3 perlfunc - Perl builtin functions
7 The functions in this section can serve as terms in an expression.
8 They fall into two major categories: list operators and named unary
9 operators. These differ in their precedence relationship with a
10 following comma. (See the precedence table in L<perlop>.) List
11 operators take more than one argument, while unary operators can never
12 take more than one argument. Thus, a comma terminates the argument of
13 a unary operator, but merely separates the arguments of a list
14 operator. A unary operator generally provides a scalar context to its
15 argument, while a list operator may provide either scalar or list
16 contexts for its arguments. If it does both, the scalar arguments will
17 be first, and the list argument will follow. (Note that there can ever
18 be only one such list argument.) For instance, splice() has three scalar
19 arguments followed by a list, whereas gethostbyname() has four scalar
22 In the syntax descriptions that follow, list operators that expect a
23 list (and provide list context for the elements of the list) are shown
24 with LIST as an argument. Such a list may consist of any combination
25 of scalar arguments or list values; the list values will be included
26 in the list as if each individual element were interpolated at that
27 point in the list, forming a longer single-dimensional list value.
28 Elements of the LIST should be separated by commas.
30 Any function in the list below may be used either with or without
31 parentheses around its arguments. (The syntax descriptions omit the
32 parentheses.) If you use the parentheses, the simple (but occasionally
33 surprising) rule is this: It I<looks> like a function, therefore it I<is> a
34 function, and precedence doesn't matter. Otherwise it's a list
35 operator or unary operator, and precedence does matter. And whitespace
36 between the function and left parenthesis doesn't count--so you need to
39 print 1+2+4; # Prints 7.
40 print(1+2) + 4; # Prints 3.
41 print (1+2)+4; # Also prints 3!
42 print +(1+2)+4; # Prints 7.
43 print ((1+2)+4); # Prints 7.
45 If you run Perl with the B<-w> switch it can warn you about this. For
46 example, the third line above produces:
48 print (...) interpreted as function at - line 1.
49 Useless use of integer addition in void context at - line 1.
51 A few functions take no arguments at all, and therefore work as neither
52 unary nor list operators. These include such functions as C<time>
53 and C<endpwent>. For example, C<time+86_400> always means
56 For functions that can be used in either a scalar or list context,
57 nonabortive failure is generally indicated in a scalar context by
58 returning the undefined value, and in a list context by returning the
61 Remember the following important rule: There is B<no rule> that relates
62 the behavior of an expression in list context to its behavior in scalar
63 context, or vice versa. It might do two totally different things.
64 Each operator and function decides which sort of value it would be most
65 appropriate to return in scalar context. Some operators return the
66 length of the list that would have been returned in list context. Some
67 operators return the first value in the list. Some operators return the
68 last value in the list. Some operators return a count of successful
69 operations. In general, they do what you want, unless you want
72 A named array in scalar context is quite different from what would at
73 first glance appear to be a list in scalar context. You can't get a list
74 like C<(1,2,3)> into being in scalar context, because the compiler knows
75 the context at compile time. It would generate the scalar comma operator
76 there, not the list construction version of the comma. That means it
77 was never a list to start with.
79 In general, functions in Perl that serve as wrappers for system calls
80 of the same name (like chown(2), fork(2), closedir(2), etc.) all return
81 true when they succeed and C<undef> otherwise, as is usually mentioned
82 in the descriptions below. This is different from the C interfaces,
83 which return C<-1> on failure. Exceptions to this rule are C<wait>,
84 C<waitpid>, and C<syscall>. System calls also set the special C<$!>
85 variable on failure. Other functions do not, except accidentally.
87 =head2 Perl Functions by Category
89 Here are Perl's functions (including things that look like
90 functions, like some keywords and named operators)
91 arranged by category. Some functions appear in more
96 =item Functions for SCALARs or strings
98 C<chomp>, C<chop>, C<chr>, C<crypt>, C<hex>, C<index>, C<lc>, C<lcfirst>,
99 C<length>, C<oct>, C<ord>, C<pack>, C<q/STRING/>, C<qq/STRING/>, C<reverse>,
100 C<rindex>, C<sprintf>, C<substr>, C<tr///>, C<uc>, C<ucfirst>, C<y///>
102 =item Regular expressions and pattern matching
104 C<m//>, C<pos>, C<quotemeta>, C<s///>, C<split>, C<study>, C<qr//>
106 =item Numeric functions
108 C<abs>, C<atan2>, C<cos>, C<exp>, C<hex>, C<int>, C<log>, C<oct>, C<rand>,
109 C<sin>, C<sqrt>, C<srand>
111 =item Functions for real @ARRAYs
113 C<pop>, C<push>, C<shift>, C<splice>, C<unshift>
115 =item Functions for list data
117 C<grep>, C<join>, C<map>, C<qw/STRING/>, C<reverse>, C<sort>, C<unpack>
119 =item Functions for real %HASHes
121 C<delete>, C<each>, C<exists>, C<keys>, C<values>
123 =item Input and output functions
125 C<binmode>, C<close>, C<closedir>, C<dbmclose>, C<dbmopen>, C<die>, C<eof>,
126 C<fileno>, C<flock>, C<format>, C<getc>, C<print>, C<printf>, C<read>,
127 C<readdir>, C<rewinddir>, C<seek>, C<seekdir>, C<select>, C<syscall>,
128 C<sysread>, C<sysseek>, C<syswrite>, C<tell>, C<telldir>, C<truncate>,
131 =item Functions for fixed length data or records
133 C<pack>, C<read>, C<syscall>, C<sysread>, C<syswrite>, C<unpack>, C<vec>
135 =item Functions for filehandles, files, or directories
137 C<-I<X>>, C<chdir>, C<chmod>, C<chown>, C<chroot>, C<fcntl>, C<glob>,
138 C<ioctl>, C<link>, C<lstat>, C<mkdir>, C<open>, C<opendir>,
139 C<readlink>, C<rename>, C<rmdir>, C<stat>, C<symlink>, C<sysopen>,
140 C<umask>, C<unlink>, C<utime>
142 =item Keywords related to the control flow of your perl program
144 C<caller>, C<continue>, C<die>, C<do>, C<dump>, C<eval>, C<exit>,
145 C<goto>, C<last>, C<next>, C<redo>, C<return>, C<sub>, C<wantarray>
147 =item Keywords related to scoping
149 C<caller>, C<import>, C<local>, C<my>, C<our>, C<package>, C<use>
151 =item Miscellaneous functions
153 C<defined>, C<dump>, C<eval>, C<formline>, C<local>, C<my>, C<our>, C<reset>,
154 C<scalar>, C<undef>, C<wantarray>
156 =item Functions for processes and process groups
158 C<alarm>, C<exec>, C<fork>, C<getpgrp>, C<getppid>, C<getpriority>, C<kill>,
159 C<pipe>, C<qx/STRING/>, C<setpgrp>, C<setpriority>, C<sleep>, C<system>,
160 C<times>, C<wait>, C<waitpid>
162 =item Keywords related to perl modules
164 C<do>, C<import>, C<no>, C<package>, C<require>, C<use>
166 =item Keywords related to classes and object-orientedness
168 C<bless>, C<dbmclose>, C<dbmopen>, C<package>, C<ref>, C<tie>, C<tied>,
171 =item Low-level socket functions
173 C<accept>, C<bind>, C<connect>, C<getpeername>, C<getsockname>,
174 C<getsockopt>, C<listen>, C<recv>, C<send>, C<setsockopt>, C<shutdown>,
175 C<socket>, C<socketpair>
177 =item System V interprocess communication functions
179 C<msgctl>, C<msgget>, C<msgrcv>, C<msgsnd>, C<semctl>, C<semget>, C<semop>,
180 C<shmctl>, C<shmget>, C<shmread>, C<shmwrite>
182 =item Fetching user and group info
184 C<endgrent>, C<endhostent>, C<endnetent>, C<endpwent>, C<getgrent>,
185 C<getgrgid>, C<getgrnam>, C<getlogin>, C<getpwent>, C<getpwnam>,
186 C<getpwuid>, C<setgrent>, C<setpwent>
188 =item Fetching network info
190 C<endprotoent>, C<endservent>, C<gethostbyaddr>, C<gethostbyname>,
191 C<gethostent>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
192 C<getprotobyname>, C<getprotobynumber>, C<getprotoent>,
193 C<getservbyname>, C<getservbyport>, C<getservent>, C<sethostent>,
194 C<setnetent>, C<setprotoent>, C<setservent>
196 =item Time-related functions
198 C<gmtime>, C<localtime>, C<time>, C<times>
200 =item Functions new in perl5
202 C<abs>, C<bless>, C<chomp>, C<chr>, C<exists>, C<formline>, C<glob>,
203 C<import>, C<lc>, C<lcfirst>, C<map>, C<my>, C<no>, C<our>, C<prototype>,
204 C<qx>, C<qw>, C<readline>, C<readpipe>, C<ref>, C<sub*>, C<sysopen>, C<tie>,
205 C<tied>, C<uc>, C<ucfirst>, C<untie>, C<use>
207 * - C<sub> was a keyword in perl4, but in perl5 it is an
208 operator, which can be used in expressions.
210 =item Functions obsoleted in perl5
212 C<dbmclose>, C<dbmopen>
218 Perl was born in Unix and can therefore access all common Unix
219 system calls. In non-Unix environments, the functionality of some
220 Unix system calls may not be available, or details of the available
221 functionality may differ slightly. The Perl functions affected
224 C<-X>, C<binmode>, C<chmod>, C<chown>, C<chroot>, C<crypt>,
225 C<dbmclose>, C<dbmopen>, C<dump>, C<endgrent>, C<endhostent>,
226 C<endnetent>, C<endprotoent>, C<endpwent>, C<endservent>, C<exec>,
227 C<fcntl>, C<flock>, C<fork>, C<getgrent>, C<getgrgid>, C<gethostbyname>,
228 C<gethostent>, C<getlogin>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
229 C<getppid>, C<getprgp>, C<getpriority>, C<getprotobynumber>,
230 C<getprotoent>, C<getpwent>, C<getpwnam>, C<getpwuid>,
231 C<getservbyport>, C<getservent>, C<getsockopt>, C<glob>, C<ioctl>,
232 C<kill>, C<link>, C<lstat>, C<msgctl>, C<msgget>, C<msgrcv>,
233 C<msgsnd>, C<open>, C<pipe>, C<readlink>, C<rename>, C<select>, C<semctl>,
234 C<semget>, C<semop>, C<setgrent>, C<sethostent>, C<setnetent>,
235 C<setpgrp>, C<setpriority>, C<setprotoent>, C<setpwent>,
236 C<setservent>, C<setsockopt>, C<shmctl>, C<shmget>, C<shmread>,
237 C<shmwrite>, C<socket>, C<socketpair>,
238 C<stat>, C<symlink>, C<syscall>, C<sysopen>, C<system>,
239 C<times>, C<truncate>, C<umask>, C<unlink>,
240 C<utime>, C<wait>, C<waitpid>
242 For more information about the portability of these functions, see
243 L<perlport> and other available platform-specific documentation.
245 =head2 Alphabetical Listing of Perl Functions
255 A file test, where X is one of the letters listed below. This unary
256 operator takes one argument, either a filename or a filehandle, and
257 tests the associated file to see if something is true about it. If the
258 argument is omitted, tests C<$_>, except for C<-t>, which tests STDIN.
259 Unless otherwise documented, it returns C<1> for true and C<''> for false, or
260 the undefined value if the file doesn't exist. Despite the funny
261 names, precedence is the same as any other named unary operator, and
262 the argument may be parenthesized like any other unary operator. The
263 operator may be any of:
264 X<-r>X<-w>X<-x>X<-o>X<-R>X<-W>X<-X>X<-O>X<-e>X<-z>X<-s>X<-f>X<-d>X<-l>X<-p>
265 X<-S>X<-b>X<-c>X<-t>X<-u>X<-g>X<-k>X<-T>X<-B>X<-M>X<-A>X<-C>
267 -r File is readable by effective uid/gid.
268 -w File is writable by effective uid/gid.
269 -x File is executable by effective uid/gid.
270 -o File is owned by effective uid.
272 -R File is readable by real uid/gid.
273 -W File is writable by real uid/gid.
274 -X File is executable by real uid/gid.
275 -O File is owned by real uid.
278 -z File has zero size (is empty).
279 -s File has nonzero size (returns size in bytes).
281 -f File is a plain file.
282 -d File is a directory.
283 -l File is a symbolic link.
284 -p File is a named pipe (FIFO), or Filehandle is a pipe.
286 -b File is a block special file.
287 -c File is a character special file.
288 -t Filehandle is opened to a tty.
290 -u File has setuid bit set.
291 -g File has setgid bit set.
292 -k File has sticky bit set.
294 -T File is an ASCII text file (heuristic guess).
295 -B File is a "binary" file (opposite of -T).
297 -M Script start time minus file modification time, in days.
298 -A Same for access time.
299 -C Same for inode change time (Unix, may differ for other platforms)
305 next unless -f $_; # ignore specials
309 The interpretation of the file permission operators C<-r>, C<-R>,
310 C<-w>, C<-W>, C<-x>, and C<-X> is by default based solely on the mode
311 of the file and the uids and gids of the user. There may be other
312 reasons you can't actually read, write, or execute the file. Such
313 reasons may be for example network filesystem access controls, ACLs
314 (access control lists), read-only filesystems, and unrecognized
317 Also note that, for the superuser on the local filesystems, the C<-r>,
318 C<-R>, C<-w>, and C<-W> tests always return 1, and C<-x> and C<-X> return 1
319 if any execute bit is set in the mode. Scripts run by the superuser
320 may thus need to do a stat() to determine the actual mode of the file,
321 or temporarily set their effective uid to something else.
323 If you are using ACLs, there is a pragma called C<filetest> that may
324 produce more accurate results than the bare stat() mode bits.
325 When under the C<use filetest 'access'> the above-mentioned filetests
326 will test whether the permission can (not) be granted using the
327 access() family of system calls. Also note that the C<-x> and C<-X> may
328 under this pragma return true even if there are no execute permission
329 bits set (nor any extra execute permission ACLs). This strangeness is
330 due to the underlying system calls' definitions. Read the
331 documentation for the C<filetest> pragma for more information.
333 Note that C<-s/a/b/> does not do a negated substitution. Saying
334 C<-exp($foo)> still works as expected, however--only single letters
335 following a minus are interpreted as file tests.
337 The C<-T> and C<-B> switches work as follows. The first block or so of the
338 file is examined for odd characters such as strange control codes or
339 characters with the high bit set. If too many strange characters (>30%)
340 are found, it's a C<-B> file, otherwise it's a C<-T> file. Also, any file
341 containing null in the first block is considered a binary file. If C<-T>
342 or C<-B> is used on a filehandle, the current IO buffer is examined
343 rather than the first block. Both C<-T> and C<-B> return true on a null
344 file, or a file at EOF when testing a filehandle. Because you have to
345 read a file to do the C<-T> test, on most occasions you want to use a C<-f>
346 against the file first, as in C<next unless -f $file && -T $file>.
348 If any of the file tests (or either the C<stat> or C<lstat> operators) are given
349 the special filehandle consisting of a solitary underline, then the stat
350 structure of the previous file test (or stat operator) is used, saving
351 a system call. (This doesn't work with C<-t>, and you need to remember
352 that lstat() and C<-l> will leave values in the stat structure for the
353 symbolic link, not the real file.) (Also, if the stat buffer was filled by
354 a C<lstat> call, C<-T> and C<-B> will reset it with the results of C<stat _>).
357 print "Can do.\n" if -r $a || -w _ || -x _;
360 print "Readable\n" if -r _;
361 print "Writable\n" if -w _;
362 print "Executable\n" if -x _;
363 print "Setuid\n" if -u _;
364 print "Setgid\n" if -g _;
365 print "Sticky\n" if -k _;
366 print "Text\n" if -T _;
367 print "Binary\n" if -B _;
369 As of Perl 5.9.1, as a form of purely syntactic sugar, you can stack file
370 test operators, in a way that C<-f -w -x $file> is equivalent to
371 C<-x $file && -w _ && -f _>. (This is only syntax fancy : if you use
372 the return value of C<-f $file> as an argument to another filetest
373 operator, no special magic will happen.)
379 Returns the absolute value of its argument.
380 If VALUE is omitted, uses C<$_>.
382 =item accept NEWSOCKET,GENERICSOCKET
384 Accepts an incoming socket connect, just as the accept(2) system call
385 does. Returns the packed address if it succeeded, false otherwise.
386 See the example in L<perlipc/"Sockets: Client/Server Communication">.
388 On systems that support a close-on-exec flag on files, the flag will
389 be set for the newly opened file descriptor, as determined by the
390 value of $^F. See L<perlvar/$^F>.
396 Arranges to have a SIGALRM delivered to this process after the
397 specified number of wallclock seconds have elapsed. If SECONDS is not
398 specified, the value stored in C<$_> is used. (On some machines,
399 unfortunately, the elapsed time may be up to one second less or more
400 than you specified because of how seconds are counted, and process
401 scheduling may delay the delivery of the signal even further.)
403 Only one timer may be counting at once. Each call disables the
404 previous timer, and an argument of C<0> may be supplied to cancel the
405 previous timer without starting a new one. The returned value is the
406 amount of time remaining on the previous timer.
408 For delays of finer granularity than one second, you may use Perl's
409 four-argument version of select() leaving the first three arguments
410 undefined, or you might be able to use the C<syscall> interface to
411 access setitimer(2) if your system supports it. The Time::HiRes
412 module (from CPAN, and starting from Perl 5.8 part of the standard
413 distribution) may also prove useful.
415 It is usually a mistake to intermix C<alarm> and C<sleep> calls.
416 (C<sleep> may be internally implemented in your system with C<alarm>)
418 If you want to use C<alarm> to time out a system call you need to use an
419 C<eval>/C<die> pair. You can't rely on the alarm causing the system call to
420 fail with C<$!> set to C<EINTR> because Perl sets up signal handlers to
421 restart system calls on some systems. Using C<eval>/C<die> always works,
422 modulo the caveats given in L<perlipc/"Signals">.
425 local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
427 $nread = sysread SOCKET, $buffer, $size;
431 die unless $@ eq "alarm\n"; # propagate unexpected errors
438 For more information see L<perlipc>.
442 Returns the arctangent of Y/X in the range -PI to PI.
444 For the tangent operation, you may use the C<Math::Trig::tan>
445 function, or use the familiar relation:
447 sub tan { sin($_[0]) / cos($_[0]) }
449 =item bind SOCKET,NAME
451 Binds a network address to a socket, just as the bind system call
452 does. Returns true if it succeeded, false otherwise. NAME should be a
453 packed address of the appropriate type for the socket. See the examples in
454 L<perlipc/"Sockets: Client/Server Communication">.
456 =item binmode FILEHANDLE, LAYER
458 =item binmode FILEHANDLE
460 Arranges for FILEHANDLE to be read or written in "binary" or "text"
461 mode on systems where the run-time libraries distinguish between
462 binary and text files. If FILEHANDLE is an expression, the value is
463 taken as the name of the filehandle. Returns true on success,
464 otherwise it returns C<undef> and sets C<$!> (errno).
466 On some systems (in general, DOS and Windows-based systems) binmode()
467 is necessary when you're not working with a text file. For the sake
468 of portability it is a good idea to always use it when appropriate,
469 and to never use it when it isn't appropriate. Also, people can
470 set their I/O to be by default UTF-8 encoded Unicode, not bytes.
472 In other words: regardless of platform, use binmode() on binary data,
473 like for example images.
475 If LAYER is present it is a single string, but may contain multiple
476 directives. The directives alter the behaviour of the file handle.
477 When LAYER is present using binmode on text file makes sense.
479 If LAYER is omitted or specified as C<:raw> the filehandle is made
480 suitable for passing binary data. This includes turning off possible CRLF
481 translation and marking it as bytes (as opposed to Unicode characters).
482 Note that, despite what may be implied in I<"Programming Perl"> (the
483 Camel) or elsewhere, C<:raw> is I<not> the simply inverse of C<:crlf>
484 -- other layers which would affect binary nature of the stream are
485 I<also> disabled. See L<PerlIO>, L<perlrun> and the discussion about the
486 PERLIO environment variable.
488 The C<:bytes>, C<:crlf>, and C<:utf8>, and any other directives of the
489 form C<:...>, are called I/O I<layers>. The C<open> pragma can be used to
490 establish default I/O layers. See L<open>.
492 I<The LAYER parameter of the binmode() function is described as "DISCIPLINE"
493 in "Programming Perl, 3rd Edition". However, since the publishing of this
494 book, by many known as "Camel III", the consensus of the naming of this
495 functionality has moved from "discipline" to "layer". All documentation
496 of this version of Perl therefore refers to "layers" rather than to
497 "disciplines". Now back to the regularly scheduled documentation...>
499 To mark FILEHANDLE as UTF-8, use C<:utf8>.
501 In general, binmode() should be called after open() but before any I/O
502 is done on the filehandle. Calling binmode() will normally flush any
503 pending buffered output data (and perhaps pending input data) on the
504 handle. An exception to this is the C<:encoding> layer that
505 changes the default character encoding of the handle, see L<open>.
506 The C<:encoding> layer sometimes needs to be called in
507 mid-stream, and it doesn't flush the stream. The C<:encoding>
508 also implicitly pushes on top of itself the C<:utf8> layer because
509 internally Perl will operate on UTF-8 encoded Unicode characters.
511 The operating system, device drivers, C libraries, and Perl run-time
512 system all work together to let the programmer treat a single
513 character (C<\n>) as the line terminator, irrespective of the external
514 representation. On many operating systems, the native text file
515 representation matches the internal representation, but on some
516 platforms the external representation of C<\n> is made up of more than
519 Mac OS, all variants of Unix, and Stream_LF files on VMS use a single
520 character to end each line in the external representation of text (even
521 though that single character is CARRIAGE RETURN on Mac OS and LINE FEED
522 on Unix and most VMS files). In other systems like OS/2, DOS and the
523 various flavors of MS-Windows your program sees a C<\n> as a simple C<\cJ>,
524 but what's stored in text files are the two characters C<\cM\cJ>. That
525 means that, if you don't use binmode() on these systems, C<\cM\cJ>
526 sequences on disk will be converted to C<\n> on input, and any C<\n> in
527 your program will be converted back to C<\cM\cJ> on output. This is what
528 you want for text files, but it can be disastrous for binary files.
530 Another consequence of using binmode() (on some systems) is that
531 special end-of-file markers will be seen as part of the data stream.
532 For systems from the Microsoft family this means that if your binary
533 data contains C<\cZ>, the I/O subsystem will regard it as the end of
534 the file, unless you use binmode().
536 binmode() is not only important for readline() and print() operations,
537 but also when using read(), seek(), sysread(), syswrite() and tell()
538 (see L<perlport> for more details). See the C<$/> and C<$\> variables
539 in L<perlvar> for how to manually set your input and output
540 line-termination sequences.
542 =item bless REF,CLASSNAME
546 This function tells the thingy referenced by REF that it is now an object
547 in the CLASSNAME package. If CLASSNAME is omitted, the current package
548 is used. Because a C<bless> is often the last thing in a constructor,
549 it returns the reference for convenience. Always use the two-argument
550 version if the function doing the blessing might be inherited by a
551 derived class. See L<perltoot> and L<perlobj> for more about the blessing
552 (and blessings) of objects.
554 Consider always blessing objects in CLASSNAMEs that are mixed case.
555 Namespaces with all lowercase names are considered reserved for
556 Perl pragmata. Builtin types have all uppercase names, so to prevent
557 confusion, you may wish to avoid such package names as well. Make sure
558 that CLASSNAME is a true value.
560 See L<perlmod/"Perl Modules">.
566 Returns the context of the current subroutine call. In scalar context,
567 returns the caller's package name if there is a caller, that is, if
568 we're in a subroutine or C<eval> or C<require>, and the undefined value
569 otherwise. In list context, returns
571 ($package, $filename, $line) = caller;
573 With EXPR, it returns some extra information that the debugger uses to
574 print a stack trace. The value of EXPR indicates how many call frames
575 to go back before the current one.
577 ($package, $filename, $line, $subroutine, $hasargs,
578 $wantarray, $evaltext, $is_require, $hints, $bitmask) = caller($i);
580 Here $subroutine may be C<(eval)> if the frame is not a subroutine
581 call, but an C<eval>. In such a case additional elements $evaltext and
582 C<$is_require> are set: C<$is_require> is true if the frame is created by a
583 C<require> or C<use> statement, $evaltext contains the text of the
584 C<eval EXPR> statement. In particular, for an C<eval BLOCK> statement,
585 $filename is C<(eval)>, but $evaltext is undefined. (Note also that
586 each C<use> statement creates a C<require> frame inside an C<eval EXPR>
587 frame.) $subroutine may also be C<(unknown)> if this particular
588 subroutine happens to have been deleted from the symbol table.
589 C<$hasargs> is true if a new instance of C<@_> was set up for the frame.
590 C<$hints> and C<$bitmask> contain pragmatic hints that the caller was
591 compiled with. The C<$hints> and C<$bitmask> values are subject to change
592 between versions of Perl, and are not meant for external use.
594 Furthermore, when called from within the DB package, caller returns more
595 detailed information: it sets the list variable C<@DB::args> to be the
596 arguments with which the subroutine was invoked.
598 Be aware that the optimizer might have optimized call frames away before
599 C<caller> had a chance to get the information. That means that C<caller(N)>
600 might not return information about the call frame you expect it do, for
601 C<< N > 1 >>. In particular, C<@DB::args> might have information from the
602 previous time C<caller> was called.
606 Changes the working directory to EXPR, if possible. If EXPR is omitted,
607 changes to the directory specified by C<$ENV{HOME}>, if set; if not,
608 changes to the directory specified by C<$ENV{LOGDIR}>. (Under VMS, the
609 variable C<$ENV{SYS$LOGIN}> is also checked, and used if it is set.) If
610 neither is set, C<chdir> does nothing. It returns true upon success,
611 false otherwise. See the example under C<die>.
615 Changes the permissions of a list of files. The first element of the
616 list must be the numerical mode, which should probably be an octal
617 number, and which definitely should I<not> be a string of octal digits:
618 C<0644> is okay, C<'0644'> is not. Returns the number of files
619 successfully changed. See also L</oct>, if all you have is a string.
621 $cnt = chmod 0755, 'foo', 'bar';
622 chmod 0755, @executables;
623 $mode = '0644'; chmod $mode, 'foo'; # !!! sets mode to
625 $mode = '0644'; chmod oct($mode), 'foo'; # this is better
626 $mode = 0644; chmod $mode, 'foo'; # this is best
628 You can also import the symbolic C<S_I*> constants from the Fcntl
633 chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
634 # This is identical to the chmod 0755 of the above example.
642 This safer version of L</chop> removes any trailing string
643 that corresponds to the current value of C<$/> (also known as
644 $INPUT_RECORD_SEPARATOR in the C<English> module). It returns the total
645 number of characters removed from all its arguments. It's often used to
646 remove the newline from the end of an input record when you're worried
647 that the final record may be missing its newline. When in paragraph
648 mode (C<$/ = "">), it removes all trailing newlines from the string.
