2) = 2   ==    8388608 00000000000000000000000100000000
6414     vec($_,12, 2) = 2   ==   33554432 00000000000000000000000001000000
6415     vec($_,13, 2) = 2   ==  134217728 00000000000000000000000000010000
6416     vec($_,14, 2) = 2   ==  536870912 00000000000000000000000000000100
6417     vec($_,15, 2) = 2   == 2147483648 00000000000000000000000000000001
6418     vec($_, 0, 4) = 1   ==          1 10000000000000000000000000000000
6419     vec($_, 1, 4) = 1   ==         16 00001000000000000000000000000000
6420     vec($_, 2, 4) = 1   ==        256 00000000100000000000000000000000
6421     vec($_, 3, 4) = 1   ==       4096 00000000000010000000000000000000
6422     vec($_, 4, 4) = 1   ==      65536 00000000000000001000000000000000
6423     vec($_, 5, 4) = 1   ==    1048576 00000000000000000000100000000000
6424     vec($_, 6, 4) = 1   ==   16777216 00000000000000000000000010000000
6425     vec($_, 7, 4) = 1   ==  268435456 00000000000000000000000000001000
6426     vec($_, 0, 4) = 2   ==          2 01000000000000000000000000000000
6427     vec($_, 1, 4) = 2   ==         32 00000100000000000000000000000000
6428     vec($_, 2, 4) = 2   ==        512 00000000010000000000000000000000
6429     vec($_, 3, 4) = 2   ==       8192 00000000000001000000000000000000
6430     vec($_, 4, 4) = 2   ==     131072 00000000000000000100000000000000
6431     vec($_, 5, 4) = 2   ==    2097152 00000000000000000000010000000000
6432     vec($_, 6, 4) = 2   ==   33554432 00000000000000000000000001000000
6433     vec($_, 7, 4) = 2   ==  536870912 00000000000000000000000000000100
6434     vec($_, 0, 4) = 4   ==          4 00100000000000000000000000000000
6435     vec($_, 1, 4) = 4   ==         64 00000010000000000000000000000000
6436     vec($_, 2, 4) = 4   ==       1024 00000000001000000000000000000000
6437     vec($_, 3, 4) = 4   ==      16384 00000000000000100000000000000000
6438     vec($_, 4, 4) = 4   ==     262144 00000000000000000010000000000000
6439     vec($_, 5, 4) = 4   ==    4194304 00000000000000000000001000000000
6440     vec($_, 6, 4) = 4   ==   67108864 00000000000000000000000000100000
6441     vec($_, 7, 4) = 4   == 1073741824 00000000000000000000000000000010
6442     vec($_, 0, 4) = 8   ==          8 00010000000000000000000000000000
6443     vec($_, 1, 4) = 8   ==        128 00000001000000000000000000000000
6444     vec($_, 2, 4) = 8   ==       2048 00000000000100000000000000000000
6445     vec($_, 3, 4) = 8   ==      32768 00000000000000010000000000000000
6446     vec($_, 4, 4) = 8   ==     524288 00000000000000000001000000000000
6447     vec($_, 5, 4) = 8   ==    8388608 00000000000000000000000100000000
6448     vec($_, 6, 4) = 8   ==  134217728 00000000000000000000000000010000
6449     vec($_, 7, 4) = 8   == 2147483648 00000000000000000000000000000001
6450     vec($_, 0, 8) = 1   ==          1 10000000000000000000000000000000
6451     vec($_, 1, 8) = 1   ==        256 00000000100000000000000000000000
6452     vec($_, 2, 8) = 1   ==      65536 00000000000000001000000000000000
6453     vec($_, 3, 8) = 1   ==   16777216 00000000000000000000000010000000
6454     vec($_, 0, 8) = 2   ==          2 01000000000000000000000000000000
6455     vec($_, 1, 8) = 2   ==        512 00000000010000000000000000000000
6456     vec($_, 2, 8) = 2   ==     131072 00000000000000000100000000000000
6457     vec($_, 3, 8) = 2   ==   33554432 00000000000000000000000001000000
6458     vec($_, 0, 8) = 4   ==          4 00100000000000000000000000000000
6459     vec($_, 1, 8) = 4   ==       1024 00000000001000000000000000000000
6460     vec($_, 2, 8) = 4   ==     262144 00000000000000000010000000000000
6461     vec($_, 3, 8) = 4   ==   67108864 00000000000000000000000000100000
6462     vec($_, 0, 8) = 8   ==          8 00010000000000000000000000000000
6463     vec($_, 1, 8) = 8   ==       2048 00000000000100000000000000000000
6464     vec($_, 2, 8) = 8   ==     524288 00000000000000000001000000000000
6465     vec($_, 3, 8) = 8   ==  134217728 00000000000000000000000000010000
6466     vec($_, 0, 8) = 16  ==         16 00001000000000000000000000000000
6467     vec($_, 1, 8) = 16  ==       4096 00000000000010000000000000000000
6468     vec($_, 2, 8) = 16  ==    1048576 00000000000000000000100000000000
6469     vec($_, 3, 8) = 16  ==  268435456 00000000000000000000000000001000
6470     vec($_, 0, 8) = 32  ==         32 00000100000000000000000000000000
6471     vec($_, 1, 8) = 32  ==       8192 00000000000001000000000000000000
6472     vec($_, 2, 8) = 32  ==    2097152 00000000000000000000010000000000
6473     vec($_, 3, 8) = 32  ==  536870912 00000000000000000000000000000100
6474     vec($_, 0, 8) = 64  ==         64 00000010000000000000000000000000
6475     vec($_, 1, 8) = 64  ==      16384 00000000000000100000000000000000
6476     vec($_, 2, 8) = 64  ==    4194304 00000000000000000000001000000000
6477     vec($_, 3, 8) = 64  == 1073741824 00000000000000000000000000000010
6478     vec($_, 0, 8) = 128 ==        128 00000001000000000000000000000000
6479     vec($_, 1, 8) = 128 ==      32768 00000000000000010000000000000000
6480     vec($_, 2, 8) = 128 ==    8388608 00000000000000000000000100000000
6481     vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001
6482
6483 =item wait
6484
6485 Behaves like the wait(2) system call on your system: it waits for a child
6486 process to terminate and returns the pid of the deceased process, or
6487 C<-1> if there are no child processes.  The status is returned in C<$?>.
6488 Note that a return value of C<-1> could mean that child processes are
6489 being automatically reaped, as described in L<perlipc>.
