7aaeaf3d3bdd69c8e0a4ead6f103eb1c026f2fd5
[p5sagit/p5-mst-13.2.git] / pod / perlfunc.pod
1 =head1 NAME
2
3 perlfunc - Perl builtin functions
4
5 =head1 DESCRIPTION
6
7 The functions in this section can serve as terms in an expression.
8 They fall into two major categories: list operators and named unary
9 operators.  These differ in their precedence relationship with a
10 following comma.  (See the precedence table in L<perlop>.)  List
11 operators take more than one argument, while unary operators can never
12 take more than one argument.  Thus, a comma terminates the argument of
13 a unary operator, but merely separates the arguments of a list
14 operator.  A unary operator generally provides a scalar context to its
15 argument, while a list operator may provide either scalar or list
16 contexts for its arguments.  If it does both, the scalar arguments will
17 be first, and the list argument will follow.  (Note that there can ever
18 be only one such list argument.)  For instance, splice() has three scalar
19 arguments followed by a list, whereas gethostbyname() has four scalar
20 arguments.
21
22 In the syntax descriptions that follow, list operators that expect a
23 list (and provide list context for the elements of the list) are shown
24 with LIST as an argument.  Such a list may consist of any combination
25 of scalar arguments or list values; the list values will be included
26 in the list as if each individual element were interpolated at that
27 point in the list, forming a longer single-dimensional list value.
28 Elements of the LIST should be separated by commas.
29
30 Any function in the list below may be used either with or without
31 parentheses around its arguments.  (The syntax descriptions omit the
32 parentheses.)  If you use the parentheses, the simple (but occasionally
33 surprising) rule is this: It I<looks> like a function, therefore it I<is> a
34 function, and precedence doesn't matter.  Otherwise it's a list
35 operator or unary operator, and precedence does matter.  And whitespace
36 between the function and left parenthesis doesn't count--so you need to
37 be careful sometimes:
38
39     print 1+2+4;        # Prints 7.
40     print(1+2) + 4;     # Prints 3.
41     print (1+2)+4;      # Also prints 3!
42     print +(1+2)+4;     # Prints 7.
43     print ((1+2)+4);    # Prints 7.
44
45 If you run Perl with the B<-w> switch it can warn you about this.  For
46 example, the third line above produces:
47
48     print (...) interpreted as function at - line 1.
49     Useless use of integer addition in void context at - line 1.
50
51 A few functions take no arguments at all, and therefore work as neither
52 unary nor list operators.  These include such functions as C<time>
53 and C<endpwent>.  For example, C<time+86_400> always means
54 C<time() + 86_400>.
55
56 For functions that can be used in either a scalar or list context,
57 nonabortive failure is generally indicated in a scalar context by
58 returning the undefined value, and in a list context by returning the
59 null list.
60
61 Remember the following important rule: There is B<no rule> that relates
62 the behavior of an expression in list context to its behavior in scalar
63 context, or vice versa.  It might do two totally different things.
64 Each operator and function decides which sort of value it would be most
65 appropriate to return in scalar context.  Some operators return the
66 length of the list that would have been returned in list context.  Some
67 operators return the first value in the list.  Some operators return the
68 last value in the list.  Some operators return a count of successful
69 operations.  In general, they do what you want, unless you want
70 consistency.
71
72 An named array in scalar context is quite different from what would at
73 first glance appear to be a list in scalar context.  You can't get a list
74 like C<(1,2,3)> into being in scalar context, because the compiler knows
75 the context at compile time.  It would generate the scalar comma operator
76 there, not the list construction version of the comma.  That means it
77 was never a list to start with.
78
79 In general, functions in Perl that serve as wrappers for system calls
80 of the same name (like chown(2), fork(2), closedir(2), etc.) all return
81 true when they succeed and C<undef> otherwise, as is usually mentioned
82 in the descriptions below.  This is different from the C interfaces,
83 which return C<-1> on failure.  Exceptions to this rule are C<wait>,
84 C<waitpid>, and C<syscall>.  System calls also set the special C<$!>
85 variable on failure.  Other functions do not, except accidentally.
86
87 =head2 Perl Functions by Category
88
89 Here are Perl's functions (including things that look like
90 functions, like some keywords and named operators)
91 arranged by category.  Some functions appear in more
92 than one place.
93
94 =over 4
95
96 =item Functions for SCALARs or strings
97
98 C<chomp>, C<chop>, C<chr>, C<crypt>, C<hex>, C<index>, C<lc>, C<lcfirst>,
99 C<length>, C<oct>, C<ord>, C<pack>, C<q/STRING/>, C<qq/STRING/>, C<reverse>,
100 C<rindex>, C<sprintf>, C<substr>, C<tr///>, C<uc>, C<ucfirst>, C<y///>
101
102 =item Regular expressions and pattern matching
103
104 C<m//>, C<pos>, C<quotemeta>, C<s///>, C<split>, C<study>, C<qr//>
105
106 =item Numeric functions
107
108 C<abs>, C<atan2>, C<cos>, C<exp>, C<hex>, C<int>, C<log>, C<oct>, C<rand>,
109 C<sin>, C<sqrt>, C<srand>
110
111 =item Functions for real @ARRAYs
112
113 C<pop>, C<push>, C<shift>, C<splice>, C<unshift>
114
115 =item Functions for list data
116
117 C<grep>, C<join>, C<map>, C<qw/STRING/>, C<reverse>, C<sort>, C<unpack>
118
119 =item Functions for real %HASHes
120
121 C<delete>, C<each>, C<exists>, C<keys>, C<values>
122
123 =item Input and output functions
124
125 C<binmode>, C<close>, C<closedir>, C<dbmclose>, C<dbmopen>, C<die>, C<eof>,
126 C<fileno>, C<flock>, C<format>, C<getc>, C<print>, C<printf>, C<read>,
127 C<readdir>, C<rewinddir>, C<seek>, C<seekdir>, C<select>, C<syscall>,
128 C<sysread>, C<sysseek>, C<syswrite>, C<tell>, C<telldir>, C<truncate>,
129 C<warn>, C<write>
130
131 =item Functions for fixed length data or records
132
133 C<pack>, C<read>, C<syscall>, C<sysread>, C<syswrite>, C<unpack>, C<vec>
134
135 =item Functions for filehandles, files, or directories
136
137 C<-I<X>>, C<chdir>, C<chmod>, C<chown>, C<chroot>, C<fcntl>, C<glob>,
138 C<ioctl>, C<link>, C<lstat>, C<mkdir>, C<open>, C<opendir>,
139 C<readlink>, C<rename>, C<rmdir>, C<stat>, C<symlink>, C<umask>,
140 C<unlink>, C<utime>
141
142 =item Keywords related to the control flow of your perl program
143
144 C<caller>, C<continue>, C<die>, C<do>, C<dump>, C<eval>, C<exit>,
145 C<goto>, C<last>, C<next>, C<redo>, C<return>, C<sub>, C<wantarray>
146
147 =item Keywords related to scoping
148
149 C<caller>, C<import>, C<local>, C<my>, C<our>, C<package>, C<use>
150
151 =item Miscellaneous functions
152
153 C<defined>, C<dump>, C<eval>, C<formline>, C<local>, C<my>, C<our>, C<reset>,
154 C<scalar>, C<undef>, C<wantarray>
155
156 =item Functions for processes and process groups
157
158 C<alarm>, C<exec>, C<fork>, C<getpgrp>, C<getppid>, C<getpriority>, C<kill>,
159 C<pipe>, C<qx/STRING/>, C<setpgrp>, C<setpriority>, C<sleep>, C<system>,
160 C<times>, C<wait>, C<waitpid>
161
162 =item Keywords related to perl modules
163
164 C<do>, C<import>, C<no>, C<package>, C<require>, C<use>
165
166 =item Keywords related to classes and object-orientedness
167
168 C<bless>, C<dbmclose>, C<dbmopen>, C<package>, C<ref>, C<tie>, C<tied>,
169 C<untie>, C<use>
170
171 =item Low-level socket functions
172
173 C<accept>, C<bind>, C<connect>, C<getpeername>, C<getsockname>,
174 C<getsockopt>, C<listen>, C<recv>, C<send>, C<setsockopt>, C<shutdown>,
175 C<socket>, C<socketpair>
176
177 =item System V interprocess communication functions
178
179 C<msgctl>, C<msgget>, C<msgrcv>, C<msgsnd>, C<semctl>, C<semget>, C<semop>,
180 C<shmctl>, C<shmget>, C<shmread>, C<shmwrite>
181
182 =item Fetching user and group info
183
184 C<endgrent>, C<endhostent>, C<endnetent>, C<endpwent>, C<getgrent>,
185 C<getgrgid>, C<getgrnam>, C<getlogin>, C<getpwent>, C<getpwnam>,
186 C<getpwuid>, C<setgrent>, C<setpwent>
187
188 =item Fetching network info
189
190 C<endprotoent>, C<endservent>, C<gethostbyaddr>, C<gethostbyname>,
191 C<gethostent>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
192 C<getprotobyname>, C<getprotobynumber>, C<getprotoent>,
193 C<getservbyname>, C<getservbyport>, C<getservent>, C<sethostent>,
194 C<setnetent>, C<setprotoent>, C<setservent>
195
196 =item Time-related functions
197
198 C<gmtime>, C<localtime>, C<time>, C<times>
199
200 =item Functions new in perl5
201
202 C<abs>, C<bless>, C<chomp>, C<chr>, C<exists>, C<formline>, C<glob>,
203 C<import>, C<lc>, C<lcfirst>, C<map>, C<my>, C<no>, C<our>, C<prototype>,
204 C<qx>, C<qw>, C<readline>, C<readpipe>, C<ref>, C<sub*>, C<sysopen>, C<tie>,
205 C<tied>, C<uc>, C<ucfirst>, C<untie>, C<use>
206
207 * - C<sub> was a keyword in perl4, but in perl5 it is an
208 operator, which can be used in expressions.
209
210 =item Functions obsoleted in perl5
211
212 C<dbmclose>, C<dbmopen>
213
214 =back
215
216 =head2 Portability
217
218 Perl was born in Unix and can therefore access all common Unix
219 system calls.  In non-Unix environments, the functionality of some
220 Unix system calls may not be available, or details of the available
221 functionality may differ slightly.  The Perl functions affected
222 by this are:
223
224 C<-X>, C<binmode>, C<chmod>, C<chown>, C<chroot>, C<crypt>,
225 C<dbmclose>, C<dbmopen>, C<dump>, C<endgrent>, C<endhostent>,
226 C<endnetent>, C<endprotoent>, C<endpwent>, C<endservent>, C<exec>,
227 C<fcntl>, C<flock>, C<fork>, C<getgrent>, C<getgrgid>, C<gethostent>,
228 C<getlogin>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
229 C<getppid>, C<getprgp>, C<getpriority>, C<getprotobynumber>,
230 C<getprotoent>, C<getpwent>, C<getpwnam>, C<getpwuid>,
231 C<getservbyport>, C<getservent>, C<getsockopt>, C<glob>, C<ioctl>,
232 C<kill>, C<link>, C<lstat>, C<msgctl>, C<msgget>, C<msgrcv>,
233 C<msgsnd>, C<open>, C<pipe>, C<readlink>, C<rename>, C<select>, C<semctl>,
234 C<semget>, C<semop>, C<setgrent>, C<sethostent>, C<setnetent>,
235 C<setpgrp>, C<setpriority>, C<setprotoent>, C<setpwent>,
236 C<setservent>, C<setsockopt>, C<shmctl>, C<shmget>, C<shmread>,
237 C<shmwrite>, C<socket>, C<socketpair>, C<stat>, C<symlink>, C<syscall>,
238 C<sysopen>, C<system>, C<times>, C<truncate>, C<umask>, C<unlink>,
239 C<utime>, C<wait>, C<waitpid>
240
241 For more information about the portability of these functions, see
242 L<perlport> and other available platform-specific documentation.
243
244 =head2 Alphabetical Listing of Perl Functions
245
246 =over 8
247
248 =item I<-X> FILEHANDLE
249
250 =item I<-X> EXPR
251
252 =item I<-X>
253
254 A file test, where X is one of the letters listed below.  This unary
255 operator takes one argument, either a filename or a filehandle, and
256 tests the associated file to see if something is true about it.  If the
257 argument is omitted, tests C<$_>, except for C<-t>, which tests STDIN.
258 Unless otherwise documented, it returns C<1> for true and C<''> for false, or
259 the undefined value if the file doesn't exist.  Despite the funny
260 names, precedence is the same as any other named unary operator, and
261 the argument may be parenthesized like any other unary operator.  The
262 operator may be any of:
263 X<-r>X<-w>X<-x>X<-o>X<-R>X<-W>X<-X>X<-O>X<-e>X<-z>X<-s>X<-f>X<-d>X<-l>X<-p>
264 X<-S>X<-b>X<-c>X<-t>X<-u>X<-g>X<-k>X<-T>X<-B>X<-M>X<-A>X<-C>
265
266     -r  File is readable by effective uid/gid.
267     -w  File is writable by effective uid/gid.
268     -x  File is executable by effective uid/gid.
269     -o  File is owned by effective uid.
270
271     -R  File is readable by real uid/gid.
272     -W  File is writable by real uid/gid.
273     -X  File is executable by real uid/gid.
274     -O  File is owned by real uid.
275
276     -e  File exists.
277     -z  File has zero size (is empty).
278     -s  File has nonzero size (returns size in bytes).
279
280     -f  File is a plain file.
281     -d  File is a directory.
282     -l  File is a symbolic link.
283     -p  File is a named pipe (FIFO), or Filehandle is a pipe.
284     -S  File is a socket.
285     -b  File is a block special file.
286     -c  File is a character special file.
287     -t  Filehandle is opened to a tty.
288
289     -u  File has setuid bit set.
290     -g  File has setgid bit set.
291     -k  File has sticky bit set.
292
293     -T  File is an ASCII text file.
294     -B  File is a "binary" file (opposite of -T).
295
296     -M  Age of file in days when script started.
297     -A  Same for access time.
298     -C  Same for inode change time.
299
300 Example:
301
302     while (<>) {
303         chomp;
304         next unless -f $_;      # ignore specials
305         #...
306     }
307
308 The interpretation of the file permission operators C<-r>, C<-R>,
309 C<-w>, C<-W>, C<-x>, and C<-X> is by default based solely on the mode
310 of the file and the uids and gids of the user.  There may be other
311 reasons you can't actually read, write, or execute the file.  Such
312 reasons may be for example network filesystem access controls, ACLs
313 (access control lists), read-only filesystems, and unrecognized
314 executable formats.
315
316 Also note that, for the superuser on the local filesystems, the C<-r>,
317 C<-R>, C<-w>, and C<-W> tests always return 1, and C<-x> and C<-X> return 1
318 if any execute bit is set in the mode.  Scripts run by the superuser
319 may thus need to do a stat() to determine the actual mode of the file,
320 or temporarily set their effective uid to something else.
321
322 If you are using ACLs, there is a pragma called C<filetest> that may
323 produce more accurate results than the bare stat() mode bits.
324 When under the C<use filetest 'access'> the above-mentioned filetests
325 will test whether the permission can (not) be granted using the
326 access() family of system calls.  Also note that the C<-x> and C<-X> may
327 under this pragma return true even if there are no execute permission
328 bits set (nor any extra execute permission ACLs).  This strangeness is
329 due to the underlying system calls' definitions.  Read the
330 documentation for the C<filetest> pragma for more information.
331
332 Note that C<-s/a/b/> does not do a negated substitution.  Saying
333 C<-exp($foo)> still works as expected, however--only single letters
334 following a minus are interpreted as file tests.
335
336 The C<-T> and C<-B> switches work as follows.  The first block or so of the
337 file is examined for odd characters such as strange control codes or
338 characters with the high bit set.  If too many strange characters (>30%)
339 are found, it's a C<-B> file, otherwise it's a C<-T> file.  Also, any file
340 containing null in the first block is considered a binary file.  If C<-T>
341 or C<-B> is used on a filehandle, the current stdio buffer is examined
342 rather than the first block.  Both C<-T> and C<-B> return true on a null
343 file, or a file at EOF when testing a filehandle.  Because you have to
344 read a file to do the C<-T> test, on most occasions you want to use a C<-f>
345 against the file first, as in C<next unless -f $file && -T $file>.
346
347 If any of the file tests (or either the C<stat> or C<lstat> operators) are given
348 the special filehandle consisting of a solitary underline, then the stat
349 structure of the previous file test (or stat operator) is used, saving
350 a system call.  (This doesn't work with C<-t>, and you need to remember
351 that lstat() and C<-l> will leave values in the stat structure for the
352 symbolic link, not the real file.)  Example:
353
354     print "Can do.\n" if -r $a || -w _ || -x _;
355
356     stat($filename);
357     print "Readable\n" if -r _;
358     print "Writable\n" if -w _;
359     print "Executable\n" if -x _;
360     print "Setuid\n" if -u _;
361     print "Setgid\n" if -g _;
362     print "Sticky\n" if -k _;
363     print "Text\n" if -T _;
364     print "Binary\n" if -B _;
365
366 =item abs VALUE
367
368 =item abs
369
370 Returns the absolute value of its argument.
371 If VALUE is omitted, uses C<$_>.
372
373 =item accept NEWSOCKET,GENERICSOCKET
374
375 Accepts an incoming socket connect, just as the accept(2) system call
376 does.  Returns the packed address if it succeeded, false otherwise.
377 See the example in L<perlipc/"Sockets: Client/Server Communication">.
378
379 On systems that support a close-on-exec flag on files, the flag will
380 be set for the newly opened file descriptor, as determined by the
381 value of $^F.  See L<perlvar/$^F>.
382
383 =item alarm SECONDS
384
385 =item alarm
386
387 Arranges to have a SIGALRM delivered to this process after the
388 specified number of seconds have elapsed.  If SECONDS is not specified,
389 the value stored in C<$_> is used. (On some machines,
390 unfortunately, the elapsed time may be up to one second less than you
391 specified because of how seconds are counted.)  Only one timer may be
392 counting at once.  Each call disables the previous timer, and an
393 argument of C<0> may be supplied to cancel the previous timer without
394 starting a new one.  The returned value is the amount of time remaining
395 on the previous timer.
396
397 For delays of finer granularity than one second, you may use Perl's
398 four-argument version of select() leaving the first three arguments
399 undefined, or you might be able to use the C<syscall> interface to
400 access setitimer(2) if your system supports it.  The Time::HiRes module
401 from CPAN may also prove useful.
402
403 It is usually a mistake to intermix C<alarm> and C<sleep> calls.
404 (C<sleep> may be internally implemented in your system with C<alarm>)
405
406 If you want to use C<alarm> to time out a system call you need to use an
407 C<eval>/C<die> pair.  You can't rely on the alarm causing the system call to
408 fail with C<$!> set to C<EINTR> because Perl sets up signal handlers to
409 restart system calls on some systems.  Using C<eval>/C<die> always works,
410 modulo the caveats given in L<perlipc/"Signals">.
411
412     eval {
413         local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
414         alarm $timeout;
415         $nread = sysread SOCKET, $buffer, $size;
416         alarm 0;
417     };
418     if ($@) {
419         die unless $@ eq "alarm\n";   # propagate unexpected errors
420         # timed out
421     }
422     else {
423         # didn't
424     }
425
426 =item atan2 Y,X
427
428 Returns the arctangent of Y/X in the range -PI to PI.
429
430 For the tangent operation, you may use the C<Math::Trig::tan>
431 function, or use the familiar relation:
432
433     sub tan { sin($_[0]) / cos($_[0])  }
434
435 =item bind SOCKET,NAME
436
437 Binds a network address to a socket, just as the bind system call
438 does.  Returns true if it succeeded, false otherwise.  NAME should be a
439 packed address of the appropriate type for the socket.  See the examples in
440 L<perlipc/"Sockets: Client/Server Communication">.
441
442 =item binmode FILEHANDLE, DISCIPLINE
443
444 =item binmode FILEHANDLE
445
446 Arranges for FILEHANDLE to be read or written in "binary" or "text" mode
447 on systems where the run-time libraries distinguish between binary and
448 text files.  If FILEHANDLE is an expression, the value is taken as the
449 name of the filehandle.  DISCIPLINE can be either of C<":raw"> for
450 binary mode or C<":crlf"> for "text" mode.  If the DISCIPLINE is
451 omitted, it defaults to C<":raw">.
452
453 binmode() should be called after open() but before any I/O is done on
454 the filehandle.
455
456 On many systems binmode() currently has no effect, but in future, it
457 will be extended to support user-defined input and output disciplines.
458 On some systems binmode() is necessary when you're not working with a
459 text file.  For the sake of portability it is a good idea to always use
460 it when appropriate, and to never use it when it isn't appropriate.
461
462 In other words:  Regardless of platform, use binmode() on binary
463 files, and do not use binmode() on text files.
464
465 The C<open> pragma can be used to establish default disciplines.
466 See L<open>.
467
468 The operating system, device drivers, C libraries, and Perl run-time
469 system all work together to let the programmer treat a single
470 character (C<\n>) as the line terminator, irrespective of the external
471 representation.  On many operating systems, the native text file
472 representation matches the internal representation, but on some
473 platforms the external representation of C<\n> is made up of more than
474 one character.
475
476 Mac OS and all variants of Unix use a single character to end each line
477 in the external representation of text (even though that single
478 character is not necessarily the same across these platforms).
479 Consequently binmode() has no effect on these operating systems.  In
480 other systems like VMS, MS-DOS and the various flavors of MS-Windows
481 your program sees a C<\n> as a simple C<\cJ>, but what's stored in text
482 files are the two characters C<\cM\cJ>.  That means that, if you don't
483 use binmode() on these systems, C<\cM\cJ> sequences on disk will be
484 converted to C<\n> on input, and any C<\n> in your program will be
485 converted back to C<\cM\cJ> on output.  This is what you want for text
486 files, but it can be disastrous for binary files.
487
488 Another consequence of using binmode() (on some systems) is that
489 special end-of-file markers will be seen as part of the data stream.
490 For systems from the Microsoft family this means that if your binary
491 data contains C<\cZ>, the I/O subsystem will regard it as the end of
492 the file, unless you use binmode().
493
494 binmode() is not only important for readline() and print() operations,
495 but also when using read(), seek(), sysread(), syswrite() and tell()
496 (see L<perlport> for more details).  See the C<$/> and C<$\> variables
497 in L<perlvar> for how to manually set your input and output
498 line-termination sequences.
499
500 =item bless REF,CLASSNAME
501
502 =item bless REF
503
504 This function tells the thingy referenced by REF that it is now an object
505 in the CLASSNAME package.  If CLASSNAME is omitted, the current package
506 is used.  Because a C<bless> is often the last thing in a constructor,
507 it returns the reference for convenience.  Always use the two-argument
508 version if the function doing the blessing might be inherited by a
509 derived class.  See L<perltoot> and L<perlobj> for more about the blessing
510 (and blessings) of objects.
511
512 Consider always blessing objects in CLASSNAMEs that are mixed case.
513 Namespaces with all lowercase names are considered reserved for
514 Perl pragmata.  Builtin types have all uppercase names, so to prevent
515 confusion, you may wish to avoid such package names as well.  Make sure
516 that CLASSNAME is a true value.
517
518 See L<perlmod/"Perl Modules">.
519
520 =item caller EXPR
521
522 =item caller
523
524 Returns the context of the current subroutine call.  In scalar context,
525 returns the caller's package name if there is a caller, that is, if
526 we're in a subroutine or C<eval> or C<require>, and the undefined value
527 otherwise.  In list context, returns
528
529     ($package, $filename, $line) = caller;
530
531 With EXPR, it returns some extra information that the debugger uses to
532 print a stack trace.  The value of EXPR indicates how many call frames
533 to go back before the current one.
534
535     ($package, $filename, $line, $subroutine, $hasargs,
536     $wantarray, $evaltext, $is_require, $hints, $bitmask) = caller($i);
537
538 Here $subroutine may be C<(eval)> if the frame is not a subroutine
539 call, but an C<eval>.  In such a case additional elements $evaltext and
540 C<$is_require> are set: C<$is_require> is true if the frame is created by a
541 C<require> or C<use> statement, $evaltext contains the text of the
542 C<eval EXPR> statement.  In particular, for an C<eval BLOCK> statement,
543 $filename is C<(eval)>, but $evaltext is undefined.  (Note also that
544 each C<use> statement creates a C<require> frame inside an C<eval EXPR>)
545 frame.  C<$hasargs> is true if a new instance of C<@_> was set up for the
546 frame.  C<$hints> and C<$bitmask> contain pragmatic hints that the caller
547 was compiled with.  The C<$hints> and C<$bitmask> values are subject to
548 change between versions of Perl, and are not meant for external use.
549
550 Furthermore, when called from within the DB package, caller returns more
551 detailed information: it sets the list variable C<@DB::args> to be the
552 arguments with which the subroutine was invoked.
553
554 Be aware that the optimizer might have optimized call frames away before
555 C<caller> had a chance to get the information.  That means that C<caller(N)>
556 might not return information about the call frame you expect it do, for
557 C<< N > 1 >>.  In particular, C<@DB::args> might have information from the
558 previous time C<caller> was called.
559
560 =item chdir EXPR
561
562 Changes the working directory to EXPR, if possible.  If EXPR is omitted,
563 changes to the directory specified by C<$ENV{HOME}>, if set; if not,
564 changes to the directory specified by C<$ENV{LOGDIR}>.  If neither is
565 set, C<chdir> does nothing.  It returns true upon success, false
566 otherwise.  See the example under C<die>.
567
568 =item chmod LIST
569
570 Changes the permissions of a list of files.  The first element of the
571 list must be the numerical mode, which should probably be an octal
572 number, and which definitely should I<not> a string of octal digits:
573 C<0644> is okay, C<'0644'> is not.  Returns the number of files
574 successfully changed.  See also L</oct>, if all you have is a string.
575
576     $cnt = chmod 0755, 'foo', 'bar';
577     chmod 0755, @executables;
578     $mode = '0644'; chmod $mode, 'foo';      # !!! sets mode to
579                                              # --w----r-T
580     $mode = '0644'; chmod oct($mode), 'foo'; # this is better
581     $mode = 0644;   chmod $mode, 'foo';      # this is best
582
583 You can also import the symbolic C<S_I*> constants from the Fcntl
584 module:
585
586     use Fcntl ':mode';
587
588     chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
589     # This is identical to the chmod 0755 of the above example.
590
591 =item chomp VARIABLE
592
593 =item chomp LIST
594
595 =item chomp
596
597 This safer version of L</chop> removes any trailing string
598 that corresponds to the current value of C<$/> (also known as
599 $INPUT_RECORD_SEPARATOR in the C<English> module).  It returns the total
600 number of characters removed from all its arguments.  It's often used to
601 remove the newline from the end of an input record when you're worried
602 that the final record may be missing its newline.  When in paragraph
603 mode (C<$/ = "">), it removes all trailing newlines from the string.
604 When in slurp mode (C<$/ = undef>) or fixed-length record mode (C<$/> is
605 a reference to an integer or the like, see L<perlvar>) chomp() won't
606 remove anything.
607 If VARIABLE is omitted, it chomps C<$_>.  Example:
608
609     while (<>) {
610         chomp;  # avoid \n on last field
611         @array = split(/:/);
612         # ...
613     }
614
615 If VARIABLE is a hash, it chomps the hash's values, but not its keys.
616
617 You can actually chomp anything that's an lvalue, including an assignment:
618
619     chomp($cwd = `pwd`);
620     chomp($answer = <STDIN>);
621
622 If you chomp a list, each element is chomped, and the total number of
623 characters removed is returned.
624
625 =item chop VARIABLE
626
627 =item chop LIST
628
629 =item chop
630
631 Chops off the last character of a string and returns the character
632 chopped.  It is much more efficient than C<s/.$//s> because it neither
633 scans nor copies the string.  If VARIABLE is omitted, chops C<$_>.
634 If VARIABLE is a hash, it chops the hash's values, but not its keys.
635
636 You can actually chop anything that's an lvalue, including an assignment.
637
638 If you chop a list, each element is chopped.  Only the value of the
639 last C<chop> is returned.
640
641 Note that C<chop> returns the last character.  To return all but the last
642 character, use C<substr($string, 0, -1)>.
643
644 =item chown LIST
645
646 Changes the owner (and group) of a list of files.  The first two
647 elements of the list must be the I<numeric> uid and gid, in that
648 order.  A value of -1 in either position is interpreted by most
649 systems to leave that value unchanged.  Returns the number of files
650 successfully changed.
651
652     $cnt = chown $uid, $gid, 'foo', 'bar';
653     chown $uid, $gid, @filenames;
654
655 Here's an example that looks up nonnumeric uids in the passwd file:
656
657     print "User: ";
658     chomp($user = <STDIN>);
659     print "Files: ";
660     chomp($pattern = <STDIN>);
661
662     ($login,$pass,$uid,$gid) = getpwnam($user)
663         or die "$user not in passwd file";
664
665     @ary = glob($pattern);      # expand filenames
666     chown $uid, $gid, @ary;
667
668 On most systems, you are not allowed to change the ownership of the
669 file unless you're the superuser, although you should be able to change
670 the group to any of your secondary groups.  On insecure systems, these
671 restrictions may be relaxed, but this is not a portable assumption.
672 On POSIX systems, you can detect this condition this way:
673
674     use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
675     $can_chown_giveaway = not sysconf(_PC_CHOWN_RESTRICTED);
676
677 =item chr NUMBER
678
679 =item chr
680
681 Returns the character represented by that NUMBER in the character set.
682 For example, C<chr(65)> is C<"A"> in either ASCII or Unicode, and
683 chr(0x263a) is a Unicode smiley face. Within the scope of C<use utf8>,
684 characters higher than 127 are encoded in Unicode; if you don't want
685 this, temporarily C<use bytes> or use C<pack("C*",...)>
686
687 For the reverse, use L</ord>.
688 See L<utf8> for more about Unicode.
689
690 If NUMBER is omitted, uses C<$_>.
691
692 =item chroot FILENAME
693
694 =item chroot
695
696 This function works like the system call by the same name: it makes the
697 named directory the new root directory for all further pathnames that
698 begin with a C</> by your process and all its children.  (It doesn't
699 change your current working directory, which is unaffected.)  For security
700 reasons, this call is restricted to the superuser.  If FILENAME is
701 omitted, does a C<chroot> to C<$_>.
702
703 =item close FILEHANDLE
704
705 =item close
706
707 Closes the file or pipe associated with the file handle, returning true
708 only if stdio successfully flushes buffers and closes the system file
709 descriptor.  Closes the currently selected filehandle if the argument
710 is omitted.
711
712 You don't have to close FILEHANDLE if you are immediately going to do
713 another C<open> on it, because C<open> will close it for you.  (See
714 C<open>.)  However, an explicit C<close> on an input file resets the line
715 counter (C<$.>), while the implicit close done by C<open> does not.
716
717 If the file handle came from a piped open C<close> will additionally
718 return false if one of the other system calls involved fails or if the
719 program exits with non-zero status.  (If the only problem was that the
720 program exited non-zero C<$!> will be set to C<0>.)  Closing a pipe
721 also waits for the process executing on the pipe to complete, in case you
722 want to look at the output of the pipe afterwards, and
723 implicitly puts the exit status value of that command into C<$?>.
724
725 Prematurely closing the read end of a pipe (i.e. before the process
726 writing to it at the other end has closed it) will result in a
727 SIGPIPE being delivered to the writer.  If the other end can't
728 handle that, be sure to read all the data before closing the pipe.