649 When in slurp mode (C<$/ = undef>) or fixed-length record mode (C<$/> is
650 a reference to an integer or the like, see L<perlvar>) chomp() won't
652 If VARIABLE is omitted, it chomps C<$_>. Example:
655 chomp; # avoid \n on last field
660 If VARIABLE is a hash, it chomps the hash's values, but not its keys.
662 You can actually chomp anything that's an lvalue, including an assignment:
665 chomp($answer = <STDIN>);
667 If you chomp a list, each element is chomped, and the total number of
668 characters removed is returned.
670 If the C<encoding> pragma is in scope then the lengths returned are
671 calculated from the length of C<$/> in Unicode characters, which is not
672 always the same as the length of C<$/> in the native encoding.
674 Note that parentheses are necessary when you're chomping anything
675 that is not a simple variable. This is because C<chomp $cwd = `pwd`;>
676 is interpreted as C<(chomp $cwd) = `pwd`;>, rather than as
677 C<chomp( $cwd = `pwd` )> which you might expect. Similarly,
678 C<chomp $a, $b> is interpreted as C<chomp($a), $b> rather than
687 Chops off the last character of a string and returns the character
688 chopped. It is much more efficient than C<s/.$//s> because it neither
689 scans nor copies the string. If VARIABLE is omitted, chops C<$_>.
690 If VARIABLE is a hash, it chops the hash's values, but not its keys.
692 You can actually chop anything that's an lvalue, including an assignment.
694 If you chop a list, each element is chopped. Only the value of the
695 last C<chop> is returned.
697 Note that C<chop> returns the last character. To return all but the last
698 character, use C<substr($string, 0, -1)>.
704 Changes the owner (and group) of a list of files. The first two
705 elements of the list must be the I<numeric> uid and gid, in that
706 order. A value of -1 in either position is interpreted by most
707 systems to leave that value unchanged. Returns the number of files
708 successfully changed.
710 $cnt = chown $uid, $gid, 'foo', 'bar';
711 chown $uid, $gid, @filenames;
713 Here's an example that looks up nonnumeric uids in the passwd file:
716 chomp($user = <STDIN>);
718 chomp($pattern = <STDIN>);
720 ($login,$pass,$uid,$gid) = getpwnam($user)
721 or die "$user not in passwd file";
723 @ary = glob($pattern); # expand filenames
724 chown $uid, $gid, @ary;
726 On most systems, you are not allowed to change the ownership of the
727 file unless you're the superuser, although you should be able to change
728 the group to any of your secondary groups. On insecure systems, these
729 restrictions may be relaxed, but this is not a portable assumption.
730 On POSIX systems, you can detect this condition this way:
732 use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
733 $can_chown_giveaway = not sysconf(_PC_CHOWN_RESTRICTED);
739 Returns the character represented by that NUMBER in the character set.
740 For example, C<chr(65)> is C<"A"> in either ASCII or Unicode, and
741 chr(0x263a) is a Unicode smiley face. Note that characters from 128
742 to 255 (inclusive) are by default not encoded in UTF-8 Unicode for
743 backward compatibility reasons (but see L<encoding>).
745 If NUMBER is omitted, uses C<$_>.
747 For the reverse, use L</ord>.
749 Note that under the C<bytes> pragma the NUMBER is masked to
752 See L<perlunicode> and L<encoding> for more about Unicode.
754 =item chroot FILENAME
758 This function works like the system call by the same name: it makes the
759 named directory the new root directory for all further pathnames that
760 begin with a C</> by your process and all its children. (It doesn't
761 change your current working directory, which is unaffected.) For security
762 reasons, this call is restricted to the superuser. If FILENAME is
763 omitted, does a C<chroot> to C<$_>.
765 =item close FILEHANDLE
769 Closes the file or pipe associated with the file handle, returning
770 true only if IO buffers are successfully flushed and closes the system
771 file descriptor. Closes the currently selected filehandle if the
774 You don't have to close FILEHANDLE if you are immediately going to do
775 another C<open> on it, because C<open> will close it for you. (See
776 C<open>.) However, an explicit C<close> on an input file resets the line
777 counter (C<$.>), while the implicit close done by C<open> does not.
779 If the file handle came from a piped open, C<close> will additionally
780 return false if one of the other system calls involved fails, or if the
781 program exits with non-zero status. (If the only problem was that the
782 program exited non-zero, C<$!> will be set to C<0>.) Closing a pipe
783 also waits for the process executing on the pipe to complete, in case you
784 want to look at the output of the pipe afterwards, and
785 implicitly puts the exit status value of that command into C<$?>.
787 Prematurely closing the read end of a pipe (i.e. before the process
788 writing to it at the other end has closed it) will result in a
789 SIGPIPE being delivered to the writer. If the other end can't
790 handle that, be sure to read all the data before closing the pipe.
794 open(OUTPUT, '|sort >foo') # pipe to sort
795 or die "Can't start sort: $!";
796 #... # print stuff to output
797 close OUTPUT # wait for sort to finish
798 or warn $! ? "Error closing sort pipe: $!"
799 : "Exit status $? from sort";
800 open(INPUT, 'foo') # get sort's results
801 or die "Can't open 'foo' for input: $!";
803 FILEHANDLE may be an expression whose value can be used as an indirect
804 filehandle, usually the real filehandle name.
806 =item closedir DIRHANDLE
808 Closes a directory opened by C<opendir> and returns the success of that
811 =item connect SOCKET,NAME
813 Attempts to connect to a remote socket, just as the connect system call
814 does. Returns true if it succeeded, false otherwise. NAME should be a
815 packed address of the appropriate type for the socket. See the examples in
816 L<perlipc/"Sockets: Client/Server Communication">.
820 Actually a flow control statement rather than a function. If there is a
821 C<continue> BLOCK attached to a BLOCK (typically in a C<while> or
822 C<foreach>), it is always executed just before the conditional is about to
823 be evaluated again, just like the third part of a C<for> loop in C. Thus
824 it can be used to increment a loop variable, even when the loop has been
825 continued via the C<next> statement (which is similar to the C C<continue>
828 C<last>, C<next>, or C<redo> may appear within a C<continue>
829 block. C<last> and C<redo> will behave as if they had been executed within
830 the main block. So will C<next>, but since it will execute a C<continue>
831 block, it may be more entertaining.
834 ### redo always comes here
837 ### next always comes here
839 # then back the top to re-check EXPR
841 ### last always comes here
843 Omitting the C<continue> section is semantically equivalent to using an
844 empty one, logically enough. In that case, C<next> goes directly back
845 to check the condition at the top of the loop.
851 Returns the cosine of EXPR (expressed in radians). If EXPR is omitted,
852 takes cosine of C<$_>.
854 For the inverse cosine operation, you may use the C<Math::Trig::acos()>
855 function, or use this relation:
857 sub acos { atan2( sqrt(1 - $_[0] * $_[0]), $_[0] ) }
859 =item crypt PLAINTEXT,SALT
861 Encrypts a string exactly like the crypt(3) function in the C library
862 (assuming that you actually have a version there that has not been
863 extirpated as a potential munition). This can prove useful for checking
864 the password file for lousy passwords, amongst other things. Only the
865 guys wearing white hats should do this.
867 Note that L<crypt|/crypt> is intended to be a one-way function, much like
868 breaking eggs to make an omelette. There is no (known) corresponding
869 decrypt function (in other words, the crypt() is a one-way hash
870 function). As a result, this function isn't all that useful for
871 cryptography. (For that, see your nearby CPAN mirror.)
873 When verifying an existing encrypted string you should use the
874 encrypted text as the salt (like C<crypt($plain, $crypted) eq
875 $crypted>). This allows your code to work with the standard L<crypt|/crypt>
876 and with more exotic implementations. In other words, do not assume
877 anything about the returned string itself, or how many bytes in
878 the encrypted string matter.
880 Traditionally the result is a string of 13 bytes: two first bytes of
881 the salt, followed by 11 bytes from the set C<[./0-9A-Za-z]>, and only
882 the first eight bytes of the encrypted string mattered, but
883 alternative hashing schemes (like MD5), higher level security schemes
884 (like C2), and implementations on non-UNIX platforms may produce
887 When choosing a new salt create a random two character string whose
888 characters come from the set C<[./0-9A-Za-z]> (like C<join '', ('.',
889 '/', 0..9, 'A'..'Z', 'a'..'z')[rand 64, rand 64]>). This set of
890 characters is just a recommendation; the characters allowed in
891 the salt depend solely on your system's crypt library, and Perl can't
892 restrict what salts C<crypt()> accepts.
894 Here's an example that makes sure that whoever runs this program knows
897 $pwd = (getpwuid($<))[1];
901 chomp($word = <STDIN>);
905 if (crypt($word, $pwd) ne $pwd) {
911 Of course, typing in your own password to whoever asks you
914 The L<crypt|/crypt> function is unsuitable for encrypting large quantities
915 of data, not least of all because you can't get the information
916 back. Look at the F<by-module/Crypt> and F<by-module/PGP> directories
917 on your favorite CPAN mirror for a slew of potentially useful
920 If using crypt() on a Unicode string (which I<potentially> has
921 characters with codepoints above 255), Perl tries to make sense
922 of the situation by trying to downgrade (a copy of the string)
923 the string back to an eight-bit byte string before calling crypt()
924 (on that copy). If that works, good. If not, crypt() dies with
925 C<Wide character in crypt>.
929 [This function has been largely superseded by the C<untie> function.]
931 Breaks the binding between a DBM file and a hash.
933 =item dbmopen HASH,DBNAME,MASK
935 [This function has been largely superseded by the C<tie> function.]
937 This binds a dbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a
938 hash. HASH is the name of the hash. (Unlike normal C<open>, the first
939 argument is I<not> a filehandle, even though it looks like one). DBNAME
940 is the name of the database (without the F<.dir> or F<.pag> extension if
941 any). If the database does not exist, it is created with protection
942 specified by MASK (as modified by the C<umask>). If your system supports
943 only the older DBM functions, you may perform only one C<dbmopen> in your
944 program. In older versions of Perl, if your system had neither DBM nor
945 ndbm, calling C<dbmopen> produced a fatal error; it now falls back to
948 If you don't have write access to the DBM file, you can only read hash
949 variables, not set them. If you want to test whether you can write,
950 either use file tests or try setting a dummy hash entry inside an C<eval>,
951 which will trap the error.
953 Note that functions such as C<keys> and C<values> may return huge lists
954 when used on large DBM files. You may prefer to use the C<each>
955 function to iterate over large DBM files. Example:
957 # print out history file offsets
958 dbmopen(%HIST,'/usr/lib/news/history',0666);
959 while (($key,$val) = each %HIST) {
960 print $key, ' = ', unpack('L',$val), "\n";
964 See also L<AnyDBM_File> for a more general description of the pros and
965 cons of the various dbm approaches, as well as L<DB_File> for a particularly
968 You can control which DBM library you use by loading that library
969 before you call dbmopen():
972 dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")
973 or die "Can't open netscape history file: $!";
979 Returns a Boolean value telling whether EXPR has a value other than
980 the undefined value C<undef>. If EXPR is not present, C<$_> will be
983 Many operations return C<undef> to indicate failure, end of file,
984 system error, uninitialized variable, and other exceptional
985 conditions. This function allows you to distinguish C<undef> from
986 other values. (A simple Boolean test will not distinguish among
987 C<undef>, zero, the empty string, and C<"0">, which are all equally
988 false.) Note that since C<undef> is a valid scalar, its presence
989 doesn't I<necessarily> indicate an exceptional condition: C<pop>
990 returns C<undef> when its argument is an empty array, I<or> when the
991 element to return happens to be C<undef>.
993 You may also use C<defined(&func)> to check whether subroutine C<&func>
994 has ever been defined. The return value is unaffected by any forward
995 declarations of C<&func>. Note that a subroutine which is not defined
996 may still be callable: its package may have an C<AUTOLOAD> method that
997 makes it spring into existence the first time that it is called -- see
1000 Use of C<defined> on aggregates (hashes and arrays) is deprecated. It
1001 used to report whether memory for that aggregate has ever been
1002 allocated. This behavior may disappear in future versions of Perl.
1003 You should instead use a simple test for size:
1005 if (@an_array) { print "has array elements\n" }
1006 if (%a_hash) { print "has hash members\n" }
1008 When used on a hash element, it tells you whether the value is defined,
1009 not whether the key exists in the hash. Use L</exists> for the latter
1014 print if defined $switch{'D'};
1015 print "$val\n" while defined($val = pop(@ary));
1016 die "Can't readlink $sym: $!"
1017 unless defined($value = readlink $sym);
1018 sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
1019 $debugging = 0 unless defined $debugging;
1021 Note: Many folks tend to overuse C<defined>, and then are surprised to
1022 discover that the number C<0> and C<""> (the zero-length string) are, in fact,
1023 defined values. For example, if you say
1027 The pattern match succeeds, and C<$1> is defined, despite the fact that it
1028 matched "nothing". But it didn't really match nothing--rather, it
1029 matched something that happened to be zero characters long. This is all
1030 very above-board and honest. When a function returns an undefined value,
1031 it's an admission that it couldn't give you an honest answer. So you
1032 should use C<defined> only when you're questioning the integrity of what
1033 you're trying to do. At other times, a simple comparison to C<0> or C<""> is
1036 See also L</undef>, L</exists>, L</ref>.
1040 Given an expression that specifies a hash element, array element, hash slice,
1041 or array slice, deletes the specified element(s) from the hash or array.
1042 In the case of an array, if the array elements happen to be at the end,
1043 the size of the array will shrink to the highest element that tests
1044 true for exists() (or 0 if no such element exists).
1046 Returns a list with the same number of elements as the number of elements
1047 for which deletion was attempted. Each element of that list consists of
1048 either the value of the element deleted, or the undefined value. In scalar
1049 context, this means that you get the value of the last element deleted (or
1050 the undefined value if that element did not exist).
1052 %hash = (foo => 11, bar => 22, baz => 33);
1053 $scalar = delete $hash{foo}; # $scalar is 11
1054 $scalar = delete @hash{qw(foo bar)}; # $scalar is 22
1055 @array = delete @hash{qw(foo bar baz)}; # @array is (undef,undef,33)
1057 Deleting from C<%ENV> modifies the environment. Deleting from
1058 a hash tied to a DBM file deletes the entry from the DBM file. Deleting
1059 from a C<tie>d hash or array may not necessarily return anything.
1061 Deleting an array element effectively returns that position of the array
1062 to its initial, uninitialized state. Subsequently testing for the same
1063 element with exists() will return false. Note that deleting array
1064 elements in the middle of an array will not shift the index of the ones
1065 after them down--use splice() for that. See L</exists>.
1067 The following (inefficiently) deletes all the values of %HASH and @ARRAY:
1069 foreach $key (keys %HASH) {
1073 foreach $index (0 .. $#ARRAY) {
1074 delete $ARRAY[$index];
1079 delete @HASH{keys %HASH};
1081 delete @ARRAY[0 .. $#ARRAY];
1083 But both of these are slower than just assigning the empty list
1084 or undefining %HASH or @ARRAY:
1086 %HASH = (); # completely empty %HASH
1087 undef %HASH; # forget %HASH ever existed
1089 @ARRAY = (); # completely empty @ARRAY
1090 undef @ARRAY; # forget @ARRAY ever existed
1092 Note that the EXPR can be arbitrarily complicated as long as the final
1093 operation is a hash element, array element, hash slice, or array slice
1096 delete $ref->[$x][$y]{$key};
1097 delete @{$ref->[$x][$y]}{$key1, $key2, @morekeys};
1099 delete $ref->[$x][$y][$index];
1100 delete @{$ref->[$x][$y]}[$index1, $index2, @moreindices];
1104 Outside an C<eval>, prints the value of LIST to C<STDERR> and
1105 exits with the current value of C<$!> (errno). If C<$!> is C<0>,
1106 exits with the value of C<<< ($? >> 8) >>> (backtick `command`
1107 status). If C<<< ($? >> 8) >>> is C<0>, exits with C<255>. Inside
1108 an C<eval(),> the error message is stuffed into C<$@> and the
1109 C<eval> is terminated with the undefined value. This makes
1110 C<die> the way to raise an exception.
1112 Equivalent examples:
1114 die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
1115 chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"
1117 If the last element of LIST does not end in a newline, the current
1118 script line number and input line number (if any) are also printed,
1119 and a newline is supplied. Note that the "input line number" (also
1120 known as "chunk") is subject to whatever notion of "line" happens to
1121 be currently in effect, and is also available as the special variable
1122 C<$.>. See L<perlvar/"$/"> and L<perlvar/"$.">.
1124 Hint: sometimes appending C<", stopped"> to your message will cause it
1125 to make better sense when the string C<"at foo line 123"> is appended.
1126 Suppose you are running script "canasta".
1128 die "/etc/games is no good";
1129 die "/etc/games is no good, stopped";
1131 produce, respectively
1133 /etc/games is no good at canasta line 123.
1134 /etc/games is no good, stopped at canasta line 123.
1136 See also exit(), warn(), and the Carp module.
1138 If LIST is empty and C<$@> already contains a value (typically from a
1139 previous eval) that value is reused after appending C<"\t...propagated">.
1140 This is useful for propagating exceptions:
1143 die unless $@ =~ /Expected exception/;
1145 If LIST is empty and C<$@> contains an object reference that has a
1146 C<PROPAGATE> method, that method will be called with additional file
1147 and line number parameters. The return value replaces the value in
1148 C<$@>. ie. as if C<< $@ = eval { $@->PROPAGATE(__FILE__, __LINE__) }; >>
1151 If C<$@> is empty then the string C<"Died"> is used.
1153 die() can also be called with a reference argument. If this happens to be
1154 trapped within an eval(), $@ contains the reference. This behavior permits
1155 a more elaborate exception handling implementation using objects that
1156 maintain arbitrary state about the nature of the exception. Such a scheme
1157 is sometimes preferable to matching particular string values of $@ using
1158 regular expressions. Here's an example:
1160 eval { ... ; die Some::Module::Exception->new( FOO => "bar" ) };
1162 if (ref($@) && UNIVERSAL::isa($@,"Some::Module::Exception")) {
1163 # handle Some::Module::Exception
1166 # handle all other possible exceptions
1170 Because perl will stringify uncaught exception messages before displaying
1171 them, you may want to overload stringification operations on such custom
1172 exception objects. See L<overload> for details about that.
1174 You can arrange for a callback to be run just before the C<die>
1175 does its deed, by setting the C<$SIG{__DIE__}> hook. The associated
1176 handler will be called with the error text and can change the error
1177 message, if it sees fit, by calling C<die> again. See
1178 L<perlvar/$SIG{expr}> for details on setting C<%SIG> entries, and
1179 L<"eval BLOCK"> for some examples. Although this feature was meant
1180 to be run only right before your program was to exit, this is not
1181 currently the case--the C<$SIG{__DIE__}> hook is currently called
1182 even inside eval()ed blocks/strings! If one wants the hook to do
1183 nothing in such situations, put
1187 as the first line of the handler (see L<perlvar/$^S>). Because
1188 this promotes strange action at a distance, this counterintuitive
1189 behavior may be fixed in a future release.
1193 Not really a function. Returns the value of the last command in the
1194 sequence of commands indicated by BLOCK. When modified by a loop
1195 modifier, executes the BLOCK once before testing the loop condition.
1196 (On other statements the loop modifiers test the conditional first.)
1198 C<do BLOCK> does I<not> count as a loop, so the loop control statements
1199 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1200 See L<perlsyn> for alternative strategies.
1202 =item do SUBROUTINE(LIST)
1204 A deprecated form of subroutine call. See L<perlsub>.
1208 Uses the value of EXPR as a filename and executes the contents of the
1209 file as a Perl script.
1217 except that it's more efficient and concise, keeps track of the current
1218 filename for error messages, searches the @INC directories, and updates
1219 C<%INC> if the file is found. See L<perlvar/Predefined Names> for these
1220 variables. It also differs in that code evaluated with C<do FILENAME>
1221 cannot see lexicals in the enclosing scope; C<eval STRING> does. It's the
1222 same, however, in that it does reparse the file every time you call it,
1223 so you probably don't want to do this inside a loop.
1225 If C<do> cannot read the file, it returns undef and sets C<$!> to the
1226 error. If C<do> can read the file but cannot compile it, it
1227 returns undef and sets an error message in C<$@>. If the file is
1228 successfully compiled, C<do> returns the value of the last expression
1231 Note that inclusion of library modules is better done with the
1232 C<use> and C<require> operators, which also do automatic error checking
1233 and raise an exception if there's a problem.
1235 You might like to use C<do> to read in a program configuration
1236 file. Manual error checking can be done this way:
1238 # read in config files: system first, then user
1239 for $file ("/share/prog/defaults.rc",
1240 "$ENV{HOME}/.someprogrc")
1242 unless ($return = do $file) {
1243 warn "couldn't parse $file: $@" if $@;
1244 warn "couldn't do $file: $!" unless defined $return;
1245 warn "couldn't run $file" unless $return;
1253 This function causes an immediate core dump. See also the B<-u>
1254 command-line switch in L<perlrun>, which does the same thing.
1255 Primarily this is so that you can use the B<undump> program (not
1256 supplied) to turn your core dump into an executable binary after
1257 having initialized all your variables at the beginning of the
1258 program. When the new binary is executed it will begin by executing
1259 a C<goto LABEL> (with all the restrictions that C<goto> suffers).
1260 Think of it as a goto with an intervening core dump and reincarnation.
1261 If C<LABEL> is omitted, restarts the program from the top.
1263 B<WARNING>: Any files opened at the time of the dump will I<not>
1264 be open any more when the program is reincarnated, with possible
1265 resulting confusion on the part of Perl.
1267 This function is now largely obsolete, partly because it's very
1268 hard to convert a core file into an executable, and because the
1269 real compiler backends for generating portable bytecode and compilable
1270 C code have superseded it. That's why you should now invoke it as
1271 C<CORE::dump()>, if you don't want to be warned against a possible
1274 If you're looking to use L<dump> to speed up your program, consider
1275 generating bytecode or native C code as described in L<perlcc>. If
1276 you're just trying to accelerate a CGI script, consider using the
1277 C<mod_perl> extension to B<Apache>, or the CPAN module, CGI::Fast.
1278 You might also consider autoloading or selfloading, which at least
1279 make your program I<appear> to run faster.
1283 When called in list context, returns a 2-element list consisting of the
1284 key and value for the next element of a hash, so that you can iterate over
1285 it. When called in scalar context, returns only the key for the next
1286 element in the hash.
1288 Entries are returned in an apparently random order. The actual random
1289 order is subject to change in future versions of perl, but it is
1290 guaranteed to be in the same order as either the C<keys> or C<values>
1291 function would produce on the same (unmodified) hash. Since Perl
1292 5.8.1 the ordering is different even between different runs of Perl
1293 for security reasons (see L<perlsec/"Algorithmic Complexity Attacks">).
1295 When the hash is entirely read, a null array is returned in list context
1296 (which when assigned produces a false (C<0>) value), and C<undef> in
1297 scalar context. The next call to C<each> after that will start iterating
1298 again. There is a single iterator for each hash, shared by all C<each>,
1299 C<keys>, and C<values> function calls in the program; it can be reset by
1300 reading all the elements from the hash, or by evaluating C<keys HASH> or
1301 C<values HASH>. If you add or delete elements of a hash while you're
1302 iterating over it, you may get entries skipped or duplicated, so
1303 don't. Exception: It is always safe to delete the item most recently
1304 returned by C<each()>, which means that the following code will work:
1306 while (($key, $value) = each %hash) {
1308 delete $hash{$key}; # This is safe
1311 The following prints out your environment like the printenv(1) program,
1312 only in a different order:
1314 while (($key,$value) = each %ENV) {
1315 print "$key=$value\n";
1318 See also C<keys>, C<values> and C<sort>.
1320 =item eof FILEHANDLE
1326 Returns 1 if the next read on FILEHANDLE will return end of file, or if
1327 FILEHANDLE is not open. FILEHANDLE may be an expression whose value
1328 gives the real filehandle. (Note that this function actually
1329 reads a character and then C<ungetc>s it, so isn't very useful in an
1330 interactive context.) Do not read from a terminal file (or call
1331 C<eof(FILEHANDLE)> on it) after end-of-file is reached. File types such
1332 as terminals may lose the end-of-file condition if you do.
1334 An C<eof> without an argument uses the last file read. Using C<eof()>
1335 with empty parentheses is very different. It refers to the pseudo file
1336 formed from the files listed on the command line and accessed via the
1337 C<< <> >> operator. Since C<< <> >> isn't explicitly opened,
1338 as a normal filehandle is, an C<eof()> before C<< <> >> has been
1339 used will cause C<@ARGV> to be examined to determine if input is
1340 available. Similarly, an C<eof()> after C<< <> >> has returned
1341 end-of-file will assume you are processing another C<@ARGV> list,
1342 and if you haven't set C<@ARGV>, will read input from C<STDIN>;
1343 see L<perlop/"I/O Operators">.
1345 In a C<< while (<>) >> loop, C<eof> or C<eof(ARGV)> can be used to
1346 detect the end of each file, C<eof()> will only detect the end of the
1347 last file. Examples:
1349 # reset line numbering on each input file
1351 next if /^\s*#/; # skip comments
1354 close ARGV if eof; # Not eof()!
1357 # insert dashes just before last line of last file
1359 if (eof()) { # check for end of last file
1360 print "--------------\n";
1363 last if eof(); # needed if we're reading from a terminal
1366 Practical hint: you almost never need to use C<eof> in Perl, because the
1367 input operators typically return C<undef> when they run out of data, or if
1374 In the first form, the return value of EXPR is parsed and executed as if it
1375 were a little Perl program. The value of the expression (which is itself
1376 determined within scalar context) is first parsed, and if there weren't any
1377 errors, executed in the lexical context of the current Perl program, so
1378 that any variable settings or subroutine and format definitions remain
1379 afterwards. Note that the value is parsed every time the eval executes.
1380 If EXPR is omitted, evaluates C<$_>. This form is typically used to
1381 delay parsing and subsequent execution of the text of EXPR until run time.
1383 In the second form, the code within the BLOCK is parsed only once--at the
1384 same time the code surrounding the eval itself was parsed--and executed
1385 within the context of the current Perl program. This form is typically
1386 used to trap exceptions more efficiently than the first (see below), while
1387 also providing the benefit of checking the code within BLOCK at compile
1390 The final semicolon, if any, may be omitted from the value of EXPR or within
1393 In both forms, the value returned is the value of the last expression
1394 evaluated inside the mini-program; a return statement may be also used, just
1395 as with subroutines. The expression providing the return value is evaluated
1396 in void, scalar, or list context, depending on the context of the eval itself.
1397 See L</wantarray> for more on how the evaluation context can be determined.
1399 If there is a syntax error or runtime error, or a C<die> statement is
1400 executed, an undefined value is returned by C<eval>, and C<$@> is set to the
1401 error message. If there was no error, C<$@> is guaranteed to be a null
1402 string. Beware that using C<eval> neither silences perl from printing
1403 warnings to STDERR, nor does it stuff the text of warning messages into C<$@>.