6490
6491 =item waitpid PID,FLAGS
6492
6493 Waits for a particular child process to terminate and returns the pid of
6494 the deceased process, or C<-1> if there is no such child process.  On some
6495 systems, a value of 0 indicates that there are processes still running.
6496 The status is returned in C<$?>.  If you say
6497
6498     use POSIX ":sys_wait_h";
6499     #...
6500     do {
6501         $kid = waitpid(-1, WNOHANG);
6502     } until $kid > 0;
6503
6504 then you can do a non-blocking wait for all pending zombie processes.
6505 Non-blocking wait is available on machines supporting either the
6506 waitpid(2) or wait4(2) system calls.  However, waiting for a particular
6507 pid with FLAGS of C<0> is implemented everywhere.  (Perl emulates the
6508 system call by remembering the status values of processes that have
6509 exited but have not been harvested by the Perl script yet.)
6510
6511 Note that on some systems, a return value of C<-1> could mean that child
6512 processes are being automatically reaped.  See L<perlipc> for details,
6513 and for other examples.
6514
6515 =item wantarray
6516
6517 Returns true if the context of the currently executing subroutine is
6518 looking for a list value.  Returns false if the context is looking
6519 for a scalar.  Returns the undefined value if the context is looking
6520 for no value (void context).
6521
6522     return unless defined wantarray;    # don't bother doing more
6523     my @a = complex_calculation();
6524     return wantarray ? @a : "@a";
6525
6526 This function should have been named wantlist() instead.
6527
6528 =item warn LIST
6529
6530 Produces a message on STDERR just like C<die>, but doesn't exit or throw
6531 an exception.
6532
6533 If LIST is empty and C<$@> already contains a value (typically from a
6534 previous eval) that value is used after appending C<"\t...caught">
6535 to C<$@>.  This is useful for staying almost, but not entirely similar to
6536 C<die>.
6537
6538 If C<$@> is empty then the string C<"Warning: Something's wrong"> is used.
6539
6540 No message is printed if there is a C<$SIG{__WARN__}> handler
6541 installed.  It is the handler's responsibility to deal with the message
6542 as it sees fit (like, for instance, converting it into a C<die>).  Most
6543 handlers must therefore make arrangements to actually display the
6544 warnings that they are not prepared to deal with, by calling C<warn>
6545 again in the handler.  Note that this is quite safe and will not
6546 produce an endless loop, since C<__WARN__> hooks are not called from
6547 inside one.
6548
6549 You will find this behavior is slightly different from that of
6550 C<$SIG{__DIE__}> handlers (which don't suppress the error text, but can
6551 instead call C<die> again to change it).
6552
6553 Using a C<__WARN__> handler provides a powerful way to silence all
6554 warnings (even the so-called mandatory ones).  An example:
6555
6556     # wipe out *all* compile-time warnings
6557     BEGIN { $SIG{'__WARN__'} = sub { warn $_[0] if $DOWARN } }
6558     my $foo = 10;
6559     my $foo = 20;          # no warning about duplicate my $foo,
6560                            # but hey, you asked for it!
6561     # no compile-time or run-time warnings before here
6562     $DOWARN = 1;
6563
6564     # run-time warnings enabled after here
6565     warn "\$foo is alive and $foo!";     # does show up
6566
6567 See L<perlvar> for details on setting C<%SIG> entries, and for more
6568 examples.  See the Carp module for other kinds of warnings using its
6569 carp() and cluck() functions.
6570
6571 =item write FILEHANDLE
6572
6573 =item write EXPR
6574
6575 =item write
6576
6577 Writes a formatted record (possibly multi-line) to the specified FILEHANDLE,
6578 using the format associated with that file.  By default the format for
6579 a file is the one having the same name as the filehandle, but the
6580 format for the current output channel (see the C<select> function) may be set
6581 explicitly by assigning the name of the format to the C<$~> variable.
6582
6583 Top of form processing is handled automatically:  if there is
6584 insufficient room on the current page for the formatted record, the
6585 page is advanced by writing a form feed, a special top-of-page format
6586 is used to format the new page header, and then the record is written.
6587 By default the top-of-page format is the name of the filehandle with
6588 "_TOP" appended, but it may be dynamically set to the format of your
6589 choice by assigning the name to the C<$^> variable while the filehandle is
6590 selected.  The number of lines remaining on the current page is in
6591 variable C<$->, which can be set to C<0> to force a new page.
6592
6593 If FILEHANDLE is unspecified, output goes to the current default output
6594 channel, which starts out as STDOUT but may be changed by the
6595 C<select> operator.  If the FILEHANDLE is an EXPR, then the expression
6596 is evaluated and the resulting string is used to look up the name of
6597 the FILEHANDLE at run time.  For more on formats, see L<perlform>.
6598
6599 Note that write is I<not> the opposite of C<read>.  Unfortunately.
6600
6601 =item y///
6602
6603 The transliteration operator.  Same as C<tr///>.  See L<perlop>.
6604
6605 =back