729
730 Example:
731
732     open(OUTPUT, '|sort >foo')  # pipe to sort
733         or die "Can't start sort: $!";
734     #...                        # print stuff to output
735     close OUTPUT                # wait for sort to finish
736         or warn $! ? "Error closing sort pipe: $!"
737                    : "Exit status $? from sort";
738     open(INPUT, 'foo')          # get sort's results
739         or die "Can't open 'foo' for input: $!";
740
741 FILEHANDLE may be an expression whose value can be used as an indirect
742 filehandle, usually the real filehandle name.
743
744 =item closedir DIRHANDLE
745
746 Closes a directory opened by C<opendir> and returns the success of that
747 system call.
748
749 DIRHANDLE may be an expression whose value can be used as an indirect
750 dirhandle, usually the real dirhandle name.
751
752 =item connect SOCKET,NAME
753
754 Attempts to connect to a remote socket, just as the connect system call
755 does.  Returns true if it succeeded, false otherwise.  NAME should be a
756 packed address of the appropriate type for the socket.  See the examples in
757 L<perlipc/"Sockets: Client/Server Communication">.
758
759 =item continue BLOCK
760
761 Actually a flow control statement rather than a function.  If there is a
762 C<continue> BLOCK attached to a BLOCK (typically in a C<while> or
763 C<foreach>), it is always executed just before the conditional is about to
764 be evaluated again, just like the third part of a C<for> loop in C.  Thus
765 it can be used to increment a loop variable, even when the loop has been
766 continued via the C<next> statement (which is similar to the C C<continue>
767 statement).
768
769 C<last>, C<next>, or C<redo> may appear within a C<continue>
770 block.  C<last> and C<redo> will behave as if they had been executed within
771 the main block.  So will C<next>, but since it will execute a C<continue>
772 block, it may be more entertaining.
773
774     while (EXPR) {
775         ### redo always comes here
776         do_something;
777     } continue {
778         ### next always comes here
779         do_something_else;
780         # then back the top to re-check EXPR
781     }
782     ### last always comes here
783
784 Omitting the C<continue> section is semantically equivalent to using an
785 empty one, logically enough.  In that case, C<next> goes directly back
786 to check the condition at the top of the loop.
787
788 =item cos EXPR
789
790 =item cos
791
792 Returns the cosine of EXPR (expressed in radians).  If EXPR is omitted,
793 takes cosine of C<$_>.
794
795 For the inverse cosine operation, you may use the C<Math::Trig::acos()>
796 function, or use this relation:
797
798     sub acos { atan2( sqrt(1 - $_[0] * $_[0]), $_[0] ) }
799
800 =item crypt PLAINTEXT,SALT
801
802 Encrypts a string exactly like the crypt(3) function in the C library
803 (assuming that you actually have a version there that has not been
804 extirpated as a potential munition).  This can prove useful for checking
805 the password file for lousy passwords, amongst other things.  Only the
806 guys wearing white hats should do this.
807
808 Note that C<crypt> is intended to be a one-way function, much like breaking
809 eggs to make an omelette.  There is no (known) corresponding decrypt
810 function.  As a result, this function isn't all that useful for
811 cryptography.  (For that, see your nearby CPAN mirror.)
812
813 When verifying an existing encrypted string you should use the encrypted
814 text as the salt (like C<crypt($plain, $crypted) eq $crypted>).  This
815 allows your code to work with the standard C<crypt> and with more
816 exotic implementations.  When choosing a new salt create a random two
817 character string whose characters come from the set C<[./0-9A-Za-z]>
818 (like C<join '', ('.', '/', 0..9, 'A'..'Z', 'a'..'z')[rand 64, rand 64]>).
819
820 Here's an example that makes sure that whoever runs this program knows
821 their own password:
822
823     $pwd = (getpwuid($<))[1];
824
825     system "stty -echo";
826     print "Password: ";
827     chomp($word = <STDIN>);
828     print "\n";
829     system "stty echo";
830
831     if (crypt($word, $pwd) ne $pwd) {
832         die "Sorry...\n";
833     } else {
834         print "ok\n";
835     }
836
837 Of course, typing in your own password to whoever asks you
838 for it is unwise.
839
840 The L<crypt> function is unsuitable for encrypting large quantities
841 of data, not least of all because you can't get the information
842 back.  Look at the F<by-module/Crypt> and F<by-module/PGP> directories
843 on your favorite CPAN mirror for a slew of potentially useful
844 modules.
845
846 =item dbmclose HASH
847
848 [This function has been largely superseded by the C<untie> function.]
849
850 Breaks the binding between a DBM file and a hash.
851
852 =item dbmopen HASH,DBNAME,MASK
853
854 [This function has been largely superseded by the C<tie> function.]
855
856 This binds a dbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a
857 hash.  HASH is the name of the hash.  (Unlike normal C<open>, the first
858 argument is I<not> a filehandle, even though it looks like one).  DBNAME
859 is the name of the database (without the F<.dir> or F<.pag> extension if
860 any).  If the database does not exist, it is created with protection
861 specified by MASK (as modified by the C<umask>).  If your system supports
862 only the older DBM functions, you may perform only one C<dbmopen> in your
863 program.  In older versions of Perl, if your system had neither DBM nor
864 ndbm, calling C<dbmopen> produced a fatal error; it now falls back to
865 sdbm(3).
866
867 If you don't have write access to the DBM file, you can only read hash
868 variables, not set them.  If you want to test whether you can write,
869 either use file tests or try setting a dummy hash entry inside an C<eval>,
870 which will trap the error.
871
872 Note that functions such as C<keys> and C<values> may return huge lists
873 when used on large DBM files.  You may prefer to use the C<each>
874 function to iterate over large DBM files.  Example:
875
876     # print out history file offsets
877     dbmopen(%HIST,'/usr/lib/news/history',0666);
878     while (($key,$val) = each %HIST) {
879         print $key, ' = ', unpack('L',$val), "\n";
880     }
881     dbmclose(%HIST);
882
883 See also L<AnyDBM_File> for a more general description of the pros and
884 cons of the various dbm approaches, as well as L<DB_File> for a particularly
885 rich implementation.
886
887 You can control which DBM library you use by loading that library
888 before you call dbmopen():
889
890     use DB_File;
891     dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")
892         or die "Can't open netscape history file: $!";
893
894 =item defined EXPR
895
896 =item defined
897
898 Returns a Boolean value telling whether EXPR has a value other than
899 the undefined value C<undef>.  If EXPR is not present, C<$_> will be
900 checked.
901
902 Many operations return C<undef> to indicate failure, end of file,
903 system error, uninitialized variable, and other exceptional
904 conditions.  This function allows you to distinguish C<undef> from
905 other values.  (A simple Boolean test will not distinguish among
906 C<undef>, zero, the empty string, and C<"0">, which are all equally
907 false.)  Note that since C<undef> is a valid scalar, its presence
908 doesn't I<necessarily> indicate an exceptional condition: C<pop>
909 returns C<undef> when its argument is an empty array, I<or> when the
910 element to return happens to be C<undef>.
911
912 You may also use C<defined(&func)> to check whether subroutine C<&func>
913 has ever been defined.  The return value is unaffected by any forward
914 declarations of C<&foo>.  Note that a subroutine which is not defined
915 may still be callable: its package may have an C<AUTOLOAD> method that
916 makes it spring into existence the first time that it is called -- see
917 L<perlsub>.
918
919 Use of C<defined> on aggregates (hashes and arrays) is deprecated.  It
920 used to report whether memory for that aggregate has ever been
921 allocated.  This behavior may disappear in future versions of Perl.
922 You should instead use a simple test for size:
923
924     if (@an_array) { print "has array elements\n" }
925     if (%a_hash)   { print "has hash members\n"   }
926
927 When used on a hash element, it tells you whether the value is defined,
928 not whether the key exists in the hash.  Use L</exists> for the latter
929 purpose.
930
931 Examples:
932
933     print if defined $switch{'D'};
934     print "$val\n" while defined($val = pop(@ary));
935     die "Can't readlink $sym: $!"
936         unless defined($value = readlink $sym);
937     sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
938     $debugging = 0 unless defined $debugging;
939
940 Note:  Many folks tend to overuse C<defined>, and then are surprised to
941 discover that the number C<0> and C<""> (the zero-length string) are, in fact,
942 defined values.  For example, if you say
943
944     "ab" =~ /a(.*)b/;
945
946 The pattern match succeeds, and C<$1> is defined, despite the fact that it
947 matched "nothing".  But it didn't really match nothing--rather, it
948 matched something that happened to be zero characters long.  This is all
949 very above-board and honest.  When a function returns an undefined value,
950 it's an admission that it couldn't give you an honest answer.  So you
951 should use C<defined> only when you're questioning the integrity of what
952 you're trying to do.  At other times, a simple comparison to C<0> or C<""> is
953 what you want.
954
955 See also L</undef>, L</exists>, L</ref>.
956
957 =item delete EXPR
958
959 Given an expression that specifies a hash element, array element, hash slice,
960 or array slice, deletes the specified element(s) from the hash or array.
961 In the case of an array, if the array elements happen to be at the end,
962 the size of the array will shrink to the highest element that tests
963 true for exists() (or 0 if no such element exists).
964
965 Returns each element so deleted or the undefined value if there was no such
966 element.  Deleting from C<$ENV{}> modifies the environment.  Deleting from
967 a hash tied to a DBM file deletes the entry from the DBM file.  Deleting
968 from a C<tie>d hash or array may not necessarily return anything.
969
970 Deleting an array element effectively returns that position of the array
971 to its initial, uninitialized state.  Subsequently testing for the same
972 element with exists() will return false.  Note that deleting array
973 elements in the middle of an array will not shift the index of the ones
974 after them down--use splice() for that.  See L</exists>.
975
976 The following (inefficiently) deletes all the values of %HASH and @ARRAY:
977
978     foreach $key (keys %HASH) {
979         delete $HASH{$key};
980     }
981
982     foreach $index (0 .. $#ARRAY) {
983         delete $ARRAY[$index];
984     }
985
986 And so do these:
987
988     delete @HASH{keys %HASH};
989
990     delete @ARRAY[0 .. $#ARRAY];
991
992 But both of these are slower than just assigning the empty list
993 or undefining %HASH or @ARRAY:
994
995     %HASH = ();         # completely empty %HASH
996     undef %HASH;        # forget %HASH ever existed
997
998     @ARRAY = ();        # completely empty @ARRAY
999     undef @ARRAY;       # forget @ARRAY ever existed
1000
1001 Note that the EXPR can be arbitrarily complicated as long as the final
1002 operation is a hash element, array element,  hash slice, or array slice
1003 lookup:
1004
1005     delete $ref->[$x][$y]{$key};
1006     delete @{$ref->[$x][$y]}{$key1, $key2, @morekeys};
1007
1008     delete $ref->[$x][$y][$index];
1009     delete @{$ref->[$x][$y]}[$index1, $index2, @moreindices];
1010
1011 =item die LIST
1012
1013 Outside an C<eval>, prints the value of LIST to C<STDERR> and
1014 exits with the current value of C<$!> (errno).  If C<$!> is C<0>,
1015 exits with the value of C<<< ($? >> 8) >>> (backtick `command`
1016 status).  If C<<< ($? >> 8) >>> is C<0>, exits with C<255>.  Inside
1017 an C<eval(),> the error message is stuffed into C<$@> and the
1018 C<eval> is terminated with the undefined value.  This makes
1019 C<die> the way to raise an exception.
1020
1021 Equivalent examples:
1022
1023     die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
1024     chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"
1025
1026 If the value of EXPR does not end in a newline, the current script line
1027 number and input line number (if any) are also printed, and a newline
1028 is supplied.  Note that the "input line number" (also known as "chunk")
1029 is subject to whatever notion of "line" happens to be currently in
1030 effect, and is also available as the special variable C<$.>.
1031 See L<perlvar/"$/"> and L<perlvar/"$.">.
1032
1033 Hint: sometimes appending C<", stopped"> to your message
1034 will cause it to make better sense when the string C<"at foo line 123"> is
1035 appended.  Suppose you are running script "canasta".
1036
1037     die "/etc/games is no good";
1038     die "/etc/games is no good, stopped";
1039
1040 produce, respectively
1041
1042     /etc/games is no good at canasta line 123.
1043     /etc/games is no good, stopped at canasta line 123.
1044
1045 See also exit(), warn(), and the Carp module.
1046
1047 If LIST is empty and C<$@> already contains a value (typically from a
1048 previous eval) that value is reused after appending C<"\t...propagated">.
1049 This is useful for propagating exceptions:
1050
1051     eval { ... };
1052     die unless $@ =~ /Expected exception/;
1053
1054 If C<$@> is empty then the string C<"Died"> is used.
1055
1056 die() can also be called with a reference argument.  If this happens to be
1057 trapped within an eval(), $@ contains the reference.  This behavior permits
1058 a more elaborate exception handling implementation using objects that
1059 maintain arbitrary state about the nature of the exception.  Such a scheme
1060 is sometimes preferable to matching particular string values of $@ using
1061 regular expressions.  Here's an example:
1062
1063     eval { ... ; die Some::Module::Exception->new( FOO => "bar" ) };
1064     if ($@) {
1065         if (ref($@) && UNIVERSAL::isa($@,"Some::Module::Exception")) {
1066             # handle Some::Module::Exception
1067         }
1068         else {
1069             # handle all other possible exceptions
1070         }
1071     }
1072
1073 Because perl will stringify uncaught exception messages before displaying
1074 them, you may want to overload stringification operations on such custom
1075 exception objects.  See L<overload> for details about that.
1076
1077 You can arrange for a callback to be run just before the C<die>
1078 does its deed, by setting the C<$SIG{__DIE__}> hook.  The associated
1079 handler will be called with the error text and can change the error
1080 message, if it sees fit, by calling C<die> again.  See
1081 L<perlvar/$SIG{expr}> for details on setting C<%SIG> entries, and
1082 L<"eval BLOCK"> for some examples.  Although this feature was meant
1083 to be run only right before your program was to exit, this is not
1084 currently the case--the C<$SIG{__DIE__}> hook is currently called
1085 even inside eval()ed blocks/strings!  If one wants the hook to do
1086 nothing in such situations, put
1087
1088         die @_ if $^S;
1089
1090 as the first line of the handler (see L<perlvar/$^S>).  Because
1091 this promotes strange action at a distance, this counterintuitive
1092 behavior may be fixed in a future release.
1093
1094 =item do BLOCK
1095
1096 Not really a function.  Returns the value of the last command in the
1097 sequence of commands indicated by BLOCK.  When modified by a loop
1098 modifier, executes the BLOCK once before testing the loop condition.
1099 (On other statements the loop modifiers test the conditional first.)
1100
1101 C<do BLOCK> does I<not> count as a loop, so the loop control statements
1102 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1103 See L<perlsyn> for alternative strategies.
1104
1105 =item do SUBROUTINE(LIST)
1106
1107 A deprecated form of subroutine call.  See L<perlsub>.
1108
1109 =item do EXPR
1110
1111 Uses the value of EXPR as a filename and executes the contents of the
1112 file as a Perl script.  Its primary use is to include subroutines
1113 from a Perl subroutine library.
1114
1115     do 'stat.pl';
1116
1117 is just like
1118
1119     scalar eval `cat stat.pl`;
1120
1121 except that it's more efficient and concise, keeps track of the current
1122 filename for error messages, searches the @INC libraries, and updates
1123 C<%INC> if the file is found.  See L<perlvar/Predefined Names> for these
1124 variables.  It also differs in that code evaluated with C<do FILENAME>
1125 cannot see lexicals in the enclosing scope; C<eval STRING> does.  It's the
1126 same, however, in that it does reparse the file every time you call it,
1127 so you probably don't want to do this inside a loop.
1128
1129 If C<do> cannot read the file, it returns undef and sets C<$!> to the
1130 error.  If C<do> can read the file but cannot compile it, it
1131 returns undef and sets an error message in C<$@>.   If the file is
1132 successfully compiled, C<do> returns the value of the last expression
1133 evaluated.
1134
1135 Note that inclusion of library modules is better done with the
1136 C<use> and C<require> operators, which also do automatic error checking
1137 and raise an exception if there's a problem.
1138
1139 You might like to use C<do> to read in a program configuration
1140 file.  Manual error checking can be done this way:
1141
1142     # read in config files: system first, then user
1143     for $file ("/share/prog/defaults.rc",
1144                "$ENV{HOME}/.someprogrc")
1145    {
1146         unless ($return = do $file) {
1147             warn "couldn't parse $file: $@" if $@;
1148             warn "couldn't do $file: $!"    unless defined $return;
1149             warn "couldn't run $file"       unless $return;
1150         }
1151     }
1152
1153 =item dump LABEL
1154
1155 =item dump
1156
1157 This function causes an immediate core dump.  See also the B<-u>
1158 command-line switch in L<perlrun>, which does the same thing.
1159 Primarily this is so that you can use the B<undump> program (not
1160 supplied) to turn your core dump into an executable binary after
1161 having initialized all your variables at the beginning of the
1162 program.  When the new binary is executed it will begin by executing
1163 a C<goto LABEL> (with all the restrictions that C<goto> suffers).
1164 Think of it as a goto with an intervening core dump and reincarnation.
1165 If C<LABEL> is omitted, restarts the program from the top.
1166
1167 B<WARNING>: Any files opened at the time of the dump will I<not>
1168 be open any more when the program is reincarnated, with possible
1169 resulting confusion on the part of Perl.
1170
1171 This function is now largely obsolete, partly because it's very
1172 hard to convert a core file into an executable, and because the
1173 real compiler backends for generating portable bytecode and compilable
1174 C code have superseded it.
1175
1176 If you're looking to use L<dump> to speed up your program, consider
1177 generating bytecode or native C code as described in L<perlcc>.  If
1178 you're just trying to accelerate a CGI script, consider using the
1179 C<mod_perl> extension to B<Apache>, or the CPAN module, Fast::CGI.
1180 You might also consider autoloading or selfloading, which at least
1181 make your program I<appear> to run faster.
1182
1183 =item each HASH
1184
1185 When called in list context, returns a 2-element list consisting of the
1186 key and value for the next element of a hash, so that you can iterate over
1187 it.  When called in scalar context, returns only the key for the next
1188 element in the hash.
1189
1190 Entries are returned in an apparently random order.  The actual random
1191 order is subject to change in future versions of perl, but it is guaranteed
1192 to be in the same order as either the C<keys> or C<values> function
1193 would produce on the same (unmodified) hash.
1194
1195 When the hash is entirely read, a null array is returned in list context
1196 (which when assigned produces a false (C<0>) value), and C<undef> in
1197 scalar context.  The next call to C<each> after that will start iterating
1198 again.  There is a single iterator for each hash, shared by all C<each>,
1199 C<keys>, and C<values> function calls in the program; it can be reset by
1200 reading all the elements from the hash, or by evaluating C<keys HASH> or
1201 C<values HASH>.  If you add or delete elements of a hash while you're
1202 iterating over it, you may get entries skipped or duplicated, so
1203 don't.  Exception: It is always safe to delete the item most recently
1204 returned by C<each()>, which means that the following code will work:
1205
1206         while (($key, $value) = each %hash) {
1207           print $key, "\n";
1208           delete $hash{$key};   # This is safe
1209         }
1210
1211 The following prints out your environment like the printenv(1) program,
1212 only in a different order:
1213
1214     while (($key,$value) = each %ENV) {
1215         print "$key=$value\n";
1216     }
1217
1218 See also C<keys>, C<values> and C<sort>.
1219
1220 =item eof FILEHANDLE
1221
1222 =item eof ()
1223
1224 =item eof
1225
1226 Returns 1 if the next read on FILEHANDLE will return end of file, or if
1227 FILEHANDLE is not open.  FILEHANDLE may be an expression whose value
1228 gives the real filehandle.  (Note that this function actually
1229 reads a character and then C<ungetc>s it, so isn't very useful in an
1230 interactive context.)  Do not read from a terminal file (or call
1231 C<eof(FILEHANDLE)> on it) after end-of-file is reached.  File types such
1232 as terminals may lose the end-of-file condition if you do.
1233
1234 An C<eof> without an argument uses the last file read.  Using C<eof()>
1235 with empty parentheses is very different.  It refers to the pseudo file
1236 formed from the files listed on the command line and accessed via the
1237 C<< <> >> operator.  Since C<< <> >> isn't explicitly opened,
1238 as a normal filehandle is, an C<eof()> before C<< <> >> has been
1239 used will cause C<@ARGV> to be examined to determine if input is
1240 available.
1241
1242 In a C<< while (<>) >> loop, C<eof> or C<eof(ARGV)> can be used to
1243 detect the end of each file, C<eof()> will only detect the end of the
1244 last file.  Examples:
1245
1246     # reset line numbering on each input file
1247     while (<>) {
1248         next if /^\s*#/;        # skip comments
1249         print "$.\t$_";
1250     } continue {
1251         close ARGV  if eof;     # Not eof()!
1252     }
1253
1254     # insert dashes just before last line of last file
1255     while (<>) {
1256         if (eof()) {            # check for end of current file
1257             print "--------------\n";
1258             close(ARGV);        # close or last; is needed if we
1259                                 # are reading from the terminal
1260         }
1261         print;
1262     }
1263
1264 Practical hint: you almost never need to use C<eof> in Perl, because the
1265 input operators typically return C<undef> when they run out of data, or if
1266 there was an error.
1267
1268 =item eval EXPR
1269
1270 =item eval BLOCK
1271
1272 In the first form, the return value of EXPR is parsed and executed as if it
1273 were a little Perl program.  The value of the expression (which is itself
1274 determined within scalar context) is first parsed, and if there weren't any
1275 errors, executed in the lexical context of the current Perl program, so
1276 that any variable settings or subroutine and format definitions remain
1277 afterwards.  Note that the value is parsed every time the eval executes.
1278 If EXPR is omitted, evaluates C<$_>.  This form is typically used to
1279 delay parsing and subsequent execution of the text of EXPR until run time.
1280
1281 In the second form, the code within the BLOCK is parsed only once--at the
1282 same time the code surrounding the eval itself was parsed--and executed
1283 within the context of the current Perl program.  This form is typically
1284 used to trap exceptions more efficiently than the first (see below), while
1285 also providing the benefit of checking the code within BLOCK at compile
1286 time.
1287
1288 The final semicolon, if any, may be omitted from the value of EXPR or within
1289 the BLOCK.
1290
1291 In both forms, the value returned is the value of the last expression
1292 evaluated inside the mini-program; a return statement may be also used, just
1293 as with subroutines.  The expression providing the return value is evaluated
1294 in void, scalar, or list context, depending on the context of the eval itself.
1295 See L</wantarray> for more on how the evaluation context can be determined.
1296
1297 If there is a syntax error or runtime error, or a C<die> statement is
1298 executed, an undefined value is returned by C<eval>, and C<$@> is set to the
1299 error message.  If there was no error, C<$@> is guaranteed to be a null
1300 string.  Beware that using C<eval> neither silences perl from printing
1301 warnings to STDERR, nor does it stuff the text of warning messages into C<$@>.
1302 To do either of those, you have to use the C<$SIG{__WARN__}> facility.  See
1303 L</warn> and L<perlvar>.
1304
1305 Note that, because C<eval> traps otherwise-fatal errors, it is useful for
1306 determining whether a particular feature (such as C<socket> or C<symlink>)
1307 is implemented.  It is also Perl's exception trapping mechanism, where
1308 the die operator is used to raise exceptions.
1309
1310 If the code to be executed doesn't vary, you may use the eval-BLOCK
1311 form to trap run-time errors without incurring the penalty of
1312 recompiling each time.  The error, if any, is still returned in C<$@>.
1313 Examples:
1314
1315     # make divide-by-zero nonfatal
1316     eval { $answer = $a / $b; }; warn $@ if $@;
1317
1318     # same thing, but less efficient
1319     eval '$answer = $a / $b'; warn $@ if $@;
1320
1321     # a compile-time error
1322     eval { $answer = };                 # WRONG
1323
1324     # a run-time error
1325     eval '$answer =';   # sets $@
1326
1327 Due to the current arguably broken state of C<__DIE__> hooks, when using
1328 the C<eval{}> form as an exception trap in libraries, you may wish not
1329 to trigger any C<__DIE__> hooks that user code may have installed.
1330 You can use the C<local $SIG{__DIE__}> construct for this purpose,
1331 as shown in this example:
1332
1333     # a very private exception trap for divide-by-zero
1334     eval { local $SIG{'__DIE__'}; $answer = $a / $b; };
1335     warn $@ if $@;
1336
1337 This is especially significant, given that C<__DIE__> hooks can call
1338 C<die> again, which has the effect of changing their error messages:
1339
1340     # __DIE__ hooks may modify error messages
1341     {
1342        local $SIG{'__DIE__'} =
1343               sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x };
1344        eval { die "foo lives here" };
1345        print $@ if $@;                # prints "bar lives here"
1346     }
1347
1348 Because this promotes action at a distance, this counterintuitive behavior
1349 may be fixed in a future release.
1350
1351 With an C<eval>, you should be especially careful to remember what's
1352 being looked at when:
1353
1354     eval $x;            # CASE 1
1355     eval "$x";          # CASE 2
1356
1357     eval '$x';          # CASE 3
1358     eval { $x };        # CASE 4
1359
1360     eval "\$$x++";      # CASE 5
1361     $$x++;              # CASE 6
1362
1363 Cases 1 and 2 above behave identically: they run the code contained in
1364 the variable $x.  (Although case 2 has misleading double quotes making
1365 the reader wonder what else might be happening (nothing is).)  Cases 3
1366 and 4 likewise behave in the same way: they run the code C<'$x'>, which
1367 does nothing but return the value of $x.  (Case 4 is preferred for
1368 purely visual reasons, but it also has the advantage of compiling at
1369 compile-time instead of at run-time.)  Case 5 is a place where
1370 normally you I<would> like to use double quotes, except that in this
1371 particular situation, you can just use symbolic references instead, as
1372 in case 6.
1373
1374 C<eval BLOCK> does I<not> count as a loop, so the loop control statements
1375 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1376
1377 =item exec LIST
1378
1379 =item exec PROGRAM LIST
1380
1381 The C<exec> function executes a system command I<and never returns>--
1382 use C<system> instead of C<exec> if you want it to return.  It fails and
1383 returns false only if the command does not exist I<and> it is executed
1384 directly instead of via your system's command shell (see below).
1385
1386 Since it's a common mistake to use C<exec> instead of C<system>, Perl
1387 warns you if there is a following statement which isn't C<die>, C<warn>,
1388 or C<exit> (if C<-w> is set  -  but you always do that).   If you
1389 I<really> want to follow an C<exec> with some other statement, you
1390 can use one of these styles to avoid the warning:
1391
1392     exec ('foo')   or print STDERR "couldn't exec foo: $!";
1393     { exec ('foo') }; print STDERR "couldn't exec foo: $!";
1394
1395 If there is more than one argument in LIST, or if LIST is an array
1396 with more than one value, calls execvp(3) with the arguments in LIST.
1397 If there is only one scalar argument or an array with one element in it,
1398 the argument is checked for shell metacharacters, and if there are any,
1399 the entire argument is passed to the system's command shell for parsing
1400 (this is C</bin/sh -c> on Unix platforms, but varies on other platforms).
1401 If there are no shell metacharacters in the argument, it is split into
1402 words and passed directly to C<execvp>, which is more efficient.
1403 Examples:
1404
1405     exec '/bin/echo', 'Your arguments are: ', @ARGV;
1406     exec "sort $outfile | uniq";
1407
1408 If you don't really want to execute the first argument, but want to lie
1409 to the program you are executing about its own name, you can specify
1410 the program you actually want to run as an "indirect object" (without a
1411 comma) in front of the LIST.  (This always forces interpretation of the
1412 LIST as a multivalued list, even if there is only a single scalar in
1413 the list.)  Example:
1414
1415     $shell = '/bin/csh';
1416     exec $shell '-sh';          # pretend it's a login shell
1417
1418 or, more directly,
1419
1420     exec {'/bin/csh'} '-sh';    # pretend it's a login shell
1421
1422 When the arguments get executed via the system shell, results will
1423 be subject to its quirks and capabilities.  See L<perlop/"`STRING`">
1424 for details.
1425
1426 Using an indirect object with C<exec> or C<system> is also more
1427 secure.  This usage (which also works fine with system()) forces
1428 interpretation of the arguments as a multivalued list, even if the
1429 list had just one argument.  That way you're safe from the shell
1430 expanding wildcards or splitting up words with whitespace in them.
1431
1432     @args = ( "echo surprise" );
1433
1434     exec @args;               # subject to shell escapes
1435                                 # if @args == 1
1436     exec { $args[0] } @args;  # safe even with one-arg list
1437
1438 The first version, the one without the indirect object, ran the I<echo>
1439 program, passing it C<"surprise"> an argument.  The second version
1440 didn't--it tried to run a program literally called I<"echo surprise">,
1441 didn't find it, and set C<$?> to a non-zero value indicating failure.
1442
1443 Beginning with v5.6.0, Perl will attempt to flush all files opened for
1444 output before the exec, but this may not be supported on some platforms
1445 (see L<perlport>).  To be safe, you may need to set C<$|> ($AUTOFLUSH
1446 in English) or call the C<autoflush()> method of C<IO::Handle> on any
1447 open handles in order to avoid lost output.
1448
1449 Note that C<exec> will not call your C<END> blocks, nor will it call
1450 any C<DESTROY> methods in your objects.
1451
1452 =item exists EXPR
1453
1454 Given an expression that specifies a hash element or array element,
1455 returns true if the specified element in the hash or array has ever
1456 been initialized, even if the corresponding value is undefined.  The
1457 element is not autovivified if it doesn't exist.
1458
1459     print "Exists\n"    if exists $hash{$key};
1460     print "Defined\n"   if defined $hash{$key};
1461     print "True\n"      if $hash{$key};
1462
1463     print "Exists\n"    if exists $array[$index];
1464     print "Defined\n"   if defined $array[$index];
1465     print "True\n"      if $array[$index];
1466
1467 A hash or array element can be true only if it's defined, and defined if
1468 it exists, but the reverse doesn't necessarily hold true.
1469
1470 Given an expression that specifies the name of a subroutine,
1471 returns true if the specified subroutine has ever been declared, even
1472 if it is undefined.  Mentioning a subroutine name for exists or defined
1473 does not count as declaring it.  Note that a subroutine which does not
1474 exist may still be callable: its package may have an C<AUTOLOAD>
1475 method that makes it spring into existence the first time that it is
1476 called -- see L<perlsub>.
1477
1478     print "Exists\n"    if exists &subroutine;
1479     print "Defined\n"   if defined &subroutine;
1480
1481 Note that the EXPR can be arbitrarily complicated as long as the final
1482 operation is a hash or array key lookup or subroutine name:
1483
1484     if (exists $ref->{A}->{B}->{$key})  { }
1485     if (exists $hash{A}{B}{$key})       { }
1486
1487     if (exists $ref->{A}->{B}->[$ix])   { }
1488     if (exists $hash{A}{B}[$ix])        { }
1489
1490     if (exists &{$ref->{A}{B}{$key}})   { }
1491
1492 Although the deepest nested array or hash will not spring into existence
1493 just because its existence was tested, any intervening ones will.
1494 Thus C<< $ref->{"A"} >> and C<< $ref->{"A"}->{"B"} >> will spring
1495 into existence due to the existence test for the $key element above.