1404 To do either of those, you have to use the C<$SIG{__WARN__}> facility, or
1405 turn off warnings inside the BLOCK or EXPR using S<C<no warnings 'all'>>.
1406 See L</warn>, L<perlvar>, L<warnings> and L<perllexwarn>.
1408 Note that, because C<eval> traps otherwise-fatal errors, it is useful for
1409 determining whether a particular feature (such as C<socket> or C<symlink>)
1410 is implemented. It is also Perl's exception trapping mechanism, where
1411 the die operator is used to raise exceptions.
1413 If the code to be executed doesn't vary, you may use the eval-BLOCK
1414 form to trap run-time errors without incurring the penalty of
1415 recompiling each time. The error, if any, is still returned in C<$@>.
1418 # make divide-by-zero nonfatal
1419 eval { $answer = $a / $b; }; warn $@ if $@;
1421 # same thing, but less efficient
1422 eval '$answer = $a / $b'; warn $@ if $@;
1424 # a compile-time error
1425 eval { $answer = }; # WRONG
1428 eval '$answer ='; # sets $@
1430 Due to the current arguably broken state of C<__DIE__> hooks, when using
1431 the C<eval{}> form as an exception trap in libraries, you may wish not
1432 to trigger any C<__DIE__> hooks that user code may have installed.
1433 You can use the C<local $SIG{__DIE__}> construct for this purpose,
1434 as shown in this example:
1436 # a very private exception trap for divide-by-zero
1437 eval { local $SIG{'__DIE__'}; $answer = $a / $b; };
1440 This is especially significant, given that C<__DIE__> hooks can call
1441 C<die> again, which has the effect of changing their error messages:
1443 # __DIE__ hooks may modify error messages
1445 local $SIG{'__DIE__'} =
1446 sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x };
1447 eval { die "foo lives here" };
1448 print $@ if $@; # prints "bar lives here"
1451 Because this promotes action at a distance, this counterintuitive behavior
1452 may be fixed in a future release.
1454 With an C<eval>, you should be especially careful to remember what's
1455 being looked at when:
1461 eval { $x }; # CASE 4
1463 eval "\$$x++"; # CASE 5
1466 Cases 1 and 2 above behave identically: they run the code contained in
1467 the variable $x. (Although case 2 has misleading double quotes making
1468 the reader wonder what else might be happening (nothing is).) Cases 3
1469 and 4 likewise behave in the same way: they run the code C<'$x'>, which
1470 does nothing but return the value of $x. (Case 4 is preferred for
1471 purely visual reasons, but it also has the advantage of compiling at
1472 compile-time instead of at run-time.) Case 5 is a place where
1473 normally you I<would> like to use double quotes, except that in this
1474 particular situation, you can just use symbolic references instead, as
1477 C<eval BLOCK> does I<not> count as a loop, so the loop control statements
1478 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1480 Note that as a very special case, an C<eval ''> executed within the C<DB>
1481 package doesn't see the usual surrounding lexical scope, but rather the
1482 scope of the first non-DB piece of code that called it. You don't normally
1483 need to worry about this unless you are writing a Perl debugger.
1487 =item exec PROGRAM LIST
1489 The C<exec> function executes a system command I<and never returns>--
1490 use C<system> instead of C<exec> if you want it to return. It fails and
1491 returns false only if the command does not exist I<and> it is executed
1492 directly instead of via your system's command shell (see below).
1494 Since it's a common mistake to use C<exec> instead of C<system>, Perl
1495 warns you if there is a following statement which isn't C<die>, C<warn>,
1496 or C<exit> (if C<-w> is set - but you always do that). If you
1497 I<really> want to follow an C<exec> with some other statement, you
1498 can use one of these styles to avoid the warning:
1500 exec ('foo') or print STDERR "couldn't exec foo: $!";
1501 { exec ('foo') }; print STDERR "couldn't exec foo: $!";
1503 If there is more than one argument in LIST, or if LIST is an array
1504 with more than one value, calls execvp(3) with the arguments in LIST.
1505 If there is only one scalar argument or an array with one element in it,
1506 the argument is checked for shell metacharacters, and if there are any,
1507 the entire argument is passed to the system's command shell for parsing
1508 (this is C</bin/sh -c> on Unix platforms, but varies on other platforms).
1509 If there are no shell metacharacters in the argument, it is split into
1510 words and passed directly to C<execvp>, which is more efficient.
1513 exec '/bin/echo', 'Your arguments are: ', @ARGV;
1514 exec "sort $outfile | uniq";
1516 If you don't really want to execute the first argument, but want to lie
1517 to the program you are executing about its own name, you can specify
1518 the program you actually want to run as an "indirect object" (without a
1519 comma) in front of the LIST. (This always forces interpretation of the
1520 LIST as a multivalued list, even if there is only a single scalar in
1523 $shell = '/bin/csh';
1524 exec $shell '-sh'; # pretend it's a login shell
1528 exec {'/bin/csh'} '-sh'; # pretend it's a login shell
1530 When the arguments get executed via the system shell, results will
1531 be subject to its quirks and capabilities. See L<perlop/"`STRING`">
1534 Using an indirect object with C<exec> or C<system> is also more
1535 secure. This usage (which also works fine with system()) forces
1536 interpretation of the arguments as a multivalued list, even if the
1537 list had just one argument. That way you're safe from the shell
1538 expanding wildcards or splitting up words with whitespace in them.
1540 @args = ( "echo surprise" );
1542 exec @args; # subject to shell escapes
1544 exec { $args[0] } @args; # safe even with one-arg list
1546 The first version, the one without the indirect object, ran the I<echo>
1547 program, passing it C<"surprise"> an argument. The second version
1548 didn't--it tried to run a program literally called I<"echo surprise">,
1549 didn't find it, and set C<$?> to a non-zero value indicating failure.
1551 Beginning with v5.6.0, Perl will attempt to flush all files opened for
1552 output before the exec, but this may not be supported on some platforms
1553 (see L<perlport>). To be safe, you may need to set C<$|> ($AUTOFLUSH
1554 in English) or call the C<autoflush()> method of C<IO::Handle> on any
1555 open handles in order to avoid lost output.
1557 Note that C<exec> will not call your C<END> blocks, nor will it call
1558 any C<DESTROY> methods in your objects.
1562 Given an expression that specifies a hash element or array element,
1563 returns true if the specified element in the hash or array has ever
1564 been initialized, even if the corresponding value is undefined. The
1565 element is not autovivified if it doesn't exist.
1567 print "Exists\n" if exists $hash{$key};
1568 print "Defined\n" if defined $hash{$key};
1569 print "True\n" if $hash{$key};
1571 print "Exists\n" if exists $array[$index];
1572 print "Defined\n" if defined $array[$index];
1573 print "True\n" if $array[$index];
1575 A hash or array element can be true only if it's defined, and defined if
1576 it exists, but the reverse doesn't necessarily hold true.
1578 Given an expression that specifies the name of a subroutine,
1579 returns true if the specified subroutine has ever been declared, even
1580 if it is undefined. Mentioning a subroutine name for exists or defined
1581 does not count as declaring it. Note that a subroutine which does not
1582 exist may still be callable: its package may have an C<AUTOLOAD>
1583 method that makes it spring into existence the first time that it is
1584 called -- see L<perlsub>.
1586 print "Exists\n" if exists &subroutine;
1587 print "Defined\n" if defined &subroutine;
1589 Note that the EXPR can be arbitrarily complicated as long as the final
1590 operation is a hash or array key lookup or subroutine name:
1592 if (exists $ref->{A}->{B}->{$key}) { }
1593 if (exists $hash{A}{B}{$key}) { }
1595 if (exists $ref->{A}->{B}->[$ix]) { }
1596 if (exists $hash{A}{B}[$ix]) { }
1598 if (exists &{$ref->{A}{B}{$key}}) { }
1600 Although the deepest nested array or hash will not spring into existence
1601 just because its existence was tested, any intervening ones will.
1602 Thus C<< $ref->{"A"} >> and C<< $ref->{"A"}->{"B"} >> will spring
1603 into existence due to the existence test for the $key element above.
1604 This happens anywhere the arrow operator is used, including even:
1607 if (exists $ref->{"Some key"}) { }
1608 print $ref; # prints HASH(0x80d3d5c)
1610 This surprising autovivification in what does not at first--or even
1611 second--glance appear to be an lvalue context may be fixed in a future
1614 Use of a subroutine call, rather than a subroutine name, as an argument
1615 to exists() is an error.
1618 exists &sub(); # Error
1622 Evaluates EXPR and exits immediately with that value. Example:
1625 exit 0 if $ans =~ /^[Xx]/;
1627 See also C<die>. If EXPR is omitted, exits with C<0> status. The only
1628 universally recognized values for EXPR are C<0> for success and C<1>
1629 for error; other values are subject to interpretation depending on the
1630 environment in which the Perl program is running. For example, exiting
1631 69 (EX_UNAVAILABLE) from a I<sendmail> incoming-mail filter will cause
1632 the mailer to return the item undelivered, but that's not true everywhere.
1634 Don't use C<exit> to abort a subroutine if there's any chance that
1635 someone might want to trap whatever error happened. Use C<die> instead,
1636 which can be trapped by an C<eval>.
1638 The exit() function does not always exit immediately. It calls any
1639 defined C<END> routines first, but these C<END> routines may not
1640 themselves abort the exit. Likewise any object destructors that need to
1641 be called are called before the real exit. If this is a problem, you
1642 can call C<POSIX:_exit($status)> to avoid END and destructor processing.
1643 See L<perlmod> for details.
1649 Returns I<e> (the natural logarithm base) to the power of EXPR.
1650 If EXPR is omitted, gives C<exp($_)>.
1652 =item fcntl FILEHANDLE,FUNCTION,SCALAR
1654 Implements the fcntl(2) function. You'll probably have to say
1658 first to get the correct constant definitions. Argument processing and
1659 value return works just like C<ioctl> below.
1663 fcntl($filehandle, F_GETFL, $packed_return_buffer)
1664 or die "can't fcntl F_GETFL: $!";
1666 You don't have to check for C<defined> on the return from C<fcntl>.
1667 Like C<ioctl>, it maps a C<0> return from the system call into
1668 C<"0 but true"> in Perl. This string is true in boolean context and C<0>
1669 in numeric context. It is also exempt from the normal B<-w> warnings
1670 on improper numeric conversions.
1672 Note that C<fcntl> will produce a fatal error if used on a machine that
1673 doesn't implement fcntl(2). See the Fcntl module or your fcntl(2)
1674 manpage to learn what functions are available on your system.
1676 Here's an example of setting a filehandle named C<REMOTE> to be
1677 non-blocking at the system level. You'll have to negotiate C<$|>
1678 on your own, though.
1680 use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);
1682 $flags = fcntl(REMOTE, F_GETFL, 0)
1683 or die "Can't get flags for the socket: $!\n";
1685 $flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
1686 or die "Can't set flags for the socket: $!\n";
1688 =item fileno FILEHANDLE
1690 Returns the file descriptor for a filehandle, or undefined if the
1691 filehandle is not open. This is mainly useful for constructing
1692 bitmaps for C<select> and low-level POSIX tty-handling operations.
1693 If FILEHANDLE is an expression, the value is taken as an indirect
1694 filehandle, generally its name.
1696 You can use this to find out whether two handles refer to the
1697 same underlying descriptor:
1699 if (fileno(THIS) == fileno(THAT)) {
1700 print "THIS and THAT are dups\n";
1703 (Filehandles connected to memory objects via new features of C<open> may
1704 return undefined even though they are open.)
1707 =item flock FILEHANDLE,OPERATION
1709 Calls flock(2), or an emulation of it, on FILEHANDLE. Returns true
1710 for success, false on failure. Produces a fatal error if used on a
1711 machine that doesn't implement flock(2), fcntl(2) locking, or lockf(3).
1712 C<flock> is Perl's portable file locking interface, although it locks
1713 only entire files, not records.
1715 Two potentially non-obvious but traditional C<flock> semantics are
1716 that it waits indefinitely until the lock is granted, and that its locks
1717 B<merely advisory>. Such discretionary locks are more flexible, but offer
1718 fewer guarantees. This means that files locked with C<flock> may be
1719 modified by programs that do not also use C<flock>. See L<perlport>,
1720 your port's specific documentation, or your system-specific local manpages
1721 for details. It's best to assume traditional behavior if you're writing
1722 portable programs. (But if you're not, you should as always feel perfectly
1723 free to write for your own system's idiosyncrasies (sometimes called
1724 "features"). Slavish adherence to portability concerns shouldn't get
1725 in the way of your getting your job done.)
1727 OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with
1728 LOCK_NB. These constants are traditionally valued 1, 2, 8 and 4, but
1729 you can use the symbolic names if you import them from the Fcntl module,
1730 either individually, or as a group using the ':flock' tag. LOCK_SH
1731 requests a shared lock, LOCK_EX requests an exclusive lock, and LOCK_UN
1732 releases a previously requested lock. If LOCK_NB is bitwise-or'ed with
1733 LOCK_SH or LOCK_EX then C<flock> will return immediately rather than blocking
1734 waiting for the lock (check the return status to see if you got it).
1736 To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE
1737 before locking or unlocking it.
1739 Note that the emulation built with lockf(3) doesn't provide shared
1740 locks, and it requires that FILEHANDLE be open with write intent. These
1741 are the semantics that lockf(3) implements. Most if not all systems
1742 implement lockf(3) in terms of fcntl(2) locking, though, so the
1743 differing semantics shouldn't bite too many people.
1745 Note that the fcntl(2) emulation of flock(3) requires that FILEHANDLE
1746 be open with read intent to use LOCK_SH and requires that it be open
1747 with write intent to use LOCK_EX.
1749 Note also that some versions of C<flock> cannot lock things over the
1750 network; you would need to use the more system-specific C<fcntl> for
1751 that. If you like you can force Perl to ignore your system's flock(2)
1752 function, and so provide its own fcntl(2)-based emulation, by passing
1753 the switch C<-Ud_flock> to the F<Configure> program when you configure
1756 Here's a mailbox appender for BSD systems.
1758 use Fcntl ':flock'; # import LOCK_* constants
1761 flock(MBOX,LOCK_EX);
1762 # and, in case someone appended
1763 # while we were waiting...
1768 flock(MBOX,LOCK_UN);
1771 open(MBOX, ">>/usr/spool/mail/$ENV{'USER'}")
1772 or die "Can't open mailbox: $!";
1775 print MBOX $msg,"\n\n";
1778 On systems that support a real flock(), locks are inherited across fork()
1779 calls, whereas those that must resort to the more capricious fcntl()
1780 function lose the locks, making it harder to write servers.
1782 See also L<DB_File> for other flock() examples.
1786 Does a fork(2) system call to create a new process running the
1787 same program at the same point. It returns the child pid to the
1788 parent process, C<0> to the child process, or C<undef> if the fork is
1789 unsuccessful. File descriptors (and sometimes locks on those descriptors)
1790 are shared, while everything else is copied. On most systems supporting
1791 fork(), great care has gone into making it extremely efficient (for
1792 example, using copy-on-write technology on data pages), making it the
1793 dominant paradigm for multitasking over the last few decades.
1795 Beginning with v5.6.0, Perl will attempt to flush all files opened for
1796 output before forking the child process, but this may not be supported
1797 on some platforms (see L<perlport>). To be safe, you may need to set
1798 C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method of
1799 C<IO::Handle> on any open handles in order to avoid duplicate output.
1801 If you C<fork> without ever waiting on your children, you will
1802 accumulate zombies. On some systems, you can avoid this by setting
1803 C<$SIG{CHLD}> to C<"IGNORE">. See also L<perlipc> for more examples of
1804 forking and reaping moribund children.
1806 Note that if your forked child inherits system file descriptors like
1807 STDIN and STDOUT that are actually connected by a pipe or socket, even
1808 if you exit, then the remote server (such as, say, a CGI script or a
1809 backgrounded job launched from a remote shell) won't think you're done.
1810 You should reopen those to F</dev/null> if it's any issue.
1814 Declare a picture format for use by the C<write> function. For
1818 Test: @<<<<<<<< @||||| @>>>>>
1819 $str, $%, '$' . int($num)
1823 $num = $cost/$quantity;
1827 See L<perlform> for many details and examples.
1829 =item formline PICTURE,LIST
1831 This is an internal function used by C<format>s, though you may call it,
1832 too. It formats (see L<perlform>) a list of values according to the
1833 contents of PICTURE, placing the output into the format output
1834 accumulator, C<$^A> (or C<$ACCUMULATOR> in English).
1835 Eventually, when a C<write> is done, the contents of
1836 C<$^A> are written to some filehandle, but you could also read C<$^A>
1837 yourself and then set C<$^A> back to C<"">. Note that a format typically
1838 does one C<formline> per line of form, but the C<formline> function itself
1839 doesn't care how many newlines are embedded in the PICTURE. This means
1840 that the C<~> and C<~~> tokens will treat the entire PICTURE as a single line.
1841 You may therefore need to use multiple formlines to implement a single
1842 record format, just like the format compiler.
1844 Be careful if you put double quotes around the picture, because an C<@>
1845 character may be taken to mean the beginning of an array name.
1846 C<formline> always returns true. See L<perlform> for other examples.
1848 =item getc FILEHANDLE
1852 Returns the next character from the input file attached to FILEHANDLE,
1853 or the undefined value at end of file, or if there was an error (in
1854 the latter case C<$!> is set). If FILEHANDLE is omitted, reads from
1855 STDIN. This is not particularly efficient. However, it cannot be
1856 used by itself to fetch single characters without waiting for the user
1857 to hit enter. For that, try something more like:
1860 system "stty cbreak </dev/tty >/dev/tty 2>&1";
1863 system "stty", '-icanon', 'eol', "\001";
1869 system "stty -cbreak </dev/tty >/dev/tty 2>&1";
1872 system "stty", 'icanon', 'eol', '^@'; # ASCII null
1876 Determination of whether $BSD_STYLE should be set
1877 is left as an exercise to the reader.
1879 The C<POSIX::getattr> function can do this more portably on
1880 systems purporting POSIX compliance. See also the C<Term::ReadKey>
1881 module from your nearest CPAN site; details on CPAN can be found on
1886 Implements the C library function of the same name, which on most
1887 systems returns the current login from F</etc/utmp>, if any. If null,
1890 $login = getlogin || getpwuid($<) || "Kilroy";
1892 Do not consider C<getlogin> for authentication: it is not as
1893 secure as C<getpwuid>.
1895 =item getpeername SOCKET
1897 Returns the packed sockaddr address of other end of the SOCKET connection.
1900 $hersockaddr = getpeername(SOCK);
1901 ($port, $iaddr) = sockaddr_in($hersockaddr);
1902 $herhostname = gethostbyaddr($iaddr, AF_INET);
1903 $herstraddr = inet_ntoa($iaddr);
1907 Returns the current process group for the specified PID. Use
1908 a PID of C<0> to get the current process group for the
1909 current process. Will raise an exception if used on a machine that
1910 doesn't implement getpgrp(2). If PID is omitted, returns process
1911 group of current process. Note that the POSIX version of C<getpgrp>
1912 does not accept a PID argument, so only C<PID==0> is truly portable.
1916 Returns the process id of the parent process.
1918 Note for Linux users: on Linux, the C functions C<getpid()> and
1919 C<getppid()> return different values from different threads. In order to
1920 be portable, this behavior is not reflected by the perl-level function
1921 C<getppid()>, that returns a consistent value across threads. If you want
1922 to call the underlying C<getppid()>, you may use the CPAN module
1925 =item getpriority WHICH,WHO
1927 Returns the current priority for a process, a process group, or a user.
1928 (See L<getpriority(2)>.) Will raise a fatal exception if used on a
1929 machine that doesn't implement getpriority(2).
1935 =item gethostbyname NAME
1937 =item getnetbyname NAME
1939 =item getprotobyname NAME
1945 =item getservbyname NAME,PROTO
1947 =item gethostbyaddr ADDR,ADDRTYPE
1949 =item getnetbyaddr ADDR,ADDRTYPE
1951 =item getprotobynumber NUMBER
1953 =item getservbyport PORT,PROTO
1971 =item sethostent STAYOPEN
1973 =item setnetent STAYOPEN
1975 =item setprotoent STAYOPEN
1977 =item setservent STAYOPEN
1991 These routines perform the same functions as their counterparts in the
1992 system library. In list context, the return values from the
1993 various get routines are as follows:
1995 ($name,$passwd,$uid,$gid,
1996 $quota,$comment,$gcos,$dir,$shell,$expire) = getpw*
1997 ($name,$passwd,$gid,$members) = getgr*
1998 ($name,$aliases,$addrtype,$length,@addrs) = gethost*
1999 ($name,$aliases,$addrtype,$net) = getnet*
2000 ($name,$aliases,$proto) = getproto*
2001 ($name,$aliases,$port,$proto) = getserv*
2003 (If the entry doesn't exist you get a null list.)
2005 The exact meaning of the $gcos field varies but it usually contains
2006 the real name of the user (as opposed to the login name) and other
2007 information pertaining to the user. Beware, however, that in many
2008 system users are able to change this information and therefore it
2009 cannot be trusted and therefore the $gcos is tainted (see
2010 L<perlsec>). The $passwd and $shell, user's encrypted password and
2011 login shell, are also tainted, because of the same reason.
2013 In scalar context, you get the name, unless the function was a
2014 lookup by name, in which case you get the other thing, whatever it is.
2015 (If the entry doesn't exist you get the undefined value.) For example:
2017 $uid = getpwnam($name);
2018 $name = getpwuid($num);
2020 $gid = getgrnam($name);
2021 $name = getgrgid($num);
2025 In I<getpw*()> the fields $quota, $comment, and $expire are special
2026 cases in the sense that in many systems they are unsupported. If the
2027 $quota is unsupported, it is an empty scalar. If it is supported, it
2028 usually encodes the disk quota. If the $comment field is unsupported,
2029 it is an empty scalar. If it is supported it usually encodes some
2030 administrative comment about the user. In some systems the $quota
2031 field may be $change or $age, fields that have to do with password
2032 aging. In some systems the $comment field may be $class. The $expire
2033 field, if present, encodes the expiration period of the account or the
2034 password. For the availability and the exact meaning of these fields
2035 in your system, please consult your getpwnam(3) documentation and your
2036 F<pwd.h> file. You can also find out from within Perl what your
2037 $quota and $comment fields mean and whether you have the $expire field
2038 by using the C<Config> module and the values C<d_pwquota>, C<d_pwage>,
2039 C<d_pwchange>, C<d_pwcomment>, and C<d_pwexpire>. Shadow password
2040 files are only supported if your vendor has implemented them in the
2041 intuitive fashion that calling the regular C library routines gets the
2042 shadow versions if you're running under privilege or if there exists
2043 the shadow(3) functions as found in System V ( this includes Solaris
2044 and Linux.) Those systems which implement a proprietary shadow password
2045 facility are unlikely to be supported.
2047 The $members value returned by I<getgr*()> is a space separated list of
2048 the login names of the members of the group.
2050 For the I<gethost*()> functions, if the C<h_errno> variable is supported in
2051 C, it will be returned to you via C<$?> if the function call fails. The
2052 C<@addrs> value returned by a successful call is a list of the raw
2053 addresses returned by the corresponding system library call. In the
2054 Internet domain, each address is four bytes long and you can unpack it
2055 by saying something like:
2057 ($a,$b,$c,$d) = unpack('W4',$addr[0]);
2059 The Socket library makes this slightly easier:
2062 $iaddr = inet_aton("127.1"); # or whatever address
2063 $name = gethostbyaddr($iaddr, AF_INET);
2065 # or going the other way
2066 $straddr = inet_ntoa($iaddr);
2068 If you get tired of remembering which element of the return list
2069 contains which return value, by-name interfaces are provided
2070 in standard modules: C<File::stat>, C<Net::hostent>, C<Net::netent>,
2071 C<Net::protoent>, C<Net::servent>, C<Time::gmtime>, C<Time::localtime>,
2072 and C<User::grent>. These override the normal built-ins, supplying
2073 versions that return objects with the appropriate names
2074 for each field. For example:
2078 $is_his = (stat($filename)->uid == pwent($whoever)->uid);
2080 Even though it looks like they're the same method calls (uid),
2081 they aren't, because a C<File::stat> object is different from
2082 a C<User::pwent> object.
2084 =item getsockname SOCKET
2086 Returns the packed sockaddr address of this end of the SOCKET connection,
2087 in case you don't know the address because you have several different
2088 IPs that the connection might have come in on.
2091 $mysockaddr = getsockname(SOCK);
2092 ($port, $myaddr) = sockaddr_in($mysockaddr);
2093 printf "Connect to %s [%s]\n",
2094 scalar gethostbyaddr($myaddr, AF_INET),
2097 =item getsockopt SOCKET,LEVEL,OPTNAME
2099 Queries the option named OPTNAME associated with SOCKET at a given LEVEL.
2100 Options may exist at multiple protocol levels depending on the socket
2101 type, but at least the uppermost socket level SOL_SOCKET (defined in the
2102 C<Socket> module) will exist. To query options at another level the
2103 protocol number of the appropriate protocol controlling the option
2104 should be supplied. For example, to indicate that an option is to be
2105 interpreted by the TCP protocol, LEVEL should be set to the protocol
2106 number of TCP, which you can get using getprotobyname.
2108 The call returns a packed string representing the requested socket option,
2109 or C<undef> if there is an error (the error reason will be in $!). What
2110 exactly is in the packed string depends in the LEVEL and OPTNAME, consult
2111 your system documentation for details. A very common case however is that
2112 the option is an integer, in which case the result will be an packed
2113 integer which you can decode using unpack with the C<i> (or C<I>) format.
2115 An example testing if Nagle's algorithm is turned on on a socket:
2117 use Socket qw(:all);
2119 defined(my $tcp = getprotobyname("tcp"))
2120 or die "Could not determine the protocol number for tcp";
2121 # my $tcp = IPPROTO_TCP; # Alternative
2122 my $packed = getsockopt($socket, $tcp, TCP_NODELAY)
2123 or die "Could not query TCP_NODELAY socket option: $!";
2124 my $nodelay = unpack("I", $packed);
2125 print "Nagle's algorithm is turned ", $nodelay ? "off\n" : "on\n";
2132 In list context, returns a (possibly empty) list of filename expansions on
2133 the value of EXPR such as the standard Unix shell F</bin/csh> would do. In
2134 scalar context, glob iterates through such filename expansions, returning
2135 undef when the list is exhausted. This is the internal function
2136 implementing the C<< <*.c> >> operator, but you can use it directly. If
2137 EXPR is omitted, C<$_> is used. The C<< <*.c> >> operator is discussed in
2138 more detail in L<perlop/"I/O Operators">.
2140 Beginning with v5.6.0, this operator is implemented using the standard
2141 C<File::Glob> extension. See L<File::Glob> for details.
2145 Converts a time as returned by the time function to an 8-element list
2146 with the time localized for the standard Greenwich time zone.