1496 This happens anywhere the arrow operator is used, including even:
1497
1498     undef $ref;
1499     if (exists $ref->{"Some key"})      { }
1500     print $ref;             # prints HASH(0x80d3d5c)
1501
1502 This surprising autovivification in what does not at first--or even
1503 second--glance appear to be an lvalue context may be fixed in a future
1504 release.
1505
1506 See L<perlref/"Pseudo-hashes: Using an array as a hash"> for specifics
1507 on how exists() acts when used on a pseudo-hash.
1508
1509 Use of a subroutine call, rather than a subroutine name, as an argument
1510 to exists() is an error.
1511
1512     exists &sub;        # OK
1513     exists &sub();      # Error
1514
1515 =item exit EXPR
1516
1517 Evaluates EXPR and exits immediately with that value.    Example:
1518
1519     $ans = <STDIN>;
1520     exit 0 if $ans =~ /^[Xx]/;
1521
1522 See also C<die>.  If EXPR is omitted, exits with C<0> status.  The only
1523 universally recognized values for EXPR are C<0> for success and C<1>
1524 for error; other values are subject to interpretation depending on the
1525 environment in which the Perl program is running.  For example, exiting
1526 69 (EX_UNAVAILABLE) from a I<sendmail> incoming-mail filter will cause
1527 the mailer to return the item undelivered, but that's not true everywhere.
1528
1529 Don't use C<exit> to abort a subroutine if there's any chance that
1530 someone might want to trap whatever error happened.  Use C<die> instead,
1531 which can be trapped by an C<eval>.
1532
1533 The exit() function does not always exit immediately.  It calls any
1534 defined C<END> routines first, but these C<END> routines may not
1535 themselves abort the exit.  Likewise any object destructors that need to
1536 be called are called before the real exit.  If this is a problem, you
1537 can call C<POSIX:_exit($status)> to avoid END and destructor processing.
1538 See L<perlmod> for details.
1539
1540 =item exp EXPR
1541
1542 =item exp
1543
1544 Returns I<e> (the natural logarithm base) to the power of EXPR.
1545 If EXPR is omitted, gives C<exp($_)>.
1546
1547 =item fcntl FILEHANDLE,FUNCTION,SCALAR
1548
1549 Implements the fcntl(2) function.  You'll probably have to say
1550
1551     use Fcntl;
1552
1553 first to get the correct constant definitions.  Argument processing and
1554 value return works just like C<ioctl> below.
1555 For example:
1556
1557     use Fcntl;
1558     fcntl($filehandle, F_GETFL, $packed_return_buffer)
1559         or die "can't fcntl F_GETFL: $!";
1560
1561 You don't have to check for C<defined> on the return from C<fnctl>.
1562 Like C<ioctl>, it maps a C<0> return from the system call into
1563 C<"0 but true"> in Perl.  This string is true in boolean context and C<0>
1564 in numeric context.  It is also exempt from the normal B<-w> warnings
1565 on improper numeric conversions.
1566
1567 Note that C<fcntl> will produce a fatal error if used on a machine that
1568 doesn't implement fcntl(2).  See the Fcntl module or your fcntl(2)
1569 manpage to learn what functions are available on your system.
1570
1571 =item fileno FILEHANDLE
1572
1573 Returns the file descriptor for a filehandle, or undefined if the
1574 filehandle is not open.  This is mainly useful for constructing
1575 bitmaps for C<select> and low-level POSIX tty-handling operations.
1576 If FILEHANDLE is an expression, the value is taken as an indirect
1577 filehandle, generally its name.
1578
1579 You can use this to find out whether two handles refer to the
1580 same underlying descriptor:
1581
1582     if (fileno(THIS) == fileno(THAT)) {
1583         print "THIS and THAT are dups\n";
1584     }
1585
1586 (Filehandles connected to memory objects via new features of C<open> may
1587 return undefined even though they are open.)
1588
1589
1590 =item flock FILEHANDLE,OPERATION
1591
1592 Calls flock(2), or an emulation of it, on FILEHANDLE.  Returns true
1593 for success, false on failure.  Produces a fatal error if used on a
1594 machine that doesn't implement flock(2), fcntl(2) locking, or lockf(3).
1595 C<flock> is Perl's portable file locking interface, although it locks
1596 only entire files, not records.
1597
1598 Two potentially non-obvious but traditional C<flock> semantics are
1599 that it waits indefinitely until the lock is granted, and that its locks
1600 B<merely advisory>.  Such discretionary locks are more flexible, but offer
1601 fewer guarantees.  This means that files locked with C<flock> may be
1602 modified by programs that do not also use C<flock>.  See L<perlport>,
1603 your port's specific documentation, or your system-specific local manpages
1604 for details.  It's best to assume traditional behavior if you're writing
1605 portable programs.  (But if you're not, you should as always feel perfectly
1606 free to write for your own system's idiosyncrasies (sometimes called
1607 "features").  Slavish adherence to portability concerns shouldn't get
1608 in the way of your getting your job done.)
1609
1610 OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with
1611 LOCK_NB.  These constants are traditionally valued 1, 2, 8 and 4, but
1612 you can use the symbolic names if you import them from the Fcntl module,
1613 either individually, or as a group using the ':flock' tag.  LOCK_SH
1614 requests a shared lock, LOCK_EX requests an exclusive lock, and LOCK_UN
1615 releases a previously requested lock.  If LOCK_NB is bitwise-or'ed with
1616 LOCK_SH or LOCK_EX then C<flock> will return immediately rather than blocking
1617 waiting for the lock (check the return status to see if you got it).
1618
1619 To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE
1620 before locking or unlocking it.
1621
1622 Note that the emulation built with lockf(3) doesn't provide shared
1623 locks, and it requires that FILEHANDLE be open with write intent.  These
1624 are the semantics that lockf(3) implements.  Most if not all systems
1625 implement lockf(3) in terms of fcntl(2) locking, though, so the
1626 differing semantics shouldn't bite too many people.
1627
1628 Note also that some versions of C<flock> cannot lock things over the
1629 network; you would need to use the more system-specific C<fcntl> for
1630 that.  If you like you can force Perl to ignore your system's flock(2)
1631 function, and so provide its own fcntl(2)-based emulation, by passing
1632 the switch C<-Ud_flock> to the F<Configure> program when you configure
1633 perl.
1634
1635 Here's a mailbox appender for BSD systems.
1636
1637     use Fcntl ':flock'; # import LOCK_* constants
1638
1639     sub lock {
1640         flock(MBOX,LOCK_EX);
1641         # and, in case someone appended
1642         # while we were waiting...
1643         seek(MBOX, 0, 2);
1644     }
1645
1646     sub unlock {
1647         flock(MBOX,LOCK_UN);
1648     }
1649
1650     open(MBOX, ">>/usr/spool/mail/$ENV{'USER'}")
1651             or die "Can't open mailbox: $!";
1652
1653     lock();
1654     print MBOX $msg,"\n\n";
1655     unlock();
1656
1657 On systems that support a real flock(), locks are inherited across fork()
1658 calls, whereas those that must resort to the more capricious fcntl()
1659 function lose the locks, making it harder to write servers.
1660
1661 See also L<DB_File> for other flock() examples.
1662
1663 =item fork
1664
1665 Does a fork(2) system call to create a new process running the
1666 same program at the same point.  It returns the child pid to the
1667 parent process, C<0> to the child process, or C<undef> if the fork is
1668 unsuccessful.  File descriptors (and sometimes locks on those descriptors)
1669 are shared, while everything else is copied.  On most systems supporting
1670 fork(), great care has gone into making it extremely efficient (for
1671 example, using copy-on-write technology on data pages), making it the
1672 dominant paradigm for multitasking over the last few decades.
1673
1674 Beginning with v5.6.0, Perl will attempt to flush all files opened for
1675 output before forking the child process, but this may not be supported
1676 on some platforms (see L<perlport>).  To be safe, you may need to set
1677 C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method of
1678 C<IO::Handle> on any open handles in order to avoid duplicate output.
1679
1680 If you C<fork> without ever waiting on your children, you will
1681 accumulate zombies.  On some systems, you can avoid this by setting
1682 C<$SIG{CHLD}> to C<"IGNORE">.  See also L<perlipc> for more examples of
1683 forking and reaping moribund children.
1684
1685 Note that if your forked child inherits system file descriptors like
1686 STDIN and STDOUT that are actually connected by a pipe or socket, even
1687 if you exit, then the remote server (such as, say, a CGI script or a
1688 backgrounded job launched from a remote shell) won't think you're done.
1689 You should reopen those to F</dev/null> if it's any issue.
1690
1691 =item format
1692
1693 Declare a picture format for use by the C<write> function.  For
1694 example:
1695
1696     format Something =
1697         Test: @<<<<<<<< @||||| @>>>>>
1698               $str,     $%,    '$' . int($num)
1699     .
1700
1701     $str = "widget";
1702     $num = $cost/$quantity;
1703     $~ = 'Something';
1704     write;
1705
1706 See L<perlform> for many details and examples.
1707
1708 =item formline PICTURE,LIST
1709
1710 This is an internal function used by C<format>s, though you may call it,
1711 too.  It formats (see L<perlform>) a list of values according to the
1712 contents of PICTURE, placing the output into the format output
1713 accumulator, C<$^A> (or C<$ACCUMULATOR> in English).
1714 Eventually, when a C<write> is done, the contents of
1715 C<$^A> are written to some filehandle, but you could also read C<$^A>
1716 yourself and then set C<$^A> back to C<"">.  Note that a format typically
1717 does one C<formline> per line of form, but the C<formline> function itself
1718 doesn't care how many newlines are embedded in the PICTURE.  This means
1719 that the C<~> and C<~~> tokens will treat the entire PICTURE as a single line.
1720 You may therefore need to use multiple formlines to implement a single
1721 record format, just like the format compiler.
1722
1723 Be careful if you put double quotes around the picture, because an C<@>
1724 character may be taken to mean the beginning of an array name.
1725 C<formline> always returns true.  See L<perlform> for other examples.
1726
1727 =item getc FILEHANDLE
1728
1729 =item getc
1730
1731 Returns the next character from the input file attached to FILEHANDLE,
1732 or the undefined value at end of file, or if there was an error.
1733 If FILEHANDLE is omitted, reads from STDIN.  This is not particularly
1734 efficient.  However, it cannot be used by itself to fetch single
1735 characters without waiting for the user to hit enter.  For that, try
1736 something more like:
1737
1738     if ($BSD_STYLE) {
1739         system "stty cbreak </dev/tty >/dev/tty 2>&1";
1740     }
1741     else {
1742         system "stty", '-icanon', 'eol', "\001";
1743     }
1744
1745     $key = getc(STDIN);
1746
1747     if ($BSD_STYLE) {
1748         system "stty -cbreak </dev/tty >/dev/tty 2>&1";
1749     }
1750     else {
1751         system "stty", 'icanon', 'eol', '^@'; # ASCII null
1752     }
1753     print "\n";
1754
1755 Determination of whether $BSD_STYLE should be set
1756 is left as an exercise to the reader.
1757
1758 The C<POSIX::getattr> function can do this more portably on
1759 systems purporting POSIX compliance.  See also the C<Term::ReadKey>
1760 module from your nearest CPAN site; details on CPAN can be found on
1761 L<perlmodlib/CPAN>.
1762
1763 =item getlogin
1764
1765 Implements the C library function of the same name, which on most
1766 systems returns the current login from F</etc/utmp>, if any.  If null,
1767 use C<getpwuid>.
1768
1769     $login = getlogin || getpwuid($<) || "Kilroy";
1770
1771 Do not consider C<getlogin> for authentication: it is not as
1772 secure as C<getpwuid>.
1773
1774 =item getpeername SOCKET
1775
1776 Returns the packed sockaddr address of other end of the SOCKET connection.
1777
1778     use Socket;
1779     $hersockaddr    = getpeername(SOCK);
1780     ($port, $iaddr) = sockaddr_in($hersockaddr);
1781     $herhostname    = gethostbyaddr($iaddr, AF_INET);
1782     $herstraddr     = inet_ntoa($iaddr);
1783
1784 =item getpgrp PID
1785
1786 Returns the current process group for the specified PID.  Use
1787 a PID of C<0> to get the current process group for the
1788 current process.  Will raise an exception if used on a machine that
1789 doesn't implement getpgrp(2).  If PID is omitted, returns process
1790 group of current process.  Note that the POSIX version of C<getpgrp>
1791 does not accept a PID argument, so only C<PID==0> is truly portable.
1792
1793 =item getppid
1794
1795 Returns the process id of the parent process.
1796
1797 =item getpriority WHICH,WHO
1798
1799 Returns the current priority for a process, a process group, or a user.
1800 (See L<getpriority(2)>.)  Will raise a fatal exception if used on a
1801 machine that doesn't implement getpriority(2).
1802
1803 =item getpwnam NAME
1804
1805 =item getgrnam NAME
1806
1807 =item gethostbyname NAME
1808
1809 =item getnetbyname NAME
1810
1811 =item getprotobyname NAME
1812
1813 =item getpwuid UID
1814
1815 =item getgrgid GID
1816
1817 =item getservbyname NAME,PROTO
1818
1819 =item gethostbyaddr ADDR,ADDRTYPE
1820
1821 =item getnetbyaddr ADDR,ADDRTYPE
1822
1823 =item getprotobynumber NUMBER
1824
1825 =item getservbyport PORT,PROTO
1826
1827 =item getpwent
1828
1829 =item getgrent
1830
1831 =item gethostent
1832
1833 =item getnetent
1834
1835 =item getprotoent
1836
1837 =item getservent
1838
1839 =item setpwent
1840
1841 =item setgrent
1842
1843 =item sethostent STAYOPEN
1844
1845 =item setnetent STAYOPEN
1846
1847 =item setprotoent STAYOPEN
1848
1849 =item setservent STAYOPEN
1850
1851 =item endpwent
1852
1853 =item endgrent
1854
1855 =item endhostent
1856
1857 =item endnetent
1858
1859 =item endprotoent
1860
1861 =item endservent
1862
1863 These routines perform the same functions as their counterparts in the
1864 system library.  In list context, the return values from the
1865 various get routines are as follows:
1866
1867     ($name,$passwd,$uid,$gid,
1868        $quota,$comment,$gcos,$dir,$shell,$expire) = getpw*
1869     ($name,$passwd,$gid,$members) = getgr*
1870     ($name,$aliases,$addrtype,$length,@addrs) = gethost*
1871     ($name,$aliases,$addrtype,$net) = getnet*
1872     ($name,$aliases,$proto) = getproto*
1873     ($name,$aliases,$port,$proto) = getserv*
1874
1875 (If the entry doesn't exist you get a null list.)
1876
1877 The exact meaning of the $gcos field varies but it usually contains
1878 the real name of the user (as opposed to the login name) and other
1879 information pertaining to the user.  Beware, however, that in many
1880 system users are able to change this information and therefore it
1881 cannot be trusted and therefore the $gcos is tainted (see
1882 L<perlsec>).  The $passwd and $shell, user's encrypted password and
1883 login shell, are also tainted, because of the same reason.
1884
1885 In scalar context, you get the name, unless the function was a
1886 lookup by name, in which case you get the other thing, whatever it is.
1887 (If the entry doesn't exist you get the undefined value.)  For example:
1888
1889     $uid   = getpwnam($name);
1890     $name  = getpwuid($num);
1891     $name  = getpwent();
1892     $gid   = getgrnam($name);
1893     $name  = getgrgid($num;
1894     $name  = getgrent();
1895     #etc.
1896
1897 In I<getpw*()> the fields $quota, $comment, and $expire are special
1898 cases in the sense that in many systems they are unsupported.  If the
1899 $quota is unsupported, it is an empty scalar.  If it is supported, it
1900 usually encodes the disk quota.  If the $comment field is unsupported,
1901 it is an empty scalar.  If it is supported it usually encodes some
1902 administrative comment about the user.  In some systems the $quota
1903 field may be $change or $age, fields that have to do with password
1904 aging.  In some systems the $comment field may be $class.  The $expire
1905 field, if present, encodes the expiration period of the account or the
1906 password.  For the availability and the exact meaning of these fields
1907 in your system, please consult your getpwnam(3) documentation and your
1908 F<pwd.h> file.  You can also find out from within Perl what your
1909 $quota and $comment fields mean and whether you have the $expire field
1910 by using the C<Config> module and the values C<d_pwquota>, C<d_pwage>,
1911 C<d_pwchange>, C<d_pwcomment>, and C<d_pwexpire>.  Shadow password
1912 files are only supported if your vendor has implemented them in the
1913 intuitive fashion that calling the regular C library routines gets the
1914 shadow versions if you're running under privilege or if there exists
1915 the shadow(3) functions as found in System V ( this includes Solaris
1916 and Linux.)  Those systems which implement a proprietary shadow password
1917 facility are unlikely to be supported.
1918
1919 The $members value returned by I<getgr*()> is a space separated list of
1920 the login names of the members of the group.
1921
1922 For the I<gethost*()> functions, if the C<h_errno> variable is supported in
1923 C, it will be returned to you via C<$?> if the function call fails.  The
1924 C<@addrs> value returned by a successful call is a list of the raw
1925 addresses returned by the corresponding system library call.  In the
1926 Internet domain, each address is four bytes long and you can unpack it
1927 by saying something like:
1928
1929     ($a,$b,$c,$d) = unpack('C4',$addr[0]);
1930
1931 The Socket library makes this slightly easier:
1932
1933     use Socket;
1934     $iaddr = inet_aton("127.1"); # or whatever address
1935     $name  = gethostbyaddr($iaddr, AF_INET);
1936
1937     # or going the other way
1938     $straddr = inet_ntoa($iaddr);
1939
1940 If you get tired of remembering which element of the return list
1941 contains which return value, by-name interfaces are provided
1942 in standard modules: C<File::stat>, C<Net::hostent>, C<Net::netent>,
1943 C<Net::protoent>, C<Net::servent>, C<Time::gmtime>, C<Time::localtime>,
1944 and C<User::grent>.  These override the normal built-ins, supplying
1945 versions that return objects with the appropriate names
1946 for each field.  For example:
1947
1948    use File::stat;
1949    use User::pwent;
1950    $is_his = (stat($filename)->uid == pwent($whoever)->uid);
1951
1952 Even though it looks like they're the same method calls (uid),
1953 they aren't, because a C<File::stat> object is different from
1954 a C<User::pwent> object.
1955
1956 =item getsockname SOCKET
1957
1958 Returns the packed sockaddr address of this end of the SOCKET connection,
1959 in case you don't know the address because you have several different
1960 IPs that the connection might have come in on.
1961
1962     use Socket;
1963     $mysockaddr = getsockname(SOCK);
1964     ($port, $myaddr) = sockaddr_in($mysockaddr);
1965     printf "Connect to %s [%s]\n",
1966        scalar gethostbyaddr($myaddr, AF_INET),
1967        inet_ntoa($myaddr);
1968
1969 =item getsockopt SOCKET,LEVEL,OPTNAME
1970
1971 Returns the socket option requested, or undef if there is an error.
1972
1973 =item glob EXPR
1974
1975 =item glob
1976
1977 Returns the value of EXPR with filename expansions such as the
1978 standard Unix shell F</bin/csh> would do.  This is the internal function
1979 implementing the C<< <*.c> >> operator, but you can use it directly.
1980 If EXPR is omitted, C<$_> is used.  The C<< <*.c> >> operator is
1981 discussed in more detail in L<perlop/"I/O Operators">.
1982
1983 Beginning with v5.6.0, this operator is implemented using the standard
1984 C<File::Glob> extension.  See L<File::Glob> for details.
1985
1986 =item gmtime EXPR
1987
1988 Converts a time as returned by the time function to a 8-element list
1989 with the time localized for the standard Greenwich time zone.
1990 Typically used as follows:
1991
1992     #  0    1    2     3     4    5     6     7
1993     ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday) =
1994                                             gmtime(time);
1995
1996 All list elements are numeric, and come straight out of the C `struct
1997 tm'.  $sec, $min, and $hour are the seconds, minutes, and hours of the
1998 specified time.  $mday is the day of the month, and $mon is the month
1999 itself, in the range C<0..11> with 0 indicating January and 11
2000 indicating December.  $year is the number of years since 1900.  That
2001 is, $year is C<123> in year 2023.  $wday is the day of the week, with
2002 0 indicating Sunday and 3 indicating Wednesday.  $yday is the day of
2003 the year, in the range C<0..364> (or C<0..365> in leap years.)
2004
2005 Note that the $year element is I<not> simply the last two digits of
2006 the year.  If you assume it is, then you create non-Y2K-compliant
2007 programs--and you wouldn't want to do that, would you?
2008
2009 The proper way to get a complete 4-digit year is simply:
2010
2011         $year += 1900;
2012
2013 And to get the last two digits of the year (e.g., '01' in 2001) do:
2014
2015         $year = sprintf("%02d", $year % 100);
2016
2017 If EXPR is omitted, C<gmtime()> uses the current time (C<gmtime(time)>).
2018
2019 In scalar context, C<gmtime()> returns the ctime(3) value:
2020
2021     $now_string = gmtime;  # e.g., "Thu Oct 13 04:54:34 1994"
2022
2023 Also see the C<timegm> function provided by the C<Time::Local> module,
2024 and the strftime(3) function available via the POSIX module.
2025
2026 This scalar value is B<not> locale dependent (see L<perllocale>), but
2027 is instead a Perl builtin.  Also see the C<Time::Local> module, and the
2028 strftime(3) and mktime(3) functions available via the POSIX module.  To
2029 get somewhat similar but locale dependent date strings, set up your
2030 locale environment variables appropriately (please see L<perllocale>)
2031 and try for example:
2032
2033     use POSIX qw(strftime);
2034     $now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;
2035
2036 Note that the C<%a> and C<%b> escapes, which represent the short forms
2037 of the day of the week and the month of the year, may not necessarily
2038 be three characters wide in all locales.
2039
2040 =item goto LABEL
2041
2042 =item goto EXPR
2043
2044 =item goto &NAME
2045
2046 The C<goto-LABEL> form finds the statement labeled with LABEL and resumes
2047 execution there.  It may not be used to go into any construct that
2048 requires initialization, such as a subroutine or a C<foreach> loop.  It
2049 also can't be used to go into a construct that is optimized away,
2050 or to get out of a block or subroutine given to C<sort>.
2051 It can be used to go almost anywhere else within the dynamic scope,
2052 including out of subroutines, but it's usually better to use some other
2053 construct such as C<last> or C<die>.  The author of Perl has never felt the
2054 need to use this form of C<goto> (in Perl, that is--C is another matter).
2055
2056 The C<goto-EXPR> form expects a label name, whose scope will be resolved
2057 dynamically.  This allows for computed C<goto>s per FORTRAN, but isn't
2058 necessarily recommended if you're optimizing for maintainability:
2059
2060     goto ("FOO", "BAR", "GLARCH")[$i];
2061
2062 The C<goto-&NAME> form is quite different from the other forms of C<goto>.
2063 In fact, it isn't a goto in the normal sense at all, and doesn't have
2064 the stigma associated with other gotos.  Instead, it
2065 substitutes a call to the named subroutine for the currently running
2066 subroutine.  This is used by C<AUTOLOAD> subroutines that wish to load
2067 another subroutine and then pretend that the other subroutine had been
2068 called in the first place (except that any modifications to C<@_>
2069 in the current subroutine are propagated to the other subroutine.)
2070 After the C<goto>, not even C<caller> will be able to tell that this
2071 routine was called first.
2072
2073 NAME needn't be the name of a subroutine; it can be a scalar variable
2074 containing a code reference, or a block which evaluates to a code
2075 reference.
2076
2077 =item grep BLOCK LIST
2078
2079 =item grep EXPR,LIST
2080
2081 This is similar in spirit to, but not the same as, grep(1) and its
2082 relatives.  In particular, it is not limited to using regular expressions.
2083
2084 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
2085 C<$_> to each element) and returns the list value consisting of those
2086 elements for which the expression evaluated to true.  In scalar
2087 context, returns the number of times the expression was true.
2088
2089     @foo = grep(!/^#/, @bar);    # weed out comments
2090
2091 or equivalently,
2092
2093     @foo = grep {!/^#/} @bar;    # weed out comments
2094
2095 Note that C<$_> is an alias to the list value, so it can be used to
2096 modify the elements of the LIST.  While this is useful and supported,
2097 it can cause bizarre results if the elements of LIST are not variables.
2098 Similarly, grep returns aliases into the original list, much as a for
2099 loop's index variable aliases the list elements.  That is, modifying an
2100 element of a list returned by grep (for example, in a C<foreach>, C<map>
2101 or another C<grep>) actually modifies the element in the original list.
2102 This is usually something to be avoided when writing clear code.
2103
2104 See also L</map> for a list composed of the results of the BLOCK or EXPR.
2105
2106 =item hex EXPR
2107
2108 =item hex
2109
2110 Interprets EXPR as a hex string and returns the corresponding value.
2111 (To convert strings that might start with either 0, 0x, or 0b, see
2112 L</oct>.)  If EXPR is omitted, uses C<$_>.
2113
2114     print hex '0xAf'; # prints '175'
2115     print hex 'aF';   # same
2116
2117 Hex strings may only represent integers.  Strings that would cause
2118 integer overflow trigger a warning.
2119
2120 =item import
2121
2122 There is no builtin C<import> function.  It is just an ordinary
2123 method (subroutine) defined (or inherited) by modules that wish to export
2124 names to another module.  The C<use> function calls the C<import> method
2125 for the package used.  See also L</use>, L<perlmod>, and L<Exporter>.
2126
2127 =item index STR,SUBSTR,POSITION
2128
2129 =item index STR,SUBSTR
2130
2131 The index function searches for one string within another, but without
2132 the wildcard-like behavior of a full regular-expression pattern match.
2133 It returns the position of the first occurrence of SUBSTR in STR at
2134 or after POSITION.  If POSITION is omitted, starts searching from the
2135 beginning of the string.  The return value is based at C<0> (or whatever
2136 you've set the C<$[> variable to--but don't do that).  If the substring
2137 is not found, returns one less than the base, ordinarily C<-1>.
2138
2139 =item int EXPR
2140
2141 =item int
2142
2143 Returns the integer portion of EXPR.  If EXPR is omitted, uses C<$_>.
2144 You should not use this function for rounding: one because it truncates
2145 towards C<0>, and two because machine representations of floating point
2146 numbers can sometimes produce counterintuitive results.  For example,
2147 C<int(-6.725/0.025)> produces -268 rather than the correct -269; that's
2148 because it's really more like -268.99999999999994315658 instead.  Usually,
2149 the C<sprintf>, C<printf>, or the C<POSIX::floor> and C<POSIX::ceil>
2150 functions will serve you better than will int().
2151
2152 =item ioctl FILEHANDLE,FUNCTION,SCALAR
2153
2154 Implements the ioctl(2) function.  You'll probably first have to say
2155
2156     require "ioctl.ph"; # probably in /usr/local/lib/perl/ioctl.ph
2157
2158 to get the correct function definitions.  If F<ioctl.ph> doesn't
2159 exist or doesn't have the correct definitions you'll have to roll your
2160 own, based on your C header files such as F<< <sys/ioctl.h> >>.
2161 (There is a Perl script called B<h2ph> that comes with the Perl kit that
2162 may help you in this, but it's nontrivial.)  SCALAR will be read and/or
2163 written depending on the FUNCTION--a pointer to the string value of SCALAR
2164 will be passed as the third argument of the actual C<ioctl> call.  (If SCALAR
2165 has no string value but does have a numeric value, that value will be
2166 passed rather than a pointer to the string value.  To guarantee this to be
2167 true, add a C<0> to the scalar before using it.)  The C<pack> and C<unpack>
2168 functions may be needed to manipulate the values of structures used by
2169 C<ioctl>.
2170
2171 The return value of C<ioctl> (and C<fcntl>) is as follows:
2172
2173         if OS returns:          then Perl returns:
2174             -1                    undefined value
2175              0                  string "0 but true"
2176         anything else               that number
2177
2178 Thus Perl returns true on success and false on failure, yet you can
2179 still easily determine the actual value returned by the operating
2180 system:
2181
2182     $retval = ioctl(...) || -1;
2183     printf "System returned %d\n", $retval;
2184
2185 The special string "C<0> but true" is exempt from B<-w> complaints
2186 about improper numeric conversions.
2187
2188 Here's an example of setting a filehandle named C<REMOTE> to be
2189 non-blocking at the system level.  You'll have to negotiate C<$|>
2190 on your own, though.
2191
2192     use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);
2193
2194     $flags = fcntl(REMOTE, F_GETFL, 0)
2195                 or die "Can't get flags for the socket: $!\n";
2196
2197     $flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
2198                 or die "Can't set flags for the socket: $!\n";
2199
2200 =item join EXPR,LIST
2201
2202 Joins the separate strings of LIST into a single string with fields
2203 separated by the value of EXPR, and returns that new string.  Example:
2204
2205     $rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);
2206
2207 Beware that unlike C<split>, C<join> doesn't take a pattern as its
2208 first argument.  Compare L</split>.
2209
2210 =item keys HASH
2211
2212 Returns a list consisting of all the keys of the named hash.  (In
2213 scalar context, returns the number of keys.)  The keys are returned in
2214 an apparently random order.  The actual random order is subject to
2215 change in future versions of perl, but it is guaranteed to be the same
2216 order as either the C<values> or C<each> function produces (given
2217 that the hash has not been modified).  As a side effect, it resets
2218 HASH's iterator.
2219
2220 Here is yet another way to print your environment:
2221
2222     @keys = keys %ENV;
2223     @values = values %ENV;
2224     while (@keys) {
2225         print pop(@keys), '=', pop(@values), "\n";
2226     }
2227
2228 or how about sorted by key:
2229
2230     foreach $key (sort(keys %ENV)) {
2231         print $key, '=', $ENV{$key}, "\n";
2232     }
2233
2234 The returned values are copies of the original keys in the hash, so
2235 modifying them will not affect the original hash.  Compare L</values>.
2236
2237 To sort a hash by value, you'll need to use a C<sort> function.
2238 Here's a descending numeric sort of a hash by its values:
2239
2240     foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
2241         printf "%4d %s\n", $hash{$key}, $key;
2242     }
2243
2244 As an lvalue C<keys> allows you to increase the number of hash buckets
2245 allocated for the given hash.  This can gain you a measure of efficiency if
2246 you know the hash is going to get big.  (This is similar to pre-extending
2247 an array by assigning a larger number to $#array.)  If you say
2248
2249     keys %hash = 200;
2250
2251 then C<%hash> will have at least 200 buckets allocated for it--256 of them,
2252 in fact, since it rounds up to the next power of two.  These
2253 buckets will be retained even if you do C<%hash = ()>, use C<undef
2254 %hash> if you want to free the storage while C<%hash> is still in scope.
2255 You can't shrink the number of buckets allocated for the hash using
2256 C<keys> in this way (but you needn't worry about doing this by accident,
2257 as trying has no effect).
2258
2259 See also C<each>, C<values> and C<sort>.
2260
2261 =item kill SIGNAL, LIST
2262
2263 Sends a signal to a list of processes.  Returns the number of
2264 processes successfully signaled (which is not necessarily the
2265 same as the number actually killed).
2266
2267     $cnt = kill 1, $child1, $child2;
2268     kill 9, @goners;
2269
2270 If SIGNAL is zero, no signal is sent to the process.  This is a
2271 useful way to check that the process is alive and hasn't changed
2272 its UID.  See L<perlport> for notes on the portability of this
2273 construct.