2147 Typically used as follows:
2150 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday) =
2153 All list elements are numeric, and come straight out of the C `struct
2154 tm'. $sec, $min, and $hour are the seconds, minutes, and hours of the
2155 specified time. $mday is the day of the month, and $mon is the month
2156 itself, in the range C<0..11> with 0 indicating January and 11
2157 indicating December. $year is the number of years since 1900. That
2158 is, $year is C<123> in year 2023. $wday is the day of the week, with
2159 0 indicating Sunday and 3 indicating Wednesday. $yday is the day of
2160 the year, in the range C<0..364> (or C<0..365> in leap years.)
2162 Note that the $year element is I<not> simply the last two digits of
2163 the year. If you assume it is, then you create non-Y2K-compliant
2164 programs--and you wouldn't want to do that, would you?
2166 The proper way to get a complete 4-digit year is simply:
2170 And to get the last two digits of the year (e.g., '01' in 2001) do:
2172 $year = sprintf("%02d", $year % 100);
2174 If EXPR is omitted, C<gmtime()> uses the current time (C<gmtime(time)>).
2176 In scalar context, C<gmtime()> returns the ctime(3) value:
2178 $now_string = gmtime; # e.g., "Thu Oct 13 04:54:34 1994"
2180 If you need local time instead of GMT use the L</localtime> builtin.
2181 See also the C<timegm> function provided by the C<Time::Local> module,
2182 and the strftime(3) and mktime(3) functions available via the L<POSIX> module.
2184 This scalar value is B<not> locale dependent (see L<perllocale>), but is
2185 instead a Perl builtin. To get somewhat similar but locale dependent date
2186 strings, see the example in L</localtime>.
2194 The C<goto-LABEL> form finds the statement labeled with LABEL and resumes
2195 execution there. It may not be used to go into any construct that
2196 requires initialization, such as a subroutine or a C<foreach> loop. It
2197 also can't be used to go into a construct that is optimized away,
2198 or to get out of a block or subroutine given to C<sort>.
2199 It can be used to go almost anywhere else within the dynamic scope,
2200 including out of subroutines, but it's usually better to use some other
2201 construct such as C<last> or C<die>. The author of Perl has never felt the
2202 need to use this form of C<goto> (in Perl, that is--C is another matter).
2203 (The difference being that C does not offer named loops combined with
2204 loop control. Perl does, and this replaces most structured uses of C<goto>
2205 in other languages.)
2207 The C<goto-EXPR> form expects a label name, whose scope will be resolved
2208 dynamically. This allows for computed C<goto>s per FORTRAN, but isn't
2209 necessarily recommended if you're optimizing for maintainability:
2211 goto ("FOO", "BAR", "GLARCH")[$i];
2213 The C<goto-&NAME> form is quite different from the other forms of
2214 C<goto>. In fact, it isn't a goto in the normal sense at all, and
2215 doesn't have the stigma associated with other gotos. Instead, it
2216 exits the current subroutine (losing any changes set by local()) and
2217 immediately calls in its place the named subroutine using the current
2218 value of @_. This is used by C<AUTOLOAD> subroutines that wish to
2219 load another subroutine and then pretend that the other subroutine had
2220 been called in the first place (except that any modifications to C<@_>
2221 in the current subroutine are propagated to the other subroutine.)
2222 After the C<goto>, not even C<caller> will be able to tell that this
2223 routine was called first.
2225 NAME needn't be the name of a subroutine; it can be a scalar variable
2226 containing a code reference, or a block which evaluates to a code
2229 =item grep BLOCK LIST
2231 =item grep EXPR,LIST
2233 This is similar in spirit to, but not the same as, grep(1) and its
2234 relatives. In particular, it is not limited to using regular expressions.
2236 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
2237 C<$_> to each element) and returns the list value consisting of those
2238 elements for which the expression evaluated to true. In scalar
2239 context, returns the number of times the expression was true.
2241 @foo = grep(!/^#/, @bar); # weed out comments
2245 @foo = grep {!/^#/} @bar; # weed out comments
2247 Note that C<$_> is an alias to the list value, so it can be used to
2248 modify the elements of the LIST. While this is useful and supported,
2249 it can cause bizarre results if the elements of LIST are not variables.
2250 Similarly, grep returns aliases into the original list, much as a for
2251 loop's index variable aliases the list elements. That is, modifying an
2252 element of a list returned by grep (for example, in a C<foreach>, C<map>
2253 or another C<grep>) actually modifies the element in the original list.
2254 This is usually something to be avoided when writing clear code.
2256 If C<$_> is lexical in the scope where the C<grep> appears (because it has
2257 been declared with C<my $_>) then, in addition the be locally aliased to
2258 the list elements, C<$_> keeps being lexical inside the block; i.e. it
2259 can't be seen from the outside, avoiding any potential side-effects.
2261 See also L</map> for a list composed of the results of the BLOCK or EXPR.
2267 Interprets EXPR as a hex string and returns the corresponding value.
2268 (To convert strings that might start with either C<0>, C<0x>, or C<0b>, see
2269 L</oct>.) If EXPR is omitted, uses C<$_>.
2271 print hex '0xAf'; # prints '175'
2272 print hex 'aF'; # same
2274 Hex strings may only represent integers. Strings that would cause
2275 integer overflow trigger a warning. Leading whitespace is not stripped,
2276 unlike oct(). To present something as hex, look into L</printf>,
2277 L</sprintf>, or L</unpack>.
2281 There is no builtin C<import> function. It is just an ordinary
2282 method (subroutine) defined (or inherited) by modules that wish to export
2283 names to another module. The C<use> function calls the C<import> method
2284 for the package used. See also L</use>, L<perlmod>, and L<Exporter>.
2286 =item index STR,SUBSTR,POSITION
2288 =item index STR,SUBSTR
2290 The index function searches for one string within another, but without
2291 the wildcard-like behavior of a full regular-expression pattern match.
2292 It returns the position of the first occurrence of SUBSTR in STR at
2293 or after POSITION. If POSITION is omitted, starts searching from the
2294 beginning of the string. The return value is based at C<0> (or whatever
2295 you've set the C<$[> variable to--but don't do that). If the substring
2296 is not found, returns one less than the base, ordinarily C<-1>.
2302 Returns the integer portion of EXPR. If EXPR is omitted, uses C<$_>.
2303 You should not use this function for rounding: one because it truncates
2304 towards C<0>, and two because machine representations of floating point
2305 numbers can sometimes produce counterintuitive results. For example,
2306 C<int(-6.725/0.025)> produces -268 rather than the correct -269; that's
2307 because it's really more like -268.99999999999994315658 instead. Usually,
2308 the C<sprintf>, C<printf>, or the C<POSIX::floor> and C<POSIX::ceil>
2309 functions will serve you better than will int().
2311 =item ioctl FILEHANDLE,FUNCTION,SCALAR
2313 Implements the ioctl(2) function. You'll probably first have to say
2315 require "ioctl.ph"; # probably in /usr/local/lib/perl/ioctl.ph
2317 to get the correct function definitions. If F<ioctl.ph> doesn't
2318 exist or doesn't have the correct definitions you'll have to roll your
2319 own, based on your C header files such as F<< <sys/ioctl.h> >>.
2320 (There is a Perl script called B<h2ph> that comes with the Perl kit that
2321 may help you in this, but it's nontrivial.) SCALAR will be read and/or
2322 written depending on the FUNCTION--a pointer to the string value of SCALAR
2323 will be passed as the third argument of the actual C<ioctl> call. (If SCALAR
2324 has no string value but does have a numeric value, that value will be
2325 passed rather than a pointer to the string value. To guarantee this to be
2326 true, add a C<0> to the scalar before using it.) The C<pack> and C<unpack>
2327 functions may be needed to manipulate the values of structures used by
2330 The return value of C<ioctl> (and C<fcntl>) is as follows:
2332 if OS returns: then Perl returns:
2334 0 string "0 but true"
2335 anything else that number
2337 Thus Perl returns true on success and false on failure, yet you can
2338 still easily determine the actual value returned by the operating
2341 $retval = ioctl(...) || -1;
2342 printf "System returned %d\n", $retval;
2344 The special string C<"0 but true"> is exempt from B<-w> complaints
2345 about improper numeric conversions.
2347 =item join EXPR,LIST
2349 Joins the separate strings of LIST into a single string with fields
2350 separated by the value of EXPR, and returns that new string. Example:
2352 $rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);
2354 Beware that unlike C<split>, C<join> doesn't take a pattern as its
2355 first argument. Compare L</split>.
2359 Returns a list consisting of all the keys of the named hash.
2360 (In scalar context, returns the number of keys.)
2362 The keys are returned in an apparently random order. The actual
2363 random order is subject to change in future versions of perl, but it
2364 is guaranteed to be the same order as either the C<values> or C<each>
2365 function produces (given that the hash has not been modified). Since
2366 Perl 5.8.1 the ordering is different even between different runs of
2367 Perl for security reasons (see L<perlsec/"Algorithmic Complexity
2370 As a side effect, calling keys() resets the HASH's internal iterator,
2371 see L</each>. (In particular, calling keys() in void context resets
2372 the iterator with no other overhead.)
2374 Here is yet another way to print your environment:
2377 @values = values %ENV;
2379 print pop(@keys), '=', pop(@values), "\n";
2382 or how about sorted by key:
2384 foreach $key (sort(keys %ENV)) {
2385 print $key, '=', $ENV{$key}, "\n";
2388 The returned values are copies of the original keys in the hash, so
2389 modifying them will not affect the original hash. Compare L</values>.
2391 To sort a hash by value, you'll need to use a C<sort> function.
2392 Here's a descending numeric sort of a hash by its values:
2394 foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
2395 printf "%4d %s\n", $hash{$key}, $key;
2398 As an lvalue C<keys> allows you to increase the number of hash buckets
2399 allocated for the given hash. This can gain you a measure of efficiency if
2400 you know the hash is going to get big. (This is similar to pre-extending
2401 an array by assigning a larger number to $#array.) If you say
2405 then C<%hash> will have at least 200 buckets allocated for it--256 of them,
2406 in fact, since it rounds up to the next power of two. These
2407 buckets will be retained even if you do C<%hash = ()>, use C<undef
2408 %hash> if you want to free the storage while C<%hash> is still in scope.
2409 You can't shrink the number of buckets allocated for the hash using
2410 C<keys> in this way (but you needn't worry about doing this by accident,
2411 as trying has no effect).
2413 See also C<each>, C<values> and C<sort>.
2415 =item kill SIGNAL, LIST
2417 Sends a signal to a list of processes. Returns the number of
2418 processes successfully signaled (which is not necessarily the
2419 same as the number actually killed).
2421 $cnt = kill 1, $child1, $child2;
2424 If SIGNAL is zero, no signal is sent to the process. This is a
2425 useful way to check that a child process is alive and hasn't changed
2426 its UID. See L<perlport> for notes on the portability of this
2429 Unlike in the shell, if SIGNAL is negative, it kills
2430 process groups instead of processes. (On System V, a negative I<PROCESS>
2431 number will also kill process groups, but that's not portable.) That
2432 means you usually want to use positive not negative signals. You may also
2433 use a signal name in quotes.
2435 See L<perlipc/"Signals"> for more details.
2441 The C<last> command is like the C<break> statement in C (as used in
2442 loops); it immediately exits the loop in question. If the LABEL is
2443 omitted, the command refers to the innermost enclosing loop. The
2444 C<continue> block, if any, is not executed:
2446 LINE: while (<STDIN>) {
2447 last LINE if /^$/; # exit when done with header
2451 C<last> cannot be used to exit a block which returns a value such as
2452 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
2453 a grep() or map() operation.
2455 Note that a block by itself is semantically identical to a loop
2456 that executes once. Thus C<last> can be used to effect an early
2457 exit out of such a block.
2459 See also L</continue> for an illustration of how C<last>, C<next>, and
2466 Returns a lowercased version of EXPR. This is the internal function
2467 implementing the C<\L> escape in double-quoted strings. Respects
2468 current LC_CTYPE locale if C<use locale> in force. See L<perllocale>
2469 and L<perlunicode> for more details about locale and Unicode support.
2471 If EXPR is omitted, uses C<$_>.
2477 Returns the value of EXPR with the first character lowercased. This
2478 is the internal function implementing the C<\l> escape in
2479 double-quoted strings. Respects current LC_CTYPE locale if C<use
2480 locale> in force. See L<perllocale> and L<perlunicode> for more
2481 details about locale and Unicode support.
2483 If EXPR is omitted, uses C<$_>.
2489 Returns the length in I<characters> of the value of EXPR. If EXPR is
2490 omitted, returns length of C<$_>. Note that this cannot be used on
2491 an entire array or hash to find out how many elements these have.
2492 For that, use C<scalar @array> and C<scalar keys %hash> respectively.
2494 Note the I<characters>: if the EXPR is in Unicode, you will get the
2495 number of characters, not the number of bytes. To get the length
2496 in bytes, use C<do { use bytes; length(EXPR) }>, see L<bytes>.
2498 =item link OLDFILE,NEWFILE
2500 Creates a new filename linked to the old filename. Returns true for
2501 success, false otherwise.
2503 =item listen SOCKET,QUEUESIZE
2505 Does the same thing that the listen system call does. Returns true if
2506 it succeeded, false otherwise. See the example in
2507 L<perlipc/"Sockets: Client/Server Communication">.
2511 You really probably want to be using C<my> instead, because C<local> isn't
2512 what most people think of as "local". See
2513 L<perlsub/"Private Variables via my()"> for details.
2515 A local modifies the listed variables to be local to the enclosing
2516 block, file, or eval. If more than one value is listed, the list must
2517 be placed in parentheses. See L<perlsub/"Temporary Values via local()">
2518 for details, including issues with tied arrays and hashes.
2520 =item localtime EXPR
2524 Converts a time as returned by the time function to a 9-element list
2525 with the time analyzed for the local time zone. Typically used as
2529 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
2532 All list elements are numeric, and come straight out of the C `struct
2533 tm'. C<$sec>, C<$min>, and C<$hour> are the seconds, minutes, and hours
2534 of the specified time.
2536 C<$mday> is the day of the month, and C<$mon> is the month itself, in
2537 the range C<0..11> with 0 indicating January and 11 indicating December.
2538 This makes it easy to get a month name from a list:
2540 my @abbr = qw( Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec );
2541 print "$abbr[$mon] $mday";
2542 # $mon=9, $mday=18 gives "Oct 18"
2544 C<$year> is the number of years since 1900, not just the last two digits
2545 of the year. That is, C<$year> is C<123> in year 2023. The proper way
2546 to get a complete 4-digit year is simply:
2550 To get the last two digits of the year (e.g., '01' in 2001) do:
2552 $year = sprintf("%02d", $year % 100);
2554 C<$wday> is the day of the week, with 0 indicating Sunday and 3 indicating
2555 Wednesday. C<$yday> is the day of the year, in the range C<0..364>
2556 (or C<0..365> in leap years.)
2558 C<$isdst> is true if the specified time occurs during Daylight Saving
2559 Time, false otherwise.
2561 If EXPR is omitted, C<localtime()> uses the current time (C<localtime(time)>).
2563 In scalar context, C<localtime()> returns the ctime(3) value:
2565 $now_string = localtime; # e.g., "Thu Oct 13 04:54:34 1994"
2567 This scalar value is B<not> locale dependent but is a Perl builtin. For GMT
2568 instead of local time use the L</gmtime> builtin. See also the
2569 C<Time::Local> module (to convert the second, minutes, hours, ... back to
2570 the integer value returned by time()), and the L<POSIX> module's strftime(3)
2571 and mktime(3) functions.
2573 To get somewhat similar but locale dependent date strings, set up your
2574 locale environment variables appropriately (please see L<perllocale>) and
2577 use POSIX qw(strftime);
2578 $now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
2579 # or for GMT formatted appropriately for your locale:
2580 $now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;
2582 Note that the C<%a> and C<%b>, the short forms of the day of the week
2583 and the month of the year, may not necessarily be three characters wide.
2587 This function places an advisory lock on a shared variable, or referenced
2588 object contained in I<THING> until the lock goes out of scope.
2590 lock() is a "weak keyword" : this means that if you've defined a function
2591 by this name (before any calls to it), that function will be called
2592 instead. (However, if you've said C<use threads>, lock() is always a
2593 keyword.) See L<threads>.
2599 Returns the natural logarithm (base I<e>) of EXPR. If EXPR is omitted,
2600 returns log of C<$_>. To get the log of another base, use basic algebra:
2601 The base-N log of a number is equal to the natural log of that number
2602 divided by the natural log of N. For example:
2606 return log($n)/log(10);
2609 See also L</exp> for the inverse operation.
2615 Does the same thing as the C<stat> function (including setting the
2616 special C<_> filehandle) but stats a symbolic link instead of the file
2617 the symbolic link points to. If symbolic links are unimplemented on
2618 your system, a normal C<stat> is done. For much more detailed
2619 information, please see the documentation for C<stat>.
2621 If EXPR is omitted, stats C<$_>.
2625 The match operator. See L<perlop>.
2627 =item map BLOCK LIST
2631 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
2632 C<$_> to each element) and returns the list value composed of the
2633 results of each such evaluation. In scalar context, returns the
2634 total number of elements so generated. Evaluates BLOCK or EXPR in
2635 list context, so each element of LIST may produce zero, one, or
2636 more elements in the returned value.
2638 @chars = map(chr, @nums);
2640 translates a list of numbers to the corresponding characters. And
2642 %hash = map { getkey($_) => $_ } @array;
2644 is just a funny way to write
2647 foreach $_ (@array) {
2648 $hash{getkey($_)} = $_;
2651 Note that C<$_> is an alias to the list value, so it can be used to
2652 modify the elements of the LIST. While this is useful and supported,
2653 it can cause bizarre results if the elements of LIST are not variables.
2654 Using a regular C<foreach> loop for this purpose would be clearer in
2655 most cases. See also L</grep> for an array composed of those items of
2656 the original list for which the BLOCK or EXPR evaluates to true.
2658 If C<$_> is lexical in the scope where the C<map> appears (because it has
2659 been declared with C<my $_>) then, in addition the be locally aliased to
2660 the list elements, C<$_> keeps being lexical inside the block; i.e. it
2661 can't be seen from the outside, avoiding any potential side-effects.
2663 C<{> starts both hash references and blocks, so C<map { ...> could be either
2664 the start of map BLOCK LIST or map EXPR, LIST. Because perl doesn't look
2665 ahead for the closing C<}> it has to take a guess at which its dealing with
2666 based what it finds just after the C<{>. Usually it gets it right, but if it
2667 doesn't it won't realize something is wrong until it gets to the C<}> and
2668 encounters the missing (or unexpected) comma. The syntax error will be
2669 reported close to the C<}> but you'll need to change something near the C<{>
2670 such as using a unary C<+> to give perl some help:
2672 %hash = map { "\L$_", 1 } @array # perl guesses EXPR. wrong
2673 %hash = map { +"\L$_", 1 } @array # perl guesses BLOCK. right
2674 %hash = map { ("\L$_", 1) } @array # this also works
2675 %hash = map { lc($_), 1 } @array # as does this.
2676 %hash = map +( lc($_), 1 ), @array # this is EXPR and works!
2678 %hash = map ( lc($_), 1 ), @array # evaluates to (1, @array)
2680 or to force an anon hash constructor use C<+{>
2682 @hashes = map +{ lc($_), 1 }, @array # EXPR, so needs , at end
2684 and you get list of anonymous hashes each with only 1 entry.
2686 =item mkdir FILENAME,MASK
2688 =item mkdir FILENAME
2690 Creates the directory specified by FILENAME, with permissions
2691 specified by MASK (as modified by C<umask>). If it succeeds it
2692 returns true, otherwise it returns false and sets C<$!> (errno).
2693 If omitted, MASK defaults to 0777.
2695 In general, it is better to create directories with permissive MASK,
2696 and let the user modify that with their C<umask>, than it is to supply
2697 a restrictive MASK and give the user no way to be more permissive.
2698 The exceptions to this rule are when the file or directory should be
2699 kept private (mail files, for instance). The perlfunc(1) entry on
2700 C<umask> discusses the choice of MASK in more detail.
2702 Note that according to the POSIX 1003.1-1996 the FILENAME may have any
2703 number of trailing slashes. Some operating and filesystems do not get
2704 this right, so Perl automatically removes all trailing slashes to keep
2707 =item msgctl ID,CMD,ARG
2709 Calls the System V IPC function msgctl(2). You'll probably have to say
2713 first to get the correct constant definitions. If CMD is C<IPC_STAT>,
2714 then ARG must be a variable which will hold the returned C<msqid_ds>
2715 structure. Returns like C<ioctl>: the undefined value for error,
2716 C<"0 but true"> for zero, or the actual return value otherwise. See also
2717 L<perlipc/"SysV IPC">, C<IPC::SysV>, and C<IPC::Semaphore> documentation.
2719 =item msgget KEY,FLAGS
2721 Calls the System V IPC function msgget(2). Returns the message queue
2722 id, or the undefined value if there is an error. See also
2723 L<perlipc/"SysV IPC"> and C<IPC::SysV> and C<IPC::Msg> documentation.
2725 =item msgrcv ID,VAR,SIZE,TYPE,FLAGS
2727 Calls the System V IPC function msgrcv to receive a message from
2728 message queue ID into variable VAR with a maximum message size of
2729 SIZE. Note that when a message is received, the message type as a
2730 native long integer will be the first thing in VAR, followed by the
2731 actual message. This packing may be opened with C<unpack("l! a*")>.
2732 Taints the variable. Returns true if successful, or false if there is
2733 an error. See also L<perlipc/"SysV IPC">, C<IPC::SysV>, and
2734 C<IPC::SysV::Msg> documentation.
2736 =item msgsnd ID,MSG,FLAGS
2738 Calls the System V IPC function msgsnd to send the message MSG to the
2739 message queue ID. MSG must begin with the native long integer message
2740 type, and be followed by the length of the actual message, and finally
2741 the message itself. This kind of packing can be achieved with
2742 C<pack("l! a*", $type, $message)>. Returns true if successful,
2743 or false if there is an error. See also C<IPC::SysV>
2744 and C<IPC::SysV::Msg> documentation.
2750 =item my EXPR : ATTRS
2752 =item my TYPE EXPR : ATTRS
2754 A C<my> declares the listed variables to be local (lexically) to the
2755 enclosing block, file, or C<eval>. If more than one value is listed,
2756 the list must be placed in parentheses.
2758 The exact semantics and interface of TYPE and ATTRS are still
2759 evolving. TYPE is currently bound to the use of C<fields> pragma,
2760 and attributes are handled using the C<attributes> pragma, or starting
2761 from Perl 5.8.0 also via the C<Attribute::Handlers> module. See
2762 L<perlsub/"Private Variables via my()"> for details, and L<fields>,
2763 L<attributes>, and L<Attribute::Handlers>.
2769 The C<next> command is like the C<continue> statement in C; it starts
2770 the next iteration of the loop:
2772 LINE: while (<STDIN>) {
2773 next LINE if /^#/; # discard comments
2777 Note that if there were a C<continue> block on the above, it would get
2778 executed even on discarded lines. If the LABEL is omitted, the command
2779 refers to the innermost enclosing loop.
2781 C<next> cannot be used to exit a block which returns a value such as
2782 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
2783 a grep() or map() operation.
2785 Note that a block by itself is semantically identical to a loop
2786 that executes once. Thus C<next> will exit such a block early.
2788 See also L</continue> for an illustration of how C<last>, C<next>, and
2791 =item no Module VERSION LIST
2793 =item no Module VERSION
2795 =item no Module LIST
2799 See the C<use> function, of which C<no> is the opposite.
2805 Interprets EXPR as an octal string and returns the corresponding
2806 value. (If EXPR happens to start off with C<0x>, interprets it as a
2807 hex string. If EXPR starts off with C<0b>, it is interpreted as a
2808 binary string. Leading whitespace is ignored in all three cases.)
2809 The following will handle decimal, binary, octal, and hex in the standard
2812 $val = oct($val) if $val =~ /^0/;
2814 If EXPR is omitted, uses C<$_>. To go the other way (produce a number
2815 in octal), use sprintf() or printf():
2817 $perms = (stat("filename"))[2] & 07777;
2818 $oct_perms = sprintf "%lo", $perms;
2820 The oct() function is commonly used when a string such as C<644> needs
2821 to be converted into a file mode, for example. (Although perl will
2822 automatically convert strings into numbers as needed, this automatic
2823 conversion assumes base 10.)
2825 =item open FILEHANDLE,EXPR
2827 =item open FILEHANDLE,MODE,EXPR
2829 =item open FILEHANDLE,MODE,EXPR,LIST
2831 =item open FILEHANDLE,MODE,REFERENCE
2833 =item open FILEHANDLE
2835 Opens the file whose filename is given by EXPR, and associates it with
2838 (The following is a comprehensive reference to open(): for a gentler
2839 introduction you may consider L<perlopentut>.)
2841 If FILEHANDLE is an undefined scalar variable (or array or hash element)
2842 the variable is assigned a reference to a new anonymous filehandle,
2843 otherwise if FILEHANDLE is an expression, its value is used as the name of
2844 the real filehandle wanted. (This is considered a symbolic reference, so
2845 C<use strict 'refs'> should I<not> be in effect.)
2847 If EXPR is omitted, the scalar variable of the same name as the
2848 FILEHANDLE contains the filename. (Note that lexical variables--those
2849 declared with C<my>--will not work for this purpose; so if you're
2850 using C<my>, specify EXPR in your call to open.)
2852 If three or more arguments are specified then the mode of opening and
2853 the file name are separate. If MODE is C<< '<' >> or nothing, the file
2854 is opened for input. If MODE is C<< '>' >>, the file is truncated and
2855 opened for output, being created if necessary. If MODE is C<<< '>>' >>>,
2856 the file is opened for appending, again being created if necessary.
2858 You can put a C<'+'> in front of the C<< '>' >> or C<< '<' >> to
2859 indicate that you want both read and write access to the file; thus
2860 C<< '+<' >> is almost always preferred for read/write updates--the C<<
2861 '+>' >> mode would clobber the file first. You can't usually use
2862 either read-write mode for updating textfiles, since they have
2863 variable length records. See the B<-i> switch in L<perlrun> for a
2864 better approach. The file is created with permissions of C<0666>
2865 modified by the process' C<umask> value.
2867 These various prefixes correspond to the fopen(3) modes of C<'r'>,
2868 C<'r+'>, C<'w'>, C<'w+'>, C<'a'>, and C<'a+'>.
2870 In the 2-arguments (and 1-argument) form of the call the mode and
2871 filename should be concatenated (in this order), possibly separated by
2872 spaces. It is possible to omit the mode in these forms if the mode is
2875 If the filename begins with C<'|'>, the filename is interpreted as a
2876 command to which output is to be piped, and if the filename ends with a
2877 C<'|'>, the filename is interpreted as a command which pipes output to
2878 us. See L<perlipc/"Using open() for IPC">
2879 for more examples of this. (You are not allowed to C<open> to a command
2880 that pipes both in I<and> out, but see L<IPC::Open2>, L<IPC::Open3>,
2881 and L<perlipc/"Bidirectional Communication with Another Process">
2884 For three or more arguments if MODE is C<'|-'>, the filename is
2885 interpreted as a command to which output is to be piped, and if MODE
2886 is C<'-|'>, the filename is interpreted as a command which pipes
2887 output to us. In the 2-arguments (and 1-argument) form one should
2888 replace dash (C<'-'>) with the command.
2889 See L<perlipc/"Using open() for IPC"> for more examples of this.
2890 (You are not allowed to C<open> to a command that pipes both in I<and>
2891 out, but see L<IPC::Open2>, L<IPC::Open3>, and
2892 L<perlipc/"Bidirectional Communication"> for alternatives.)
2894 In the three-or-more argument form of pipe opens, if LIST is specified
2895 (extra arguments after the command name) then LIST becomes arguments
2896 to the command invoked if the platform supports it. The meaning of
2897 C<open> with more than three arguments for non-pipe modes is not yet
2898 specified. Experimental "layers" may give extra LIST arguments
2901 In the 2-arguments (and 1-argument) form opening C<'-'> opens STDIN
2902 and opening C<< '>-' >> opens STDOUT.
2904 You may use the three-argument form of open to specify IO "layers"
2905 (sometimes also referred to as "disciplines") to be applied to the handle
2906 that affect how the input and output are processed (see L<open> and
2907 L<PerlIO> for more details). For example
2909 open(FH, "<:utf8", "file")
2911 will open the UTF-8 encoded file containing Unicode characters,
2912 see L<perluniintro>. (Note that if layers are specified in the
2913 three-arg form then default layers set by the C<open> pragma are
2916 Open returns nonzero upon success, the undefined value otherwise. If
2917 the C<open> involved a pipe, the return value happens to be the pid of
2920 If you're running Perl on a system that distinguishes between text
2921 files and binary files, then you should check out L</binmode> for tips
2922 for dealing with this. The key distinction between systems that need
2923 C<binmode> and those that don't is their text file formats. Systems
2924 like Unix, Mac OS, and Plan 9, which delimit lines with a single
2925 character, and which encode that character in C as C<"\n">, do not
2926 need C<binmode>. The rest need it.
2928 When opening a file, it's usually a bad idea to continue normal execution
2929 if the request failed, so C<open> is frequently used in connection with
2930 C<die>. Even if C<die> won't do what you want (say, in a CGI script,
2931 where you want to make a nicely formatted error message (but there are
2932 modules that can help with that problem)) you should always check
2933 the return value from opening a file. The infrequent exception is when
2934 working with an unopened filehandle is actually what you want to do.
2936 As a special case the 3 arg form with a read/write mode and the third
2937 argument being C<undef>:
2939 open(TMP, "+>", undef) or die ...
2941 opens a filehandle to an anonymous temporary file. Also using "+<"
2942 works for symmetry, but you really should consider writing something
2943 to the temporary file first. You will need to seek() to do the
2946 Since v5.8.0, perl has built using PerlIO by default. Unless you've
2947 changed this (ie Configure -Uuseperlio), you can open file handles to
2948 "in memory" files held in Perl scalars via:
2950 open($fh, '>', \$variable) || ..
2952 Though if you try to re-open C<STDOUT> or C<STDERR> as an "in memory"
2953 file, you have to close it first:
2956 open STDOUT, '>', \$variable or die "Can't open STDOUT: $!";
2961 open ARTICLE or die "Can't find article $ARTICLE: $!\n";
2962 while (<ARTICLE>) {...
2964 open(LOG, '>>/usr/spool/news/twitlog'); # (log is reserved)
2965 # if the open fails, output is discarded
2967 open(DBASE, '+<', 'dbase.mine') # open for update
2968 or die "Can't open 'dbase.mine' for update: $!";
2970 open(DBASE, '+<dbase.mine') # ditto
2971 or die "Can't open 'dbase.mine' for update: $!";
2973 open(ARTICLE, '-|', "caesar <$article") # decrypt article
2974 or die "Can't start caesar: $!";
2976 open(ARTICLE, "caesar <$article |") # ditto
2977 or die "Can't start caesar: $!";
2979 open(EXTRACT, "|sort >Tmp$$") # $$ is our process id
2980 or die "Can't start sort: $!";
2983 open(MEMORY,'>', \$var)
2984 or die "Can't open memory file: $!";
2985 print MEMORY "foo!\n"; # output will end up in $var
2987 # process argument list of files along with any includes
2989 foreach $file (@ARGV) {
2990 process($file, 'fh00');
2994 my($filename, $input) = @_;
2995 $input++; # this is a string increment
2996 unless (open($input, $filename)) {
2997 print STDERR "Can't open $filename: $!\n";
3002 while (<$input>) { # note use of indirection
3003 if (/^#include "(.*)"/) {
3004 process($1, $input);
3011 See L<perliol/> for detailed info on PerlIO.
3013 You may also, in the Bourne shell tradition, specify an EXPR beginning
3014 with C<< '>&' >>, in which case the rest of the string is interpreted
3015 as the name of a filehandle (or file descriptor, if numeric) to be
3016 duped (as L<dup(2)>) and opened. You may use C<&> after C<< > >>,
3017 C<<< >> >>>, C<< < >>, C<< +> >>, C<<< +>> >>>, and C<< +< >>.
3018 The mode you specify should match the mode of the original filehandle.
3019 (Duping a filehandle does not take into account any existing contents
3020 of IO buffers.) If you use the 3 arg form then you can pass either a
3021 number, the name of a filehandle or the normal "reference to a glob".
3023 Here is a script that saves, redirects, and restores C<STDOUT> and
3024 C<STDERR> using various methods:
3027 open my $oldout, ">&STDOUT" or die "Can't dup STDOUT: $!";
3028 open OLDERR, ">&", \*STDERR or die "Can't dup STDERR: $!";
3030 open STDOUT, '>', "foo.out" or die "Can't redirect STDOUT: $!";
3031 open STDERR, ">&STDOUT" or die "Can't dup STDOUT: $!";
3033 select STDERR; $| = 1; # make unbuffered
3034 select STDOUT; $| = 1; # make unbuffered
3036 print STDOUT "stdout 1\n"; # this works for
3037 print STDERR "stderr 1\n"; # subprocesses too
3039 open STDOUT, ">&", $oldout or die "Can't dup \$oldout: $!";
3040 open STDERR, ">&OLDERR" or die "Can't dup OLDERR: $!";
3042 print STDOUT "stdout 2\n";
3043 print STDERR "stderr 2\n";
3045 If you specify C<< '<&=X' >>, where C<X> is a file descriptor number
3046 or a filehandle, then Perl will do an equivalent of C's C<fdopen> of
3047 that file descriptor (and not call L<dup(2)>); this is more
3048 parsimonious of file descriptors. For example:
3050 # open for input, reusing the fileno of $fd
3051 open(FILEHANDLE, "<&=$fd")
3055 open(FILEHANDLE, "<&=", $fd)
3059 # open for append, using the fileno of OLDFH
3060 open(FH, ">>&=", OLDFH)
3064 open(FH, ">>&=OLDFH")
3066 Being parsimonious on filehandles is also useful (besides being
3067 parsimonious) for example when something is dependent on file
3068 descriptors, like for example locking using flock(). If you do just
3069 C<< open(A, '>>&B') >>, the filehandle A will not have the same file
3070 descriptor as B, and therefore flock(A) will not flock(B), and vice
3071 versa. But with C<< open(A, '>>&=B') >> the filehandles will share
3072 the same file descriptor.
3074 Note that if you are using Perls older than 5.8.0, Perl will be using
3075 the standard C libraries' fdopen() to implement the "=" functionality.
3076 On many UNIX systems fdopen() fails when file descriptors exceed a
3077 certain value, typically 255. For Perls 5.8.0 and later, PerlIO is
3078 most often the default.
3080 You can see whether Perl has been compiled with PerlIO or not by
3081 running C<perl -V> and looking for C<useperlio=> line. If C<useperlio>
3082 is C<define>, you have PerlIO, otherwise you don't.
3084 If you open a pipe on the command C<'-'>, i.e., either C<'|-'> or C<'-|'>
3085 with 2-arguments (or 1-argument) form of open(), then
3086 there is an implicit fork done, and the return value of open is the pid
3087 of the child within the parent process, and C<0> within the child
3088 process. (Use C<defined($pid)> to determine whether the open was successful.)
3089 The filehandle behaves normally for the parent, but i/o to that
3090 filehandle is piped from/to the STDOUT/STDIN of the child process.
3091 In the child process the filehandle isn't opened--i/o happens from/to
3092 the new STDOUT or STDIN. Typically this is used like the normal
3093 piped open when you want to exercise more control over just how the
3094 pipe command gets executed, such as when you are running setuid, and
3095 don't want to have to scan shell commands for metacharacters.
3096 The following triples are more or less equivalent:
3098 open(FOO, "|tr '[a-z]' '[A-Z]'");
3099 open(FOO, '|-', "tr '[a-z]' '[A-Z]'");
3100 open(FOO, '|-') || exec 'tr', '[a-z]', '[A-Z]';
3101 open(FOO, '|-', "tr", '[a-z]', '[A-Z]');
3103 open(FOO, "cat -n '$file'|");
3104 open(FOO, '-|', "cat -n '$file'");
3105 open(FOO, '-|') || exec 'cat', '-n', $file;
3106 open(FOO, '-|', "cat", '-n', $file);
3108 The last example in each block shows the pipe as "list form", which is
3109 not yet supported on all platforms. A good rule of thumb is that if
3110 your platform has true C<fork()> (in other words, if your platform is
3111 UNIX) you can use the list form.
3113 See L<perlipc/"Safe Pipe Opens"> for more examples of this.
3115 Beginning with v5.6.0, Perl will attempt to flush all files opened for
3116 output before any operation that may do a fork, but this may not be
3117 supported on some platforms (see L<perlport>). To be safe, you may need
3118 to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
3119 of C<IO::Handle> on any open handles.
3121 On systems that support a close-on-exec flag on files, the flag will
3122 be set for the newly opened file descriptor as determined by the value
3123 of $^F. See L<perlvar/$^F>.
3125 Closing any piped filehandle causes the parent process to wait for the
3126 child to finish, and returns the status value in C<$?>.
3128 The filename passed to 2-argument (or 1-argument) form of open() will
3129 have leading and trailing whitespace deleted, and the normal
3130 redirection characters honored. This property, known as "magic open",
3131 can often be used to good effect. A user could specify a filename of
3132 F<"rsh cat file |">, or you could change certain filenames as needed:
3134 $filename =~ s/(.*\.gz)\s*$/gzip -dc < $1|/;
3135 open(FH, $filename) or die "Can't open $filename: $!";
3137 Use 3-argument form to open a file with arbitrary weird characters in it,
3139 open(FOO, '<', $file);
3141 otherwise it's necessary to protect any leading and trailing whitespace:
3143 $file =~ s#^(\s)#./$1#;
3144 open(FOO, "< $file\0");
3146 (this may not work on some bizarre filesystems). One should
3147 conscientiously choose between the I<magic> and 3-arguments form
3152 will allow the user to specify an argument of the form C<"rsh cat file |">,
3153 but will not work on a filename which happens to have a trailing space, while
3155 open IN, '<', $ARGV[0];
3157 will have exactly the opposite restrictions.
3159 If you want a "real" C C<open> (see L<open(2)> on your system), then you
3160 should use the C<sysopen> function, which involves no such magic (but
3161 may use subtly different filemodes than Perl open(), which is mapped
3162 to C fopen()). This is
3163 another way to protect your filenames from interpretation. For example:
3166 sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)
3167 or die "sysopen $path: $!";
3168 $oldfh = select(HANDLE); $| = 1; select($oldfh);
3169 print HANDLE "stuff $$\n";
3171 print "File contains: ", <HANDLE>;
3173 Using the constructor from the C<IO::Handle> package (or one of its
3174 subclasses, such as C<IO::File> or C<IO::Socket>), you can generate anonymous
3175 filehandles that have the scope of whatever variables hold references to
3176 them, and automatically close whenever and however you leave that scope:
3180 sub read_myfile_munged {
3182 my $handle = new IO::File;
3183 open($handle, "myfile") or die "myfile: $!";
3185 or return (); # Automatically closed here.
3186 mung $first or die "mung failed"; # Or here.
3187 return $first, <$handle> if $ALL; # Or here.
3191 See L</seek> for some details about mixing reading and writing.
3193 =item opendir DIRHANDLE,EXPR
3195 Opens a directory named EXPR for processing by C<readdir>, C<telldir>,
3196 C<seekdir>, C<rewinddir>, and C<closedir>. Returns true if successful.
3197 DIRHANDLE may be an expression whose value can be used as an indirect
3198 dirhandle, usually the real dirhandle name. If DIRHANDLE is an undefined
3199 scalar variable (or array or hash element), the variable is assigned a
3200 reference to a new anonymous dirhandle.
3201 DIRHANDLEs have their own namespace separate from FILEHANDLEs.
3207 Returns the numeric (the native 8-bit encoding, like ASCII or EBCDIC,
3208 or Unicode) value of the first character of EXPR. If EXPR is omitted,
3211 For the reverse, see L</chr>.
3212 See L<perlunicode> and L<encoding> for more about Unicode.
3218 =item our EXPR : ATTRS
3220 =item our TYPE EXPR : ATTRS
3222 An C<our> declares the listed variables to be valid globals within
3223 the enclosing block, file, or C<eval>. That is, it has the same
3224 scoping rules as a "my" declaration, but does not create a local
3225 variable. If more than one value is listed, the list must be placed
3226 in parentheses. The C<our> declaration has no semantic effect unless
3227 "use strict vars" is in effect, in which case it lets you use the
3228 declared global variable without qualifying it with a package name.
3229 (But only within the lexical scope of the C<our> declaration. In this
3230 it differs from "use vars", which is package scoped.)
3232 An C<our> declaration declares a global variable that will be visible
3233 across its entire lexical scope, even across package boundaries. The
3234 package in which the variable is entered is determined at the point
3235 of the declaration, not at the point of use. This means the following
3239 our $bar; # declares $Foo::bar for rest of lexical scope
3243 print $bar; # prints 20
3245 Multiple C<our> declarations in the same lexical scope are allowed
3246 if they are in different packages. If they happened to be in the same
3247 package, Perl will emit warnings if you have asked for them.
3251 our $bar; # declares $Foo::bar for rest of lexical scope
3255 our $bar = 30; # declares $Bar::bar for rest of lexical scope
3256 print $bar; # prints 30
3258 our $bar; # emits warning
3260 An C<our> declaration may also have a list of attributes associated
3263 The exact semantics and interface of TYPE and ATTRS are still
3264 evolving. TYPE is currently bound to the use of C<fields> pragma,
3265 and attributes are handled using the C<attributes> pragma, or starting
3266 from Perl 5.8.0 also via the C<Attribute::Handlers> module. See
3267 L<perlsub/"Private Variables via my()"> for details, and L<fields>,
3268 L<attributes>, and L<Attribute::Handlers>.
3270 The only currently recognized C<our()> attribute is C<unique> which
3271 indicates that a single copy of the global is to be used by all
3272 interpreters should the program happen to be running in a
3273 multi-interpreter environment. (The default behaviour would be for
3274 each interpreter to have its own copy of the global.) Examples:
3276 our @EXPORT : unique = qw(foo);
3277 our %EXPORT_TAGS : unique = (bar => [qw(aa bb cc)]);
3278 our $VERSION : unique = "1.00";
3280 Note that this attribute also has the effect of making the global
3281 readonly when the first new interpreter is cloned (for example,
3282 when the first new thread is created).
3284 Multi-interpreter environments can come to being either through the
3285 fork() emulation on Windows platforms, or by embedding perl in a
3286 multi-threaded application. The C<unique> attribute does nothing in
3287 all other environments.
3289 Warning: the current implementation of this attribute operates on the
3290 typeglob associated with the variable; this means that C<our $x : unique>
3291 also has the effect of C<our @x : unique; our %x : unique>. This may be
3294 =item pack TEMPLATE,LIST
3296 Takes a LIST of values and converts it into a string using the rules
3297 given by the TEMPLATE. The resulting string is the concatenation of
3298 the converted values. Typically, each converted value looks
3299 like its machine-level representation. For example, on 32-bit machines
3300 an integer may be represented by a sequence of 4 bytes which will be
3301 converted to a sequence of 4 characters.
3303 The TEMPLATE is a sequence of characters that give the order and type
3304 of values, as follows:
3306 a A string with arbitrary binary data, will be null padded.
3307 A A text (ASCII) string, will be space padded.
3308 Z A null terminated (ASCIZ) string, will be null padded.
3310 b A bit string (ascending bit order inside each byte, like vec()).
3311 B A bit string (descending bit order inside each byte).
3312 h A hex string (low nybble first).
3313 H A hex string (high nybble first).
3315 c A signed char (8-bit) value.
3316 C An unsigned C char (octet) even under Unicode. Should normally not
3317 be used. See U and W instead.
3318 W An unsigned char value (can be greater than 255).
3320 s A signed short (16-bit) value.
3321 S An unsigned short value.
3323 l A signed long (32-bit) value.
3324 L An unsigned long value.
3326 q A signed quad (64-bit) value.
3327 Q An unsigned quad value.
3328 (Quads are available only if your system supports 64-bit
3329 integer values _and_ if Perl has been compiled to support those.
3330 Causes a fatal error otherwise.)
3332 i A signed integer value.
3333 I A unsigned integer value.
3334 (This 'integer' is _at_least_ 32 bits wide. Its exact
3335 size depends on what a local C compiler calls 'int'.)
3337 n An unsigned short (16-bit) in "network" (big-endian) order.
3338 N An unsigned long (32-bit) in "network" (big-endian) order.
3339 v An unsigned short (16-bit) in "VAX" (little-endian) order.
3340 V An unsigned long (32-bit) in "VAX" (little-endian) order.
3342 j A Perl internal signed integer value (IV).
3343 J A Perl internal unsigned integer value (UV).
3345 f A single-precision float in the native format.
3346 d A double-precision float in the native format.
3348 F A Perl internal floating point value (NV) in the native format
3349 D A long double-precision float in the native format.
3350 (Long doubles are available only if your system supports long
3351 double values _and_ if Perl has been compiled to support those.
3352 Causes a fatal error otherwise.)
3354 p A pointer to a null-terminated string.
3355 P A pointer to a structure (fixed-length string).
3357 u A uuencoded string.
3358 U A Unicode character number. Encodes to UTF-8 internally
3359 (or UTF-EBCDIC in EBCDIC platforms).
3361 w A BER compressed integer. Its bytes represent an unsigned
3362 integer in base 128, most significant digit first, with as
3363 few digits as possible. Bit eight (the high bit) is set
3364 on each byte except the last.
3368 @ Null fill to absolute position, counted from the start of
3369 the innermost ()-group.
3370 ( Start of a ()-group.
3372 Some letters in the TEMPLATE may optionally be followed by one or
3373 more of these modifiers (the second column lists the letters for
3374 which the modifier is valid):
3376 ! sSlLiI Forces native (short, long, int) sizes instead
3377 of fixed (16-/32-bit) sizes.
3379 xX Make x and X act as alignment commands.
3381 nNvV Treat integers as signed instead of unsigned.
3383 > sSiIlLqQ Force big-endian byte-order on the type.
3384 jJfFdDpP (The "big end" touches the construct.)
3386 < sSiIlLqQ Force little-endian byte-order on the type.
3387 jJfFdDpP (The "little end" touches the construct.)
3389 The C<E<gt>> and C<E<lt>> modifiers can also be used on C<()>-groups,
3390 in which case they force a certain byte-order on all components of
3391 that group, including subgroups.
3393 The following rules apply:
3399 Each letter may optionally be followed by a number giving a repeat
3400 count. With all types except C<a>, C<A>, C<Z>, C<b>, C<B>, C<h>,
3401 C<H>, C<@>, C<x>, C<X> and C<P> the pack function will gobble up that
3402 many values from the LIST. A C<*> for the repeat count means to use
3403 however many items are left, except for C<@>, C<x>, C<X>, where it is
3404 equivalent to C<0>, and C<u>, where it is equivalent to 1 (or 45, what
3405 is the same). A numeric repeat count may optionally be enclosed in
3406 brackets, as in C<pack 'C[80]', @arr>.
3408 One can replace the numeric repeat count by a template enclosed in brackets;
3409 then the packed length of this template in bytes is used as a count.
3410 For example, C<x[L]> skips a long (it skips the number of bytes in a long);
3411 the template C<$t X[$t] $t> unpack()s twice what $t unpacks.
3412 If the template in brackets contains alignment commands (such as C<x![d]>),
3413 its packed length is calculated as if the start of the template has the maximal
3416 When used with C<Z>, C<*> results in the addition of a trailing null
3417 byte (so the packed result will be one longer than the byte C<length>
3420 The repeat count for C<u> is interpreted as the maximal number of bytes
3421 to encode per line of output, with 0, 1 and 2 replaced by 45. The repeat
3422 count should not be more than 65.
3426 The C<a>, C<A>, and C<Z> types gobble just one value, but pack it as a
3427 string of length count, padding with nulls or spaces as necessary. When
3428 unpacking, C<A> strips trailing spaces and nulls, C<Z> strips everything
3429 after the first null, and C<a> returns data verbatim.
3431 If the value-to-pack is too long, it is truncated. If too long and an
3432 explicit count is provided, C<Z> packs only C<$count-1> bytes, followed
3433 by a null byte. Thus C<Z> always packs a trailing null (except when the
3438 Likewise, the C<b> and C<B> fields pack a string that many bits long.
3439 Each character of the input field of pack() generates 1 bit of the result.
3440 Each result bit is based on the least-significant bit of the corresponding
3441 input character, i.e., on C<ord($char)%2>. In particular, characters C<"0">
3442 and C<"1"> generate bits 0 and 1, as do characters C<"\0"> and C<"\1">.
3444 Starting from the beginning of the input string of pack(), each 8-tuple
3445 of characters is converted to 1 character of output. With format C<b>
3446 the first character of the 8-tuple determines the least-significant bit of a
3447 character, and with format C<B> it determines the most-significant bit of
3450 If the length of the input string is not exactly divisible by 8, the
3451 remainder is packed as if the input string were padded by null characters
3452 at the end. Similarly, during unpack()ing the "extra" bits are ignored.
3454 If the input string of pack() is longer than needed, extra characters are
3455 ignored. A C<*> for the repeat count of pack() means to use all the
3456 characters of the input field. On unpack()ing the bits are converted to a
3457 string of C<"0">s and C<"1">s.
3461 The C<h> and C<H> fields pack a string that many nybbles (4-bit groups,
3462 representable as hexadecimal digits, 0-9a-f) long.
3464 Each character of the input field of pack() generates 4 bits of the result.
3465 For non-alphabetical characters the result is based on the 4 least-significant
3466 bits of the input character, i.e., on C<ord($char)%16>. In particular,
3467 characters C<"0"> and C<"1"> generate nybbles 0 and 1, as do bytes
3468 C<"\0"> and C<"\1">. For characters C<"a".."f"> and C<"A".."F"> the result
3469 is compatible with the usual hexadecimal digits, so that C<"a"> and
3470 C<"A"> both generate the nybble C<0xa==10>. The result for characters
3471 C<"g".."z"> and C<"G".."Z"> is not well-defined.
3473 Starting from the beginning of the input string of pack(), each pair
3474 of characters is converted to 1 character of output. With format C<h> the
3475 first character of the pair determines the least-significant nybble of the
3476 output character, and with format C<H> it determines the most-significant
3479 If the length of the input string is not even, it behaves as if padded
3480 by a null character at the end. Similarly, during unpack()ing the "extra"
3481 nybbles are ignored.
3483 If the input string of pack() is longer than needed, extra characters are
3485 A C<*> for the repeat count of pack() means to use all the characters of
3486 the input field. On unpack()ing the nybbles are converted to a string
3487 of hexadecimal digits.
3491 The C<p> type packs a pointer to a null-terminated string. You are
3492 responsible for ensuring the string is not a temporary value (which can
3493 potentially get deallocated before you get around to using the packed result).
3494 The C<P> type packs a pointer to a structure of the size indicated by the
3495 length. A NULL pointer is created if the corresponding value for C<p> or
3496 C<P> is C<undef>, similarly for unpack().
3498 If your system has a strange pointer size (i.e. a pointer is neither as
3499 big as an int nor as big as a long), it may not be possible to pack or
3500 unpack pointers in big- or little-endian byte order. Attempting to do
3501 so will result in a fatal error.
3505 The C</> template character allows packing and unpacking of strings where
3506 the packed structure contains a byte count followed by the string itself.
3507 You write I<length-item>C</>I<string-item>.
3509 The I<length-item> can be any C<pack> template letter, and describes
3510 how the length value is packed. The ones likely to be of most use are
3511 integer-packing ones like C<n> (for Java strings), C<w> (for ASN.1 or
3512 SNMP) and C<N> (for Sun XDR).
3514 For C<pack>, the I<string-item> must, at present, be C<"A*">, C<"a*"> or
3515 C<"Z*">. For C<unpack> the length of the string is obtained from the
3516 I<length-item>, but if you put in the '*' it will be ignored. For all other
3517 codes, C<unpack> applies the length value to the next item, which must not
3518 have a repeat count.
3520 unpack 'W/a', "\04Gurusamy"; gives 'Guru'
3521 unpack 'a3/A* A*', '007 Bond J '; gives (' Bond','J')
3522 pack 'n/a* w/a*','hello,','world'; gives "\000\006hello,\005world"
3524 The I<length-item> is not returned explicitly from C<unpack>.
3526 Adding a count to the I<length-item> letter is unlikely to do anything
3527 useful, unless that letter is C<A>, C<a> or C<Z>. Packing with a
3528 I<length-item> of C<a> or C<Z> may introduce C<"\000"> characters,
3529 which Perl does not regard as legal in numeric strings.
3533 The integer types C<s>, C<S>, C<l>, and C<L> may be
3534 followed by a C<!> modifier to signify native shorts or
3535 longs--as you can see from above for example a bare C<l> does mean
3536 exactly 32 bits, the native C<long> (as seen by the local C compiler)
3537 may be larger. This is an issue mainly in 64-bit platforms. You can
3538 see whether using C<!> makes any difference by
3540 print length(pack("s")), " ", length(pack("s!")), "\n";
3541 print length(pack("l")), " ", length(pack("l!")), "\n";
3543 C<i!> and C<I!> also work but only because of completeness;
3544 they are identical to C<i> and C<I>.
3546 The actual sizes (in bytes) of native shorts, ints, longs, and long
3547 longs on the platform where Perl was built are also available via
3551 print $Config{shortsize}, "\n";
3552 print $Config{intsize}, "\n";
3553 print $Config{longsize}, "\n";
3554 print $Config{longlongsize}, "\n";
3556 (The C<$Config{longlongsize}> will be undefined if your system does
3557 not support long longs.)