2274
2275 Unlike in the shell, if SIGNAL is negative, it kills
2276 process groups instead of processes.  (On System V, a negative I<PROCESS>
2277 number will also kill process groups, but that's not portable.)  That
2278 means you usually want to use positive not negative signals.  You may also
2279 use a signal name in quotes.  See L<perlipc/"Signals"> for details.
2280
2281 =item last LABEL
2282
2283 =item last
2284
2285 The C<last> command is like the C<break> statement in C (as used in
2286 loops); it immediately exits the loop in question.  If the LABEL is
2287 omitted, the command refers to the innermost enclosing loop.  The
2288 C<continue> block, if any, is not executed:
2289
2290     LINE: while (<STDIN>) {
2291         last LINE if /^$/;      # exit when done with header
2292         #...
2293     }
2294
2295 C<last> cannot be used to exit a block which returns a value such as
2296 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
2297 a grep() or map() operation.
2298
2299 Note that a block by itself is semantically identical to a loop
2300 that executes once.  Thus C<last> can be used to effect an early
2301 exit out of such a block.
2302
2303 See also L</continue> for an illustration of how C<last>, C<next>, and
2304 C<redo> work.
2305
2306 =item lc EXPR
2307
2308 =item lc
2309
2310 Returns an lowercased version of EXPR.  This is the internal function
2311 implementing the C<\L> escape in double-quoted strings.
2312 Respects current LC_CTYPE locale if C<use locale> in force.  See L<perllocale>
2313 and L<utf8>.
2314
2315 If EXPR is omitted, uses C<$_>.
2316
2317 =item lcfirst EXPR
2318
2319 =item lcfirst
2320
2321 Returns the value of EXPR with the first character lowercased.  This is
2322 the internal function implementing the C<\l> escape in double-quoted strings.
2323 Respects current LC_CTYPE locale if C<use locale> in force.  See L<perllocale>.
2324
2325 If EXPR is omitted, uses C<$_>.
2326
2327 =item length EXPR
2328
2329 =item length
2330
2331 Returns the length in characters of the value of EXPR.  If EXPR is
2332 omitted, returns length of C<$_>.  Note that this cannot be used on
2333 an entire array or hash to find out how many elements these have.
2334 For that, use C<scalar @array> and C<scalar keys %hash> respectively.
2335
2336 =item link OLDFILE,NEWFILE
2337
2338 Creates a new filename linked to the old filename.  Returns true for
2339 success, false otherwise.
2340
2341 =item listen SOCKET,QUEUESIZE
2342
2343 Does the same thing that the listen system call does.  Returns true if
2344 it succeeded, false otherwise.  See the example in
2345 L<perlipc/"Sockets: Client/Server Communication">.
2346
2347 =item local EXPR
2348
2349 You really probably want to be using C<my> instead, because C<local> isn't
2350 what most people think of as "local".  See
2351 L<perlsub/"Private Variables via my()"> for details.
2352
2353 A local modifies the listed variables to be local to the enclosing
2354 block, file, or eval.  If more than one value is listed, the list must
2355 be placed in parentheses.  See L<perlsub/"Temporary Values via local()">
2356 for details, including issues with tied arrays and hashes.
2357
2358 =item localtime EXPR
2359
2360 Converts a time as returned by the time function to a 9-element list
2361 with the time analyzed for the local time zone.  Typically used as
2362 follows:
2363
2364     #  0    1    2     3     4    5     6     7     8
2365     ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
2366                                                 localtime(time);
2367
2368 All list elements are numeric, and come straight out of the C `struct
2369 tm'.  $sec, $min, and $hour are the seconds, minutes, and hours of the
2370 specified time.  $mday is the day of the month, and $mon is the month
2371 itself, in the range C<0..11> with 0 indicating January and 11
2372 indicating December.  $year is the number of years since 1900.  That
2373 is, $year is C<123> in year 2023.  $wday is the day of the week, with
2374 0 indicating Sunday and 3 indicating Wednesday.  $yday is the day of
2375 the year, in the range C<0..364> (or C<0..365> in leap years.)  $isdst
2376 is true if the specified time occurs during daylight savings time,
2377 false otherwise.
2378
2379 Note that the $year element is I<not> simply the last two digits of
2380 the year.  If you assume it is, then you create non-Y2K-compliant
2381 programs--and you wouldn't want to do that, would you?
2382
2383 The proper way to get a complete 4-digit year is simply:
2384
2385         $year += 1900;
2386
2387 And to get the last two digits of the year (e.g., '01' in 2001) do:
2388
2389         $year = sprintf("%02d", $year % 100);
2390
2391 If EXPR is omitted, C<localtime()> uses the current time (C<localtime(time)>).
2392
2393 In scalar context, C<localtime()> returns the ctime(3) value:
2394
2395     $now_string = localtime;  # e.g., "Thu Oct 13 04:54:34 1994"
2396
2397 This scalar value is B<not> locale dependent, see L<perllocale>, but
2398 instead a Perl builtin.  Also see the C<Time::Local> module
2399 (to convert the second, minutes, hours, ... back to seconds since the
2400 stroke of midnight the 1st of January 1970, the value returned by
2401 time()), and the strftime(3) and mktime(3) functions available via the
2402 POSIX module.  To get somewhat similar but locale dependent date
2403 strings, set up your locale environment variables appropriately
2404 (please see L<perllocale>) and try for example:
2405
2406     use POSIX qw(strftime);
2407     $now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
2408
2409 Note that the C<%a> and C<%b>, the short forms of the day of the week
2410 and the month of the year, may not necessarily be three characters wide.
2411
2412 =item lock
2413
2414     lock I<THING>
2415
2416 This function places an advisory lock on a variable, subroutine,
2417 or referenced object contained in I<THING> until the lock goes out
2418 of scope.  This is a built-in function only if your version of Perl
2419 was built with threading enabled, and if you've said C<use Threads>.
2420 Otherwise a user-defined function by this name will be called.  See
2421 L<Thread>.
2422
2423 =item log EXPR
2424
2425 =item log
2426
2427 Returns the natural logarithm (base I<e>) of EXPR.  If EXPR is omitted,
2428 returns log of C<$_>.  To get the log of another base, use basic algebra:
2429 The base-N log of a number is equal to the natural log of that number
2430 divided by the natural log of N.  For example:
2431
2432     sub log10 {
2433         my $n = shift;
2434         return log($n)/log(10);
2435     }
2436
2437 See also L</exp> for the inverse operation.
2438
2439 =item lstat EXPR
2440
2441 =item lstat
2442
2443 Does the same thing as the C<stat> function (including setting the
2444 special C<_> filehandle) but stats a symbolic link instead of the file
2445 the symbolic link points to.  If symbolic links are unimplemented on
2446 your system, a normal C<stat> is done.
2447
2448 If EXPR is omitted, stats C<$_>.
2449
2450 =item m//
2451
2452 The match operator.  See L<perlop>.
2453
2454 =item map BLOCK LIST
2455
2456 =item map EXPR,LIST
2457
2458 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
2459 C<$_> to each element) and returns the list value composed of the
2460 results of each such evaluation.  In scalar context, returns the
2461 total number of elements so generated.  Evaluates BLOCK or EXPR in
2462 list context, so each element of LIST may produce zero, one, or
2463 more elements in the returned value.
2464
2465     @chars = map(chr, @nums);
2466
2467 translates a list of numbers to the corresponding characters.  And
2468
2469     %hash = map { getkey($_) => $_ } @array;
2470
2471 is just a funny way to write
2472
2473     %hash = ();
2474     foreach $_ (@array) {
2475         $hash{getkey($_)} = $_;
2476     }
2477
2478 Note that C<$_> is an alias to the list value, so it can be used to
2479 modify the elements of the LIST.  While this is useful and supported,
2480 it can cause bizarre results if the elements of LIST are not variables.
2481 Using a regular C<foreach> loop for this purpose would be clearer in
2482 most cases.  See also L</grep> for an array composed of those items of
2483 the original list for which the BLOCK or EXPR evaluates to true.
2484
2485 C<{> starts both hash references and blocks, so C<map { ...> could be either
2486 the start of map BLOCK LIST or map EXPR, LIST. Because perl doesn't look
2487 ahead for the closing C<}> it has to take a guess at which its dealing with
2488 based what it finds just after the C<{>. Usually it gets it right, but if it
2489 doesn't it won't realize something is wrong until it gets to the C<}> and
2490 encounters the missing (or unexpected) comma. The syntax error will be
2491 reported close to the C<}> but you'll need to change something near the C<{>
2492 such as using a unary C<+> to give perl some help:
2493
2494     %hash = map {  "\L$_", 1  } @array  # perl guesses EXPR.  wrong
2495     %hash = map { +"\L$_", 1  } @array  # perl guesses BLOCK. right
2496     %hash = map { ("\L$_", 1) } @array  # this also works
2497     %hash = map {  lc($_), 1  } @array  # as does this.
2498     %hash = map +( lc($_), 1 ), @array  # this is EXPR and works!
2499
2500     %hash = map  ( lc($_), 1 ), @array  # evaluates to (1, @array)
2501
2502 or to force an anon hash constructor use C<+{>
2503
2504    @hashes = map +{ lc($_), 1 }, @array # EXPR, so needs , at end
2505
2506 and you get list of anonymous hashes each with only 1 entry.
2507
2508 =item mkdir FILENAME,MASK
2509
2510 =item mkdir FILENAME
2511
2512 Creates the directory specified by FILENAME, with permissions
2513 specified by MASK (as modified by C<umask>).  If it succeeds it
2514 returns true, otherwise it returns false and sets C<$!> (errno).
2515 If omitted, MASK defaults to 0777.
2516
2517 In general, it is better to create directories with permissive MASK,
2518 and let the user modify that with their C<umask>, than it is to supply
2519 a restrictive MASK and give the user no way to be more permissive.
2520 The exceptions to this rule are when the file or directory should be
2521 kept private (mail files, for instance).  The perlfunc(1) entry on
2522 C<umask> discusses the choice of MASK in more detail.
2523
2524 Note that according to the POSIX 1003.1-1996 the FILENAME may have any
2525 number of trailing slashes.  Some operating and filesystems do not get
2526 this right, so Perl automatically removes all trailing slashes to keep
2527 everyone happy.
2528
2529 =item msgctl ID,CMD,ARG
2530
2531 Calls the System V IPC function msgctl(2).  You'll probably have to say
2532
2533     use IPC::SysV;
2534
2535 first to get the correct constant definitions.  If CMD is C<IPC_STAT>,
2536 then ARG must be a variable which will hold the returned C<msqid_ds>
2537 structure.  Returns like C<ioctl>: the undefined value for error,
2538 C<"0 but true"> for zero, or the actual return value otherwise.  See also
2539 L<perlipc/"SysV IPC">, C<IPC::SysV>, and C<IPC::Semaphore> documentation.
2540
2541 =item msgget KEY,FLAGS
2542
2543 Calls the System V IPC function msgget(2).  Returns the message queue
2544 id, or the undefined value if there is an error.  See also
2545 L<perlipc/"SysV IPC"> and C<IPC::SysV> and C<IPC::Msg> documentation.
2546
2547 =item msgrcv ID,VAR,SIZE,TYPE,FLAGS
2548
2549 Calls the System V IPC function msgrcv to receive a message from
2550 message queue ID into variable VAR with a maximum message size of
2551 SIZE.  Note that when a message is received, the message type as a
2552 native long integer will be the first thing in VAR, followed by the
2553 actual message.  This packing may be opened with C<unpack("l! a*")>.
2554 Taints the variable.  Returns true if successful, or false if there is
2555 an error.  See also L<perlipc/"SysV IPC">, C<IPC::SysV>, and
2556 C<IPC::SysV::Msg> documentation.
2557
2558 =item msgsnd ID,MSG,FLAGS
2559
2560 Calls the System V IPC function msgsnd to send the message MSG to the
2561 message queue ID.  MSG must begin with the native long integer message
2562 type, and be followed by the length of the actual message, and finally
2563 the message itself.  This kind of packing can be achieved with
2564 C<pack("l! a*", $type, $message)>.  Returns true if successful,
2565 or false if there is an error.  See also C<IPC::SysV>
2566 and C<IPC::SysV::Msg> documentation.
2567
2568 =item my EXPR
2569
2570 =item my EXPR : ATTRIBUTES
2571
2572 A C<my> declares the listed variables to be local (lexically) to the
2573 enclosing block, file, or C<eval>.  If
2574 more than one value is listed, the list must be placed in parentheses.  See
2575 L<perlsub/"Private Variables via my()"> for details.
2576
2577 =item next LABEL
2578
2579 =item next
2580
2581 The C<next> command is like the C<continue> statement in C; it starts
2582 the next iteration of the loop:
2583
2584     LINE: while (<STDIN>) {
2585         next LINE if /^#/;      # discard comments
2586         #...
2587     }
2588
2589 Note that if there were a C<continue> block on the above, it would get
2590 executed even on discarded lines.  If the LABEL is omitted, the command
2591 refers to the innermost enclosing loop.
2592
2593 C<next> cannot be used to exit a block which returns a value such as
2594 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
2595 a grep() or map() operation.
2596
2597 Note that a block by itself is semantically identical to a loop
2598 that executes once.  Thus C<next> will exit such a block early.
2599
2600 See also L</continue> for an illustration of how C<last>, C<next>, and
2601 C<redo> work.
2602
2603 =item no Module LIST
2604
2605 See the L</use> function, which C<no> is the opposite of.
2606
2607 =item oct EXPR
2608
2609 =item oct
2610
2611 Interprets EXPR as an octal string and returns the corresponding
2612 value.  (If EXPR happens to start off with C<0x>, interprets it as a
2613 hex string.  If EXPR starts off with C<0b>, it is interpreted as a
2614 binary string.)  The following will handle decimal, binary, octal, and
2615 hex in the standard Perl or C notation:
2616
2617     $val = oct($val) if $val =~ /^0/;
2618
2619 If EXPR is omitted, uses C<$_>.   To go the other way (produce a number
2620 in octal), use sprintf() or printf():
2621
2622     $perms = (stat("filename"))[2] & 07777;
2623     $oct_perms = sprintf "%lo", $perms;
2624
2625 The oct() function is commonly used when a string such as C<644> needs
2626 to be converted into a file mode, for example. (Although perl will
2627 automatically convert strings into numbers as needed, this automatic
2628 conversion assumes base 10.)
2629
2630 =item open FILEHANDLE,MODE,LIST
2631
2632 =item open FILEHANDLE,EXPR
2633
2634 =item open FILEHANDLE
2635
2636 Opens the file whose filename is given by EXPR, and associates it with
2637 FILEHANDLE.  If FILEHANDLE is an expression, its value is used as the
2638 name of the real filehandle wanted.  (This is considered a symbolic
2639 reference, so C<use strict 'refs'> should I<not> be in effect.)
2640
2641 If EXPR is omitted, the scalar
2642 variable of the same name as the FILEHANDLE contains the filename.
2643 (Note that lexical variables--those declared with C<my>--will not work
2644 for this purpose; so if you're using C<my>, specify EXPR in your call
2645 to open.)  See L<perlopentut> for a kinder, gentler explanation of opening
2646 files.
2647
2648 If MODE is C<< '<' >> or nothing, the file is opened for input.
2649 If MODE is C<< '>' >>, the file is truncated and opened for
2650 output, being created if necessary.  If MODE is C<<< '>>' >>>,
2651 the file is opened for appending, again being created if necessary.
2652 You can put a C<'+'> in front of the C<< '>' >> or C<< '<' >> to indicate that
2653 you want both read and write access to the file; thus C<< '+<' >> is almost
2654 always preferred for read/write updates--the C<< '+>' >> mode would clobber the
2655 file first.  You can't usually use either read-write mode for updating
2656 textfiles, since they have variable length records.  See the B<-i>
2657 switch in L<perlrun> for a better approach.  The file is created with
2658 permissions of C<0666> modified by the process' C<umask> value.
2659
2660 These various prefixes correspond to the fopen(3) modes of C<'r'>, C<'r+'>,
2661 C<'w'>, C<'w+'>, C<'a'>, and C<'a+'>.
2662
2663 In the 2-arguments (and 1-argument) form of the call the mode and
2664 filename should be concatenated (in this order), possibly separated by
2665 spaces.  It is possible to omit the mode if the mode is C<< '<' >>.
2666
2667 If the filename begins with C<'|'>, the filename is interpreted as a
2668 command to which output is to be piped, and if the filename ends with a
2669 C<'|'>, the filename is interpreted as a command which pipes output to
2670 us.  See L<perlipc/"Using open() for IPC">
2671 for more examples of this.  (You are not allowed to C<open> to a command
2672 that pipes both in I<and> out, but see L<IPC::Open2>, L<IPC::Open3>,
2673 and L<perlipc/"Bidirectional Communication with Another Process">
2674 for alternatives.)
2675
2676 If MODE is C<'|-'>, the filename is interpreted as a
2677 command to which output is to be piped, and if MODE is
2678 C<'-|'>, the filename is interpreted as a command which pipes output to
2679 us.  In the 2-arguments (and 1-argument) form one should replace dash
2680 (C<'-'>) with the command.  See L<perlipc/"Using open() for IPC">
2681 for more examples of this.  (You are not allowed to C<open> to a command
2682 that pipes both in I<and> out, but see L<IPC::Open2>, L<IPC::Open3>,
2683 and L<perlipc/"Bidirectional Communication"> for alternatives.)
2684
2685 In the 2-arguments (and 1-argument) form opening C<'-'> opens STDIN
2686 and opening C<< '>-' >> opens STDOUT.
2687
2688 Open returns
2689 nonzero upon success, the undefined value otherwise.  If the C<open>
2690 involved a pipe, the return value happens to be the pid of the
2691 subprocess.
2692
2693 If you're unfortunate enough to be running Perl on a system that
2694 distinguishes between text files and binary files (modern operating
2695 systems don't care), then you should check out L</binmode> for tips for
2696 dealing with this.  The key distinction between systems that need C<binmode>
2697 and those that don't is their text file formats.  Systems like Unix, MacOS, and
2698 Plan9, which delimit lines with a single character, and which encode that
2699 character in C as C<"\n">, do not need C<binmode>.  The rest need it.
2700
2701 When opening a file, it's usually a bad idea to continue normal execution
2702 if the request failed, so C<open> is frequently used in connection with
2703 C<die>.  Even if C<die> won't do what you want (say, in a CGI script,
2704 where you want to make a nicely formatted error message (but there are
2705 modules that can help with that problem)) you should always check
2706 the return value from opening a file.  The infrequent exception is when
2707 working with an unopened filehandle is actually what you want to do.
2708
2709 As a special case the 3 arg form with a read/write mode and the third argument
2710 being C<undef>:
2711
2712     open(TMP, "+>", undef) or die ...
2713
2714 opens a filehandle to an anonymous temporary file.
2715
2716 Examples:
2717
2718     $ARTICLE = 100;
2719     open ARTICLE or die "Can't find article $ARTICLE: $!\n";
2720     while (<ARTICLE>) {...
2721
2722     open(LOG, '>>/usr/spool/news/twitlog');     # (log is reserved)
2723     # if the open fails, output is discarded
2724
2725     open(DBASE, '+<', 'dbase.mine')             # open for update
2726         or die "Can't open 'dbase.mine' for update: $!";
2727
2728     open(DBASE, '+<dbase.mine')                 # ditto
2729         or die "Can't open 'dbase.mine' for update: $!";
2730
2731     open(ARTICLE, '-|', "caesar <$article")     # decrypt article
2732         or die "Can't start caesar: $!";
2733
2734     open(ARTICLE, "caesar <$article |")         # ditto
2735         or die "Can't start caesar: $!";
2736
2737     open(EXTRACT, "|sort >/tmp/Tmp$$")          # $$ is our process id
2738         or die "Can't start sort: $!";
2739
2740     # process argument list of files along with any includes
2741
2742     foreach $file (@ARGV) {
2743         process($file, 'fh00');
2744     }
2745
2746     sub process {
2747         my($filename, $input) = @_;
2748         $input++;               # this is a string increment
2749         unless (open($input, $filename)) {
2750             print STDERR "Can't open $filename: $!\n";
2751             return;
2752         }
2753
2754         local $_;
2755         while (<$input>) {              # note use of indirection
2756             if (/^#include "(.*)"/) {
2757                 process($1, $input);
2758                 next;
2759             }
2760             #...                # whatever
2761         }
2762     }
2763
2764 You may also, in the Bourne shell tradition, specify an EXPR beginning
2765 with C<< '>&' >>, in which case the rest of the string is interpreted as the
2766 name of a filehandle (or file descriptor, if numeric) to be
2767 duped and opened.  You may use C<&> after C<< > >>, C<<< >> >>>,
2768 C<< < >>, C<< +> >>, C<<< +>> >>>, and C<< +< >>.  The
2769 mode you specify should match the mode of the original filehandle.
2770 (Duping a filehandle does not take into account any existing contents of
2771 stdio buffers.) If you use the 3 arg form then you can pass either a number,
2772 the name of a filehandle or the normal "reference to a glob".
2773
2774 Here is a script that saves, redirects, and restores STDOUT and
2775 STDERR:
2776
2777     #!/usr/bin/perl
2778     open(my $oldout, ">&", \*STDOUT);
2779     open(OLDERR, ">&STDERR");
2780
2781     open(STDOUT, '>', "foo.out") || die "Can't redirect stdout";
2782     open(STDERR, ">&STDOUT")     || die "Can't dup stdout";
2783
2784     select(STDERR); $| = 1;     # make unbuffered
2785     select(STDOUT); $| = 1;     # make unbuffered
2786
2787     print STDOUT "stdout 1\n";  # this works for
2788     print STDERR "stderr 1\n";  # subprocesses too
2789
2790     close(STDOUT);
2791     close(STDERR);
2792
2793     open(STDOUT, ">&OLDOUT");
2794     open(STDERR, ">&OLDERR");
2795
2796     print STDOUT "stdout 2\n";
2797     print STDERR "stderr 2\n";
2798
2799 If you specify C<< '<&=N' >>, where C<N> is a number, then Perl will do an
2800 equivalent of C's C<fdopen> of that file descriptor; this is more
2801 parsimonious of file descriptors.  For example:
2802
2803     open(FILEHANDLE, "<&=$fd")
2804 or
2805     open(FILEHANDLE, "<&=", $fd)
2806
2807 Note that if perl is using the standard C libaries fdopen() then on many UNIX systems,
2808 fdopen() is known to fail when file descriptors
2809 exceed a certain value, typically 255. If you need more file
2810 descriptors than that, consider rebuilding Perl to use the C<PerlIO>.
2811
2812 If you open a pipe on the command C<'-'>, i.e., either C<'|-'> or C<'-|'>
2813 with 2-arguments (or 1-argument) form of open(), then
2814 there is an implicit fork done, and the return value of open is the pid
2815 of the child within the parent process, and C<0> within the child
2816 process.  (Use C<defined($pid)> to determine whether the open was successful.)
2817 The filehandle behaves normally for the parent, but i/o to that
2818 filehandle is piped from/to the STDOUT/STDIN of the child process.
2819 In the child process the filehandle isn't opened--i/o happens from/to
2820 the new STDOUT or STDIN.  Typically this is used like the normal
2821 piped open when you want to exercise more control over just how the
2822 pipe command gets executed, such as when you are running setuid, and
2823 don't want to have to scan shell commands for metacharacters.
2824 The following triples are more or less equivalent:
2825
2826     open(FOO, "|tr '[a-z]' '[A-Z]'");
2827     open(FOO, '|-', "tr '[a-z]' '[A-Z]'");
2828     open(FOO, '|-') || exec 'tr', '[a-z]', '[A-Z]';
2829     open(FOO, '|-', "tr", '[a-z]', '[A-Z]');
2830
2831     open(FOO, "cat -n '$file'|");
2832     open(FOO, '-|', "cat -n '$file'");
2833     open(FOO, '-|') || exec 'cat', '-n', $file;
2834     open(FOO, '-|', "cat", '-n', $file);
2835
2836 The last example in each block shows the pipe as "list form", which is
2837 not yet supported on all platforms.
2838
2839 See L<perlipc/"Safe Pipe Opens"> for more examples of this.
2840
2841 Beginning with v5.6.0, Perl will attempt to flush all files opened for
2842 output before any operation that may do a fork, but this may not be
2843 supported on some platforms (see L<perlport>).  To be safe, you may need
2844 to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
2845 of C<IO::Handle> on any open handles.
2846
2847 On systems that support a
2848 close-on-exec flag on files, the flag will be set for the newly opened
2849 file descriptor as determined by the value of $^F.  See L<perlvar/$^F>.
2850
2851 Closing any piped filehandle causes the parent process to wait for the
2852 child to finish, and returns the status value in C<$?>.
2853
2854 The filename passed to 2-argument (or 1-argument) form of open()
2855 will have leading and trailing
2856 whitespace deleted, and the normal redirection characters
2857 honored.  This property, known as "magic open",
2858 can often be used to good effect.  A user could specify a filename of
2859 F<"rsh cat file |">, or you could change certain filenames as needed:
2860
2861     $filename =~ s/(.*\.gz)\s*$/gzip -dc < $1|/;
2862     open(FH, $filename) or die "Can't open $filename: $!";
2863
2864 Use 3-argument form to open a file with arbitrary weird characters in it,
2865
2866     open(FOO, '<', $file);
2867
2868 otherwise it's necessary to protect any leading and trailing whitespace:
2869
2870     $file =~ s#^(\s)#./$1#;
2871     open(FOO, "< $file\0");
2872
2873 (this may not work on some bizarre filesystems).  One should
2874 conscientiously choose between the I<magic> and 3-arguments form
2875 of open():
2876
2877     open IN, $ARGV[0];
2878
2879 will allow the user to specify an argument of the form C<"rsh cat file |">,
2880 but will not work on a filename which happens to have a trailing space, while
2881
2882     open IN, '<', $ARGV[0];
2883
2884 will have exactly the opposite restrictions.
2885
2886 If you want a "real" C C<open> (see L<open(2)> on your system), then you
2887 should use the C<sysopen> function, which involves no such magic (but
2888 may use subtly different filemodes than Perl open(), which is mapped
2889 to C fopen()).  This is
2890 another way to protect your filenames from interpretation.  For example:
2891
2892     use IO::Handle;
2893     sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)
2894         or die "sysopen $path: $!";
2895     $oldfh = select(HANDLE); $| = 1; select($oldfh);
2896     print HANDLE "stuff $$\n";
2897     seek(HANDLE, 0, 0);
2898     print "File contains: ", <HANDLE>;
2899
2900 Using the constructor from the C<IO::Handle> package (or one of its
2901 subclasses, such as C<IO::File> or C<IO::Socket>), you can generate anonymous
2902 filehandles that have the scope of whatever variables hold references to
2903 them, and automatically close whenever and however you leave that scope:
2904
2905     use IO::File;
2906     #...
2907     sub read_myfile_munged {
2908         my $ALL = shift;
2909         my $handle = new IO::File;
2910         open($handle, "myfile") or die "myfile: $!";
2911         $first = <$handle>
2912             or return ();     # Automatically closed here.
2913         mung $first or die "mung failed";       # Or here.
2914         return $first, <$handle> if $ALL;       # Or here.
2915         $first;                                 # Or here.
2916     }
2917
2918 See L</seek> for some details about mixing reading and writing.
2919
2920 =item opendir DIRHANDLE,EXPR
2921
2922 Opens a directory named EXPR for processing by C<readdir>, C<telldir>,
2923 C<seekdir>, C<rewinddir>, and C<closedir>.  Returns true if successful.
2924 DIRHANDLEs have their own namespace separate from FILEHANDLEs.
2925
2926 =item ord EXPR
2927
2928 =item ord
2929
2930 Returns the numeric (ASCII or Unicode) value of the first character of EXPR.  If
2931 EXPR is omitted, uses C<$_>.  For the reverse, see L</chr>.
2932 See L<utf8> for more about Unicode.
2933
2934 =item our EXPR
2935
2936 An C<our> declares the listed variables to be valid globals within
2937 the enclosing block, file, or C<eval>.  That is, it has the same
2938 scoping rules as a "my" declaration, but does not create a local
2939 variable.  If more than one value is listed, the list must be placed
2940 in parentheses.  The C<our> declaration has no semantic effect unless
2941 "use strict vars" is in effect, in which case it lets you use the
2942 declared global variable without qualifying it with a package name.
2943 (But only within the lexical scope of the C<our> declaration.  In this
2944 it differs from "use vars", which is package scoped.)
2945
2946 An C<our> declaration declares a global variable that will be visible
2947 across its entire lexical scope, even across package boundaries.  The
2948 package in which the variable is entered is determined at the point
2949 of the declaration, not at the point of use.  This means the following
2950 behavior holds:
2951
2952     package Foo;
2953     our $bar;           # declares $Foo::bar for rest of lexical scope
2954     $bar = 20;
2955
2956     package Bar;
2957     print $bar;         # prints 20
2958
2959 Multiple C<our> declarations in the same lexical scope are allowed
2960 if they are in different packages.  If they happened to be in the same
2961 package, Perl will emit warnings if you have asked for them.
2962
2963     use warnings;
2964     package Foo;
2965     our $bar;           # declares $Foo::bar for rest of lexical scope
2966     $bar = 20;
2967
2968     package Bar;
2969     our $bar = 30;      # declares $Bar::bar for rest of lexical scope
2970     print $bar;         # prints 30
2971
2972     our $bar;           # emits warning
2973
2974 =item pack TEMPLATE,LIST
2975
2976 Takes a LIST of values and converts it into a string using the rules
2977 given by the TEMPLATE.  The resulting string is the concatenation of
2978 the converted values.  Typically, each converted value looks
2979 like its machine-level representation.  For example, on 32-bit machines
2980 a converted integer may be represented by a sequence of 4 bytes.
2981
2982 The TEMPLATE is a
2983 sequence of characters that give the order and type of values, as
2984 follows:
2985
2986     a   A string with arbitrary binary data, will be null padded.
2987     A   An ASCII string, will be space padded.
2988     Z   A null terminated (asciz) string, will be null padded.
2989
2990     b   A bit string (ascending bit order inside each byte, like vec()).
2991     B   A bit string (descending bit order inside each byte).
2992     h   A hex string (low nybble first).
2993     H   A hex string (high nybble first).
2994
2995     c   A signed char value.
2996     C   An unsigned char value.  Only does bytes.  See U for Unicode.
2997
2998     s   A signed short value.
2999     S   An unsigned short value.
3000           (This 'short' is _exactly_ 16 bits, which may differ from
3001            what a local C compiler calls 'short'.  If you want
3002            native-length shorts, use the '!' suffix.)
3003
3004     i   A signed integer value.
3005     I   An unsigned integer value.
3006           (This 'integer' is _at_least_ 32 bits wide.  Its exact
3007            size depends on what a local C compiler calls 'int',
3008            and may even be larger than the 'long' described in
3009            the next item.)
3010
3011     l   A signed long value.
3012     L   An unsigned long value.
3013           (This 'long' is _exactly_ 32 bits, which may differ from
3014            what a local C compiler calls 'long'.  If you want
3015            native-length longs, use the '!' suffix.)
3016
3017     n   An unsigned short in "network" (big-endian) order.
3018     N   An unsigned long in "network" (big-endian) order.
3019     v   An unsigned short in "VAX" (little-endian) order.
3020     V   An unsigned long in "VAX" (little-endian) order.
3021           (These 'shorts' and 'longs' are _exactly_ 16 bits and
3022            _exactly_ 32 bits, respectively.)