3561 The integer formats C<s>, C<S>, C<i>, C<I>, C<l>, C<L>, C<j>, and C<J>
3562 are inherently non-portable between processors and operating systems
3563 because they obey the native byteorder and endianness. For example a
3564 4-byte integer 0x12345678 (305419896 decimal) would be ordered natively
3565 (arranged in and handled by the CPU registers) into bytes as
3567 0x12 0x34 0x56 0x78 # big-endian
3568 0x78 0x56 0x34 0x12 # little-endian
3570 Basically, the Intel and VAX CPUs are little-endian, while everybody
3571 else, for example Motorola m68k/88k, PPC, Sparc, HP PA, Power, and
3572 Cray are big-endian. Alpha and MIPS can be either: Digital/Compaq
3573 used/uses them in little-endian mode; SGI/Cray uses them in big-endian
3576 The names `big-endian' and `little-endian' are comic references to
3577 the classic "Gulliver's Travels" (via the paper "On Holy Wars and a
3578 Plea for Peace" by Danny Cohen, USC/ISI IEN 137, April 1, 1980) and
3579 the egg-eating habits of the Lilliputians.
3581 Some systems may have even weirder byte orders such as
3586 You can see your system's preference with
3588 print join(" ", map { sprintf "%#02x", $_ }
3589 unpack("W*",pack("L",0x12345678))), "\n";
3591 The byteorder on the platform where Perl was built is also available
3595 print $Config{byteorder}, "\n";
3597 Byteorders C<'1234'> and C<'12345678'> are little-endian, C<'4321'>
3598 and C<'87654321'> are big-endian.
3600 If you want portable packed integers you can either use the formats
3601 C<n>, C<N>, C<v>, and C<V>, or you can use the C<E<gt>> and C<E<lt>>
3602 modifiers. These modifiers are only available as of perl 5.9.2.
3603 See also L<perlport>.
3607 All integer and floating point formats as well as C<p> and C<P> and
3608 C<()>-groups may be followed by the C<E<gt>> or C<E<lt>> modifiers
3609 to force big- or little- endian byte-order, respectively.
3610 This is especially useful, since C<n>, C<N>, C<v> and C<V> don't cover
3611 signed integers, 64-bit integers and floating point values. However,
3612 there are some things to keep in mind.
3614 Exchanging signed integers between different platforms only works
3615 if all platforms store them in the same format. Most platforms store
3616 signed integers in two's complement, so usually this is not an issue.
3618 The C<E<gt>> or C<E<lt>> modifiers can only be used on floating point
3619 formats on big- or little-endian machines. Otherwise, attempting to
3620 do so will result in a fatal error.
3622 Forcing big- or little-endian byte-order on floating point values for
3623 data exchange can only work if all platforms are using the same
3624 binary representation (e.g. IEEE floating point format). Even if all
3625 platforms are using IEEE, there may be subtle differences. Being able
3626 to use C<E<gt>> or C<E<lt>> on floating point values can be very useful,
3627 but also very dangerous if you don't know exactly what you're doing.
3628 It is definetely not a general way to portably store floating point
3631 When using C<E<gt>> or C<E<lt>> on an C<()>-group, this will affect
3632 all types inside the group that accept the byte-order modifiers,
3633 including all subgroups. It will silently be ignored for all other
3634 types. You are not allowed to override the byte-order within a group
3635 that already has a byte-order modifier suffix.
3639 Real numbers (floats and doubles) are in the native machine format only;
3640 due to the multiplicity of floating formats around, and the lack of a
3641 standard "network" representation, no facility for interchange has been
3642 made. This means that packed floating point data written on one machine
3643 may not be readable on another - even if both use IEEE floating point
3644 arithmetic (as the endian-ness of the memory representation is not part
3645 of the IEEE spec). See also L<perlport>.
3647 If you know exactly what you're doing, you can use the C<E<gt>> or C<E<lt>>
3648 modifiers to force big- or little-endian byte-order on floating point values.
3650 Note that Perl uses doubles (or long doubles, if configured) internally for
3651 all numeric calculation, and converting from double into float and thence back
3652 to double again will lose precision (i.e., C<unpack("f", pack("f", $foo)>)
3653 will not in general equal $foo).
3657 Pack and unpack can operate in two modes, character mode (C<C0> mode) where
3658 the packed string is processed per character and UTF-8 mode (C<U0> mode)
3659 where the packed string is processed in its UTF-8-encoded Unicode form on
3660 a byte by byte basis. Character mode is the default unless the format string
3661 starts with an C<U>. You can switch mode at any moment with an explicit
3662 C<C0> or C<U0> in the format. A mode is in effect until the next mode switch
3663 or until the end of the ()-group in which it was entered.
3667 You must yourself do any alignment or padding by inserting for example
3668 enough C<'x'>es while packing. There is no way to pack() and unpack()
3669 could know where the characters are going to or coming from. Therefore
3670 C<pack> (and C<unpack>) handle their output and input as flat
3671 sequences of characters.
3675 A ()-group is a sub-TEMPLATE enclosed in parentheses. A group may
3676 take a repeat count, both as postfix, and for unpack() also via the C</>
3677 template character. Within each repetition of a group, positioning with
3678 C<@> starts again at 0. Therefore, the result of
3680 pack( '@1A((@2A)@3A)', 'a', 'b', 'c' )
3682 is the string "\0a\0\0bc".
3687 C<x> and C<X> accept C<!> modifier. In this case they act as
3688 alignment commands: they jump forward/back to the closest position
3689 aligned at a multiple of C<count> characters. For example, to pack() or
3690 unpack() C's C<struct {char c; double d; char cc[2]}> one may need to
3691 use the template C<W x![d] d W[2]>; this assumes that doubles must be
3692 aligned on the double's size.
3694 For alignment commands C<count> of 0 is equivalent to C<count> of 1;
3695 both result in no-ops.
3699 C<n>, C<N>, C<v> and C<V> accept the C<!> modifier. In this case they
3700 will represent signed 16-/32-bit integers in big-/little-endian order.
3701 This is only portable if all platforms sharing the packed data use the
3702 same binary representation for signed integers (e.g. all platforms are
3703 using two's complement representation).
3707 A comment in a TEMPLATE starts with C<#> and goes to the end of line.
3708 White space may be used to separate pack codes from each other, but
3709 modifiers and a repeat count must follow immediately.
3713 If TEMPLATE requires more arguments to pack() than actually given, pack()
3714 assumes additional C<""> arguments. If TEMPLATE requires less arguments
3715 to pack() than actually given, extra arguments are ignored.
3721 $foo = pack("WWWW",65,66,67,68);
3723 $foo = pack("W4",65,66,67,68);
3725 $foo = pack("W4",0x24b6,0x24b7,0x24b8,0x24b9);
3726 # same thing with Unicode circled letters.
3727 $foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
3728 # same thing with Unicode circled letters. You don't get the UTF-8
3729 # bytes because the U at the start of the format caused a switch to
3730 # U0-mode, so the UTF-8 bytes get joined into characters
3731 $foo = pack("C0U4",0x24b6,0x24b7,0x24b8,0x24b9);
3732 # foo eq "\xe2\x92\xb6\xe2\x92\xb7\xe2\x92\xb8\xe2\x92\xb9"
3733 # This is the UTF-8 encoding of the string in the previous example
3735 $foo = pack("ccxxcc",65,66,67,68);
3738 # note: the above examples featuring "W" and "c" are true
3739 # only on ASCII and ASCII-derived systems such as ISO Latin 1
3740 # and UTF-8. In EBCDIC the first example would be
3741 # $foo = pack("WWWW",193,194,195,196);
3743 $foo = pack("s2",1,2);
3744 # "\1\0\2\0" on little-endian
3745 # "\0\1\0\2" on big-endian
3747 $foo = pack("a4","abcd","x","y","z");
3750 $foo = pack("aaaa","abcd","x","y","z");
3753 $foo = pack("a14","abcdefg");
3754 # "abcdefg\0\0\0\0\0\0\0"
3756 $foo = pack("i9pl", gmtime);
3757 # a real struct tm (on my system anyway)
3759 $utmp_template = "Z8 Z8 Z16 L";
3760 $utmp = pack($utmp_template, @utmp1);
3761 # a struct utmp (BSDish)
3763 @utmp2 = unpack($utmp_template, $utmp);
3764 # "@utmp1" eq "@utmp2"
3767 unpack("N", pack("B32", substr("0" x 32 . shift, -32)));
3770 $foo = pack('sx2l', 12, 34);
3771 # short 12, two zero bytes padding, long 34
3772 $bar = pack('s@4l', 12, 34);
3773 # short 12, zero fill to position 4, long 34
3776 $foo = pack('nN', 42, 4711);
3777 # pack big-endian 16- and 32-bit unsigned integers
3778 $foo = pack('S>L>', 42, 4711);
3780 $foo = pack('s<l<', -42, 4711);
3781 # pack little-endian 16- and 32-bit signed integers
3782 $foo = pack('(sl)<', -42, 4711);
3785 The same template may generally also be used in unpack().
3787 =item package NAMESPACE
3791 Declares the compilation unit as being in the given namespace. The scope
3792 of the package declaration is from the declaration itself through the end
3793 of the enclosing block, file, or eval (the same as the C<my> operator).
3794 All further unqualified dynamic identifiers will be in this namespace.
3795 A package statement affects only dynamic variables--including those
3796 you've used C<local> on--but I<not> lexical variables, which are created
3797 with C<my>. Typically it would be the first declaration in a file to
3798 be included by the C<require> or C<use> operator. You can switch into a
3799 package in more than one place; it merely influences which symbol table
3800 is used by the compiler for the rest of that block. You can refer to
3801 variables and filehandles in other packages by prefixing the identifier
3802 with the package name and a double colon: C<$Package::Variable>.
3803 If the package name is null, the C<main> package as assumed. That is,
3804 C<$::sail> is equivalent to C<$main::sail> (as well as to C<$main'sail>,
3805 still seen in older code).
3807 If NAMESPACE is omitted, then there is no current package, and all
3808 identifiers must be fully qualified or lexicals. However, you are
3809 strongly advised not to make use of this feature. Its use can cause
3810 unexpected behaviour, even crashing some versions of Perl. It is
3811 deprecated, and will be removed from a future release.
3813 See L<perlmod/"Packages"> for more information about packages, modules,
3814 and classes. See L<perlsub> for other scoping issues.
3816 =item pipe READHANDLE,WRITEHANDLE
3818 Opens a pair of connected pipes like the corresponding system call.
3819 Note that if you set up a loop of piped processes, deadlock can occur
3820 unless you are very careful. In addition, note that Perl's pipes use
3821 IO buffering, so you may need to set C<$|> to flush your WRITEHANDLE
3822 after each command, depending on the application.
3824 See L<IPC::Open2>, L<IPC::Open3>, and L<perlipc/"Bidirectional Communication">
3825 for examples of such things.
3827 On systems that support a close-on-exec flag on files, the flag will be set
3828 for the newly opened file descriptors as determined by the value of $^F.
3835 Pops and returns the last value of the array, shortening the array by
3836 one element. Has an effect similar to
3840 If there are no elements in the array, returns the undefined value
3841 (although this may happen at other times as well). If ARRAY is
3842 omitted, pops the C<@ARGV> array in the main program, and the C<@_>
3843 array in subroutines, just like C<shift>.
3849 Returns the offset of where the last C<m//g> search left off for the variable
3850 in question (C<$_> is used when the variable is not specified). Note that
3851 0 is a valid match offset, while C<undef> indicates that the search position
3852 is reset (usually due to match failure, but can also be because no match has
3853 yet been performed on the scalar). C<pos> directly accesses the location used
3854 by the regexp engine to store the offset, so assigning to C<pos> will change
3855 that offset, and so will also influence the C<\G> zero-width assertion in
3856 regular expressions. Because a failed C<m//gc> match doesn't reset the offset,
3857 the return from C<pos> won't change either in this case. See L<perlre> and
3860 =item print FILEHANDLE LIST
3866 Prints a string or a list of strings. Returns true if successful.
3867 FILEHANDLE may be a scalar variable name, in which case the variable
3868 contains the name of or a reference to the filehandle, thus introducing
3869 one level of indirection. (NOTE: If FILEHANDLE is a variable and
3870 the next token is a term, it may be misinterpreted as an operator
3871 unless you interpose a C<+> or put parentheses around the arguments.)
3872 If FILEHANDLE is omitted, prints by default to standard output (or
3873 to the last selected output channel--see L</select>). If LIST is
3874 also omitted, prints C<$_> to the currently selected output channel.
3875 To set the default output channel to something other than STDOUT
3876 use the select operation. The current value of C<$,> (if any) is
3877 printed between each LIST item. The current value of C<$\> (if
3878 any) is printed after the entire LIST has been printed. Because
3879 print takes a LIST, anything in the LIST is evaluated in list
3880 context, and any subroutine that you call will have one or more of
3881 its expressions evaluated in list context. Also be careful not to
3882 follow the print keyword with a left parenthesis unless you want
3883 the corresponding right parenthesis to terminate the arguments to
3884 the print--interpose a C<+> or put parentheses around all the
3887 Note that if you're storing FILEHANDLES in an array or other expression,
3888 you will have to use a block returning its value instead:
3890 print { $files[$i] } "stuff\n";
3891 print { $OK ? STDOUT : STDERR } "stuff\n";
3893 =item printf FILEHANDLE FORMAT, LIST
3895 =item printf FORMAT, LIST
3897 Equivalent to C<print FILEHANDLE sprintf(FORMAT, LIST)>, except that C<$\>
3898 (the output record separator) is not appended. The first argument
3899 of the list will be interpreted as the C<printf> format. See C<sprintf>
3900 for an explanation of the format argument. If C<use locale> is in effect,
3901 the character used for the decimal point in formatted real numbers is
3902 affected by the LC_NUMERIC locale. See L<perllocale>.
3904 Don't fall into the trap of using a C<printf> when a simple
3905 C<print> would do. The C<print> is more efficient and less
3908 =item prototype FUNCTION
3910 Returns the prototype of a function as a string (or C<undef> if the
3911 function has no prototype). FUNCTION is a reference to, or the name of,
3912 the function whose prototype you want to retrieve.
3914 If FUNCTION is a string starting with C<CORE::>, the rest is taken as a
3915 name for Perl builtin. If the builtin is not I<overridable> (such as
3916 C<qw//>) or its arguments cannot be expressed by a prototype (such as
3917 C<system>) returns C<undef> because the builtin does not really behave
3918 like a Perl function. Otherwise, the string describing the equivalent
3919 prototype is returned.
3921 =item push ARRAY,LIST
3923 Treats ARRAY as a stack, and pushes the values of LIST
3924 onto the end of ARRAY. The length of ARRAY increases by the length of
3925 LIST. Has the same effect as
3928 $ARRAY[++$#ARRAY] = $value;
3931 but is more efficient. Returns the new number of elements in the array.
3943 Generalized quotes. See L<perlop/"Regexp Quote-Like Operators">.
3945 =item quotemeta EXPR
3949 Returns the value of EXPR with all non-"word"
3950 characters backslashed. (That is, all characters not matching
3951 C</[A-Za-z_0-9]/> will be preceded by a backslash in the
3952 returned string, regardless of any locale settings.)
3953 This is the internal function implementing
3954 the C<\Q> escape in double-quoted strings.
3956 If EXPR is omitted, uses C<$_>.
3962 Returns a random fractional number greater than or equal to C<0> and less
3963 than the value of EXPR. (EXPR should be positive.) If EXPR is
3964 omitted, the value C<1> is used. Currently EXPR with the value C<0> is
3965 also special-cased as C<1> - this has not been documented before perl 5.8.0
3966 and is subject to change in future versions of perl. Automatically calls
3967 C<srand> unless C<srand> has already been called. See also C<srand>.
3969 Apply C<int()> to the value returned by C<rand()> if you want random
3970 integers instead of random fractional numbers. For example,
3974 returns a random integer between C<0> and C<9>, inclusive.
3976 (Note: If your rand function consistently returns numbers that are too
3977 large or too small, then your version of Perl was probably compiled
3978 with the wrong number of RANDBITS.)
3980 =item read FILEHANDLE,SCALAR,LENGTH,OFFSET
3982 =item read FILEHANDLE,SCALAR,LENGTH
3984 Attempts to read LENGTH I<characters> of data into variable SCALAR
3985 from the specified FILEHANDLE. Returns the number of characters
3986 actually read, C<0> at end of file, or undef if there was an error (in
3987 the latter case C<$!> is also set). SCALAR will be grown or shrunk
3988 so that the last character actually read is the last character of the
3989 scalar after the read.
3991 An OFFSET may be specified to place the read data at some place in the
3992 string other than the beginning. A negative OFFSET specifies
3993 placement at that many characters counting backwards from the end of
3994 the string. A positive OFFSET greater than the length of SCALAR
3995 results in the string being padded to the required size with C<"\0">
3996 bytes before the result of the read is appended.
3998 The call is actually implemented in terms of either Perl's or system's
3999 fread() call. To get a true read(2) system call, see C<sysread>.
4001 Note the I<characters>: depending on the status of the filehandle,
4002 either (8-bit) bytes or characters are read. By default all
4003 filehandles operate on bytes, but for example if the filehandle has
4004 been opened with the C<:utf8> I/O layer (see L</open>, and the C<open>
4005 pragma, L<open>), the I/O will operate on UTF-8 encoded Unicode
4006 characters, not bytes. Similarly for the C<:encoding> pragma:
4007 in that case pretty much any characters can be read.
4009 =item readdir DIRHANDLE
4011 Returns the next directory entry for a directory opened by C<opendir>.
4012 If used in list context, returns all the rest of the entries in the
4013 directory. If there are no more entries, returns an undefined value in
4014 scalar context or a null list in list context.
4016 If you're planning to filetest the return values out of a C<readdir>, you'd
4017 better prepend the directory in question. Otherwise, because we didn't
4018 C<chdir> there, it would have been testing the wrong file.
4020 opendir(DIR, $some_dir) || die "can't opendir $some_dir: $!";
4021 @dots = grep { /^\./ && -f "$some_dir/$_" } readdir(DIR);
4026 Reads from the filehandle whose typeglob is contained in EXPR. In scalar
4027 context, each call reads and returns the next line, until end-of-file is
4028 reached, whereupon the subsequent call returns undef. In list context,
4029 reads until end-of-file is reached and returns a list of lines. Note that
4030 the notion of "line" used here is however you may have defined it
4031 with C<$/> or C<$INPUT_RECORD_SEPARATOR>). See L<perlvar/"$/">.
4033 When C<$/> is set to C<undef>, when readline() is in scalar
4034 context (i.e. file slurp mode), and when an empty file is read, it
4035 returns C<''> the first time, followed by C<undef> subsequently.
4037 This is the internal function implementing the C<< <EXPR> >>
4038 operator, but you can use it directly. The C<< <EXPR> >>
4039 operator is discussed in more detail in L<perlop/"I/O Operators">.
4042 $line = readline(*STDIN); # same thing
4044 If readline encounters an operating system error, C<$!> will be set with the
4045 corresponding error message. It can be helpful to check C<$!> when you are
4046 reading from filehandles you don't trust, such as a tty or a socket. The
4047 following example uses the operator form of C<readline>, and takes the necessary
4048 steps to ensure that C<readline> was successful.
4052 unless (defined( $line = <> )) {
4063 Returns the value of a symbolic link, if symbolic links are
4064 implemented. If not, gives a fatal error. If there is some system
4065 error, returns the undefined value and sets C<$!> (errno). If EXPR is
4066 omitted, uses C<$_>.
4070 EXPR is executed as a system command.
4071 The collected standard output of the command is returned.
4072 In scalar context, it comes back as a single (potentially
4073 multi-line) string. In list context, returns a list of lines
4074 (however you've defined lines with C<$/> or C<$INPUT_RECORD_SEPARATOR>).
4075 This is the internal function implementing the C<qx/EXPR/>
4076 operator, but you can use it directly. The C<qx/EXPR/>
4077 operator is discussed in more detail in L<perlop/"I/O Operators">.
4079 =item recv SOCKET,SCALAR,LENGTH,FLAGS
4081 Receives a message on a socket. Attempts to receive LENGTH characters
4082 of data into variable SCALAR from the specified SOCKET filehandle.
4083 SCALAR will be grown or shrunk to the length actually read. Takes the
4084 same flags as the system call of the same name. Returns the address
4085 of the sender if SOCKET's protocol supports this; returns an empty
4086 string otherwise. If there's an error, returns the undefined value.
4087 This call is actually implemented in terms of recvfrom(2) system call.
4088 See L<perlipc/"UDP: Message Passing"> for examples.
4090 Note the I<characters>: depending on the status of the socket, either
4091 (8-bit) bytes or characters are received. By default all sockets
4092 operate on bytes, but for example if the socket has been changed using
4093 binmode() to operate with the C<:utf8> I/O layer (see the C<open>
4094 pragma, L<open>), the I/O will operate on UTF-8 encoded Unicode
4095 characters, not bytes. Similarly for the C<:encoding> pragma:
4096 in that case pretty much any characters can be read.
4102 The C<redo> command restarts the loop block without evaluating the
4103 conditional again. The C<continue> block, if any, is not executed. If
4104 the LABEL is omitted, the command refers to the innermost enclosing
4105 loop. This command is normally used by programs that want to lie to
4106 themselves about what was just input:
4108 # a simpleminded Pascal comment stripper
4109 # (warning: assumes no { or } in strings)
4110 LINE: while (<STDIN>) {
4111 while (s|({.*}.*){.*}|$1 |) {}
4116 if (/}/) { # end of comment?
4125 C<redo> cannot be used to retry a block which returns a value such as
4126 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
4127 a grep() or map() operation.
4129 Note that a block by itself is semantically identical to a loop
4130 that executes once. Thus C<redo> inside such a block will effectively
4131 turn it into a looping construct.
4133 See also L</continue> for an illustration of how C<last>, C<next>, and
4140 Returns a non-empty string if EXPR is a reference, the empty
4141 string otherwise. If EXPR
4142 is not specified, C<$_> will be used. The value returned depends on the
4143 type of thing the reference is a reference to.
4144 Builtin types include:
4154 If the referenced object has been blessed into a package, then that package
4155 name is returned instead. You can think of C<ref> as a C<typeof> operator.
4157 if (ref($r) eq "HASH") {
4158 print "r is a reference to a hash.\n";
4161 print "r is not a reference at all.\n";
4163 if (UNIVERSAL::isa($r, "HASH")) { # for subclassing
4164 print "r is a reference to something that isa hash.\n";
4167 See also L<perlref>.
4169 =item rename OLDNAME,NEWNAME
4171 Changes the name of a file; an existing file NEWNAME will be
4172 clobbered. Returns true for success, false otherwise.
4174 Behavior of this function varies wildly depending on your system
4175 implementation. For example, it will usually not work across file system
4176 boundaries, even though the system I<mv> command sometimes compensates
4177 for this. Other restrictions include whether it works on directories,
4178 open files, or pre-existing files. Check L<perlport> and either the
4179 rename(2) manpage or equivalent system documentation for details.
4181 =item require VERSION
4187 Demands a version of Perl specified by VERSION, or demands some semantics
4188 specified by EXPR or by C<$_> if EXPR is not supplied.
4190 VERSION may be either a numeric argument such as 5.006, which will be
4191 compared to C<$]>, or a literal of the form v5.6.1, which will be compared
4192 to C<$^V> (aka $PERL_VERSION). A fatal error is produced at run time if
4193 VERSION is greater than the version of the current Perl interpreter.
4194 Compare with L</use>, which can do a similar check at compile time.
4196 Specifying VERSION as a literal of the form v5.6.1 should generally be
4197 avoided, because it leads to misleading error messages under earlier
4198 versions of Perl which do not support this syntax. The equivalent numeric
4199 version should be used instead.
4201 require v5.6.1; # run time version check
4202 require 5.6.1; # ditto
4203 require 5.006_001; # ditto; preferred for backwards compatibility
4205 Otherwise, demands that a library file be included if it hasn't already
4206 been included. The file is included via the do-FILE mechanism, which is
4207 essentially just a variety of C<eval>. Has semantics similar to the
4208 following subroutine:
4211 my ($filename) = @_;
4212 if (exists $INC{$filename}) {
4213 return 1 if $INC{$filename};
4214 die "Compilation failed in require";
4216 my ($realfilename,$result);
4218 foreach $prefix (@INC) {
4219 $realfilename = "$prefix/$filename";
4220 if (-f $realfilename) {
4221 $INC{$filename} = $realfilename;
4222 $result = do $realfilename;
4226 die "Can't find $filename in \@INC";
4229 $INC{$filename} = undef;
4231 } elsif (!$result) {
4232 delete $INC{$filename};
4233 die "$filename did not return true value";
4239 Note that the file will not be included twice under the same specified
4242 The file must return true as the last statement to indicate
4243 successful execution of any initialization code, so it's customary to
4244 end such a file with C<1;> unless you're sure it'll return true
4245 otherwise. But it's better just to put the C<1;>, in case you add more
4248 If EXPR is a bareword, the require assumes a "F<.pm>" extension and
4249 replaces "F<::>" with "F</>" in the filename for you,
4250 to make it easy to load standard modules. This form of loading of
4251 modules does not risk altering your namespace.
4253 In other words, if you try this:
4255 require Foo::Bar; # a splendid bareword
4257 The require function will actually look for the "F<Foo/Bar.pm>" file in the
4258 directories specified in the C<@INC> array.
4260 But if you try this:
4262 $class = 'Foo::Bar';
4263 require $class; # $class is not a bareword
4265 require "Foo::Bar"; # not a bareword because of the ""
4267 The require function will look for the "F<Foo::Bar>" file in the @INC array and
4268 will complain about not finding "F<Foo::Bar>" there. In this case you can do:
4270 eval "require $class";
4272 Now that you understand how C<require> looks for files in the case of
4273 a bareword argument, there is a little extra functionality going on
4274 behind the scenes. Before C<require> looks for a "F<.pm>" extension,
4275 it will first look for a filename with a "F<.pmc>" extension. A file
4276 with this extension is assumed to be Perl bytecode generated by
4277 L<B::Bytecode|B::Bytecode>. If this file is found, and it's modification
4278 time is newer than a coinciding "F<.pm>" non-compiled file, it will be
4279 loaded in place of that non-compiled file ending in a "F<.pm>" extension.
4281 You can also insert hooks into the import facility, by putting directly
4282 Perl code into the @INC array. There are three forms of hooks: subroutine
4283 references, array references and blessed objects.
4285 Subroutine references are the simplest case. When the inclusion system
4286 walks through @INC and encounters a subroutine, this subroutine gets
4287 called with two parameters, the first being a reference to itself, and the
4288 second the name of the file to be included (e.g. "F<Foo/Bar.pm>"). The
4289 subroutine should return C<undef> or a filehandle, from which the file to
4290 include will be read. If C<undef> is returned, C<require> will look at
4291 the remaining elements of @INC.