3023
3024     q   A signed quad (64-bit) value.
3025     Q   An unsigned quad value.
3026           (Quads are available only if your system supports 64-bit
3027            integer values _and_ if Perl has been compiled to support those.
3028            Causes a fatal error otherwise.)
3029
3030     f   A single-precision float in the native format.
3031     d   A double-precision float in the native format.
3032
3033     p   A pointer to a null-terminated string.
3034     P   A pointer to a structure (fixed-length string).
3035
3036     u   A uuencoded string.
3037     U   A Unicode character number.  Encodes to UTF-8 internally.
3038         Works even if C<use utf8> is not in effect.
3039
3040     w   A BER compressed integer.  Its bytes represent an unsigned
3041         integer in base 128, most significant digit first, with as
3042         few digits as possible.  Bit eight (the high bit) is set
3043         on each byte except the last.
3044
3045     x   A null byte.
3046     X   Back up a byte.
3047     @   Null fill to absolute position.
3048
3049 The following rules apply:
3050
3051 =over 8
3052
3053 =item *
3054
3055 Each letter may optionally be followed by a number giving a repeat
3056 count.  With all types except C<a>, C<A>, C<Z>, C<b>, C<B>, C<h>,
3057 C<H>, and C<P> the pack function will gobble up that many values from
3058 the LIST.  A C<*> for the repeat count means to use however many items are
3059 left, except for C<@>, C<x>, C<X>, where it is equivalent
3060 to C<0>, and C<u>, where it is equivalent to 1 (or 45, what is the
3061 same).
3062
3063 When used with C<Z>, C<*> results in the addition of a trailing null
3064 byte (so the packed result will be one longer than the byte C<length>
3065 of the item).
3066
3067 The repeat count for C<u> is interpreted as the maximal number of bytes
3068 to encode per line of output, with 0 and 1 replaced by 45.
3069
3070 =item *
3071
3072 The C<a>, C<A>, and C<Z> types gobble just one value, but pack it as a
3073 string of length count, padding with nulls or spaces as necessary.  When
3074 unpacking, C<A> strips trailing spaces and nulls, C<Z> strips everything
3075 after the first null, and C<a> returns data verbatim.  When packing,
3076 C<a>, and C<Z> are equivalent.
3077
3078 If the value-to-pack is too long, it is truncated.  If too long and an
3079 explicit count is provided, C<Z> packs only C<$count-1> bytes, followed
3080 by a null byte.  Thus C<Z> always packs a trailing null byte under
3081 all circumstances.
3082
3083 =item *
3084
3085 Likewise, the C<b> and C<B> fields pack a string that many bits long.
3086 Each byte of the input field of pack() generates 1 bit of the result.
3087 Each result bit is based on the least-significant bit of the corresponding
3088 input byte, i.e., on C<ord($byte)%2>.  In particular, bytes C<"0"> and
3089 C<"1"> generate bits 0 and 1, as do bytes C<"\0"> and C<"\1">.
3090
3091 Starting from the beginning of the input string of pack(), each 8-tuple
3092 of bytes is converted to 1 byte of output.  With format C<b>
3093 the first byte of the 8-tuple determines the least-significant bit of a
3094 byte, and with format C<B> it determines the most-significant bit of
3095 a byte.
3096
3097 If the length of the input string is not exactly divisible by 8, the
3098 remainder is packed as if the input string were padded by null bytes
3099 at the end.  Similarly, during unpack()ing the "extra" bits are ignored.
3100
3101 If the input string of pack() is longer than needed, extra bytes are ignored.
3102 A C<*> for the repeat count of pack() means to use all the bytes of
3103 the input field.  On unpack()ing the bits are converted to a string
3104 of C<"0">s and C<"1">s.
3105
3106 =item *
3107
3108 The C<h> and C<H> fields pack a string that many nybbles (4-bit groups,
3109 representable as hexadecimal digits, 0-9a-f) long.
3110
3111 Each byte of the input field of pack() generates 4 bits of the result.
3112 For non-alphabetical bytes the result is based on the 4 least-significant
3113 bits of the input byte, i.e., on C<ord($byte)%16>.  In particular,
3114 bytes C<"0"> and C<"1"> generate nybbles 0 and 1, as do bytes
3115 C<"\0"> and C<"\1">.  For bytes C<"a".."f"> and C<"A".."F"> the result
3116 is compatible with the usual hexadecimal digits, so that C<"a"> and
3117 C<"A"> both generate the nybble C<0xa==10>.  The result for bytes
3118 C<"g".."z"> and C<"G".."Z"> is not well-defined.
3119
3120 Starting from the beginning of the input string of pack(), each pair
3121 of bytes is converted to 1 byte of output.  With format C<h> the
3122 first byte of the pair determines the least-significant nybble of the
3123 output byte, and with format C<H> it determines the most-significant
3124 nybble.
3125
3126 If the length of the input string is not even, it behaves as if padded
3127 by a null byte at the end.  Similarly, during unpack()ing the "extra"
3128 nybbles are ignored.
3129
3130 If the input string of pack() is longer than needed, extra bytes are ignored.
3131 A C<*> for the repeat count of pack() means to use all the bytes of
3132 the input field.  On unpack()ing the bits are converted to a string
3133 of hexadecimal digits.
3134
3135 =item *
3136
3137 The C<p> type packs a pointer to a null-terminated string.  You are
3138 responsible for ensuring the string is not a temporary value (which can
3139 potentially get deallocated before you get around to using the packed result).
3140 The C<P> type packs a pointer to a structure of the size indicated by the
3141 length.  A NULL pointer is created if the corresponding value for C<p> or
3142 C<P> is C<undef>, similarly for unpack().
3143
3144 =item *
3145
3146 The C</> template character allows packing and unpacking of strings where
3147 the packed structure contains a byte count followed by the string itself.
3148 You write I<length-item>C</>I<string-item>.
3149
3150 The I<length-item> can be any C<pack> template letter,
3151 and describes how the length value is packed.
3152 The ones likely to be of most use are integer-packing ones like
3153 C<n> (for Java strings), C<w> (for ASN.1 or SNMP)
3154 and C<N> (for Sun XDR).
3155
3156 The I<string-item> must, at present, be C<"A*">, C<"a*"> or C<"Z*">.
3157 For C<unpack> the length of the string is obtained from the I<length-item>,
3158 but if you put in the '*' it will be ignored.
3159
3160     unpack 'C/a', "\04Gurusamy";        gives 'Guru'
3161     unpack 'a3/A* A*', '007 Bond  J ';  gives (' Bond','J')
3162     pack 'n/a* w/a*','hello,','world';  gives "\000\006hello,\005world"
3163
3164 The I<length-item> is not returned explicitly from C<unpack>.
3165
3166 Adding a count to the I<length-item> letter is unlikely to do anything
3167 useful, unless that letter is C<A>, C<a> or C<Z>.  Packing with a
3168 I<length-item> of C<a> or C<Z> may introduce C<"\000"> characters,
3169 which Perl does not regard as legal in numeric strings.
3170
3171 =item *
3172
3173 The integer types C<s>, C<S>, C<l>, and C<L> may be
3174 immediately followed by a C<!> suffix to signify native shorts or
3175 longs--as you can see from above for example a bare C<l> does mean
3176 exactly 32 bits, the native C<long> (as seen by the local C compiler)
3177 may be larger.  This is an issue mainly in 64-bit platforms.  You can
3178 see whether using C<!> makes any difference by
3179
3180         print length(pack("s")), " ", length(pack("s!")), "\n";
3181         print length(pack("l")), " ", length(pack("l!")), "\n";
3182
3183 C<i!> and C<I!> also work but only because of completeness;
3184 they are identical to C<i> and C<I>.
3185
3186 The actual sizes (in bytes) of native shorts, ints, longs, and long
3187 longs on the platform where Perl was built are also available via
3188 L<Config>:
3189
3190        use Config;
3191        print $Config{shortsize},    "\n";
3192        print $Config{intsize},      "\n";
3193        print $Config{longsize},     "\n";
3194        print $Config{longlongsize}, "\n";
3195
3196 (The C<$Config{longlongsize}> will be undefine if your system does
3197 not support long longs.)
3198
3199 =item *
3200
3201 The integer formats C<s>, C<S>, C<i>, C<I>, C<l>, and C<L>
3202 are inherently non-portable between processors and operating systems
3203 because they obey the native byteorder and endianness.  For example a
3204 4-byte integer 0x12345678 (305419896 decimal) be ordered natively
3205 (arranged in and handled by the CPU registers) into bytes as
3206
3207         0x12 0x34 0x56 0x78     # big-endian
3208         0x78 0x56 0x34 0x12     # little-endian
3209
3210 Basically, the Intel and VAX CPUs are little-endian, while everybody
3211 else, for example Motorola m68k/88k, PPC, Sparc, HP PA, Power, and
3212 Cray are big-endian.  Alpha and MIPS can be either: Digital/Compaq
3213 used/uses them in little-endian mode; SGI/Cray uses them in big-endian mode.
3214
3215 The names `big-endian' and `little-endian' are comic references to
3216 the classic "Gulliver's Travels" (via the paper "On Holy Wars and a
3217 Plea for Peace" by Danny Cohen, USC/ISI IEN 137, April 1, 1980) and
3218 the egg-eating habits of the Lilliputians.
3219
3220 Some systems may have even weirder byte orders such as
3221
3222         0x56 0x78 0x12 0x34
3223         0x34 0x12 0x78 0x56
3224
3225 You can see your system's preference with
3226
3227         print join(" ", map { sprintf "%#02x", $_ }
3228                             unpack("C*",pack("L",0x12345678))), "\n";
3229
3230 The byteorder on the platform where Perl was built is also available
3231 via L<Config>:
3232
3233         use Config;
3234         print $Config{byteorder}, "\n";
3235
3236 Byteorders C<'1234'> and C<'12345678'> are little-endian, C<'4321'>
3237 and C<'87654321'> are big-endian.
3238
3239 If you want portable packed integers use the formats C<n>, C<N>,
3240 C<v>, and C<V>, their byte endianness and size is known.
3241 See also L<perlport>.
3242
3243 =item *
3244
3245 Real numbers (floats and doubles) are in the native machine format only;
3246 due to the multiplicity of floating formats around, and the lack of a
3247 standard "network" representation, no facility for interchange has been
3248 made.  This means that packed floating point data written on one machine
3249 may not be readable on another - even if both use IEEE floating point
3250 arithmetic (as the endian-ness of the memory representation is not part
3251 of the IEEE spec).  See also L<perlport>.
3252
3253 Note that Perl uses doubles internally for all numeric calculation, and
3254 converting from double into float and thence back to double again will
3255 lose precision (i.e., C<unpack("f", pack("f", $foo)>) will not in general
3256 equal $foo).
3257
3258 =item *
3259
3260 If the pattern begins with a C<U>, the resulting string will be treated
3261 as Unicode-encoded. You can force UTF8 encoding on in a string with an
3262 initial C<U0>, and the bytes that follow will be interpreted as Unicode
3263 characters. If you don't want this to happen, you can begin your pattern
3264 with C<C0> (or anything else) to force Perl not to UTF8 encode your
3265 string, and then follow this with a C<U*> somewhere in your pattern.
3266
3267 =item *
3268
3269 You must yourself do any alignment or padding by inserting for example
3270 enough C<'x'>es while packing.  There is no way to pack() and unpack()
3271 could know where the bytes are going to or coming from.  Therefore
3272 C<pack> (and C<unpack>) handle their output and input as flat
3273 sequences of bytes.
3274
3275 =item *
3276
3277 A comment in a TEMPLATE starts with C<#> and goes to the end of line.
3278
3279 =item *
3280
3281 If TEMPLATE requires more arguments to pack() than actually given, pack()
3282 assumes additional C<""> arguments.  If TEMPLATE requires less arguments
3283 to pack() than actually given, extra arguments are ignored.
3284
3285 =back
3286
3287 Examples:
3288
3289     $foo = pack("CCCC",65,66,67,68);
3290     # foo eq "ABCD"
3291     $foo = pack("C4",65,66,67,68);
3292     # same thing
3293     $foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
3294     # same thing with Unicode circled letters
3295
3296     $foo = pack("ccxxcc",65,66,67,68);
3297     # foo eq "AB\0\0CD"
3298
3299     # note: the above examples featuring "C" and "c" are true
3300     # only on ASCII and ASCII-derived systems such as ISO Latin 1
3301     # and UTF-8.  In EBCDIC the first example would be
3302     # $foo = pack("CCCC",193,194,195,196);
3303
3304     $foo = pack("s2",1,2);
3305     # "\1\0\2\0" on little-endian
3306     # "\0\1\0\2" on big-endian
3307
3308     $foo = pack("a4","abcd","x","y","z");
3309     # "abcd"
3310
3311     $foo = pack("aaaa","abcd","x","y","z");
3312     # "axyz"
3313
3314     $foo = pack("a14","abcdefg");
3315     # "abcdefg\0\0\0\0\0\0\0"
3316
3317     $foo = pack("i9pl", gmtime);
3318     # a real struct tm (on my system anyway)
3319
3320     $utmp_template = "Z8 Z8 Z16 L";
3321     $utmp = pack($utmp_template, @utmp1);
3322     # a struct utmp (BSDish)
3323
3324     @utmp2 = unpack($utmp_template, $utmp);
3325     # "@utmp1" eq "@utmp2"
3326
3327     sub bintodec {
3328         unpack("N", pack("B32", substr("0" x 32 . shift, -32)));
3329     }
3330
3331     $foo = pack('sx2l', 12, 34);
3332     # short 12, two zero bytes padding, long 34
3333     $bar = pack('s@4l', 12, 34);
3334     # short 12, zero fill to position 4, long 34
3335     # $foo eq $bar
3336
3337 The same template may generally also be used in unpack().
3338
3339 =item package NAMESPACE
3340
3341 =item package
3342
3343 Declares the compilation unit as being in the given namespace.  The scope
3344 of the package declaration is from the declaration itself through the end
3345 of the enclosing block, file, or eval (the same as the C<my> operator).
3346 All further unqualified dynamic identifiers will be in this namespace.
3347 A package statement affects only dynamic variables--including those
3348 you've used C<local> on--but I<not> lexical variables, which are created
3349 with C<my>.  Typically it would be the first declaration in a file to
3350 be included by the C<require> or C<use> operator.  You can switch into a
3351 package in more than one place; it merely influences which symbol table
3352 is used by the compiler for the rest of that block.  You can refer to
3353 variables and filehandles in other packages by prefixing the identifier
3354 with the package name and a double colon:  C<$Package::Variable>.
3355 If the package name is null, the C<main> package as assumed.  That is,
3356 C<$::sail> is equivalent to C<$main::sail> (as well as to C<$main'sail>,
3357 still seen in older code).
3358
3359 If NAMESPACE is omitted, then there is no current package, and all
3360 identifiers must be fully qualified or lexicals.  This is stricter
3361 than C<use strict>, since it also extends to function names.
3362
3363 See L<perlmod/"Packages"> for more information about packages, modules,
3364 and classes.  See L<perlsub> for other scoping issues.
3365
3366 =item pipe READHANDLE,WRITEHANDLE
3367
3368 Opens a pair of connected pipes like the corresponding system call.
3369 Note that if you set up a loop of piped processes, deadlock can occur
3370 unless you are very careful.  In addition, note that Perl's pipes use
3371 stdio buffering, so you may need to set C<$|> to flush your WRITEHANDLE
3372 after each command, depending on the application.
3373
3374 See L<IPC::Open2>, L<IPC::Open3>, and L<perlipc/"Bidirectional Communication">
3375 for examples of such things.
3376
3377 On systems that support a close-on-exec flag on files, the flag will be set
3378 for the newly opened file descriptors as determined by the value of $^F.
3379 See L<perlvar/$^F>.
3380
3381 =item pop ARRAY
3382
3383 =item pop
3384
3385 Pops and returns the last value of the array, shortening the array by
3386 one element.  Has an effect similar to
3387
3388     $ARRAY[$#ARRAY--]
3389
3390 If there are no elements in the array, returns the undefined value
3391 (although this may happen at other times as well).  If ARRAY is
3392 omitted, pops the C<@ARGV> array in the main program, and the C<@_>
3393 array in subroutines, just like C<shift>.
3394
3395 =item pos SCALAR
3396
3397 =item pos
3398
3399 Returns the offset of where the last C<m//g> search left off for the variable
3400 in question (C<$_> is used when the variable is not specified).  May be
3401 modified to change that offset.  Such modification will also influence
3402 the C<\G> zero-width assertion in regular expressions.  See L<perlre> and
3403 L<perlop>.
3404
3405 =item print FILEHANDLE LIST
3406
3407 =item print LIST
3408
3409 =item print
3410
3411 Prints a string or a list of strings.  Returns true if successful.
3412 FILEHANDLE may be a scalar variable name, in which case the variable
3413 contains the name of or a reference to the filehandle, thus introducing
3414 one level of indirection.  (NOTE: If FILEHANDLE is a variable and
3415 the next token is a term, it may be misinterpreted as an operator
3416 unless you interpose a C<+> or put parentheses around the arguments.)
3417 If FILEHANDLE is omitted, prints by default to standard output (or
3418 to the last selected output channel--see L</select>).  If LIST is
3419 also omitted, prints C<$_> to the currently selected output channel.
3420 To set the default output channel to something other than STDOUT
3421 use the select operation.  The current value of C<$,> (if any) is
3422 printed between each LIST item.  The current value of C<$\> (if
3423 any) is printed after the entire LIST has been printed.  Because
3424 print takes a LIST, anything in the LIST is evaluated in list
3425 context, and any subroutine that you call will have one or more of
3426 its expressions evaluated in list context.  Also be careful not to
3427 follow the print keyword with a left parenthesis unless you want
3428 the corresponding right parenthesis to terminate the arguments to
3429 the print--interpose a C<+> or put parentheses around all the
3430 arguments.
3431
3432 Note that if you're storing FILEHANDLES in an array or other expression,
3433 you will have to use a block returning its value instead:
3434
3435     print { $files[$i] } "stuff\n";
3436     print { $OK ? STDOUT : STDERR } "stuff\n";
3437
3438 =item printf FILEHANDLE FORMAT, LIST
3439
3440 =item printf FORMAT, LIST
3441
3442 Equivalent to C<print FILEHANDLE sprintf(FORMAT, LIST)>, except that C<$\>
3443 (the output record separator) is not appended.  The first argument
3444 of the list will be interpreted as the C<printf> format.  If C<use locale> is
3445 in effect, the character used for the decimal point in formatted real numbers
3446 is affected by the LC_NUMERIC locale.  See L<perllocale>.
3447
3448 Don't fall into the trap of using a C<printf> when a simple
3449 C<print> would do.  The C<print> is more efficient and less
3450 error prone.
3451
3452 =item prototype FUNCTION
3453
3454 Returns the prototype of a function as a string (or C<undef> if the
3455 function has no prototype).  FUNCTION is a reference to, or the name of,
3456 the function whose prototype you want to retrieve.
3457
3458 If FUNCTION is a string starting with C<CORE::>, the rest is taken as a
3459 name for Perl builtin.  If the builtin is not I<overridable> (such as
3460 C<qw//>) or its arguments cannot be expressed by a prototype (such as
3461 C<system>) returns C<undef> because the builtin does not really behave
3462 like a Perl function.  Otherwise, the string describing the equivalent
3463 prototype is returned.
3464
3465 =item push ARRAY,LIST
3466
3467 Treats ARRAY as a stack, and pushes the values of LIST
3468 onto the end of ARRAY.  The length of ARRAY increases by the length of
3469 LIST.  Has the same effect as
3470
3471     for $value (LIST) {
3472         $ARRAY[++$#ARRAY] = $value;
3473     }
3474
3475 but is more efficient.  Returns the new number of elements in the array.
3476
3477 =item q/STRING/
3478
3479 =item qq/STRING/
3480
3481 =item qr/STRING/
3482
3483 =item qx/STRING/
3484
3485 =item qw/STRING/
3486
3487 Generalized quotes.  See L<perlop/"Regexp Quote-Like Operators">.
3488
3489 =item quotemeta EXPR
3490
3491 =item quotemeta
3492
3493 Returns the value of EXPR with all non-"word"
3494 characters backslashed.  (That is, all characters not matching
3495 C</[A-Za-z_0-9]/> will be preceded by a backslash in the
3496 returned string, regardless of any locale settings.)
3497 This is the internal function implementing
3498 the C<\Q> escape in double-quoted strings.
3499
3500 If EXPR is omitted, uses C<$_>.
3501
3502 =item rand EXPR
3503
3504 =item rand
3505
3506 Returns a random fractional number greater than or equal to C<0> and less
3507 than the value of EXPR.  (EXPR should be positive.)  If EXPR is
3508 omitted, the value C<1> is used.  Automatically calls C<srand> unless
3509 C<srand> has already been called.  See also C<srand>.
3510
3511 (Note: If your rand function consistently returns numbers that are too
3512 large or too small, then your version of Perl was probably compiled
3513 with the wrong number of RANDBITS.)
3514
3515 =item read FILEHANDLE,SCALAR,LENGTH,OFFSET
3516
3517 =item read FILEHANDLE,SCALAR,LENGTH
3518
3519 Attempts to read LENGTH bytes of data into variable SCALAR from the
3520 specified FILEHANDLE.  Returns the number of bytes actually read, C<0>
3521 at end of file, or undef if there was an error.  SCALAR will be grown
3522 or shrunk to the length actually read.  If SCALAR needs growing, the
3523 new bytes will be zero bytes.  An OFFSET may be specified to place
3524 the read data into some other place in SCALAR than the beginning.
3525 The call is actually implemented in terms of stdio's fread(3) call.
3526 To get a true read(2) system call, see C<sysread>.
3527
3528 =item readdir DIRHANDLE
3529
3530 Returns the next directory entry for a directory opened by C<opendir>.
3531 If used in list context, returns all the rest of the entries in the
3532 directory.  If there are no more entries, returns an undefined value in
3533 scalar context or a null list in list context.
3534
3535 If you're planning to filetest the return values out of a C<readdir>, you'd
3536 better prepend the directory in question.  Otherwise, because we didn't
3537 C<chdir> there, it would have been testing the wrong file.
3538
3539     opendir(DIR, $some_dir) || die "can't opendir $some_dir: $!";
3540     @dots = grep { /^\./ && -f "$some_dir/$_" } readdir(DIR);
3541     closedir DIR;
3542
3543 =item readline EXPR
3544
3545 Reads from the filehandle whose typeglob is contained in EXPR.  In scalar
3546 context, each call reads and returns the next line, until end-of-file is
3547 reached, whereupon the subsequent call returns undef.  In list context,
3548 reads until end-of-file is reached and returns a list of lines.  Note that
3549 the notion of "line" used here is however you may have defined it
3550 with C<$/> or C<$INPUT_RECORD_SEPARATOR>).  See L<perlvar/"$/">.
3551
3552 When C<$/> is set to C<undef>, when readline() is in scalar
3553 context (i.e. file slurp mode), and when an empty file is read, it
3554 returns C<''> the first time, followed by C<undef> subsequently.
3555
3556 This is the internal function implementing the C<< <EXPR> >>
3557 operator, but you can use it directly.  The C<< <EXPR> >>
3558 operator is discussed in more detail in L<perlop/"I/O Operators">.
3559
3560     $line = <STDIN>;
3561     $line = readline(*STDIN);           # same thing
3562
3563 =item readlink EXPR
3564
3565 =item readlink
3566
3567 Returns the value of a symbolic link, if symbolic links are
3568 implemented.  If not, gives a fatal error.  If there is some system
3569 error, returns the undefined value and sets C<$!> (errno).  If EXPR is
3570 omitted, uses C<$_>.
3571
3572 =item readpipe EXPR
3573
3574 EXPR is executed as a system command.
3575 The collected standard output of the command is returned.
3576 In scalar context, it comes back as a single (potentially
3577 multi-line) string.  In list context, returns a list of lines
3578 (however you've defined lines with C<$/> or C<$INPUT_RECORD_SEPARATOR>).
3579 This is the internal function implementing the C<qx/EXPR/>
3580 operator, but you can use it directly.  The C<qx/EXPR/>
3581 operator is discussed in more detail in L<perlop/"I/O Operators">.
3582
3583 =item recv SOCKET,SCALAR,LENGTH,FLAGS
3584
3585 Receives a message on a socket.  Attempts to receive LENGTH bytes of
3586 data into variable SCALAR from the specified SOCKET filehandle.  SCALAR
3587 will be grown or shrunk to the length actually read.  Takes the same
3588 flags as the system call of the same name.  Returns the address of the
3589 sender if SOCKET's protocol supports this; returns an empty string
3590 otherwise.  If there's an error, returns the undefined value.  This call
3591 is actually implemented in terms of recvfrom(2) system call.  See
3592 L<perlipc/"UDP: Message Passing"> for examples.
3593
3594 =item redo LABEL
3595
3596 =item redo
3597
3598 The C<redo> command restarts the loop block without evaluating the
3599 conditional again.  The C<continue> block, if any, is not executed.  If
3600 the LABEL is omitted, the command refers to the innermost enclosing
3601 loop.  This command is normally used by programs that want to lie to
3602 themselves about what was just input:
3603
3604     # a simpleminded Pascal comment stripper
3605     # (warning: assumes no { or } in strings)
3606     LINE: while (<STDIN>) {
3607         while (s|({.*}.*){.*}|$1 |) {}
3608         s|{.*}| |;
3609         if (s|{.*| |) {
3610             $front = $_;
3611             while (<STDIN>) {
3612                 if (/}/) {      # end of comment?
3613                     s|^|$front\{|;
3614                     redo LINE;
3615                 }
3616             }
3617         }
3618         print;
3619     }
3620
3621 C<redo> cannot be used to retry a block which returns a value such as
3622 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
3623 a grep() or map() operation.
3624
3625 Note that a block by itself is semantically identical to a loop
3626 that executes once.  Thus C<redo> inside such a block will effectively
3627 turn it into a looping construct.
3628
3629 See also L</continue> for an illustration of how C<last>, C<next>, and
3630 C<redo> work.
3631
3632 =item ref EXPR
3633
3634 =item ref
3635
3636 Returns a true value if EXPR is a reference, false otherwise.  If EXPR
3637 is not specified, C<$_> will be used.  The value returned depends on the
3638 type of thing the reference is a reference to.
3639 Builtin types include:
3640
3641     SCALAR
3642     ARRAY
3643     HASH
3644     CODE
3645     REF
3646     GLOB
3647     LVALUE
3648
3649 If the referenced object has been blessed into a package, then that package
3650 name is returned instead.  You can think of C<ref> as a C<typeof> operator.
3651
3652     if (ref($r) eq "HASH") {
3653         print "r is a reference to a hash.\n";
3654     }
3655     unless (ref($r)) {
3656         print "r is not a reference at all.\n";
3657     }
3658     if (UNIVERSAL::isa($r, "HASH")) {  # for subclassing
3659         print "r is a reference to something that isa hash.\n";
3660     }
3661
3662 See also L<perlref>.
3663
3664 =item rename OLDNAME,NEWNAME
3665
3666 Changes the name of a file; an existing file NEWNAME will be
3667 clobbered.  Returns true for success, false otherwise.
3668
3669 Behavior of this function varies wildly depending on your system
3670 implementation.  For example, it will usually not work across file system
3671 boundaries, even though the system I<mv> command sometimes compensates
3672 for this.  Other restrictions include whether it works on directories,
3673 open files, or pre-existing files.  Check L<perlport> and either the
3674 rename(2) manpage or equivalent system documentation for details.
3675
3676 =item require VERSION
3677
3678 =item require EXPR
3679
3680 =item require
3681
3682 Demands some semantics specified by EXPR, or by C<$_> if EXPR is not
3683 supplied.
3684
3685 If a VERSION is specified as a literal of the form v5.6.1,
3686 demands that the current version of Perl (C<$^V> or $PERL_VERSION) be
3687 at least as recent as that version, at run time.  (For compatibility
3688 with older versions of Perl, a numeric argument will also be interpreted
3689 as VERSION.)  Compare with L</use>, which can do a similar check at
3690 compile time.
3691
3692     require v5.6.1;     # run time version check
3693     require 5.6.1;      # ditto
3694     require 5.005_03;   # float version allowed for compatibility
3695
3696 Otherwise, demands that a library file be included if it hasn't already
3697 been included.  The file is included via the do-FILE mechanism, which is
3698 essentially just a variety of C<eval>.  Has semantics similar to the following
3699 subroutine:
3700
3701     sub require {
3702         my($filename) = @_;
3703         return 1 if $INC{$filename};
3704         my($realfilename,$result);
3705         ITER: {
3706             foreach $prefix (@INC) {
3707                 $realfilename = "$prefix/$filename";
3708                 if (-f $realfilename) {
3709                     $INC{$filename} = $realfilename;
3710                     $result = do $realfilename;
3711                     last ITER;
3712                 }
3713             }
3714             die "Can't find $filename in \@INC";
3715         }
3716         delete $INC{$filename} if $@ || !$result;
3717         die $@ if $@;
3718         die "$filename did not return true value" unless $result;
3719         return $result;
3720     }
3721
3722 Note that the file will not be included twice under the same specified
3723 name.  The file must return true as the last statement to indicate
3724 successful execution of any initialization code, so it's customary to
3725 end such a file with C<1;> unless you're sure it'll return true
3726 otherwise.  But it's better just to put the C<1;>, in case you add more
3727 statements.
3728
3729 If EXPR is a bareword, the require assumes a "F<.pm>" extension and
3730 replaces "F<::>" with "F</>" in the filename for you,
3731 to make it easy to load standard modules.  This form of loading of
3732 modules does not risk altering your namespace.
3733
3734 In other words, if you try this:
3735
3736         require Foo::Bar;    # a splendid bareword
3737
3738 The require function will actually look for the "F<Foo/Bar.pm>" file in the
3739 directories specified in the C<@INC> array.
3740
3741 But if you try this:
3742
3743         $class = 'Foo::Bar';
3744         require $class;      # $class is not a bareword
3745     #or
3746         require "Foo::Bar";  # not a bareword because of the ""
3747
3748 The require function will look for the "F<Foo::Bar>" file in the @INC array and
3749 will complain about not finding "F<Foo::Bar>" there.  In this case you can do:
3750
3751         eval "require $class";
3752
3753 For a yet-more-powerful import facility, see L</use> and L<perlmod>.
3754
3755 =item reset EXPR
3756
3757 =item reset
3758
3759 Generally used in a C<continue> block at the end of a loop to clear
3760 variables and reset C<??> searches so that they work again.  The
3761 expression is interpreted as a list of single characters (hyphens
3762 allowed for ranges).  All variables and arrays beginning with one of
3763 those letters are reset to their pristine state.  If the expression is
3764 omitted, one-match searches (C<?pattern?>) are reset to match again.  Resets
3765 only variables or searches in the current package.  Always returns
3766 1.  Examples:
3767
3768     reset 'X';          # reset all X variables
3769     reset 'a-z';        # reset lower case variables
3770     reset;              # just reset ?one-time? searches
3771
3772 Resetting C<"A-Z"> is not recommended because you'll wipe out your
3773 C<@ARGV> and C<@INC> arrays and your C<%ENV> hash.  Resets only package
3774 variables--lexical variables are unaffected, but they clean themselves
3775 up on scope exit anyway, so you'll probably want to use them instead.