4293 If the hook is an array reference, its first element must be a subroutine
4294 reference. This subroutine is called as above, but the first parameter is
4295 the array reference. This enables to pass indirectly some arguments to
4298 In other words, you can write:
4300 push @INC, \&my_sub;
4302 my ($coderef, $filename) = @_; # $coderef is \&my_sub
4308 push @INC, [ \&my_sub, $x, $y, ... ];
4310 my ($arrayref, $filename) = @_;
4311 # Retrieve $x, $y, ...
4312 my @parameters = @$arrayref[1..$#$arrayref];
4316 If the hook is an object, it must provide an INC method, that will be
4317 called as above, the first parameter being the object itself. (Note that
4318 you must fully qualify the sub's name, as it is always forced into package
4319 C<main>.) Here is a typical code layout:
4325 my ($self, $filename) = @_;
4329 # In the main program
4330 push @INC, new Foo(...);
4332 Note that these hooks are also permitted to set the %INC entry
4333 corresponding to the files they have loaded. See L<perlvar/%INC>.
4335 For a yet-more-powerful import facility, see L</use> and L<perlmod>.
4341 Generally used in a C<continue> block at the end of a loop to clear
4342 variables and reset C<??> searches so that they work again. The
4343 expression is interpreted as a list of single characters (hyphens
4344 allowed for ranges). All variables and arrays beginning with one of
4345 those letters are reset to their pristine state. If the expression is
4346 omitted, one-match searches (C<?pattern?>) are reset to match again. Resets
4347 only variables or searches in the current package. Always returns
4350 reset 'X'; # reset all X variables
4351 reset 'a-z'; # reset lower case variables
4352 reset; # just reset ?one-time? searches
4354 Resetting C<"A-Z"> is not recommended because you'll wipe out your
4355 C<@ARGV> and C<@INC> arrays and your C<%ENV> hash. Resets only package
4356 variables--lexical variables are unaffected, but they clean themselves
4357 up on scope exit anyway, so you'll probably want to use them instead.
4364 Returns from a subroutine, C<eval>, or C<do FILE> with the value
4365 given in EXPR. Evaluation of EXPR may be in list, scalar, or void
4366 context, depending on how the return value will be used, and the context
4367 may vary from one execution to the next (see C<wantarray>). If no EXPR
4368 is given, returns an empty list in list context, the undefined value in
4369 scalar context, and (of course) nothing at all in a void context.
4371 (Note that in the absence of an explicit C<return>, a subroutine, eval,
4372 or do FILE will automatically return the value of the last expression
4377 In list context, returns a list value consisting of the elements
4378 of LIST in the opposite order. In scalar context, concatenates the
4379 elements of LIST and returns a string value with all characters
4380 in the opposite order.
4382 print reverse <>; # line tac, last line first
4384 undef $/; # for efficiency of <>
4385 print scalar reverse <>; # character tac, last line tsrif
4387 Used without arguments in scalar context, reverse() reverses C<$_>.
4389 This operator is also handy for inverting a hash, although there are some
4390 caveats. If a value is duplicated in the original hash, only one of those
4391 can be represented as a key in the inverted hash. Also, this has to
4392 unwind one hash and build a whole new one, which may take some time
4393 on a large hash, such as from a DBM file.
4395 %by_name = reverse %by_address; # Invert the hash
4397 =item rewinddir DIRHANDLE
4399 Sets the current position to the beginning of the directory for the
4400 C<readdir> routine on DIRHANDLE.
4402 =item rindex STR,SUBSTR,POSITION
4404 =item rindex STR,SUBSTR
4406 Works just like index() except that it returns the position of the LAST
4407 occurrence of SUBSTR in STR. If POSITION is specified, returns the
4408 last occurrence at or before that position.
4410 =item rmdir FILENAME
4414 Deletes the directory specified by FILENAME if that directory is
4415 empty. If it succeeds it returns true, otherwise it returns false and
4416 sets C<$!> (errno). If FILENAME is omitted, uses C<$_>.
4420 The substitution operator. See L<perlop>.
4424 Forces EXPR to be interpreted in scalar context and returns the value
4427 @counts = ( scalar @a, scalar @b, scalar @c );
4429 There is no equivalent operator to force an expression to
4430 be interpolated in list context because in practice, this is never
4431 needed. If you really wanted to do so, however, you could use
4432 the construction C<@{[ (some expression) ]}>, but usually a simple
4433 C<(some expression)> suffices.
4435 Because C<scalar> is unary operator, if you accidentally use for EXPR a
4436 parenthesized list, this behaves as a scalar comma expression, evaluating
4437 all but the last element in void context and returning the final element
4438 evaluated in scalar context. This is seldom what you want.
4440 The following single statement:
4442 print uc(scalar(&foo,$bar)),$baz;
4444 is the moral equivalent of these two:
4447 print(uc($bar),$baz);
4449 See L<perlop> for more details on unary operators and the comma operator.
4451 =item seek FILEHANDLE,POSITION,WHENCE
4453 Sets FILEHANDLE's position, just like the C<fseek> call of C<stdio>.
4454 FILEHANDLE may be an expression whose value gives the name of the
4455 filehandle. The values for WHENCE are C<0> to set the new position
4456 I<in bytes> to POSITION, C<1> to set it to the current position plus
4457 POSITION, and C<2> to set it to EOF plus POSITION (typically
4458 negative). For WHENCE you may use the constants C<SEEK_SET>,
4459 C<SEEK_CUR>, and C<SEEK_END> (start of the file, current position, end
4460 of the file) from the Fcntl module. Returns C<1> upon success, C<0>
4463 Note the I<in bytes>: even if the filehandle has been set to
4464 operate on characters (for example by using the C<:utf8> open
4465 layer), tell() will return byte offsets, not character offsets
4466 (because implementing that would render seek() and tell() rather slow).
4468 If you want to position file for C<sysread> or C<syswrite>, don't use
4469 C<seek>--buffering makes its effect on the file's system position
4470 unpredictable and non-portable. Use C<sysseek> instead.
4472 Due to the rules and rigors of ANSI C, on some systems you have to do a
4473 seek whenever you switch between reading and writing. Amongst other
4474 things, this may have the effect of calling stdio's clearerr(3).
4475 A WHENCE of C<1> (C<SEEK_CUR>) is useful for not moving the file position:
4479 This is also useful for applications emulating C<tail -f>. Once you hit
4480 EOF on your read, and then sleep for a while, you might have to stick in a
4481 seek() to reset things. The C<seek> doesn't change the current position,
4482 but it I<does> clear the end-of-file condition on the handle, so that the
4483 next C<< <FILE> >> makes Perl try again to read something. We hope.
4485 If that doesn't work (some IO implementations are particularly
4486 cantankerous), then you may need something more like this:
4489 for ($curpos = tell(FILE); $_ = <FILE>;
4490 $curpos = tell(FILE)) {
4491 # search for some stuff and put it into files
4493 sleep($for_a_while);
4494 seek(FILE, $curpos, 0);
4497 =item seekdir DIRHANDLE,POS
4499 Sets the current position for the C<readdir> routine on DIRHANDLE. POS
4500 must be a value returned by C<telldir>. Has the same caveats about
4501 possible directory compaction as the corresponding system library
4504 =item select FILEHANDLE
4508 Returns the currently selected filehandle. Sets the current default
4509 filehandle for output, if FILEHANDLE is supplied. This has two
4510 effects: first, a C<write> or a C<print> without a filehandle will
4511 default to this FILEHANDLE. Second, references to variables related to
4512 output will refer to this output channel. For example, if you have to
4513 set the top of form format for more than one output channel, you might
4521 FILEHANDLE may be an expression whose value gives the name of the
4522 actual filehandle. Thus:
4524 $oldfh = select(STDERR); $| = 1; select($oldfh);
4526 Some programmers may prefer to think of filehandles as objects with
4527 methods, preferring to write the last example as:
4530 STDERR->autoflush(1);
4532 =item select RBITS,WBITS,EBITS,TIMEOUT
4534 This calls the select(2) system call with the bit masks specified, which
4535 can be constructed using C<fileno> and C<vec>, along these lines:
4537 $rin = $win = $ein = '';
4538 vec($rin,fileno(STDIN),1) = 1;
4539 vec($win,fileno(STDOUT),1) = 1;
4542 If you want to select on many filehandles you might wish to write a
4546 my(@fhlist) = split(' ',$_[0]);
4549 vec($bits,fileno($_),1) = 1;
4553 $rin = fhbits('STDIN TTY SOCK');
4557 ($nfound,$timeleft) =
4558 select($rout=$rin, $wout=$win, $eout=$ein, $timeout);
4560 or to block until something becomes ready just do this
4562 $nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);
4564 Most systems do not bother to return anything useful in $timeleft, so
4565 calling select() in scalar context just returns $nfound.
4567 Any of the bit masks can also be undef. The timeout, if specified, is
4568 in seconds, which may be fractional. Note: not all implementations are
4569 capable of returning the $timeleft. If not, they always return
4570 $timeleft equal to the supplied $timeout.
4572 You can effect a sleep of 250 milliseconds this way:
4574 select(undef, undef, undef, 0.25);
4576 Note that whether C<select> gets restarted after signals (say, SIGALRM)
4577 is implementation-dependent. See also L<perlport> for notes on the
4578 portability of C<select>.
4580 B<WARNING>: One should not attempt to mix buffered I/O (like C<read>
4581 or <FH>) with C<select>, except as permitted by POSIX, and even
4582 then only on POSIX systems. You have to use C<sysread> instead.
4584 =item semctl ID,SEMNUM,CMD,ARG
4586 Calls the System V IPC function C<semctl>. You'll probably have to say
4590 first to get the correct constant definitions. If CMD is IPC_STAT or
4591 GETALL, then ARG must be a variable which will hold the returned
4592 semid_ds structure or semaphore value array. Returns like C<ioctl>:
4593 the undefined value for error, "C<0 but true>" for zero, or the actual
4594 return value otherwise. The ARG must consist of a vector of native
4595 short integers, which may be created with C<pack("s!",(0)x$nsem)>.
4596 See also L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::Semaphore>
4599 =item semget KEY,NSEMS,FLAGS
4601 Calls the System V IPC function semget. Returns the semaphore id, or
4602 the undefined value if there is an error. See also
4603 L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::SysV::Semaphore>
4606 =item semop KEY,OPSTRING
4608 Calls the System V IPC function semop to perform semaphore operations
4609 such as signalling and waiting. OPSTRING must be a packed array of
4610 semop structures. Each semop structure can be generated with
4611 C<pack("s!3", $semnum, $semop, $semflag)>. The number of semaphore
4612 operations is implied by the length of OPSTRING. Returns true if
4613 successful, or false if there is an error. As an example, the
4614 following code waits on semaphore $semnum of semaphore id $semid:
4616 $semop = pack("s!3", $semnum, -1, 0);
4617 die "Semaphore trouble: $!\n" unless semop($semid, $semop);
4619 To signal the semaphore, replace C<-1> with C<1>. See also
4620 L<perlipc/"SysV IPC">, C<IPC::SysV>, and C<IPC::SysV::Semaphore>
4623 =item send SOCKET,MSG,FLAGS,TO
4625 =item send SOCKET,MSG,FLAGS
4627 Sends a message on a socket. Attempts to send the scalar MSG to the
4628 SOCKET filehandle. Takes the same flags as the system call of the
4629 same name. On unconnected sockets you must specify a destination to
4630 send TO, in which case it does a C C<sendto>. Returns the number of
4631 characters sent, or the undefined value if there is an error. The C
4632 system call sendmsg(2) is currently unimplemented. See
4633 L<perlipc/"UDP: Message Passing"> for examples.
4635 Note the I<characters>: depending on the status of the socket, either
4636 (8-bit) bytes or characters are sent. By default all sockets operate
4637 on bytes, but for example if the socket has been changed using
4638 binmode() to operate with the C<:utf8> I/O layer (see L</open>, or the
4639 C<open> pragma, L<open>), the I/O will operate on UTF-8 encoded
4640 Unicode characters, not bytes. Similarly for the C<:encoding> pragma:
4641 in that case pretty much any characters can be sent.
4643 =item setpgrp PID,PGRP
4645 Sets the current process group for the specified PID, C<0> for the current
4646 process. Will produce a fatal error if used on a machine that doesn't
4647 implement POSIX setpgid(2) or BSD setpgrp(2). If the arguments are omitted,
4648 it defaults to C<0,0>. Note that the BSD 4.2 version of C<setpgrp> does not
4649 accept any arguments, so only C<setpgrp(0,0)> is portable. See also
4652 =item setpriority WHICH,WHO,PRIORITY
4654 Sets the current priority for a process, a process group, or a user.
4655 (See setpriority(2).) Will produce a fatal error if used on a machine
4656 that doesn't implement setpriority(2).
4658 =item setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
4660 Sets the socket option requested. Returns undefined if there is an
4661 error. OPTVAL may be specified as C<undef> if you don't want to pass an
4668 Shifts the first value of the array off and returns it, shortening the
4669 array by 1 and moving everything down. If there are no elements in the
4670 array, returns the undefined value. If ARRAY is omitted, shifts the
4671 C<@_> array within the lexical scope of subroutines and formats, and the
4672 C<@ARGV> array at file scopes or within the lexical scopes established by
4673 the C<eval ''>, C<BEGIN {}>, C<INIT {}>, C<CHECK {}>, and C<END {}>
4676 See also C<unshift>, C<push>, and C<pop>. C<shift> and C<unshift> do the
4677 same thing to the left end of an array that C<pop> and C<push> do to the
4680 =item shmctl ID,CMD,ARG
4682 Calls the System V IPC function shmctl. You'll probably have to say
4686 first to get the correct constant definitions. If CMD is C<IPC_STAT>,
4687 then ARG must be a variable which will hold the returned C<shmid_ds>
4688 structure. Returns like ioctl: the undefined value for error, "C<0> but
4689 true" for zero, or the actual return value otherwise.
4690 See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
4692 =item shmget KEY,SIZE,FLAGS
4694 Calls the System V IPC function shmget. Returns the shared memory
4695 segment id, or the undefined value if there is an error.
4696 See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
4698 =item shmread ID,VAR,POS,SIZE
4700 =item shmwrite ID,STRING,POS,SIZE
4702 Reads or writes the System V shared memory segment ID starting at
4703 position POS for size SIZE by attaching to it, copying in/out, and
4704 detaching from it. When reading, VAR must be a variable that will
4705 hold the data read. When writing, if STRING is too long, only SIZE
4706 bytes are used; if STRING is too short, nulls are written to fill out
4707 SIZE bytes. Return true if successful, or false if there is an error.
4708 shmread() taints the variable. See also L<perlipc/"SysV IPC">,
4709 C<IPC::SysV> documentation, and the C<IPC::Shareable> module from CPAN.
4711 =item shutdown SOCKET,HOW
4713 Shuts down a socket connection in the manner indicated by HOW, which
4714 has the same interpretation as in the system call of the same name.
4716 shutdown(SOCKET, 0); # I/we have stopped reading data
4717 shutdown(SOCKET, 1); # I/we have stopped writing data
4718 shutdown(SOCKET, 2); # I/we have stopped using this socket
4720 This is useful with sockets when you want to tell the other
4721 side you're done writing but not done reading, or vice versa.
4722 It's also a more insistent form of close because it also
4723 disables the file descriptor in any forked copies in other
4730 Returns the sine of EXPR (expressed in radians). If EXPR is omitted,
4731 returns sine of C<$_>.
4733 For the inverse sine operation, you may use the C<Math::Trig::asin>
4734 function, or use this relation:
4736 sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }
4742 Causes the script to sleep for EXPR seconds, or forever if no EXPR.
4743 May be interrupted if the process receives a signal such as C<SIGALRM>.
4744 Returns the number of seconds actually slept. You probably cannot
4745 mix C<alarm> and C<sleep> calls, because C<sleep> is often implemented
4748 On some older systems, it may sleep up to a full second less than what
4749 you requested, depending on how it counts seconds. Most modern systems
4750 always sleep the full amount. They may appear to sleep longer than that,
4751 however, because your process might not be scheduled right away in a
4752 busy multitasking system.
4754 For delays of finer granularity than one second, you may use Perl's
4755 C<syscall> interface to access setitimer(2) if your system supports
4756 it, or else see L</select> above. The Time::HiRes module (from CPAN,
4757 and starting from Perl 5.8 part of the standard distribution) may also
4760 See also the POSIX module's C<pause> function.
4762 =item socket SOCKET,DOMAIN,TYPE,PROTOCOL
4764 Opens a socket of the specified kind and attaches it to filehandle
4765 SOCKET. DOMAIN, TYPE, and PROTOCOL are specified the same as for
4766 the system call of the same name. You should C<use Socket> first
4767 to get the proper definitions imported. See the examples in
4768 L<perlipc/"Sockets: Client/Server Communication">.
4770 On systems that support a close-on-exec flag on files, the flag will
4771 be set for the newly opened file descriptor, as determined by the
4772 value of $^F. See L<perlvar/$^F>.
4774 =item socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
4776 Creates an unnamed pair of sockets in the specified domain, of the
4777 specified type. DOMAIN, TYPE, and PROTOCOL are specified the same as
4778 for the system call of the same name. If unimplemented, yields a fatal
4779 error. Returns true if successful.
4781 On systems that support a close-on-exec flag on files, the flag will
4782 be set for the newly opened file descriptors, as determined by the value
4783 of $^F. See L<perlvar/$^F>.
4785 Some systems defined C<pipe> in terms of C<socketpair>, in which a call
4786 to C<pipe(Rdr, Wtr)> is essentially:
4789 socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
4790 shutdown(Rdr, 1); # no more writing for reader
4791 shutdown(Wtr, 0); # no more reading for writer
4793 See L<perlipc> for an example of socketpair use. Perl 5.8 and later will
4794 emulate socketpair using IP sockets to localhost if your system implements
4795 sockets but not socketpair.
4797 =item sort SUBNAME LIST
4799 =item sort BLOCK LIST
4803 In list context, this sorts the LIST and returns the sorted list value.
4804 In scalar context, the behaviour of C<sort()> is undefined.
4806 If SUBNAME or BLOCK is omitted, C<sort>s in standard string comparison
4807 order. If SUBNAME is specified, it gives the name of a subroutine
4808 that returns an integer less than, equal to, or greater than C<0>,
4809 depending on how the elements of the list are to be ordered. (The C<<
4810 <=> >> and C<cmp> operators are extremely useful in such routines.)
4811 SUBNAME may be a scalar variable name (unsubscripted), in which case
4812 the value provides the name of (or a reference to) the actual
4813 subroutine to use. In place of a SUBNAME, you can provide a BLOCK as
4814 an anonymous, in-line sort subroutine.
4816 If the subroutine's prototype is C<($$)>, the elements to be compared
4817 are passed by reference in C<@_>, as for a normal subroutine. This is
4818 slower than unprototyped subroutines, where the elements to be
4819 compared are passed into the subroutine
4820 as the package global variables $a and $b (see example below). Note that
4821 in the latter case, it is usually counter-productive to declare $a and
4824 In either case, the subroutine may not be recursive. The values to be
4825 compared are always passed by reference, so don't modify them.
4827 You also cannot exit out of the sort block or subroutine using any of the
4828 loop control operators described in L<perlsyn> or with C<goto>.
4830 When C<use locale> is in effect, C<sort LIST> sorts LIST according to the
4831 current collation locale. See L<perllocale>.
4833 Perl 5.6 and earlier used a quicksort algorithm to implement sort.
4834 That algorithm was not stable, and I<could> go quadratic. (A I<stable> sort
4835 preserves the input order of elements that compare equal. Although
4836 quicksort's run time is O(NlogN) when averaged over all arrays of
4837 length N, the time can be O(N**2), I<quadratic> behavior, for some
4838 inputs.) In 5.7, the quicksort implementation was replaced with
4839 a stable mergesort algorithm whose worst case behavior is O(NlogN).
4840 But benchmarks indicated that for some inputs, on some platforms,
4841 the original quicksort was faster. 5.8 has a sort pragma for
4842 limited control of the sort. Its rather blunt control of the
4843 underlying algorithm may not persist into future perls, but the
4844 ability to characterize the input or output in implementation
4845 independent ways quite probably will. See L<sort>.
4850 @articles = sort @files;
4852 # same thing, but with explicit sort routine
4853 @articles = sort {$a cmp $b} @files;
4855 # now case-insensitively
4856 @articles = sort {uc($a) cmp uc($b)} @files;
4858 # same thing in reversed order
4859 @articles = sort {$b cmp $a} @files;
4861 # sort numerically ascending
4862 @articles = sort {$a <=> $b} @files;
4864 # sort numerically descending
4865 @articles = sort {$b <=> $a} @files;
4867 # this sorts the %age hash by value instead of key
4868 # using an in-line function
4869 @eldest = sort { $age{$b} <=> $age{$a} } keys %age;
4871 # sort using explicit subroutine name
4873 $age{$a} <=> $age{$b}; # presuming numeric
4875 @sortedclass = sort byage @class;
4877 sub backwards { $b cmp $a }
4878 @harry = qw(dog cat x Cain Abel);
4879 @george = qw(gone chased yz Punished Axed);
4881 # prints AbelCaincatdogx
4882 print sort backwards @harry;
4883 # prints xdogcatCainAbel
4884 print sort @george, 'to', @harry;
4885 # prints AbelAxedCainPunishedcatchaseddoggonetoxyz
4887 # inefficiently sort by descending numeric compare using
4888 # the first integer after the first = sign, or the
4889 # whole record case-insensitively otherwise
4892 ($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]
4897 # same thing, but much more efficiently;
4898 # we'll build auxiliary indices instead
4902 push @nums, /=(\d+)/;
4907 $nums[$b] <=> $nums[$a]
4909 $caps[$a] cmp $caps[$b]
4913 # same thing, but without any temps
4914 @new = map { $_->[0] }
4915 sort { $b->[1] <=> $a->[1]
4918 } map { [$_, /=(\d+)/, uc($_)] } @old;
4920 # using a prototype allows you to use any comparison subroutine
4921 # as a sort subroutine (including other package's subroutines)
4923 sub backwards ($$) { $_[1] cmp $_[0]; } # $a and $b are not set here
4926 @new = sort other::backwards @old;
4928 # guarantee stability, regardless of algorithm
4930 @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;
4932 # force use of mergesort (not portable outside Perl 5.8)
4933 use sort '_mergesort'; # note discouraging _
4934 @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;
4936 If you're using strict, you I<must not> declare $a
4937 and $b as lexicals. They are package globals. That means
4938 if you're in the C<main> package and type
4940 @articles = sort {$b <=> $a} @files;
4942 then C<$a> and C<$b> are C<$main::a> and C<$main::b> (or C<$::a> and C<$::b>),
4943 but if you're in the C<FooPack> package, it's the same as typing
4945 @articles = sort {$FooPack::b <=> $FooPack::a} @files;
4947 The comparison function is required to behave. If it returns
4948 inconsistent results (sometimes saying C<$x[1]> is less than C<$x[2]> and
4949 sometimes saying the opposite, for example) the results are not
4952 Because C<< <=> >> returns C<undef> when either operand is C<NaN>
4953 (not-a-number), and because C<sort> will trigger a fatal error unless the
4954 result of a comparison is defined, when sorting with a comparison function
4955 like C<< $a <=> $b >>, be careful about lists that might contain a C<NaN>.
4956 The following example takes advantage of the fact that C<NaN != NaN> to
4957 eliminate any C<NaN>s from the input.
4959 @result = sort { $a <=> $b } grep { $_ == $_ } @input;
4961 =item splice ARRAY,OFFSET,LENGTH,LIST
4963 =item splice ARRAY,OFFSET,LENGTH
4965 =item splice ARRAY,OFFSET
4969 Removes the elements designated by OFFSET and LENGTH from an array, and
4970 replaces them with the elements of LIST, if any. In list context,
4971 returns the elements removed from the array. In scalar context,
4972 returns the last element removed, or C<undef> if no elements are
4973 removed. The array grows or shrinks as necessary.
4974 If OFFSET is negative then it starts that far from the end of the array.
4975 If LENGTH is omitted, removes everything from OFFSET onward.
4976 If LENGTH is negative, removes the elements from OFFSET onward
4977 except for -LENGTH elements at the end of the array.
4978 If both OFFSET and LENGTH are omitted, removes everything. If OFFSET is
4979 past the end of the array, perl issues a warning, and splices at the
4982 The following equivalences hold (assuming C<< $[ == 0 and $#a >= $i >> )
4984 push(@a,$x,$y) splice(@a,@a,0,$x,$y)
4985 pop(@a) splice(@a,-1)
4986 shift(@a) splice(@a,0,1)
4987 unshift(@a,$x,$y) splice(@a,0,0,$x,$y)
4988 $a[$i] = $y splice(@a,$i,1,$y)
4990 Example, assuming array lengths are passed before arrays:
4992 sub aeq { # compare two list values
4993 my(@a) = splice(@_,0,shift);
4994 my(@b) = splice(@_,0,shift);
4995 return 0 unless @a == @b; # same len?
4997 return 0 if pop(@a) ne pop(@b);
5001 if (&aeq($len,@foo[1..$len],0+@bar,@bar)) { ... }
5003 =item split /PATTERN/,EXPR,LIMIT
5005 =item split /PATTERN/,EXPR
5007 =item split /PATTERN/
5011 Splits the string EXPR into a list of strings and returns that list. By
5012 default, empty leading fields are preserved, and empty trailing ones are
5013 deleted. (If all fields are empty, they are considered to be trailing.)
5015 In scalar context, returns the number of fields found and splits into
5016 the C<@_> array. Use of split in scalar context is deprecated, however,
5017 because it clobbers your subroutine arguments.
5019 If EXPR is omitted, splits the C<$_> string. If PATTERN is also omitted,
5020 splits on whitespace (after skipping any leading whitespace). Anything
5021 matching PATTERN is taken to be a delimiter separating the fields. (Note
5022 that the delimiter may be longer than one character.)
5024 If LIMIT is specified and positive, it represents the maximum number
5025 of fields the EXPR will be split into, though the actual number of
5026 fields returned depends on the number of times PATTERN matches within
5027 EXPR. If LIMIT is unspecified or zero, trailing null fields are
5028 stripped (which potential users of C<pop> would do well to remember).
5029 If LIMIT is negative, it is treated as if an arbitrarily large LIMIT
5030 had been specified. Note that splitting an EXPR that evaluates to the
5031 empty string always returns the empty list, regardless of the LIMIT
5034 A pattern matching the null string (not to be confused with
5035 a null pattern C<//>, which is just one member of the set of patterns
5036 matching a null string) will split the value of EXPR into separate
5037 characters at each point it matches that way. For example:
5039 print join(':', split(/ */, 'hi there'));
5041 produces the output 'h:i:t:h:e:r:e'.
5043 Using the empty pattern C<//> specifically matches the null string, and is
5044 not be confused with the use of C<//> to mean "the last successful pattern
5047 Empty leading (or trailing) fields are produced when there are positive width
5048 matches at the beginning (or end) of the string; a zero-width match at the
5049 beginning (or end) of the string does not produce an empty field. For
5052 print join(':', split(/(?=\w)/, 'hi there!'));
5054 produces the output 'h:i :t:h:e:r:e!'.