3776 See L</my>.
3777
3778 =item return EXPR
3779
3780 =item return
3781
3782 Returns from a subroutine, C<eval>, or C<do FILE> with the value
3783 given in EXPR.  Evaluation of EXPR may be in list, scalar, or void
3784 context, depending on how the return value will be used, and the context
3785 may vary from one execution to the next (see C<wantarray>).  If no EXPR
3786 is given, returns an empty list in list context, the undefined value in
3787 scalar context, and (of course) nothing at all in a void context.
3788
3789 (Note that in the absence of a explicit C<return>, a subroutine, eval,
3790 or do FILE will automatically return the value of the last expression
3791 evaluated.)
3792
3793 =item reverse LIST
3794
3795 In list context, returns a list value consisting of the elements
3796 of LIST in the opposite order.  In scalar context, concatenates the
3797 elements of LIST and returns a string value with all characters
3798 in the opposite order.
3799
3800     print reverse <>;           # line tac, last line first
3801
3802     undef $/;                   # for efficiency of <>
3803     print scalar reverse <>;    # character tac, last line tsrif
3804
3805 This operator is also handy for inverting a hash, although there are some
3806 caveats.  If a value is duplicated in the original hash, only one of those
3807 can be represented as a key in the inverted hash.  Also, this has to
3808 unwind one hash and build a whole new one, which may take some time
3809 on a large hash, such as from a DBM file.
3810
3811     %by_name = reverse %by_address;     # Invert the hash
3812
3813 =item rewinddir DIRHANDLE
3814
3815 Sets the current position to the beginning of the directory for the
3816 C<readdir> routine on DIRHANDLE.
3817
3818 =item rindex STR,SUBSTR,POSITION
3819
3820 =item rindex STR,SUBSTR
3821
3822 Works just like index() except that it returns the position of the LAST
3823 occurrence of SUBSTR in STR.  If POSITION is specified, returns the
3824 last occurrence at or before that position.
3825
3826 =item rmdir FILENAME
3827
3828 =item rmdir
3829
3830 Deletes the directory specified by FILENAME if that directory is empty.  If it
3831 succeeds it returns true, otherwise it returns false and sets C<$!> (errno).  If
3832 FILENAME is omitted, uses C<$_>.
3833
3834 =item s///
3835
3836 The substitution operator.  See L<perlop>.
3837
3838 =item scalar EXPR
3839
3840 Forces EXPR to be interpreted in scalar context and returns the value
3841 of EXPR.
3842
3843     @counts = ( scalar @a, scalar @b, scalar @c );
3844
3845 There is no equivalent operator to force an expression to
3846 be interpolated in list context because in practice, this is never
3847 needed.  If you really wanted to do so, however, you could use
3848 the construction C<@{[ (some expression) ]}>, but usually a simple
3849 C<(some expression)> suffices.
3850
3851 Because C<scalar> is unary operator, if you accidentally use for EXPR a
3852 parenthesized list, this behaves as a scalar comma expression, evaluating
3853 all but the last element in void context and returning the final element
3854 evaluated in scalar context.  This is seldom what you want.
3855
3856 The following single statement:
3857
3858         print uc(scalar(&foo,$bar)),$baz;
3859
3860 is the moral equivalent of these two:
3861
3862         &foo;
3863         print(uc($bar),$baz);
3864
3865 See L<perlop> for more details on unary operators and the comma operator.
3866
3867 =item seek FILEHANDLE,POSITION,WHENCE
3868
3869 Sets FILEHANDLE's position, just like the C<fseek> call of C<stdio>.
3870 FILEHANDLE may be an expression whose value gives the name of the
3871 filehandle.  The values for WHENCE are C<0> to set the new position to
3872 POSITION, C<1> to set it to the current position plus POSITION, and
3873 C<2> to set it to EOF plus POSITION (typically negative).  For WHENCE
3874 you may use the constants C<SEEK_SET>, C<SEEK_CUR>, and C<SEEK_END>
3875 (start of the file, current position, end of the file) from the Fcntl
3876 module.  Returns C<1> upon success, C<0> otherwise.
3877
3878 If you want to position file for C<sysread> or C<syswrite>, don't use
3879 C<seek>--buffering makes its effect on the file's system position
3880 unpredictable and non-portable.  Use C<sysseek> instead.
3881
3882 Due to the rules and rigors of ANSI C, on some systems you have to do a
3883 seek whenever you switch between reading and writing.  Amongst other
3884 things, this may have the effect of calling stdio's clearerr(3).
3885 A WHENCE of C<1> (C<SEEK_CUR>) is useful for not moving the file position:
3886
3887     seek(TEST,0,1);
3888
3889 This is also useful for applications emulating C<tail -f>.  Once you hit
3890 EOF on your read, and then sleep for a while, you might have to stick in a
3891 seek() to reset things.  The C<seek> doesn't change the current position,
3892 but it I<does> clear the end-of-file condition on the handle, so that the
3893 next C<< <FILE> >> makes Perl try again to read something.  We hope.
3894
3895 If that doesn't work (some stdios are particularly cantankerous), then
3896 you may need something more like this:
3897
3898     for (;;) {
3899         for ($curpos = tell(FILE); $_ = <FILE>;
3900              $curpos = tell(FILE)) {
3901             # search for some stuff and put it into files
3902         }
3903         sleep($for_a_while);
3904         seek(FILE, $curpos, 0);
3905     }
3906
3907 =item seekdir DIRHANDLE,POS
3908
3909 Sets the current position for the C<readdir> routine on DIRHANDLE.  POS
3910 must be a value returned by C<telldir>.  Has the same caveats about
3911 possible directory compaction as the corresponding system library
3912 routine.
3913
3914 =item select FILEHANDLE
3915
3916 =item select
3917
3918 Returns the currently selected filehandle.  Sets the current default
3919 filehandle for output, if FILEHANDLE is supplied.  This has two
3920 effects: first, a C<write> or a C<print> without a filehandle will
3921 default to this FILEHANDLE.  Second, references to variables related to
3922 output will refer to this output channel.  For example, if you have to
3923 set the top of form format for more than one output channel, you might
3924 do the following:
3925
3926     select(REPORT1);
3927     $^ = 'report1_top';
3928     select(REPORT2);
3929     $^ = 'report2_top';
3930
3931 FILEHANDLE may be an expression whose value gives the name of the
3932 actual filehandle.  Thus:
3933
3934     $oldfh = select(STDERR); $| = 1; select($oldfh);
3935
3936 Some programmers may prefer to think of filehandles as objects with
3937 methods, preferring to write the last example as:
3938
3939     use IO::Handle;
3940     STDERR->autoflush(1);
3941
3942 =item select RBITS,WBITS,EBITS,TIMEOUT
3943
3944 This calls the select(2) system call with the bit masks specified, which
3945 can be constructed using C<fileno> and C<vec>, along these lines:
3946
3947     $rin = $win = $ein = '';
3948     vec($rin,fileno(STDIN),1) = 1;
3949     vec($win,fileno(STDOUT),1) = 1;
3950     $ein = $rin | $win;
3951
3952 If you want to select on many filehandles you might wish to write a
3953 subroutine:
3954
3955     sub fhbits {
3956         my(@fhlist) = split(' ',$_[0]);
3957         my($bits);
3958         for (@fhlist) {
3959             vec($bits,fileno($_),1) = 1;
3960         }
3961         $bits;
3962     }
3963     $rin = fhbits('STDIN TTY SOCK');
3964
3965 The usual idiom is:
3966
3967     ($nfound,$timeleft) =
3968       select($rout=$rin, $wout=$win, $eout=$ein, $timeout);
3969
3970 or to block until something becomes ready just do this
3971
3972     $nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);
3973
3974 Most systems do not bother to return anything useful in $timeleft, so
3975 calling select() in scalar context just returns $nfound.
3976
3977 Any of the bit masks can also be undef.  The timeout, if specified, is
3978 in seconds, which may be fractional.  Note: not all implementations are
3979 capable of returning the$timeleft.  If not, they always return
3980 $timeleft equal to the supplied $timeout.
3981
3982 You can effect a sleep of 250 milliseconds this way:
3983
3984     select(undef, undef, undef, 0.25);
3985
3986 B<WARNING>: One should not attempt to mix buffered I/O (like C<read>
3987 or <FH>) with C<select>, except as permitted by POSIX, and even
3988 then only on POSIX systems.  You have to use C<sysread> instead.
3989
3990 =item semctl ID,SEMNUM,CMD,ARG
3991
3992 Calls the System V IPC function C<semctl>.  You'll probably have to say
3993
3994     use IPC::SysV;
3995
3996 first to get the correct constant definitions.  If CMD is IPC_STAT or
3997 GETALL, then ARG must be a variable which will hold the returned
3998 semid_ds structure or semaphore value array.  Returns like C<ioctl>:
3999 the undefined value for error, "C<0 but true>" for zero, or the actual
4000 return value otherwise.  The ARG must consist of a vector of native
4001 short integers, which may be created with C<pack("s!",(0)x$nsem)>.
4002 See also L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::Semaphore>
4003 documentation.
4004
4005 =item semget KEY,NSEMS,FLAGS
4006
4007 Calls the System V IPC function semget.  Returns the semaphore id, or
4008 the undefined value if there is an error.  See also
4009 L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::SysV::Semaphore>
4010 documentation.
4011
4012 =item semop KEY,OPSTRING
4013
4014 Calls the System V IPC function semop to perform semaphore operations
4015 such as signaling and waiting.  OPSTRING must be a packed array of
4016 semop structures.  Each semop structure can be generated with
4017 C<pack("sss", $semnum, $semop, $semflag)>.  The number of semaphore
4018 operations is implied by the length of OPSTRING.  Returns true if
4019 successful, or false if there is an error.  As an example, the
4020 following code waits on semaphore $semnum of semaphore id $semid:
4021
4022     $semop = pack("sss", $semnum, -1, 0);
4023     die "Semaphore trouble: $!\n" unless semop($semid, $semop);
4024
4025 To signal the semaphore, replace C<-1> with C<1>.  See also
4026 L<perlipc/"SysV IPC">, C<IPC::SysV>, and C<IPC::SysV::Semaphore>
4027 documentation.
4028
4029 =item send SOCKET,MSG,FLAGS,TO
4030
4031 =item send SOCKET,MSG,FLAGS
4032
4033 Sends a message on a socket.  Takes the same flags as the system call
4034 of the same name.  On unconnected sockets you must specify a
4035 destination to send TO, in which case it does a C C<sendto>.  Returns
4036 the number of characters sent, or the undefined value if there is an
4037 error.  The C system call sendmsg(2) is currently unimplemented.
4038 See L<perlipc/"UDP: Message Passing"> for examples.
4039
4040 =item setpgrp PID,PGRP
4041
4042 Sets the current process group for the specified PID, C<0> for the current
4043 process.  Will produce a fatal error if used on a machine that doesn't
4044 implement POSIX setpgid(2) or BSD setpgrp(2).  If the arguments are omitted,
4045 it defaults to C<0,0>.  Note that the BSD 4.2 version of C<setpgrp> does not
4046 accept any arguments, so only C<setpgrp(0,0)> is portable.  See also
4047 C<POSIX::setsid()>.
4048
4049 =item setpriority WHICH,WHO,PRIORITY
4050
4051 Sets the current priority for a process, a process group, or a user.
4052 (See setpriority(2).)  Will produce a fatal error if used on a machine
4053 that doesn't implement setpriority(2).
4054
4055 =item setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
4056
4057 Sets the socket option requested.  Returns undefined if there is an
4058 error.  OPTVAL may be specified as C<undef> if you don't want to pass an
4059 argument.
4060
4061 =item shift ARRAY
4062
4063 =item shift
4064
4065 Shifts the first value of the array off and returns it, shortening the
4066 array by 1 and moving everything down.  If there are no elements in the
4067 array, returns the undefined value.  If ARRAY is omitted, shifts the
4068 C<@_> array within the lexical scope of subroutines and formats, and the
4069 C<@ARGV> array at file scopes or within the lexical scopes established by
4070 the C<eval ''>, C<BEGIN {}>, C<INIT {}>, C<CHECK {}>, and C<END {}>
4071 constructs.
4072
4073 See also C<unshift>, C<push>, and C<pop>.  C<shift> and C<unshift> do the
4074 same thing to the left end of an array that C<pop> and C<push> do to the
4075 right end.
4076
4077 =item shmctl ID,CMD,ARG
4078
4079 Calls the System V IPC function shmctl.  You'll probably have to say
4080
4081     use IPC::SysV;
4082
4083 first to get the correct constant definitions.  If CMD is C<IPC_STAT>,
4084 then ARG must be a variable which will hold the returned C<shmid_ds>
4085 structure.  Returns like ioctl: the undefined value for error, "C<0> but
4086 true" for zero, or the actual return value otherwise.
4087 See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
4088
4089 =item shmget KEY,SIZE,FLAGS
4090
4091 Calls the System V IPC function shmget.  Returns the shared memory
4092 segment id, or the undefined value if there is an error.
4093 See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
4094
4095 =item shmread ID,VAR,POS,SIZE
4096
4097 =item shmwrite ID,STRING,POS,SIZE
4098
4099 Reads or writes the System V shared memory segment ID starting at
4100 position POS for size SIZE by attaching to it, copying in/out, and
4101 detaching from it.  When reading, VAR must be a variable that will
4102 hold the data read.  When writing, if STRING is too long, only SIZE
4103 bytes are used; if STRING is too short, nulls are written to fill out
4104 SIZE bytes.  Return true if successful, or false if there is an error.
4105 shmread() taints the variable. See also L<perlipc/"SysV IPC">,
4106 C<IPC::SysV> documentation, and the C<IPC::Shareable> module from CPAN.
4107
4108 =item shutdown SOCKET,HOW
4109
4110 Shuts down a socket connection in the manner indicated by HOW, which
4111 has the same interpretation as in the system call of the same name.
4112
4113     shutdown(SOCKET, 0);    # I/we have stopped reading data
4114     shutdown(SOCKET, 1);    # I/we have stopped writing data
4115     shutdown(SOCKET, 2);    # I/we have stopped using this socket
4116
4117 This is useful with sockets when you want to tell the other
4118 side you're done writing but not done reading, or vice versa.
4119 It's also a more insistent form of close because it also
4120 disables the file descriptor in any forked copies in other
4121 processes.
4122
4123 =item sin EXPR
4124
4125 =item sin
4126
4127 Returns the sine of EXPR (expressed in radians).  If EXPR is omitted,
4128 returns sine of C<$_>.
4129
4130 For the inverse sine operation, you may use the C<Math::Trig::asin>
4131 function, or use this relation:
4132
4133     sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }
4134
4135 =item sleep EXPR
4136
4137 =item sleep
4138
4139 Causes the script to sleep for EXPR seconds, or forever if no EXPR.
4140 May be interrupted if the process receives a signal such as C<SIGALRM>.
4141 Returns the number of seconds actually slept.  You probably cannot
4142 mix C<alarm> and C<sleep> calls, because C<sleep> is often implemented
4143 using C<alarm>.
4144
4145 On some older systems, it may sleep up to a full second less than what
4146 you requested, depending on how it counts seconds.  Most modern systems
4147 always sleep the full amount.  They may appear to sleep longer than that,
4148 however, because your process might not be scheduled right away in a
4149 busy multitasking system.
4150
4151 For delays of finer granularity than one second, you may use Perl's
4152 C<syscall> interface to access setitimer(2) if your system supports
4153 it, or else see L</select> above.  The Time::HiRes module from CPAN
4154 may also help.
4155
4156 See also the POSIX module's C<pause> function.
4157
4158 =item socket SOCKET,DOMAIN,TYPE,PROTOCOL
4159
4160 Opens a socket of the specified kind and attaches it to filehandle
4161 SOCKET.  DOMAIN, TYPE, and PROTOCOL are specified the same as for
4162 the system call of the same name.  You should C<use Socket> first
4163 to get the proper definitions imported.  See the examples in
4164 L<perlipc/"Sockets: Client/Server Communication">.
4165
4166 On systems that support a close-on-exec flag on files, the flag will
4167 be set for the newly opened file descriptor, as determined by the
4168 value of $^F.  See L<perlvar/$^F>.
4169
4170 =item socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
4171
4172 Creates an unnamed pair of sockets in the specified domain, of the
4173 specified type.  DOMAIN, TYPE, and PROTOCOL are specified the same as
4174 for the system call of the same name.  If unimplemented, yields a fatal
4175 error.  Returns true if successful.
4176
4177 On systems that support a close-on-exec flag on files, the flag will
4178 be set for the newly opened file descriptors, as determined by the value
4179 of $^F.  See L<perlvar/$^F>.
4180
4181 Some systems defined C<pipe> in terms of C<socketpair>, in which a call
4182 to C<pipe(Rdr, Wtr)> is essentially:
4183
4184     use Socket;
4185     socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
4186     shutdown(Rdr, 1);        # no more writing for reader
4187     shutdown(Wtr, 0);        # no more reading for writer
4188
4189 See L<perlipc> for an example of socketpair use.
4190
4191 =item sort SUBNAME LIST
4192
4193 =item sort BLOCK LIST
4194
4195 =item sort LIST
4196
4197 Sorts the LIST and returns the sorted list value.  If SUBNAME or BLOCK
4198 is omitted, C<sort>s in standard string comparison order.  If SUBNAME is
4199 specified, it gives the name of a subroutine that returns an integer
4200 less than, equal to, or greater than C<0>, depending on how the elements
4201 of the list are to be ordered.  (The C<< <=> >> and C<cmp>
4202 operators are extremely useful in such routines.)  SUBNAME may be a
4203 scalar variable name (unsubscripted), in which case the value provides
4204 the name of (or a reference to) the actual subroutine to use.  In place
4205 of a SUBNAME, you can provide a BLOCK as an anonymous, in-line sort
4206 subroutine.
4207
4208 If the subroutine's prototype is C<($$)>, the elements to be compared
4209 are passed by reference in C<@_>, as for a normal subroutine.  This is
4210 slower than unprototyped subroutines, where the elements to be
4211 compared are passed into the subroutine
4212 as the package global variables $a and $b (see example below).  Note that
4213 in the latter case, it is usually counter-productive to declare $a and
4214 $b as lexicals.
4215
4216 In either case, the subroutine may not be recursive.  The values to be
4217 compared are always passed by reference, so don't modify them.
4218
4219 You also cannot exit out of the sort block or subroutine using any of the
4220 loop control operators described in L<perlsyn> or with C<goto>.
4221
4222 When C<use locale> is in effect, C<sort LIST> sorts LIST according to the
4223 current collation locale.  See L<perllocale>.
4224
4225 Examples:
4226
4227     # sort lexically
4228     @articles = sort @files;
4229
4230     # same thing, but with explicit sort routine
4231     @articles = sort {$a cmp $b} @files;
4232
4233     # now case-insensitively
4234     @articles = sort {uc($a) cmp uc($b)} @files;
4235
4236     # same thing in reversed order
4237     @articles = sort {$b cmp $a} @files;
4238
4239     # sort numerically ascending
4240     @articles = sort {$a <=> $b} @files;
4241
4242     # sort numerically descending
4243     @articles = sort {$b <=> $a} @files;
4244
4245     # this sorts the %age hash by value instead of key
4246     # using an in-line function
4247     @eldest = sort { $age{$b} <=> $age{$a} } keys %age;
4248
4249     # sort using explicit subroutine name
4250     sub byage {
4251         $age{$a} <=> $age{$b};  # presuming numeric
4252     }
4253     @sortedclass = sort byage @class;
4254
4255     sub backwards { $b cmp $a }
4256     @harry  = qw(dog cat x Cain Abel);
4257     @george = qw(gone chased yz Punished Axed);
4258     print sort @harry;
4259             # prints AbelCaincatdogx
4260     print sort backwards @harry;
4261             # prints xdogcatCainAbel
4262     print sort @george, 'to', @harry;
4263             # prints AbelAxedCainPunishedcatchaseddoggonetoxyz
4264
4265     # inefficiently sort by descending numeric compare using
4266     # the first integer after the first = sign, or the
4267     # whole record case-insensitively otherwise
4268
4269     @new = sort {
4270         ($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]
4271                             ||
4272                     uc($a)  cmp  uc($b)
4273     } @old;
4274
4275     # same thing, but much more efficiently;
4276     # we'll build auxiliary indices instead
4277     # for speed
4278     @nums = @caps = ();
4279     for (@old) {
4280         push @nums, /=(\d+)/;
4281         push @caps, uc($_);
4282     }
4283
4284     @new = @old[ sort {
4285                         $nums[$b] <=> $nums[$a]
4286                                  ||
4287                         $caps[$a] cmp $caps[$b]
4288                        } 0..$#old
4289                ];
4290
4291     # same thing, but without any temps
4292     @new = map { $_->[0] }
4293            sort { $b->[1] <=> $a->[1]
4294                            ||
4295                   $a->[2] cmp $b->[2]
4296            } map { [$_, /=(\d+)/, uc($_)] } @old;
4297
4298     # using a prototype allows you to use any comparison subroutine
4299     # as a sort subroutine (including other package's subroutines)
4300     package other;
4301     sub backwards ($$) { $_[1] cmp $_[0]; }     # $a and $b are not set here
4302
4303     package main;
4304     @new = sort other::backwards @old;
4305
4306 If you're using strict, you I<must not> declare $a
4307 and $b as lexicals.  They are package globals.  That means
4308 if you're in the C<main> package and type
4309
4310     @articles = sort {$b <=> $a} @files;
4311
4312 then C<$a> and C<$b> are C<$main::a> and C<$main::b> (or C<$::a> and C<$::b>),
4313 but if you're in the C<FooPack> package, it's the same as typing
4314
4315     @articles = sort {$FooPack::b <=> $FooPack::a} @files;
4316
4317 The comparison function is required to behave.  If it returns
4318 inconsistent results (sometimes saying C<$x[1]> is less than C<$x[2]> and
4319 sometimes saying the opposite, for example) the results are not
4320 well-defined.
4321
4322 =item splice ARRAY,OFFSET,LENGTH,LIST
4323
4324 =item splice ARRAY,OFFSET,LENGTH
4325
4326 =item splice ARRAY,OFFSET
4327
4328 =item splice ARRAY
4329
4330 Removes the elements designated by OFFSET and LENGTH from an array, and
4331 replaces them with the elements of LIST, if any.  In list context,
4332 returns the elements removed from the array.  In scalar context,
4333 returns the last element removed, or C<undef> if no elements are
4334 removed.  The array grows or shrinks as necessary.
4335 If OFFSET is negative then it starts that far from the end of the array.
4336 If LENGTH is omitted, removes everything from OFFSET onward.
4337 If LENGTH is negative, leaves that many elements off the end of the array.
4338 If both OFFSET and LENGTH are omitted, removes everything.
4339
4340 The following equivalences hold (assuming C<$[ == 0>):
4341
4342     push(@a,$x,$y)      splice(@a,@a,0,$x,$y)
4343     pop(@a)             splice(@a,-1)
4344     shift(@a)           splice(@a,0,1)
4345     unshift(@a,$x,$y)   splice(@a,0,0,$x,$y)
4346     $a[$x] = $y         splice(@a,$x,1,$y)
4347
4348 Example, assuming array lengths are passed before arrays:
4349
4350     sub aeq {   # compare two list values
4351         my(@a) = splice(@_,0,shift);
4352         my(@b) = splice(@_,0,shift);
4353         return 0 unless @a == @b;       # same len?
4354         while (@a) {
4355             return 0 if pop(@a) ne pop(@b);
4356         }
4357         return 1;
4358     }
4359     if (&aeq($len,@foo[1..$len],0+@bar,@bar)) { ... }
4360
4361 =item split /PATTERN/,EXPR,LIMIT
4362
4363 =item split /PATTERN/,EXPR
4364
4365 =item split /PATTERN/
4366
4367 =item split
4368
4369 Splits a string into a list of strings and returns that list.  By default,
4370 empty leading fields are preserved, and empty trailing ones are deleted.
4371
4372 In scalar context, returns the number of fields found and splits into
4373 the C<@_> array.  Use of split in scalar context is deprecated, however,
4374 because it clobbers your subroutine arguments.
4375
4376 If EXPR is omitted, splits the C<$_> string.  If PATTERN is also omitted,
4377 splits on whitespace (after skipping any leading whitespace).  Anything
4378 matching PATTERN is taken to be a delimiter separating the fields.  (Note
4379 that the delimiter may be longer than one character.)
4380
4381 If LIMIT is specified and positive, splits into no more than that
4382 many fields (though it may split into fewer).  If LIMIT is unspecified
4383 or zero, trailing null fields are stripped (which potential users
4384 of C<pop> would do well to remember).  If LIMIT is negative, it is
4385 treated as if an arbitrarily large LIMIT had been specified.
4386
4387 A pattern matching the null string (not to be confused with
4388 a null pattern C<//>, which is just one member of the set of patterns
4389 matching a null string) will split the value of EXPR into separate
4390 characters at each point it matches that way.  For example:
4391
4392     print join(':', split(/ */, 'hi there'));
4393
4394 produces the output 'h:i:t:h:e:r:e'.
4395
4396 Empty leading (or trailing) fields are produced when there positive width
4397 matches at the beginning (or end) of the string; a zero-width match at the
4398 beginning (or end) of the string does not produce an empty field.  For
4399 example:
4400
4401    print join(':', split(/(?=\w)/, 'hi there!'));
4402
4403 produces the output 'h:i :t:h:e:r:e!'.
4404
4405 The LIMIT parameter can be used to split a line partially
4406
4407     ($login, $passwd, $remainder) = split(/:/, $_, 3);
4408
4409 When assigning to a list, if LIMIT is omitted, Perl supplies a LIMIT
4410 one larger than the number of variables in the list, to avoid
4411 unnecessary work.  For the list above LIMIT would have been 4 by
4412 default.  In time critical applications it behooves you not to split
4413 into more fields than you really need.
4414
4415 If the PATTERN contains parentheses, additional list elements are
4416 created from each matching substring in the delimiter.
4417
4418     split(/([,-])/, "1-10,20", 3);
4419
4420 produces the list value
4421
4422     (1, '-', 10, ',', 20)
4423
4424 If you had the entire header of a normal Unix email message in $header,
4425 you could split it up into fields and their values this way:
4426
4427     $header =~ s/\n\s+/ /g;  # fix continuation lines
4428     %hdrs   =  (UNIX_FROM => split /^(\S*?):\s*/m, $header);
4429
4430 The pattern C</PATTERN/> may be replaced with an expression to specify
4431 patterns that vary at runtime.  (To do runtime compilation only once,
4432 use C</$variable/o>.)
4433
4434 As a special case, specifying a PATTERN of space (C<' '>) will split on
4435 white space just as C<split> with no arguments does.  Thus, C<split(' ')> can
4436 be used to emulate B<awk>'s default behavior, whereas C<split(/ /)>
4437 will give you as many null initial fields as there are leading spaces.
4438 A C<split> on C</\s+/> is like a C<split(' ')> except that any leading
4439 whitespace produces a null first field.  A C<split> with no arguments
4440 really does a C<split(' ', $_)> internally.
4441
4442 A PATTERN of C</^/> is treated as if it were C</^/m>, since it isn't
4443 much use otherwise.
4444
4445 Example:
4446
4447     open(PASSWD, '/etc/passwd');
4448     while (<PASSWD>) {
4449         chomp;
4450         ($login, $passwd, $uid, $gid,
4451          $gcos, $home, $shell) = split(/:/);
4452         #...
4453     }
4454
4455
4456 =item sprintf FORMAT, LIST
4457
4458 Returns a string formatted by the usual C<printf> conventions of the C
4459 library function C<sprintf>.  See below for more details
4460 and see L<sprintf(3)> or L<printf(3)> on your system for an explanation of
4461 the general principles.
4462
4463 For example:
4464
4465         # Format number with up to 8 leading zeroes
4466         $result = sprintf("%08d", $number);
4467
4468         # Round number to 3 digits after decimal point
4469         $rounded = sprintf("%.3f", $number);
4470
4471 Perl does its own C<sprintf> formatting--it emulates the C
4472 function C<sprintf>, but it doesn't use it (except for floating-point
4473 numbers, and even then only the standard modifiers are allowed).  As a
4474 result, any non-standard extensions in your local C<sprintf> are not
4475 available from Perl.
4476
4477 Unlike C<printf>, C<sprintf> does not do what you probably mean when you
4478 pass it an array as your first argument. The array is given scalar context,
4479 and instead of using the 0th element of the array as the format, Perl will
4480 use the count of elements in the array as the format, which is almost never
4481 useful.
4482
4483 Perl's C<sprintf> permits the following universally-known conversions:
4484
4485    %%   a percent sign
4486    %c   a character with the given number
4487    %s   a string
4488    %d   a signed integer, in decimal
4489    %u   an unsigned integer, in decimal
4490    %o   an unsigned integer, in octal
4491    %x   an unsigned integer, in hexadecimal
4492    %e   a floating-point number, in scientific notation
4493    %f   a floating-point number, in fixed decimal notation
4494    %g   a floating-point number, in %e or %f notation
4495
4496 In addition, Perl permits the following widely-supported conversions:
4497
4498    %X   like %x, but using upper-case letters
4499    %E   like %e, but using an upper-case "E"
4500    %G   like %g, but with an upper-case "E" (if applicable)
4501    %b   an unsigned integer, in binary
4502    %p   a pointer (outputs the Perl value's address in hexadecimal)
4503    %n   special: *stores* the number of characters output so far
4504         into the next variable in the parameter list
4505
4506 Finally, for backward (and we do mean "backward") compatibility, Perl
4507 permits these unnecessary but widely-supported conversions:
4508
4509    %i   a synonym for %d
4510    %D   a synonym for %ld
4511    %U   a synonym for %lu
4512    %O   a synonym for %lo
4513    %F   a synonym for %f
4514
4515 Note that the number of exponent digits in the scientific notation by
4516 C<%e>, C<%E>, C<%g> and C<%G> for numbers with the modulus of the
4517 exponent less than 100 is system-dependent: it may be three or less
4518 (zero-padded as necessary).  In other words, 1.23 times ten to the
4519 99th may be either "1.23e99" or "1.23e099".
4520
4521 Perl permits the following universally-known flags between the C<%>
4522 and the conversion letter:
4523
4524    space   prefix positive number with a space
4525    +       prefix positive number with a plus sign
4526    -       left-justify within the field
4527    0       use zeros, not spaces, to right-justify
4528    #       prefix non-zero octal with "0", non-zero hex with "0x"
4529    number  minimum field width
4530    .number "precision": digits after decimal point for
4531            floating-point, max length for string, minimum length
4532            for integer
4533    l       interpret integer as C type "long" or "unsigned long"
4534    h       interpret integer as C type "short" or "unsigned short"
4535            If no flags, interpret integer as C type "int" or "unsigned"
4536
4537 Perl supports parameter ordering, in other words, fetching the
4538 parameters in some explicitly specified "random" ordering as opposed
4539 to the default implicit sequential ordering.  The syntax is, instead
4540 of the C<%> and C<*>, to use C<%>I<digits>C<$> and C<*>I<digits>C<$>,
4541 where the I<digits> is the wanted index, from one upwards.  For example:
4542
4543    printf "%2\$d %1\$d\n", 12, 34;              # will print "34 12\n"
4544    printf "%*2\$d\n",      12, 3;               # will print " 12\n"
4545
4546 Note that using the reordering syntax does not interfere with the usual
4547 implicit sequential fetching of the parameters:
4548
4549    printf "%2\$d %d\n",    12, 34;              # will print "34 12\n"
4550    printf "%2\$d %d %d\n", 12, 34;              # will print "34 12 34\n"
4551    printf "%3\$d %d %d\n", 12, 34, 56;          # will print "56 12 34\n"
4552    printf "%2\$*3\$d %d\n", 12, 34, 3;          # will print " 34 12\n"
4553    printf "%*3\$2\$d %d\n", 12, 34, 3;          # will print " 34 12\n"
4554
4555 There are also two Perl-specific flags:
4556
4557     V       interpret integer as Perl's standard integer type
4558     v       interpret string as a vector of integers, output as
4559             numbers separated either by dots, or by an arbitrary
4560             string received from the argument list when the flag
4561             is preceded by C<*>
4562
4563 Where a number would appear in the flags, an asterisk (C<*>) may be
4564 used instead, in which case Perl uses the next item in the parameter
4565 list as the given number (that is, as the field width or precision).
4566 If a field width obtained through C<*> is negative, it has the same
4567 effect as the C<-> flag: left-justification.
4568
4569 The C<v> flag is useful for displaying ordinal values of characters
4570 in arbitrary strings:
4571
4572     printf "version is v%vd\n", $^V;            # Perl's version
4573     printf "address is %*vX\n", ":", $addr;     # IPv6 address
4574     printf "bits are %*vb\n", " ", $bits;       # random bitstring
4575
4576 If C<use locale> is in effect, the character used for the decimal
4577 point in formatted real numbers is affected by the LC_NUMERIC locale.
4578 See L<perllocale>.
4579
4580 If Perl understands "quads" (64-bit integers) (this requires
4581 either that the platform natively support quads or that Perl
4582 be specifically compiled to support quads), the characters
4583
4584         d u o x X b i D U O
4585
4586 print quads, and they may optionally be preceded by
4587
4588         ll L q
4589
4590 For example
4591
4592         %lld %16LX %qo
4593
4594 You can find out whether your Perl supports quads via L<Config>:
4595
4596         use Config;
4597         ($Config{use64bitint} eq 'define' || $Config{longsize} == 8) &&
4598                 print "quads\n";
4599
4600 If Perl understands "long doubles" (this requires that the platform
4601 support long doubles), the flags
4602
4603         e f g E F G
4604
4605 may optionally be preceded by
4606
4607         ll L
4608
4609 For example
4610
4611         %llf %Lg
4612
4613 You can find out whether your Perl supports long doubles via L<Config>:
4614
4615         use Config;
4616         $Config{d_longdbl} eq 'define' && print "long doubles\n";
4617
4618 =item sqrt EXPR
4619
4620 =item sqrt
4621
4622 Return the square root of EXPR.  If EXPR is omitted, returns square
4623 root of C<$_>.  Only works on non-negative operands, unless you've
4624 loaded the standard Math::Complex module.
4625
4626     use Math::Complex;
4627     print sqrt(-2);    # prints 1.4142135623731i
4628
4629 =item srand EXPR
4630
4631 =item srand
4632
4633 Sets the random number seed for the C<rand> operator.  If EXPR is
4634 omitted, uses a semi-random value supplied by the kernel (if it supports
4635 the F</dev/urandom> device) or based on the current time and process
4636 ID, among other things.  In versions of Perl prior to 5.004 the default
4637 seed was just the current C<time>.  This isn't a particularly good seed,
4638 so many old programs supply their own seed value (often C<time ^ $$> or
4639 C<time ^ ($$ + ($$ << 15))>), but that isn't necessary any more.
4640
4641 In fact, it's usually not necessary to call C<srand> at all, because if
4642 it is not called explicitly, it is called implicitly at the first use of
4643 the C<rand> operator.  However, this was not the case in version of Perl
4644 before 5.004, so if your script will run under older Perl versions, it
4645 should call C<srand>.
4646
4647 Note that you need something much more random than the default seed for
4648 cryptographic purposes.  Checksumming the compressed output of one or more
4649 rapidly changing operating system status programs is the usual method.  For
4650 example:
4651
4652     srand (time ^ $$ ^ unpack "%L*", `ps axww | gzip`);
4653
4654 If you're particularly concerned with this, see the C<Math::TrulyRandom>
4655 module in CPAN.
4656
4657 Do I<not> call C<srand> multiple times in your program unless you know
4658 exactly what you're doing and why you're doing it.  The point of the
4659 function is to "seed" the C<rand> function so that C<rand> can produce
4660 a different sequence each time you run your program.  Just do it once at the
4661 top of your program, or you I<won't> get random numbers out of C<rand>!
4662
4663 Frequently called programs (like CGI scripts) that simply use
4664
4665     time ^ $$
4666
4667 for a seed can fall prey to the mathematical property that
4668
4669     a^b == (a+1)^(b+1)
4670
4671 one-third of the time.  So don't do that.
4672
4673 =item stat FILEHANDLE
4674
4675 =item stat EXPR
4676
4677 =item stat
4678
4679 Returns a 13-element list giving the status info for a file, either
4680 the file opened via FILEHANDLE, or named by EXPR.  If EXPR is omitted,
4681 it stats C<$_>.  Returns a null list if the stat fails.  Typically used
4682 as follows:
4683
4684     ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
4685        $atime,$mtime,$ctime,$blksize,$blocks)
4686            = stat($filename);
4687
4688 Not all fields are supported on all filesystem types.  Here are the
4689 meaning of the fields:
4690
4691   0 dev      device number of filesystem
4692   1 ino      inode number
4693   2 mode     file mode  (type and permissions)
4694   3 nlink    number of (hard) links to the file
4695   4 uid      numeric user ID of file's owner
4696   5 gid      numeric group ID of file's owner
4697   6 rdev     the device identifier (special files only)
4698   7 size     total size of file, in bytes
4699   8 atime    last access time in seconds since the epoch
4700   9 mtime    last modify time in seconds since the epoch
4701  10 ctime    inode change time (NOT creation time!) in seconds since the epoch
4702  11 blksize  preferred block size for file system I/O
4703  12 blocks   actual number of blocks allocated
4704
4705 (The epoch was at 00:00 January 1, 1970 GMT.)
4706
4707 If stat is passed the special filehandle consisting of an underline, no
4708 stat is done, but the current contents of the stat structure from the
4709 last stat or filetest are returned.  Example:
4710
4711     if (-x $file && (($d) = stat(_)) && $d < 0) {
4712         print "$file is executable NFS file\n";
4713     }
4714
4715 (This works on machines only for which the device number is negative
4716 under NFS.)
4717
4718 Because the mode contains both the file type and its permissions, you
4719 should mask off the file type portion and (s)printf using a C<"%o">
4720 if you want to see the real permissions.
4721
4722     $mode = (stat($filename))[2];
4723     printf "Permissions are %04o\n", $mode & 07777;
4724
4725 In scalar context, C<stat> returns a boolean value indicating success
4726 or failure, and, if successful, sets the information associated with
4727 the special filehandle C<_>.
4728
4729 The File::stat module provides a convenient, by-name access mechanism:
4730
4731     use File::stat;
4732     $sb = stat($filename);
4733     printf "File is %s, size is %s, perm %04o, mtime %s\n",
4734         $filename, $sb->size, $sb->mode & 07777,
4735         scalar localtime $sb->mtime;
4736
4737 You can import symbolic mode constants (C<S_IF*>) and functions
4738 (C<S_IS*>) from the Fcntl module:
4739
4740     use Fcntl ':mode';
4741
4742     $mode = (stat($filename))[2];
4743
4744     $user_rwx      = ($mode & S_IRWXU) >> 6;
4745     $group_read    = ($mode & S_IRGRP) >> 3;
4746     $other_execute =  $mode & S_IXOTH;
4747
4748     printf "Permissions are %04o\n", S_ISMODE($mode), "\n";
4749
4750     $is_setuid     =  $mode & S_ISUID;
4751     $is_setgid     =  S_ISDIR($mode);
4752
4753 You could write the last two using the C<-u> and C<-d> operators.
4754 The commonly available S_IF* constants are
4755
4756     # Permissions: read, write, execute, for user, group, others.
4757
4758     S_IRWXU S_IRUSR S_IWUSR S_IXUSR
4759     S_IRWXG S_IRGRP S_IWGRP S_IXGRP
4760     S_IRWXO S_IROTH S_IWOTH S_IXOTH
4761
4762     # Setuid/Setgid/Stickiness.
4763
4764     S_ISUID S_ISGID S_ISVTX S_ISTXT
4765
4766     # File types.  Not necessarily all are available on your system.
4767
4768     S_IFREG S_IFDIR S_IFLNK S_IFBLK S_ISCHR S_IFIFO S_IFSOCK S_IFWHT S_ENFMT
4769
4770     # The following are compatibility aliases for S_IRUSR, S_IWUSR, S_IXUSR.
4771
4772     S_IREAD S_IWRITE S_IEXEC
4773
4774 and the S_IF* functions are
4775
4776     S_IFMODE($mode)     the part of $mode containing the permission bits
4777                         and the setuid/setgid/sticky bits
4778
4779     S_IFMT($mode)       the part of $mode containing the file type
4780                         which can be bit-anded with e.g. S_IFREG
4781                         or with the following functions
4782
4783     # The operators -f, -d, -l, -b, -c, -p, and -s.
4784
4785     S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
4786     S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)
4787
4788     # No direct -X operator counterpart, but for the first one
4789     # the -g operator is often equivalent.  The ENFMT stands for
4790     # record flocking enforcement, a platform-dependent feature.
4791
4792     S_ISENFMT($mode) S_ISWHT($mode)
4793
4794 See your native chmod(2) and stat(2) documentation for more details
4795 about the S_* constants.
4796
4797 =item study SCALAR
4798
4799 =item study
4800
4801 Takes extra time to study SCALAR (C<$_> if unspecified) in anticipation of
4802 doing many pattern matches on the string before it is next modified.
4803 This may or may not save time, depending on the nature and number of
4804 patterns you are searching on, and on the distribution of character
4805 frequencies in the string to be searched--you probably want to compare
4806 run times with and without it to see which runs faster.  Those loops
4807 which scan for many short constant strings (including the constant
4808 parts of more complex patterns) will benefit most.  You may have only
4809 one C<study> active at a time--if you study a different scalar the first
4810 is "unstudied".  (The way C<study> works is this: a linked list of every
4811 character in the string to be searched is made, so we know, for
4812 example, where all the C<'k'> characters are.  From each search string,
4813 the rarest character is selected, based on some static frequency tables
4814 constructed from some C programs and English text.  Only those places
4815 that contain this "rarest" character are examined.)
4816
4817 For example, here is a loop that inserts index producing entries
4818 before any line containing a certain pattern:
4819
4820     while (<>) {
4821         study;
4822         print ".IX foo\n"       if /\bfoo\b/;
4823         print ".IX bar\n"       if /\bbar\b/;
4824         print ".IX blurfl\n"    if /\bblurfl\b/;
4825         # ...
4826         print;
4827     }
4828
4829 In searching for C</\bfoo\b/>, only those locations in C<$_> that contain C<f>
4830 will be looked at, because C<f> is rarer than C<o>.  In general, this is
4831 a big win except in pathological cases.  The only question is whether
4832 it saves you more time than it took to build the linked list in the
4833 first place.
4834
4835 Note that if you have to look for strings that you don't know till
4836 runtime, you can build an entire loop as a string and C<eval> that to
4837 avoid recompiling all your patterns all the time.  Together with
4838 undefining C<$/> to input entire files as one record, this can be very
4839 fast, often faster than specialized programs like fgrep(1).  The following
4840 scans a list of files (C<@files>) for a list of words (C<@words>), and prints
4841 out the names of those files that contain a match:
4842
4843     $search = 'while (<>) { study;';
4844     foreach $word (@words) {
4845         $search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
4846     }
4847     $search .= "}";
4848     @ARGV = @files;
4849     undef $/;
4850     eval $search;               # this screams
4851     $/ = "\n";          # put back to normal input delimiter
4852     foreach $file (sort keys(%seen)) {
4853         print $file, "\n";
4854     }
4855
4856 =item sub BLOCK
4857
4858 =item sub NAME
4859
4860 =item sub NAME BLOCK
4861
4862 This is subroutine definition, not a real function I<per se>.  With just a
4863 NAME (and possibly prototypes or attributes), it's just a forward declaration.
4864 Without a NAME, it's an anonymous function declaration, and does actually
4865 return a value: the CODE ref of the closure you just created.  See L<perlsub>
4866 and L<perlref> for details.
4867
4868 =item substr EXPR,OFFSET,LENGTH,REPLACEMENT
4869
4870 =item substr EXPR,OFFSET,LENGTH
4871
4872 =item substr EXPR,OFFSET
4873
4874 Extracts a substring out of EXPR and returns it.  First character is at
4875 offset C<0>, or whatever you've set C<$[> to (but don't do that).
4876 If OFFSET is negative (or more precisely, less than C<$[>), starts
4877 that far from the end of the string.  If LENGTH is omitted, returns
4878 everything to the end of the string.  If LENGTH is negative, leaves that
4879 many characters off the end of the string.
4880
4881 You can use the substr() function as an lvalue, in which case EXPR
4882 must itself be an lvalue.  If you assign something shorter than LENGTH,
4883 the string will shrink, and if you assign something longer than LENGTH,
4884 the string will grow to accommodate it.  To keep the string the same
4885 length you may need to pad or chop your value using C<sprintf>.
4886
4887 If OFFSET and LENGTH specify a substring that is partly outside the
4888 string, only the part within the string is returned.  If the substring
4889 is beyond either end of the string, substr() returns the undefined
4890 value and produces a warning.  When used as an lvalue, specifying a
4891 substring that is entirely outside the string is a fatal error.
4892 Here's an example showing the behavior for boundary cases:
4893
4894     my $name = 'fred';
4895     substr($name, 4) = 'dy';            # $name is now 'freddy'
4896     my $null = substr $name, 6, 2;      # returns '' (no warning)
4897     my $oops = substr $name, 7;         # returns undef, with warning
4898     substr($name, 7) = 'gap';           # fatal error
4899
4900 An alternative to using substr() as an lvalue is to specify the
4901 replacement string as the 4th argument.  This allows you to replace
4902 parts of the EXPR and return what was there before in one operation,
4903 just as you can with splice().
4904
4905 =item symlink OLDFILE,NEWFILE
4906
4907 Creates a new filename symbolically linked to the old filename.
4908 Returns C<1> for success, C<0> otherwise.  On systems that don't support
4909 symbolic links, produces a fatal error at run time.  To check for that,
4910 use eval:
4911
4912     $symlink_exists = eval { symlink("",""); 1 };
4913
4914 =item syscall LIST
4915
4916 Calls the system call specified as the first element of the list,
4917 passing the remaining elements as arguments to the system call.  If
4918 unimplemented, produces a fatal error.  The arguments are interpreted
4919 as follows: if a given argument is numeric, the argument is passed as
4920 an int.  If not, the pointer to the string value is passed.  You are
4921 responsible to make sure a string is pre-extended long enough to
4922 receive any result that might be written into a string.  You can't use a
4923 string literal (or other read-only string) as an argument to C<syscall>
4924 because Perl has to assume that any string pointer might be written
4925 through.  If your
4926 integer arguments are not literals and have never been interpreted in a
4927 numeric context, you may need to add C<0> to them to force them to look
4928 like numbers.  This emulates the C<syswrite> function (or vice versa):
4929
4930     require 'syscall.ph';               # may need to run h2ph
4931     $s = "hi there\n";
4932     syscall(&SYS_write, fileno(STDOUT), $s, length $s);
4933
4934 Note that Perl supports passing of up to only 14 arguments to your system call,
4935 which in practice should usually suffice.
4936
4937 Syscall returns whatever value returned by the system call it calls.
4938 If the system call fails, C<syscall> returns C<-1> and sets C<$!> (errno).
4939 Note that some system calls can legitimately return C<-1>.  The proper
4940 way to handle such calls is to assign C<$!=0;> before the call and
4941 check the value of C<$!> if syscall returns C<-1>.
4942
4943 There's a problem with C<syscall(&SYS_pipe)>: it returns the file
4944 number of the read end of the pipe it creates.  There is no way
4945 to retrieve the file number of the other end.  You can avoid this
4946 problem by using C<pipe> instead.
4947
4948 =item sysopen FILEHANDLE,FILENAME,MODE
4949
4950 =item sysopen FILEHANDLE,FILENAME,MODE,PERMS
4951
4952 Opens the file whose filename is given by FILENAME, and associates it
4953 with FILEHANDLE.  If FILEHANDLE is an expression, its value is used as
4954 the name of the real filehandle wanted.  This function calls the
4955 underlying operating system's C<open> function with the parameters
4956 FILENAME, MODE, PERMS.
4957
4958 The possible values and flag bits of the MODE parameter are
4959 system-dependent; they are available via the standard module C<Fcntl>.
4960 See the documentation of your operating system's C<open> to see which
4961 values and flag bits are available.  You may combine several flags
4962 using the C<|>-operator.
4963
4964 Some of the most common values are C<O_RDONLY> for opening the file in
4965 read-only mode, C<O_WRONLY> for opening the file in write-only mode,
4966 and C<O_RDWR> for opening the file in read-write mode, and.
4967
4968 For historical reasons, some values work on almost every system
4969 supported by perl: zero means read-only, one means write-only, and two
4970 means read/write.  We know that these values do I<not> work under
4971 OS/390 & VM/ESA Unix and on the Macintosh; you probably don't want to
4972 use them in new code.
4973
4974 If the file named by FILENAME does not exist and the C<open> call creates
4975 it (typically because MODE includes the C<O_CREAT> flag), then the value of
4976 PERMS specifies the permissions of the newly created file.  If you omit
4977 the PERMS argument to C<sysopen>, Perl uses the octal value C<0666>.
4978 These permission values need to be in octal, and are modified by your
4979 process's current C<umask>.
4980
4981 In many systems the C<O_EXCL> flag is available for opening files in
4982 exclusive mode.  This is B<not> locking: exclusiveness means here that
4983 if the file already exists, sysopen() fails.  The C<O_EXCL> wins
4984 C<O_TRUNC>.
4985
4986 Sometimes you may want to truncate an already-existing file: C<O_TRUNC>.
4987
4988 You should seldom if ever use C<0644> as argument to C<sysopen>, because
4989 that takes away the user's option to have a more permissive umask.
4990 Better to omit it.  See the perlfunc(1) entry on C<umask> for more
4991 on this.
4992
4993 Note that C<sysopen> depends on the fdopen() C library function.
4994 On many UNIX systems, fdopen() is known to fail when file descriptors
4995 exceed a certain value, typically 255. If you need more file
4996 descriptors than that, consider rebuilding Perl to use the C<sfio>
4997 library, or perhaps using the POSIX::open() function.
4998
4999 See L<perlopentut> for a kinder, gentler explanation of opening files.
5000
5001 =item sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
5002
5003 =item sysread FILEHANDLE,SCALAR,LENGTH
5004
5005 Attempts to read LENGTH bytes of data into variable SCALAR from the
5006 specified FILEHANDLE, using the system call read(2).  It bypasses stdio,
5007 so mixing this with other kinds of reads, C<print>, C<write>,
5008 C<seek>, C<tell>, or C<eof> can cause confusion because stdio
5009 usually buffers data.  Returns the number of bytes actually read, C<0>
5010 at end of file, or undef if there was an error.  SCALAR will be grown or
5011 shrunk so that the last byte actually read is the last byte of the
5012 scalar after the read.
5013
5014 An OFFSET may be specified to place the read data at some place in the
5015 string other than the beginning.  A negative OFFSET specifies
5016 placement at that many bytes counting backwards from the end of the
5017 string.  A positive OFFSET greater than the length of SCALAR results
5018 in the string being padded to the required size with C<"\0"> bytes before
5019 the result of the read is appended.
5020
5021 There is no syseof() function, which is ok, since eof() doesn't work
5022 very well on device files (like ttys) anyway.  Use sysread() and check
5023 for a return value for 0 to decide whether you're done.
5024
5025 =item sysseek FILEHANDLE,POSITION,WHENCE
5026
5027 Sets FILEHANDLE's system position using the system call lseek(2).  It
5028 bypasses stdio, so mixing this with reads (other than C<sysread>),
5029 C<print>, C<write>, C<seek>, C<tell>, or C<eof> may cause confusion.
5030 FILEHANDLE may be an expression whose value gives the name of the
5031 filehandle.  The values for WHENCE are C<0> to set the new position to
5032 POSITION, C<1> to set the it to the current position plus POSITION,
5033 and C<2> to set it to EOF plus POSITION (typically negative).  For
5034 WHENCE, you may also use the constants C<SEEK_SET>, C<SEEK_CUR>, and
5035 C<SEEK_END> (start of the file, current position, end of the file)
5036 from the Fcntl module.
5037
5038 Returns the new position, or the undefined value on failure.  A position
5039 of zero is returned as the string C<"0 but true">; thus C<sysseek> returns
5040 true on success and false on failure, yet you can still easily determine
5041 the new position.
5042
5043 =item system LIST
5044
5045 =item system PROGRAM LIST
5046
5047 Does exactly the same thing as C<exec LIST>, except that a fork is
5048 done first, and the parent process waits for the child process to
5049 complete.  Note that argument processing varies depending on the
5050 number of arguments.  If there is more than one argument in LIST,
5051 or if LIST is an array with more than one value, starts the program
5052 given by the first element of the list with arguments given by the
5053 rest of the list.  If there is only one scalar argument, the argument
5054 is checked for shell metacharacters, and if there are any, the
5055 entire argument is passed to the system's command shell for parsing
5056 (this is C</bin/sh -c> on Unix platforms, but varies on other
5057 platforms).  If there are no shell metacharacters in the argument,
5058 it is split into words and passed directly to C<execvp>, which is
5059 more efficient.
5060
5061 Beginning with v5.6.0, Perl will attempt to flush all files opened for
5062 output before any operation that may do a fork, but this may not be
5063 supported on some platforms (see L<perlport>).  To be safe, you may need
5064 to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
5065 of C<IO::Handle> on any open handles.
5066
5067 The return value is the exit status of the program as
5068 returned by the C<wait> call.  To get the actual exit value divide by
5069 256.  See also L</exec>.  This is I<not> what you want to use to capture
5070 the output from a command, for that you should use merely backticks or
5071 C<qx//>, as described in L<perlop/"`STRING`">.  Return value of -1
5072 indicates a failure to start the program (inspect $! for the reason).
5073
5074 Like C<exec>, C<system> allows you to lie to a program about its name if
5075 you use the C<system PROGRAM LIST> syntax.  Again, see L</exec>.
5076
5077 Because C<system> and backticks block C<SIGINT> and C<SIGQUIT>, killing the
5078 program they're running doesn't actually interrupt your program.
5079
5080     @args = ("command", "arg1", "arg2");
5081     system(@args) == 0
5082          or die "system @args failed: $?"
5083
5084 You can check all the failure possibilities by inspecting
5085 C<$?> like this:
5086
5087     $exit_value  = $? >> 8;
5088     $signal_num  = $? & 127;
5089     $dumped_core = $? & 128;
5090
5091 When the arguments get executed via the system shell, results
5092 and return codes will be subject to its quirks and capabilities.
5093 See L<perlop/"`STRING`"> and L</exec> for details.
5094
5095 =item syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
5096
5097 =item syswrite FILEHANDLE,SCALAR,LENGTH
5098
5099 =item syswrite FILEHANDLE,SCALAR
5100
5101 Attempts to write LENGTH bytes of data from variable SCALAR to the
5102 specified FILEHANDLE, using the system call write(2).  If LENGTH
5103 is not specified, writes whole SCALAR.  It bypasses stdio, so mixing
5104 this with reads (other than C<sysread())>, C<print>, C<write>,
5105 C<seek>, C<tell>, or C<eof> may cause confusion because stdio
5106 usually buffers data.  Returns the number of bytes actually written,
5107 or C<undef> if there was an error.  If the LENGTH is greater than
5108 the available data in the SCALAR after the OFFSET, only as much
5109 data as is available will be written.
5110
5111 An OFFSET may be specified to write the data from some part of the
5112 string other than the beginning.  A negative OFFSET specifies writing
5113 that many bytes counting backwards from the end of the string.  In the
5114 case the SCALAR is empty you can use OFFSET but only zero offset.
5115
5116 =item tell FILEHANDLE
5117
5118 =item tell
5119
5120 Returns the current position for FILEHANDLE, or -1 on error.  FILEHANDLE
5121 may be an expression whose value gives the name of the actual filehandle.
5122 If FILEHANDLE is omitted, assumes the file last read.
5123
5124 The return value of tell() for the standard streams like the STDIN
5125 depends on the operating system: it may return -1 or something else.
5126 tell() on pipes, fifos, and sockets usually returns -1.
5127
5128 There is no C<systell> function.  Use C<sysseek(FH, 0, 1)> for that.
5129
5130 =item telldir DIRHANDLE
5131
5132 Returns the current position of the C<readdir> routines on DIRHANDLE.
5133 Value may be given to C<seekdir> to access a particular location in a
5134 directory.  Has the same caveats about possible directory compaction as
5135 the corresponding system library routine.
5136
5137 =item tie VARIABLE,CLASSNAME,LIST
5138
5139 This function binds a variable to a package class that will provide the
5140 implementation for the variable.  VARIABLE is the name of the variable
5141 to be enchanted.  CLASSNAME is the name of a class implementing objects
5142 of correct type.  Any additional arguments are passed to the C<new>
5143 method of the class (meaning C<TIESCALAR>, C<TIEHANDLE>, C<TIEARRAY>,
5144 or C<TIEHASH>).  Typically these are arguments such as might be passed
5145 to the C<dbm_open()> function of C.  The object returned by the C<new>
5146 method is also returned by the C<tie> function, which would be useful
5147 if you want to access other methods in CLASSNAME.
5148
5149 Note that functions such as C<keys> and C<values> may return huge lists
5150 when used on large objects, like DBM files.  You may prefer to use the
5151 C<each> function to iterate over such.  Example:
5152
5153     # print out history file offsets
5154     use NDBM_File;
5155     tie(%HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
5156     while (($key,$val) = each %HIST) {
5157         print $key, ' = ', unpack('L',$val), "\n";
5158     }
5159     untie(%HIST);
5160
5161 A class implementing a hash should have the following methods:
5162
5163     TIEHASH classname, LIST
5164     FETCH this, key
5165     STORE this, key, value
5166     DELETE this, key
5167     CLEAR this
5168     EXISTS this, key
5169     FIRSTKEY this
5170     NEXTKEY this, lastkey
5171     DESTROY this
5172     UNTIE this
5173
5174 A class implementing an ordinary array should have the following methods:
5175
5176     TIEARRAY classname, LIST
5177     FETCH this, key
5178     STORE this, key, value
5179     FETCHSIZE this
5180     STORESIZE this, count
5181     CLEAR this
5182     PUSH this, LIST
5183     POP this
5184     SHIFT this
5185     UNSHIFT this, LIST
5186     SPLICE this, offset, length, LIST
5187     EXTEND this, count
5188     DESTROY this
5189     UNTIE this
5190
5191 A class implementing a file handle should have the following methods:
5192
5193     TIEHANDLE classname, LIST
5194     READ this, scalar, length, offset
5195     READLINE this
5196     GETC this
5197     WRITE this, scalar, length, offset
5198     PRINT this, LIST
5199     PRINTF this, format, LIST
5200     BINMODE this
5201     EOF this
5202     FILENO this
5203     SEEK this, position, whence
5204     TELL this
5205     OPEN this, mode, LIST
5206     CLOSE this
5207     DESTROY this
5208     UNTIE this
5209
5210 A class implementing a scalar should have the following methods:
5211
5212     TIESCALAR classname, LIST
5213     FETCH this,
5214     STORE this, value
5215     DESTROY this
5216     UNTIE this
5217
5218 Not all methods indicated above need be implemented.  See L<perltie>,
5219 L<Tie::Hash>, L<Tie::Array>, L<Tie::Scalar>, and L<Tie::Handle>.
5220
5221 Unlike C<dbmopen>, the C<tie> function will not use or require a module
5222 for you--you need to do that explicitly yourself.  See L<DB_File>
5223 or the F<Config> module for interesting C<tie> implementations.
5224
5225 For further details see L<perltie>, L<"tied VARIABLE">.
5226
5227 =item tied VARIABLE
5228
5229 Returns a reference to the object underlying VARIABLE (the same value
5230 that was originally returned by the C<tie> call that bound the variable
5231 to a package.)  Returns the undefined value if VARIABLE isn't tied to a
5232 package.
5233
5234 =item time
5235
5236 Returns the number of non-leap seconds since whatever time the system
5237 considers to be the epoch (that's 00:00:00, January 1, 1904 for MacOS,
5238 and 00:00:00 UTC, January 1, 1970 for most other systems).
5239 Suitable for feeding to C<gmtime> and C<localtime>.
5240
5241 For measuring time in better granularity than one second,
5242 you may use either the Time::HiRes module from CPAN, or
5243 if you have gettimeofday(2), you may be able to use the
5244 C<syscall> interface of Perl, see L<perlfaq8> for details.
5245
5246 =item times
5247
5248 Returns a four-element list giving the user and system times, in
5249 seconds, for this process and the children of this process.
5250
5251     ($user,$system,$cuser,$csystem) = times;
5252
5253 =item tr///
5254
5255 The transliteration operator.  Same as C<y///>.  See L<perlop>.
5256
5257 =item truncate FILEHANDLE,LENGTH
5258
5259 =item truncate EXPR,LENGTH
5260
5261 Truncates the file opened on FILEHANDLE, or named by EXPR, to the
5262 specified length.  Produces a fatal error if truncate isn't implemented
5263 on your system.  Returns true if successful, the undefined value
5264 otherwise.
5265
5266 =item uc EXPR
5267
5268 =item uc
5269
5270 Returns an uppercased version of EXPR.  This is the internal function
5271 implementing the C<\U> escape in double-quoted strings.
5272 Respects current LC_CTYPE locale if C<use locale> in force.  See L<perllocale>.
5273 Under Unicode (C<use utf8>) it uses the standard Unicode uppercase mappings.  (It
5274 does not attempt to do titlecase mapping on initial letters.  See C<ucfirst> for that.)
5275
5276 If EXPR is omitted, uses C<$_>.
5277
5278 =item ucfirst EXPR
5279
5280 =item ucfirst
5281
5282 Returns the value of EXPR with the first character
5283 in uppercase (titlecase in Unicode).  This is
5284 the internal function implementing the C<\u> escape in double-quoted strings.
5285 Respects current LC_CTYPE locale if C<use locale> in force.  See L<perllocale>
5286 and L<utf8>.
5287
5288 If EXPR is omitted, uses C<$_>.
5289
5290 =item umask EXPR
5291
5292 =item umask
5293
5294 Sets the umask for the process to EXPR and returns the previous value.
5295 If EXPR is omitted, merely returns the current umask.
5296
5297 The Unix permission C<rwxr-x---> is represented as three sets of three
5298 bits, or three octal digits: C<0750> (the leading 0 indicates octal
5299 and isn't one of the digits).  The C<umask> value is such a number
5300 representing disabled permissions bits.  The permission (or "mode")
5301 values you pass C<mkdir> or C<sysopen> are modified by your umask, so
5302 even if you tell C<sysopen> to create a file with permissions C<0777>,
5303 if your umask is C<0022> then the file will actually be created with
5304 permissions C<0755>.  If your C<umask> were C<0027> (group can't
5305 write; others can't read, write, or execute), then passing
5306 C<sysopen> C<0666> would create a file with mode C<0640> (C<0666 &~
5307 027> is C<0640>).
5308
5309 Here's some advice: supply a creation mode of C<0666> for regular
5310 files (in C<sysopen>) and one of C<0777> for directories (in
5311 C<mkdir>) and executable files.  This gives users the freedom of
5312 choice: if they want protected files, they might choose process umasks
5313 of C<022>, C<027>, or even the particularly antisocial mask of C<077>.
5314 Programs should rarely if ever make policy decisions better left to
5315 the user.  The exception to this is when writing files that should be
5316 kept private: mail files, web browser cookies, I<.rhosts> files, and
5317 so on.
5318
5319 If umask(2) is not implemented on your system and you are trying to
5320 restrict access for I<yourself> (i.e., (EXPR & 0700) > 0), produces a
5321 fatal error at run time.  If umask(2) is not implemented and you are
5322 not trying to restrict access for yourself, returns C<undef>.
5323
5324 Remember that a umask is a number, usually given in octal; it is I<not> a
5325 string of octal digits.  See also L</oct>, if all you have is a string.
5326
5327 =item undef EXPR
5328
5329 =item undef
5330
5331 Undefines the value of EXPR, which must be an lvalue.  Use only on a
5332 scalar value, an array (using C<@>), a hash (using C<%>), a subroutine
5333 (using C<&>), or a typeglob (using <*>).  (Saying C<undef $hash{$key}>
5334 will probably not do what you expect on most predefined variables or
5335 DBM list values, so don't do that; see L<delete>.)  Always returns the
5336 undefined value.  You can omit the EXPR, in which case nothing is
5337 undefined, but you still get an undefined value that you could, for
5338 instance, return from a subroutine, assign to a variable or pass as a
5339 parameter.  Examples:
5340
5341     undef $foo;
5342     undef $bar{'blurfl'};      # Compare to: delete $bar{'blurfl'};
5343     undef @ary;
5344     undef %hash;
5345     undef &mysub;
5346     undef *xyz;       # destroys $xyz, @xyz, %xyz, &xyz, etc.
5347     return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
5348     select undef, undef, undef, 0.25;
5349     ($a, $b, undef, $c) = &foo;       # Ignore third value returned
5350
5351 Note that this is a unary operator, not a list operator.
5352
5353 =item unlink LIST
5354
5355 =item unlink
5356
5357 Deletes a list of files.  Returns the number of files successfully
5358 deleted.
5359
5360     $cnt = unlink 'a', 'b', 'c';
5361     unlink @goners;
5362     unlink <*.bak>;
5363
5364 Note: C<unlink> will not delete directories unless you are superuser and
5365 the B<-U> flag is supplied to Perl.  Even if these conditions are
5366 met, be warned that unlinking a directory can inflict damage on your
5367 filesystem.  Use C<rmdir> instead.
5368
5369 If LIST is omitted, uses C<$_>.
5370
5371 =item unpack TEMPLATE,EXPR
5372
5373 C<unpack> does the reverse of C<pack>: it takes a string
5374 and expands it out into a list of values.
5375 (In scalar context, it returns merely the first value produced.)
5376
5377 The string is broken into chunks described by the TEMPLATE.  Each chunk
5378 is converted separately to a value.  Typically, either the string is a result
5379 of C<pack>, or the bytes of the string represent a C structure of some
5380 kind.
5381
5382 The TEMPLATE has the same format as in the C<pack> function.
5383 Here's a subroutine that does substring:
5384
5385     sub substr {
5386         my($what,$where,$howmuch) = @_;
5387         unpack("x$where a$howmuch", $what);
5388     }
5389
5390 and then there's
5391
5392     sub ordinal { unpack("c",$_[0]); } # same as ord()
5393
5394 In addition to fields allowed in pack(), you may prefix a field with
5395 a %<number> to indicate that
5396 you want a <number>-bit checksum of the items instead of the items
5397 themselves.  Default is a 16-bit checksum.  Checksum is calculated by
5398 summing numeric values of expanded values (for string fields the sum of
5399 C<ord($char)> is taken, for bit fields the sum of zeroes and ones).
5400
5401 For example, the following
5402 computes the same number as the System V sum program:
5403
5404     $checksum = do {
5405         local $/;  # slurp!
5406         unpack("%32C*",<>) % 65535;
5407     };
5408
5409 The following efficiently counts the number of set bits in a bit vector:
5410
5411     $setbits = unpack("%32b*", $selectmask);
5412
5413 The C<p> and C<P> formats should be used with care.  Since Perl
5414 has no way of checking whether the value passed to C<unpack()>
5415 corresponds to a valid memory location, passing a pointer value that's
5416 not known to be valid is likely to have disastrous consequences.
5417
5418 If the repeat count of a field is larger than what the remainder of
5419 the input string allows, repeat count is decreased.  If the input string
5420 is longer than one described by the TEMPLATE, the rest is ignored.
5421
5422 See L</pack> for more examples and notes.
5423
5424 =item untie VARIABLE
5425
5426 Breaks the binding between a variable and a package.  (See C<tie>.)
5427
5428 =item unshift ARRAY,LIST
5429
5430 Does the opposite of a C<shift>.  Or the opposite of a C<push>,
5431 depending on how you look at it.  Prepends list to the front of the
5432 array, and returns the new number of elements in the array.
5433
5434     unshift(ARGV, '-e') unless $ARGV[0] =~ /^-/;
5435
5436 Note the LIST is prepended whole, not one element at a time, so the
5437 prepended elements stay in the same order.  Use C<reverse> to do the
5438 reverse.
5439
5440 =item use Module VERSION LIST
5441
5442 =item use Module VERSION
5443
5444 =item use Module LIST
5445
5446 =item use Module
5447
5448 =item use VERSION
5449
5450 Imports some semantics into the current package from the named module,
5451 generally by aliasing certain subroutine or variable names into your
5452 package.  It is exactly equivalent to
5453
5454     BEGIN { require Module; import Module LIST; }
5455
5456 except that Module I<must> be a bareword.
5457
5458 VERSION, which can be specified as a literal of the form v5.6.1, demands
5459 that the current version of Perl (C<$^V> or $PERL_VERSION) be at least
5460 as recent as that version.  (For compatibility with older versions of Perl,
5461 a numeric literal will also be interpreted as VERSION.)  If the version
5462 of the running Perl interpreter is less than VERSION, then an error
5463 message is printed and Perl exits immediately without attempting to
5464 parse the rest of the file.  Compare with L</require>, which can do a
5465 similar check at run time.
5466
5467     use v5.6.1;         # compile time version check
5468     use 5.6.1;          # ditto
5469     use 5.005_03;       # float version allowed for compatibility
5470
5471 This is often useful if you need to check the current Perl version before
5472 C<use>ing library modules that have changed in incompatible ways from
5473 older versions of Perl.  (We try not to do this more than we have to.)
5474
5475 The C<BEGIN> forces the C<require> and C<import> to happen at compile time.  The
5476 C<require> makes sure the module is loaded into memory if it hasn't been
5477 yet.  The C<import> is not a builtin--it's just an ordinary static method
5478 call into the C<Module> package to tell the module to import the list of
5479 features back into the current package.  The module can implement its
5480 C<import> method any way it likes, though most modules just choose to
5481 derive their C<import> method via inheritance from the C<Exporter> class that
5482 is defined in the C<Exporter> module.  See L<Exporter>.  If no C<import>
5483 method can be found then the call is skipped.
5484
5485 If you do not want to call the package's C<import> method (for instance,
5486 to stop your namespace from being altered), explicitly supply the empty list:
5487
5488     use Module ();
5489
5490 That is exactly equivalent to
5491
5492     BEGIN { require Module }
5493
5494 If the VERSION argument is present between Module and LIST, then the
5495 C<use> will call the VERSION method in class Module with the given
5496 version as an argument.  The default VERSION method, inherited from
5497 the UNIVERSAL class, croaks if the given version is larger than the
5498 value of the variable C<$Module::VERSION>.
5499
5500 Again, there is a distinction between omitting LIST (C<import> called
5501 with no arguments) and an explicit empty LIST C<()> (C<import> not
5502 called).  Note that there is no comma after VERSION!
5503
5504 Because this is a wide-open interface, pragmas (compiler directives)
5505 are also implemented this way.  Currently implemented pragmas are:
5506
5507     use constant;
5508     use diagnostics;
5509     use integer;
5510     use sigtrap  qw(SEGV BUS);
5511     use strict   qw(subs vars refs);
5512     use subs     qw(afunc blurfl);
5513     use warnings qw(all);
5514
5515 Some of these pseudo-modules import semantics into the current
5516 block scope (like C<strict> or C<integer>, unlike ordinary modules,
5517 which import symbols into the current package (which are effective
5518 through the end of the file).
5519
5520 There's a corresponding C<no> command that unimports meanings imported
5521 by C<use>, i.e., it calls C<unimport Module LIST> instead of C<import>.
5522
5523     no integer;
5524     no strict 'refs';
5525     no warnings;
5526
5527 If no C<unimport> method can be found the call fails with a fatal error.
5528
5529 See L<perlmodlib> for a list of standard modules and pragmas.  See L<perlrun>
5530 for the C<-M> and C<-m> command-line options to perl that give C<use>
5531 functionality from the command-line.
5532
5533 =item utime LIST
5534
5535 Changes the access and modification times on each file of a list of
5536 files.  The first two elements of the list must be the NUMERICAL access
5537 and modification times, in that order.  Returns the number of files
5538 successfully changed.  The inode change time of each file is set
5539 to the current time.  This code has the same effect as the C<touch>
5540 command if the files already exist:
5541
5542     #!/usr/bin/perl
5543     $now = time;
5544     utime $now, $now, @ARGV;
5545
5546 =item values HASH
5547
5548 Returns a list consisting of all the values of the named hash.  (In a
5549 scalar context, returns the number of values.)  The values are
5550 returned in an apparently random order.  The actual random order is
5551 subject to change in future versions of perl, but it is guaranteed to
5552 be the same order as either the C<keys> or C<each> function would
5553 produce on the same (unmodified) hash.
5554
5555 Note that the values are not copied, which means modifying them will
5556 modify the contents of the hash:
5557
5558     for (values %hash)      { s/foo/bar/g }   # modifies %hash values
5559     for (@hash{keys %hash}) { s/foo/bar/g }   # same
5560
5561 As a side effect, calling values() resets the HASH's internal iterator.
5562 See also C<keys>, C<each>, and C<sort>.
5563
5564 =item vec EXPR,OFFSET,BITS
5565
5566 Treats the string in EXPR as a bit vector made up of elements of
5567 width BITS, and returns the value of the element specified by OFFSET
5568 as an unsigned integer.  BITS therefore specifies the number of bits
5569 that are reserved for each element in the bit vector.  This must
5570 be a power of two from 1 to 32 (or 64, if your platform supports
5571 that).
5572
5573 If BITS is 8, "elements" coincide with bytes of the input string.
5574
5575 If BITS is 16 or more, bytes of the input string are grouped into chunks
5576 of size BITS/8, and each group is converted to a number as with
5577 pack()/unpack() with big-endian formats C<n>/C<N> (and analogously
5578 for BITS==64).  See L<"pack"> for details.
5579
5580 If bits is 4 or less, the string is broken into bytes, then the bits
5581 of each byte are broken into 8/BITS groups.  Bits of a byte are
5582 numbered in a little-endian-ish way, as in C<0x01>, C<0x02>,
5583 C<0x04>, C<0x08>, C<0x10>, C<0x20>, C<0x40>, C<0x80>.  For example,
5584 breaking the single input byte C<chr(0x36)> into two groups gives a list
5585 C<(0x6, 0x3)>; breaking it into 4 groups gives C<(0x2, 0x1, 0x3, 0x0)>.
5586
5587 C<vec> may also be assigned to, in which case parentheses are needed
5588 to give the expression the correct precedence as in
5589
5590     vec($image, $max_x * $x + $y, 8) = 3;
5591
5592 If the selected element is outside the string, the value 0 is returned.
5593 If an element off the end of the string is written to, Perl will first
5594 extend the string with sufficiently many zero bytes.   It is an error
5595 to try to write off the beginning of the string (i.e. negative OFFSET).
5596
5597 The string should not contain any character with the value > 255 (which
5598 can only happen if you're using UTF8 encoding).  If it does, it will be
5599 treated as something which is not UTF8 encoded.  When the C<vec> was
5600 assigned to, other parts of your program will also no longer consider the
5601 string to be UTF8 encoded.  In other words, if you do have such characters
5602 in your string, vec() will operate on the actual byte string, and not the
5603 conceptual character string.
5604
5605 Strings created with C<vec> can also be manipulated with the logical
5606 operators C<|>, C<&>, C<^>, and C<~>.  These operators will assume a bit
5607 vector operation is desired when both operands are strings.
5608 See L<perlop/"Bitwise String Operators">.
5609
5610 The following code will build up an ASCII string saying C<'PerlPerlPerl'>.
5611 The comments show the string after each step.  Note that this code works
5612 in the same way on big-endian or little-endian machines.
5613
5614     my $foo = '';
5615     vec($foo,  0, 32) = 0x5065726C;     # 'Perl'
5616
5617     # $foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
5618     print vec($foo, 0, 8);              # prints 80 == 0x50 == ord('P')
5619
5620     vec($foo,  2, 16) = 0x5065;         # 'PerlPe'
5621     vec($foo,  3, 16) = 0x726C;         # 'PerlPerl'
5622     vec($foo,  8,  8) = 0x50;           # 'PerlPerlP'
5623     vec($foo,  9,  8) = 0x65;           # 'PerlPerlPe'
5624     vec($foo, 20,  4) = 2;              # 'PerlPerlPe'   . "\x02"
5625     vec($foo, 21,  4) = 7;              # 'PerlPerlPer'
5626                                         # 'r' is "\x72"
5627     vec($foo, 45,  2) = 3;              # 'PerlPerlPer'  . "\x0c"
5628     vec($foo, 93,  1) = 1;              # 'PerlPerlPer'  . "\x2c"
5629     vec($foo, 94,  1) = 1;              # 'PerlPerlPerl'
5630                                         # 'l' is "\x6c"
5631
5632 To transform a bit vector into a string or list of 0's and 1's, use these:
5633
5634     $bits = unpack("b*", $vector);
5635     @bits = split(//, unpack("b*", $vector));
5636
5637 If you know the exact length in bits, it can be used in place of the C<*>.
5638
5639 Here is an example to illustrate how the bits actually fall in place:
5640
5641     #!/usr/bin/perl -wl
5642
5643     print <<'EOT';
5644                                       0         1         2         3
5645                        unpack("V",$_) 01234567890123456789012345678901
5646     ------------------------------------------------------------------
5647     EOT
5648
5649     for $w (0..3) {
5650         $width = 2**$w;
5651         for ($shift=0; $shift < $width; ++$shift) {
5652             for ($off=0; $off < 32/$width; ++$off) {
5653                 $str = pack("B*", "0"x32);
5654                 $bits = (1<<$shift);
5655                 vec($str, $off, $width) = $bits;
5656                 $res = unpack("b*",$str);
5657                 $val = unpack("V", $str);
5658                 write;
5659             }
5660         }
5661     }
5662
5663     format STDOUT =
5664     vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
5665     $off, $width, $bits, $val, $res
5666     .
5667     __END__
5668
5669 Regardless of the machine architecture on which it is run, the above
5670 example should print the following table:
5671
5672                                       0         1         2         3
5673                        unpack("V",$_) 01234567890123456789012345678901
5674     ------------------------------------------------------------------
5675     vec($_, 0, 1) = 1   ==          1 10000000000000000000000000000000
5676     vec($_, 1, 1) = 1   ==          2 01000000000000000000000000000000
5677     vec($_, 2, 1) = 1   ==          4 00100000000000000000000000000000
5678     vec($_, 3, 1) = 1   ==          8 00010000000000000000000000000000
5679     vec($_, 4, 1) = 1   ==         16 00001000000000000000000000000000
5680     vec($_, 5, 1) = 1   ==         32 00000100000000000000000000000000
5681     vec($_, 6, 1) = 1   ==         64 00000010000000000000000000000000
5682     vec($_, 7, 1) = 1   ==        128 00000001000000000000000000000000
5683     vec($_, 8, 1) = 1   ==        256 00000000100000000000000000000000
5684     vec($_, 9, 1) = 1   ==        512 00000000010000000000000000000000
5685     vec($_,10, 1) = 1   ==       1024 00000000001000000000000000000000
5686     vec($_,11, 1) = 1   ==       2048 00000000000100000000000000000000
5687     vec($_,12, 1) = 1   ==       4096 00000000000010000000000000000000
5688     vec($_,13, 1) = 1   ==       8192 00000000000001000000000000000000
5689     vec($_,14, 1) = 1   ==      16384 00000000000000100000000000000000
5690     vec($_,15, 1) = 1   ==      32768 00000000000000010000000000000000
5691     vec($_,16, 1) = 1   ==      65536 00000000000000001000000000000000
5692     vec($_,17, 1) = 1   ==     131072 00000000000000000100000000000000
5693     vec($_,18, 1) = 1   ==     262144 00000000000000000010000000000000
5694     vec($_,19, 1) = 1   ==     524288 00000000000000000001000000000000
5695     vec($_,20, 1) = 1   ==    1048576 00000000000000000000100000000000
5696     vec($_,21, 1) = 1   ==    2097152 00000000000000000000010000000000
5697     vec($_,22, 1) = 1   ==    4194304 00000000000000000000001000000000
5698     vec($_,23, 1) = 1   ==    8388608 00000000000000000000000100000000
5699     vec($_,24, 1) = 1   ==   16777216 00000000000000000000000010000000
5700     vec($_,25, 1) = 1   ==   33554432 00000000000000000000000001000000
5701     vec($_,26, 1) = 1   ==   67108864 00000000000000000000000000100000
5702     vec($_,27, 1) = 1   ==  134217728 00000000000000000000000000010000
5703     vec($_,28, 1) = 1   ==  268435456 00000000000000000000000000001000
5704     vec($_,29, 1) = 1   ==  536870912 00000000000000000000000000000100
5705     vec($_,30, 1) = 1   == 1073741824 00000000000000000000000000000010
5706     vec($_,31, 1) = 1   == 2147483648 00000000000000000000000000000001
5707     vec($_, 0, 2) = 1   ==          1 10000000000000000000000000000000
5708     vec($_, 1, 2) = 1   ==          4 00100000000000000000000000000000
5709     vec($_, 2, 2) = 1   ==         16 00001000000000000000000000000000
5710     vec($_, 3, 2) = 1   ==         64 00000010000000000000000000000000
5711     vec($_, 4, 2) = 1   ==        256 00000000100000000000000000000000
5712     vec($_, 5, 2) = 1   ==       1024 00000000001000000000000000000000
5713     vec($_, 6, 2) = 1   ==       4096 00000000000010000000000000000000
5714     vec($_, 7, 2) = 1   ==      16384 00000000000000100000000000000000
5715     vec($_, 8, 2) = 1   ==      65536 00000000000000001000000000000000
5716     vec($_, 9, 2) = 1   ==     262144 00000000000000000010000000000000
5717     vec($_,10, 2) = 1   ==    1048576 00000000000000000000100000000000
5718     vec($_,11, 2) = 1   ==    4194304 00000000000000000000001000000000
5719     vec($_,12, 2) = 1   ==   16777216 00000000000000000000000010000000
5720     vec($_,13, 2) = 1   ==   67108864 00000000000000000000000000100000
5721     vec($_,14, 2) = 1   ==  268435456 00000000000000000000000000001000
5722     vec($_,15, 2) = 1   == 1073741824 00000000000000000000000000000010
5723     vec($_, 0, 2) = 2   ==          2 01000000000000000000000000000000
5724     vec($_, 1, 2) = 2   ==          8 00010000000000000000000000000000
5725     vec($_, 2, 2) = 2   ==         32 00000100000000000000000000000000
5726     vec($_, 3, 2) = 2   ==        128 00000001000000000000000000000000
5727     vec($_, 4, 2) = 2   ==        512 00000000010000000000000000000000
5728     vec($_, 5, 2) = 2   ==       2048 00000000000100000000000000000000
5729     vec($_, 6, 2) = 2   ==       8192 00000000000001000000000000000000
5730     vec($_, 7, 2) = 2   ==      32768 00000000000000010000000000000000
5731     vec($_, 8, 2) = 2   ==     131072 00000000000000000100000000000000
5732     vec($_, 9, 2) = 2   ==     524288 00000000000000000001000000000000
5733     vec($_,10, 2) = 2   ==    2097152 00000000000000000000010000000000
5734     vec($_,11, 2) = 2   ==    8388608 00000000000000000000000100000000
5735     vec($_,12, 2) = 2   ==   33554432 00000000000000000000000001000000
5736     vec($_,13, 2) = 2   ==  134217728 00000000000000000000000000010000
5737     vec($_,14, 2) = 2   ==  536870912 00000000000000000000000000000100
5738     vec($_,15, 2) = 2   == 2147483648 00000000000000000000000000000001
5739     vec($_, 0, 4) = 1   ==          1 10000000000000000000000000000000
5740     vec($_, 1, 4) = 1   ==         16 00001000000000000000000000000000
5741     vec($_, 2, 4) = 1   ==        256 00000000100000000000000000000000
5742     vec($_, 3, 4) = 1   ==       4096 00000000000010000000000000000000
5743     vec($_, 4, 4) = 1   ==      65536 00000000000000001000000000000000
5744     vec($_, 5, 4) = 1   ==    1048576 00000000000000000000100000000000
5745     vec($_, 6, 4) = 1   ==   16777216 00000000000000000000000010000000
5746     vec($_, 7, 4) = 1   ==  268435456 00000000000000000000000000001000
5747     vec($_, 0, 4) = 2   ==          2 01000000000000000000000000000000
5748     vec($_, 1, 4) = 2   ==         32 00000100000000000000000000000000
5749     vec($_, 2, 4) = 2   ==        512 00000000010000000000000000000000
5750     vec($_, 3, 4) = 2   ==       8192 00000000000001000000000000000000
5751     vec($_, 4, 4) = 2   ==     131072 00000000000000000100000000000000
5752     vec($_, 5, 4) = 2   ==    2097152 00000000000000000000010000000000
5753     vec($_, 6, 4) = 2   ==   33554432 00000000000000000000000001000000
5754     vec($_, 7, 4) = 2   ==  536870912 00000000000000000000000000000100
5755     vec($_, 0, 4) = 4   ==          4 00100000000000000000000000000000
5756     vec($_, 1, 4) = 4   ==         64 00000010000000000000000000000000
5757     vec($_, 2, 4) = 4   ==       1024 00000000001000000000000000000000
5758     vec($_, 3, 4) = 4   ==      16384 00000000000000100000000000000000
5759     vec($_, 4, 4) = 4   ==     262144 00000000000000000010000000000000
5760     vec($_, 5, 4) = 4   ==    4194304 00000000000000000000001000000000
5761     vec($_, 6, 4) = 4   ==   67108864 00000000000000000000000000100000
5762     vec($_, 7, 4) = 4   == 1073741824 00000000000000000000000000000010
5763     vec($_, 0, 4) = 8   ==          8 00010000000000000000000000000000
5764     vec($_, 1, 4) = 8   ==        128 00000001000000000000000000000000
5765     vec($_, 2, 4) = 8   ==       2048 00000000000100000000000000000000
5766     vec($_, 3, 4) = 8   ==      32768 00000000000000010000000000000000
5767     vec($_, 4, 4) = 8   ==     524288 00000000000000000001000000000000
5768     vec($_, 5, 4) = 8   ==    8388608 00000000000000000000000100000000
5769     vec($_, 6, 4) = 8   ==  134217728 00000000000000000000000000010000
5770     vec($_, 7, 4) = 8   == 2147483648 00000000000000000000000000000001
5771     vec($_, 0, 8) = 1   ==          1 10000000000000000000000000000000
5772     vec($_, 1, 8) = 1   ==        256 00000000100000000000000000000000
5773     vec($_, 2, 8) = 1   ==      65536 00000000000000001000000000000000
5774     vec($_, 3, 8) = 1   ==   16777216 00000000000000000000000010000000
5775     vec($_, 0, 8) = 2   ==          2 01000000000000000000000000000000
5776     vec($_, 1, 8) = 2   ==        512 00000000010000000000000000000000
5777     vec($_, 2, 8) = 2   ==     131072 00000000000000000100000000000000
5778     vec($_, 3, 8) = 2   ==   33554432 00000000000000000000000001000000
5779     vec($_, 0, 8) = 4   ==          4 00100000000000000000000000000000
5780     vec($_, 1, 8) = 4   ==       1024 00000000001000000000000000000000
5781     vec($_, 2, 8) = 4   ==     262144 00000000000000000010000000000000
5782     vec($_, 3, 8) = 4   ==   67108864 00000000000000000000000000100000
5783     vec($_, 0, 8) = 8   ==          8 00010000000000000000000000000000
5784     vec($_, 1, 8) = 8   ==       2048 00000000000100000000000000000000
5785     vec($_, 2, 8) = 8   ==     524288 00000000000000000001000000000000
5786     vec($_, 3, 8) = 8   ==  134217728 00000000000000000000000000010000
5787     vec($_, 0, 8) = 16  ==         16 00001000000000000000000000000000
5788     vec($_, 1, 8) = 16  ==       4096 00000000000010000000000000000000
5789     vec($_, 2, 8) = 16  ==    1048576 00000000000000000000100000000000
5790     vec($_, 3, 8) = 16  ==  268435456 00000000000000000000000000001000
5791     vec($_, 0, 8) = 32  ==         32 00000100000000000000000000000000
5792     vec($_, 1, 8) = 32  ==       8192 00000000000001000000000000000000
5793     vec($_, 2, 8) = 32  ==    2097152 00000000000000000000010000000000
5794     vec($_, 3, 8) = 32  ==  536870912 00000000000000000000000000000100
5795     vec($_, 0, 8) = 64  ==         64 00000010000000000000000000000000
5796     vec($_, 1, 8) = 64  ==      16384 00000000000000100000000000000000
5797     vec($_, 2, 8) = 64  ==    4194304 00000000000000000000001000000000
5798     vec($_, 3, 8) = 64  == 1073741824 00000000000000000000000000000010
5799     vec($_, 0, 8) = 128 ==        128 00000001000000000000000000000000
5800     vec($_, 1, 8) = 128 ==      32768 00000000000000010000000000000000
5801     vec($_, 2, 8) = 128 ==    8388608 00000000000000000000000100000000
5802     vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001
5803
5804 =item wait
5805
5806 Behaves like the wait(2) system call on your system: it waits for a child
5807 process to terminate and returns the pid of the deceased process, or
5808 C<-1> if there are no child processes.  The status is returned in C<$?>.
5809 Note that a return value of C<-1> could mean that child processes are
5810 being automatically reaped, as described in L<perlipc>.
5811
5812 =item waitpid PID,FLAGS
5813
5814 Waits for a particular child process to terminate and returns the pid of
5815 the deceased process, or C<-1> if there is no such child process.  On some
5816 systems, a value of 0 indicates that there are processes still running.
5817 The status is returned in C<$?>.  If you say
5818
5819     use POSIX ":sys_wait_h";
5820     #...
5821     do {
5822         $kid = waitpid(-1,&WNOHANG);
5823     } until $kid == -1;
5824
5825 then you can do a non-blocking wait for all pending zombie processes.
5826 Non-blocking wait is available on machines supporting either the
5827 waitpid(2) or wait4(2) system calls.  However, waiting for a particular
5828 pid with FLAGS of C<0> is implemented everywhere.  (Perl emulates the
5829 system call by remembering the status values of processes that have
5830 exited but have not been harvested by the Perl script yet.)
5831
5832 Note that on some systems, a return value of C<-1> could mean that child
5833 processes are being automatically reaped.  See L<perlipc> for details,
5834 and for other examples.
5835
5836 =item wantarray
5837
5838 Returns true if the context of the currently executing subroutine is
5839 looking for a list value.  Returns false if the context is looking
5840 for a scalar.  Returns the undefined value if the context is looking
5841 for no value (void context).
5842
5843     return unless defined wantarray;    # don't bother doing more
5844     my @a = complex_calculation();
5845     return wantarray ? @a : "@a";
5846
5847 This function should have been named wantlist() instead.
5848
5849 =item warn LIST
5850
5851 Produces a message on STDERR just like C<die>, but doesn't exit or throw
5852 an exception.
5853
5854 If LIST is empty and C<$@> already contains a value (typically from a
5855 previous eval) that value is used after appending C<"\t...caught">
5856 to C<$@>.  This is useful for staying almost, but not entirely similar to
5857 C<die>.
5858
5859 If C<$@> is empty then the string C<"Warning: Something's wrong"> is used.
5860
5861 No message is printed if there is a C<$SIG{__WARN__}> handler
5862 installed.  It is the handler's responsibility to deal with the message
5863 as it sees fit (like, for instance, converting it into a C<die>).  Most
5864 handlers must therefore make arrangements to actually display the
5865 warnings that they are not prepared to deal with, by calling C<warn>
5866 again in the handler.  Note that this is quite safe and will not
5867 produce an endless loop, since C<__WARN__> hooks are not called from
5868 inside one.
5869
5870 You will find this behavior is slightly different from that of
5871 C<$SIG{__DIE__}> handlers (which don't suppress the error text, but can
5872 instead call C<die> again to change it).
5873
5874 Using a C<__WARN__> handler provides a powerful way to silence all
5875 warnings (even the so-called mandatory ones).  An example:
5876
5877     # wipe out *all* compile-time warnings
5878     BEGIN { $SIG{'__WARN__'} = sub { warn $_[0] if $DOWARN } }
5879     my $foo = 10;
5880     my $foo = 20;          # no warning about duplicate my $foo,
5881                            # but hey, you asked for it!
5882     # no compile-time or run-time warnings before here
5883     $DOWARN = 1;
5884
5885     # run-time warnings enabled after here
5886     warn "\$foo is alive and $foo!";     # does show up
5887
5888 See L<perlvar> for details on setting C<%SIG> entries, and for more
5889 examples.  See the Carp module for other kinds of warnings using its
5890 carp() and cluck() functions.
5891
5892 =item write FILEHANDLE
5893
5894 =item write EXPR
5895
5896 =item write
5897
5898 Writes a formatted record (possibly multi-line) to the specified FILEHANDLE,
5899 using the format associated with that file.  By default the format for
5900 a file is the one having the same name as the filehandle, but the
5901 format for the current output channel (see the C<select> function) may be set
5902 explicitly by assigning the name of the format to the C<$~> variable.
5903
5904 Top of form processing is handled automatically:  if there is
5905 insufficient room on the current page for the formatted record, the
5906 page is advanced by writing a form feed, a special top-of-page format
5907 is used to format the new page header, and then the record is written.
5908 By default the top-of-page format is the name of the filehandle with
5909 "_TOP" appended, but it may be dynamically set to the format of your
5910 choice by assigning the name to the C<$^> variable while the filehandle is
5911 selected.  The number of lines remaining on the current page is in
5912 variable C<$->, which can be set to C<0> to force a new page.
5913
5914 If FILEHANDLE is unspecified, output goes to the current default output
5915 channel, which starts out as STDOUT but may be changed by the
5916 C<select> operator.  If the FILEHANDLE is an EXPR, then the expression
5917 is evaluated and the resulting string is used to look up the name of
5918 the FILEHANDLE at run time.  For more on formats, see L<perlform>.
5919
5920 Note that write is I<not> the opposite of C<read>.  Unfortunately.
5921
5922 =item y///
5923
5924 The transliteration operator.  Same as C<tr///>.  See L<perlop>.
5925
5926 =back