5056 The LIMIT parameter can be used to split a line partially
5058 ($login, $passwd, $remainder) = split(/:/, $_, 3);
5060 When assigning to a list, if LIMIT is omitted, or zero, Perl supplies
5061 a LIMIT one larger than the number of variables in the list, to avoid
5062 unnecessary work. For the list above LIMIT would have been 4 by
5063 default. In time critical applications it behooves you not to split
5064 into more fields than you really need.
5066 If the PATTERN contains parentheses, additional list elements are
5067 created from each matching substring in the delimiter.
5069 split(/([,-])/, "1-10,20", 3);
5071 produces the list value
5073 (1, '-', 10, ',', 20)
5075 If you had the entire header of a normal Unix email message in $header,
5076 you could split it up into fields and their values this way:
5078 $header =~ s/\n\s+/ /g; # fix continuation lines
5079 %hdrs = (UNIX_FROM => split /^(\S*?):\s*/m, $header);
5081 The pattern C</PATTERN/> may be replaced with an expression to specify
5082 patterns that vary at runtime. (To do runtime compilation only once,
5083 use C</$variable/o>.)
5085 As a special case, specifying a PATTERN of space (S<C<' '>>) will split on
5086 white space just as C<split> with no arguments does. Thus, S<C<split(' ')>> can
5087 be used to emulate B<awk>'s default behavior, whereas S<C<split(/ /)>>
5088 will give you as many null initial fields as there are leading spaces.
5089 A C<split> on C</\s+/> is like a S<C<split(' ')>> except that any leading
5090 whitespace produces a null first field. A C<split> with no arguments
5091 really does a S<C<split(' ', $_)>> internally.
5093 A PATTERN of C</^/> is treated as if it were C</^/m>, since it isn't
5098 open(PASSWD, '/etc/passwd');
5101 ($login, $passwd, $uid, $gid,
5102 $gcos, $home, $shell) = split(/:/);
5106 As with regular pattern matching, any capturing parentheses that are not
5107 matched in a C<split()> will be set to C<undef> when returned:
5109 @fields = split /(A)|B/, "1A2B3";
5110 # @fields is (1, 'A', 2, undef, 3)
5112 =item sprintf FORMAT, LIST
5114 Returns a string formatted by the usual C<printf> conventions of the C
5115 library function C<sprintf>. See below for more details
5116 and see L<sprintf(3)> or L<printf(3)> on your system for an explanation of
5117 the general principles.
5121 # Format number with up to 8 leading zeroes
5122 $result = sprintf("%08d", $number);
5124 # Round number to 3 digits after decimal point
5125 $rounded = sprintf("%.3f", $number);
5127 Perl does its own C<sprintf> formatting--it emulates the C
5128 function C<sprintf>, but it doesn't use it (except for floating-point
5129 numbers, and even then only the standard modifiers are allowed). As a
5130 result, any non-standard extensions in your local C<sprintf> are not
5131 available from Perl.
5133 Unlike C<printf>, C<sprintf> does not do what you probably mean when you
5134 pass it an array as your first argument. The array is given scalar context,
5135 and instead of using the 0th element of the array as the format, Perl will
5136 use the count of elements in the array as the format, which is almost never
5139 Perl's C<sprintf> permits the following universally-known conversions:
5142 %c a character with the given number
5144 %d a signed integer, in decimal
5145 %u an unsigned integer, in decimal
5146 %o an unsigned integer, in octal
5147 %x an unsigned integer, in hexadecimal
5148 %e a floating-point number, in scientific notation
5149 %f a floating-point number, in fixed decimal notation
5150 %g a floating-point number, in %e or %f notation
5152 In addition, Perl permits the following widely-supported conversions:
5154 %X like %x, but using upper-case letters
5155 %E like %e, but using an upper-case "E"
5156 %G like %g, but with an upper-case "E" (if applicable)
5157 %b an unsigned integer, in binary
5158 %p a pointer (outputs the Perl value's address in hexadecimal)
5159 %n special: *stores* the number of characters output so far
5160 into the next variable in the parameter list
5162 Finally, for backward (and we do mean "backward") compatibility, Perl
5163 permits these unnecessary but widely-supported conversions:
5166 %D a synonym for %ld
5167 %U a synonym for %lu
5168 %O a synonym for %lo
5171 Note that the number of exponent digits in the scientific notation produced
5172 by C<%e>, C<%E>, C<%g> and C<%G> for numbers with the modulus of the
5173 exponent less than 100 is system-dependent: it may be three or less
5174 (zero-padded as necessary). In other words, 1.23 times ten to the
5175 99th may be either "1.23e99" or "1.23e099".
5177 Between the C<%> and the format letter, you may specify a number of
5178 additional attributes controlling the interpretation of the format.
5179 In order, these are:
5183 =item format parameter index
5185 An explicit format parameter index, such as C<2$>. By default sprintf
5186 will format the next unused argument in the list, but this allows you
5187 to take the arguments out of order. Eg:
5189 printf '%2$d %1$d', 12, 34; # prints "34 12"
5190 printf '%3$d %d %1$d', 1, 2, 3; # prints "3 1 1"
5195 space prefix positive number with a space
5196 + prefix positive number with a plus sign
5197 - left-justify within the field
5198 0 use zeros, not spaces, to right-justify
5199 # prefix non-zero octal with "0", non-zero hex with "0x",
5200 non-zero binary with "0b"
5204 printf '<% d>', 12; # prints "< 12>"
5205 printf '<%+d>', 12; # prints "<+12>"
5206 printf '<%6s>', 12; # prints "< 12>"
5207 printf '<%-6s>', 12; # prints "<12 >"
5208 printf '<%06s>', 12; # prints "<000012>"
5209 printf '<%#x>', 12; # prints "<0xc>"
5213 The vector flag C<v>, optionally specifying the join string to use.
5214 This flag tells perl to interpret the supplied string as a vector
5215 of integers, one for each character in the string, separated by
5216 a given string (a dot C<.> by default). This can be useful for
5217 displaying ordinal values of characters in arbitrary strings:
5219 printf "version is v%vd\n", $^V; # Perl's version
5221 Put an asterisk C<*> before the C<v> to override the string to
5222 use to separate the numbers:
5224 printf "address is %*vX\n", ":", $addr; # IPv6 address
5225 printf "bits are %0*v8b\n", " ", $bits; # random bitstring
5227 You can also explicitly specify the argument number to use for
5228 the join string using eg C<*2$v>:
5230 printf '%*4$vX %*4$vX %*4$vX', @addr[1..3], ":"; # 3 IPv6 addresses
5232 =item (minimum) width
5234 Arguments are usually formatted to be only as wide as required to
5235 display the given value. You can override the width by putting
5236 a number here, or get the width from the next argument (with C<*>)
5237 or from a specified argument (with eg C<*2$>):
5239 printf '<%s>', "a"; # prints "<a>"
5240 printf '<%6s>', "a"; # prints "< a>"
5241 printf '<%*s>', 6, "a"; # prints "< a>"
5242 printf '<%*2$s>', "a", 6; # prints "< a>"
5243 printf '<%2s>', "long"; # prints "<long>" (does not truncate)
5245 If a field width obtained through C<*> is negative, it has the same
5246 effect as the C<-> flag: left-justification.
5248 =item precision, or maximum width
5250 You can specify a precision (for numeric conversions) or a maximum
5251 width (for string conversions) by specifying a C<.> followed by a number.
5252 For floating point formats, with the exception of 'g' and 'G', this specifies
5253 the number of decimal places to show (the default being 6), eg:
5255 # these examples are subject to system-specific variation
5256 printf '<%f>', 1; # prints "<1.000000>"
5257 printf '<%.1f>', 1; # prints "<1.0>"
5258 printf '<%.0f>', 1; # prints "<1>"
5259 printf '<%e>', 10; # prints "<1.000000e+01>"
5260 printf '<%.1e>', 10; # prints "<1.0e+01>"
5262 For 'g' and 'G', this specifies the maximum number of digits to show,
5263 including prior to the decimal point as well as after it, eg:
5265 # these examples are subject to system-specific variation
5266 printf '<%g>', 1; # prints "<1>"
5267 printf '<%.10g>', 1; # prints "<1>"
5268 printf '<%g>', 100; # prints "<100>"
5269 printf '<%.1g>', 100; # prints "<1e+02>"
5270 printf '<%.2g>', 100.01; # prints "<1e+02>"
5271 printf '<%.5g>', 100.01; # prints "<100.01>"
5272 printf '<%.4g>', 100.01; # prints "<100>"
5274 For integer conversions, specifying a precision implies that the
5275 output of the number itself should be zero-padded to this width:
5277 printf '<%.6x>', 1; # prints "<000001>"
5278 printf '<%#.6x>', 1; # prints "<0x000001>"
5279 printf '<%-10.6x>', 1; # prints "<000001 >"
5281 For string conversions, specifying a precision truncates the string
5282 to fit in the specified width:
5284 printf '<%.5s>', "truncated"; # prints "<trunc>"
5285 printf '<%10.5s>', "truncated"; # prints "< trunc>"
5287 You can also get the precision from the next argument using C<.*>:
5289 printf '<%.6x>', 1; # prints "<000001>"
5290 printf '<%.*x>', 6, 1; # prints "<000001>"
5292 You cannot currently get the precision from a specified number,
5293 but it is intended that this will be possible in the future using
5296 printf '<%.*2$x>', 1, 6; # INVALID, but in future will print "<000001>"
5300 For numeric conversions, you can specify the size to interpret the
5301 number as using C<l>, C<h>, C<V>, C<q>, C<L>, or C<ll>. For integer
5302 conversions (C<d u o x X b i D U O>), numbers are usually assumed to be
5303 whatever the default integer size is on your platform (usually 32 or 64
5304 bits), but you can override this to use instead one of the standard C types,
5305 as supported by the compiler used to build Perl:
5307 l interpret integer as C type "long" or "unsigned long"
5308 h interpret integer as C type "short" or "unsigned short"
5309 q, L or ll interpret integer as C type "long long", "unsigned long long".
5310 or "quads" (typically 64-bit integers)
5312 The last will produce errors if Perl does not understand "quads" in your
5313 installation. (This requires that either the platform natively supports quads
5314 or Perl was specifically compiled to support quads.) You can find out
5315 whether your Perl supports quads via L<Config>:
5318 ($Config{use64bitint} eq 'define' || $Config{longsize} >= 8) &&
5321 For floating point conversions (C<e f g E F G>), numbers are usually assumed
5322 to be the default floating point size on your platform (double or long double),
5323 but you can force 'long double' with C<q>, C<L>, or C<ll> if your
5324 platform supports them. You can find out whether your Perl supports long
5325 doubles via L<Config>:
5328 $Config{d_longdbl} eq 'define' && print "long doubles\n";
5330 You can find out whether Perl considers 'long double' to be the default
5331 floating point size to use on your platform via L<Config>:
5334 ($Config{uselongdouble} eq 'define') &&
5335 print "long doubles by default\n";
5337 It can also be the case that long doubles and doubles are the same thing:
5340 ($Config{doublesize} == $Config{longdblsize}) &&
5341 print "doubles are long doubles\n";
5343 The size specifier C<V> has no effect for Perl code, but it is supported
5344 for compatibility with XS code; it means 'use the standard size for
5345 a Perl integer (or floating-point number)', which is already the
5346 default for Perl code.
5348 =item order of arguments
5350 Normally, sprintf takes the next unused argument as the value to
5351 format for each format specification. If the format specification
5352 uses C<*> to require additional arguments, these are consumed from
5353 the argument list in the order in which they appear in the format
5354 specification I<before> the value to format. Where an argument is
5355 specified using an explicit index, this does not affect the normal
5356 order for the arguments (even when the explicitly specified index
5357 would have been the next argument in any case).
5361 printf '<%*.*s>', $a, $b, $c;
5363 would use C<$a> for the width, C<$b> for the precision and C<$c>
5364 as the value to format, while:
5366 print '<%*1$.*s>', $a, $b;
5368 would use C<$a> for the width and the precision, and C<$b> as the
5371 Here are some more examples - beware that when using an explicit
5372 index, the C<$> may need to be escaped:
5374 printf "%2\$d %d\n", 12, 34; # will print "34 12\n"
5375 printf "%2\$d %d %d\n", 12, 34; # will print "34 12 34\n"
5376 printf "%3\$d %d %d\n", 12, 34, 56; # will print "56 12 34\n"
5377 printf "%2\$*3\$d %d\n", 12, 34, 3; # will print " 34 12\n"
5381 If C<use locale> is in effect, the character used for the decimal
5382 point in formatted real numbers is affected by the LC_NUMERIC locale.
5389 Return the square root of EXPR. If EXPR is omitted, returns square
5390 root of C<$_>. Only works on non-negative operands, unless you've
5391 loaded the standard Math::Complex module.
5394 print sqrt(-2); # prints 1.4142135623731i
5400 Sets the random number seed for the C<rand> operator.
5402 The point of the function is to "seed" the C<rand> function so that
5403 C<rand> can produce a different sequence each time you run your
5406 If srand() is not called explicitly, it is called implicitly at the
5407 first use of the C<rand> operator. However, this was not the case in
5408 versions of Perl before 5.004, so if your script will run under older
5409 Perl versions, it should call C<srand>.
5411 Most programs won't even call srand() at all, except those that
5412 need a cryptographically-strong starting point rather than the
5413 generally acceptable default, which is based on time of day,
5414 process ID, and memory allocation, or the F</dev/urandom> device,
5417 You can call srand($seed) with the same $seed to reproduce the
5418 I<same> sequence from rand(), but this is usually reserved for
5419 generating predictable results for testing or debugging.
5420 Otherwise, don't call srand() more than once in your program.
5422 Do B<not> call srand() (i.e. without an argument) more than once in
5423 a script. The internal state of the random number generator should
5424 contain more entropy than can be provided by any seed, so calling
5425 srand() again actually I<loses> randomness.
5427 Most implementations of C<srand> take an integer and will silently
5428 truncate decimal numbers. This means C<srand(42)> will usually
5429 produce the same results as C<srand(42.1)>. To be safe, always pass
5430 C<srand> an integer.
5432 In versions of Perl prior to 5.004 the default seed was just the
5433 current C<time>. This isn't a particularly good seed, so many old
5434 programs supply their own seed value (often C<time ^ $$> or C<time ^
5435 ($$ + ($$ << 15))>), but that isn't necessary any more.
5437 Note that you need something much more random than the default seed for
5438 cryptographic purposes. Checksumming the compressed output of one or more
5439 rapidly changing operating system status programs is the usual method. For
5442 srand (time ^ $$ ^ unpack "%L*", `ps axww | gzip`);
5444 If you're particularly concerned with this, see the C<Math::TrulyRandom>
5447 Frequently called programs (like CGI scripts) that simply use
5451 for a seed can fall prey to the mathematical property that
5455 one-third of the time. So don't do that.
5457 =item stat FILEHANDLE
5463 Returns a 13-element list giving the status info for a file, either
5464 the file opened via FILEHANDLE, or named by EXPR. If EXPR is omitted,
5465 it stats C<$_>. Returns a null list if the stat fails. Typically used
5468 ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
5469 $atime,$mtime,$ctime,$blksize,$blocks)
5472 Not all fields are supported on all filesystem types. Here are the
5473 meanings of the fields:
5475 0 dev device number of filesystem
5477 2 mode file mode (type and permissions)
5478 3 nlink number of (hard) links to the file
5479 4 uid numeric user ID of file's owner
5480 5 gid numeric group ID of file's owner
5481 6 rdev the device identifier (special files only)
5482 7 size total size of file, in bytes
5483 8 atime last access time in seconds since the epoch
5484 9 mtime last modify time in seconds since the epoch
5485 10 ctime inode change time in seconds since the epoch (*)
5486 11 blksize preferred block size for file system I/O
5487 12 blocks actual number of blocks allocated
5489 (The epoch was at 00:00 January 1, 1970 GMT.)
5491 (*) Not all fields are supported on all filesystem types. Notably, the
5492 ctime field is non-portable. In particular, you cannot expect it to be a
5493 "creation time", see L<perlport/"Files and Filesystems"> for details.
5495 If C<stat> is passed the special filehandle consisting of an underline, no
5496 stat is done, but the current contents of the stat structure from the
5497 last C<stat>, C<lstat>, or filetest are returned. Example:
5499 if (-x $file && (($d) = stat(_)) && $d < 0) {
5500 print "$file is executable NFS file\n";
5503 (This works on machines only for which the device number is negative
5506 Because the mode contains both the file type and its permissions, you
5507 should mask off the file type portion and (s)printf using a C<"%o">
5508 if you want to see the real permissions.
5510 $mode = (stat($filename))[2];
5511 printf "Permissions are %04o\n", $mode & 07777;
5513 In scalar context, C<stat> returns a boolean value indicating success
5514 or failure, and, if successful, sets the information associated with
5515 the special filehandle C<_>.
5517 The File::stat module provides a convenient, by-name access mechanism:
5520 $sb = stat($filename);
5521 printf "File is %s, size is %s, perm %04o, mtime %s\n",
5522 $filename, $sb->size, $sb->mode & 07777,
5523 scalar localtime $sb->mtime;
5525 You can import symbolic mode constants (C<S_IF*>) and functions
5526 (C<S_IS*>) from the Fcntl module:
5530 $mode = (stat($filename))[2];
5532 $user_rwx = ($mode & S_IRWXU) >> 6;
5533 $group_read = ($mode & S_IRGRP) >> 3;
5534 $other_execute = $mode & S_IXOTH;
5536 printf "Permissions are %04o\n", S_IMODE($mode), "\n";
5538 $is_setuid = $mode & S_ISUID;
5539 $is_setgid = S_ISDIR($mode);
5541 You could write the last two using the C<-u> and C<-d> operators.
5542 The commonly available C<S_IF*> constants are
5544 # Permissions: read, write, execute, for user, group, others.
5546 S_IRWXU S_IRUSR S_IWUSR S_IXUSR
5547 S_IRWXG S_IRGRP S_IWGRP S_IXGRP
5548 S_IRWXO S_IROTH S_IWOTH S_IXOTH
5550 # Setuid/Setgid/Stickiness/SaveText.
5551 # Note that the exact meaning of these is system dependent.
5553 S_ISUID S_ISGID S_ISVTX S_ISTXT
5555 # File types. Not necessarily all are available on your system.
5557 S_IFREG S_IFDIR S_IFLNK S_IFBLK S_ISCHR S_IFIFO S_IFSOCK S_IFWHT S_ENFMT
5559 # The following are compatibility aliases for S_IRUSR, S_IWUSR, S_IXUSR.
5561 S_IREAD S_IWRITE S_IEXEC
5563 and the C<S_IF*> functions are
5565 S_IMODE($mode) the part of $mode containing the permission bits
5566 and the setuid/setgid/sticky bits
5568 S_IFMT($mode) the part of $mode containing the file type
5569 which can be bit-anded with e.g. S_IFREG
5570 or with the following functions
5572 # The operators -f, -d, -l, -b, -c, -p, and -S.
5574 S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
5575 S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)
5577 # No direct -X operator counterpart, but for the first one
5578 # the -g operator is often equivalent. The ENFMT stands for
5579 # record flocking enforcement, a platform-dependent feature.
5581 S_ISENFMT($mode) S_ISWHT($mode)
5583 See your native chmod(2) and stat(2) documentation for more details
5584 about the C<S_*> constants. To get status info for a symbolic link
5585 instead of the target file behind the link, use the C<lstat> function.
5591 Takes extra time to study SCALAR (C<$_> if unspecified) in anticipation of
5592 doing many pattern matches on the string before it is next modified.
5593 This may or may not save time, depending on the nature and number of
5594 patterns you are searching on, and on the distribution of character
5595 frequencies in the string to be searched--you probably want to compare
5596 run times with and without it to see which runs faster. Those loops
5597 which scan for many short constant strings (including the constant
5598 parts of more complex patterns) will benefit most. You may have only
5599 one C<study> active at a time--if you study a different scalar the first
5600 is "unstudied". (The way C<study> works is this: a linked list of every
5601 character in the string to be searched is made, so we know, for
5602 example, where all the C<'k'> characters are. From each search string,
5603 the rarest character is selected, based on some static frequency tables
5604 constructed from some C programs and English text. Only those places
5605 that contain this "rarest" character are examined.)
5607 For example, here is a loop that inserts index producing entries
5608 before any line containing a certain pattern:
5612 print ".IX foo\n" if /\bfoo\b/;
5613 print ".IX bar\n" if /\bbar\b/;
5614 print ".IX blurfl\n" if /\bblurfl\b/;
5619 In searching for C</\bfoo\b/>, only those locations in C<$_> that contain C<f>
5620 will be looked at, because C<f> is rarer than C<o>. In general, this is
5621 a big win except in pathological cases. The only question is whether
5622 it saves you more time than it took to build the linked list in the
5625 Note that if you have to look for strings that you don't know till
5626 runtime, you can build an entire loop as a string and C<eval> that to
5627 avoid recompiling all your patterns all the time. Together with
5628 undefining C<$/> to input entire files as one record, this can be very
5629 fast, often faster than specialized programs like fgrep(1). The following
5630 scans a list of files (C<@files>) for a list of words (C<@words>), and prints
5631 out the names of those files that contain a match:
5633 $search = 'while (<>) { study;';
5634 foreach $word (@words) {
5635 $search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
5640 eval $search; # this screams
5641 $/ = "\n"; # put back to normal input delimiter
5642 foreach $file (sort keys(%seen)) {
5646 =item sub NAME BLOCK
5648 =item sub NAME (PROTO) BLOCK
5650 =item sub NAME : ATTRS BLOCK
5652 =item sub NAME (PROTO) : ATTRS BLOCK
5654 This is subroutine definition, not a real function I<per se>.
5655 Without a BLOCK it's just a forward declaration. Without a NAME,
5656 it's an anonymous function declaration, and does actually return
5657 a value: the CODE ref of the closure you just created.
5659 See L<perlsub> and L<perlref> for details about subroutines and
5660 references, and L<attributes> and L<Attribute::Handlers> for more
5661 information about attributes.
5663 =item substr EXPR,OFFSET,LENGTH,REPLACEMENT
5665 =item substr EXPR,OFFSET,LENGTH
5667 =item substr EXPR,OFFSET
5669 Extracts a substring out of EXPR and returns it. First character is at
5670 offset C<0>, or whatever you've set C<$[> to (but don't do that).
5671 If OFFSET is negative (or more precisely, less than C<$[>), starts
5672 that far from the end of the string. If LENGTH is omitted, returns
5673 everything to the end of the string. If LENGTH is negative, leaves that
5674 many characters off the end of the string.
5676 You can use the substr() function as an lvalue, in which case EXPR
5677 must itself be an lvalue. If you assign something shorter than LENGTH,
5678 the string will shrink, and if you assign something longer than LENGTH,
5679 the string will grow to accommodate it. To keep the string the same
5680 length you may need to pad or chop your value using C<sprintf>.
5682 If OFFSET and LENGTH specify a substring that is partly outside the
5683 string, only the part within the string is returned. If the substring
5684 is beyond either end of the string, substr() returns the undefined
5685 value and produces a warning. When used as an lvalue, specifying a
5686 substring that is entirely outside the string is a fatal error.
5687 Here's an example showing the behavior for boundary cases:
5690 substr($name, 4) = 'dy'; # $name is now 'freddy'
5691 my $null = substr $name, 6, 2; # returns '' (no warning)
5692 my $oops = substr $name, 7; # returns undef, with warning
5693 substr($name, 7) = 'gap'; # fatal error
5695 An alternative to using substr() as an lvalue is to specify the
5696 replacement string as the 4th argument. This allows you to replace
5697 parts of the EXPR and return what was there before in one operation,
5698 just as you can with splice().
5700 Note that the lvalue returned by by the 3-arg version of substr() acts as
5701 a 'magic bullet'; each time it is assigned to, it remembers which part
5702 of the original string is being modified; for example:
5705 for (substr($x,1,2)) {
5706 $_ = 'a'; print $x,"\n"; # prints 1a4
5707 $_ = 'xyz'; print $x,"\n"; # prints 1xyz4
5709 $_ = 'pq'; print $x,"\n"; # prints 5pq9
5713 Prior to Perl version 5.9.1, the result of using an lvalue multiple times was
5716 =item symlink OLDFILE,NEWFILE
5718 Creates a new filename symbolically linked to the old filename.
5719 Returns C<1> for success, C<0> otherwise. On systems that don't support
5720 symbolic links, produces a fatal error at run time. To check for that,
5723 $symlink_exists = eval { symlink("",""); 1 };
5725 =item syscall NUMBER, LIST
5727 Calls the system call specified as the first element of the list,
5728 passing the remaining elements as arguments to the system call. If
5729 unimplemented, produces a fatal error. The arguments are interpreted
5730 as follows: if a given argument is numeric, the argument is passed as
5731 an int. If not, the pointer to the string value is passed. You are
5732 responsible to make sure a string is pre-extended long enough to
5733 receive any result that might be written into a string. You can't use a
5734 string literal (or other read-only string) as an argument to C<syscall>
5735 because Perl has to assume that any string pointer might be written
5737 integer arguments are not literals and have never been interpreted in a
5738 numeric context, you may need to add C<0> to them to force them to look
5739 like numbers. This emulates the C<syswrite> function (or vice versa):
5741 require 'syscall.ph'; # may need to run h2ph
5743 syscall(&SYS_write, fileno(STDOUT), $s, length $s);
5745 Note that Perl supports passing of up to only 14 arguments to your system call,
5746 which in practice should usually suffice.
5748 Syscall returns whatever value returned by the system call it calls.
5749 If the system call fails, C<syscall> returns C<-1> and sets C<$!> (errno).
5750 Note that some system calls can legitimately return C<-1>. The proper
5751 way to handle such calls is to assign C<$!=0;> before the call and
5752 check the value of C<$!> if syscall returns C<-1>.
5754 There's a problem with C<syscall(&SYS_pipe)>: it returns the file
5755 number of the read end of the pipe it creates. There is no way
5756 to retrieve the file number of the other end. You can avoid this
5757 problem by using C<pipe> instead.
5759 =item sysopen FILEHANDLE,FILENAME,MODE
5761 =item sysopen FILEHANDLE,FILENAME,MODE,PERMS
5763 Opens the file whose filename is given by FILENAME, and associates it
5764 with FILEHANDLE. If FILEHANDLE is an expression, its value is used as
5765 the name of the real filehandle wanted. This function calls the
5766 underlying operating system's C<open> function with the parameters
5767 FILENAME, MODE, PERMS.
5769 The possible values and flag bits of the MODE parameter are
5770 system-dependent; they are available via the standard module C<Fcntl>.
5771 See the documentation of your operating system's C<open> to see which
5772 values and flag bits are available. You may combine several flags
5773 using the C<|>-operator.
5775 Some of the most common values are C<O_RDONLY> for opening the file in
5776 read-only mode, C<O_WRONLY> for opening the file in write-only mode,
5777 and C<O_RDWR> for opening the file in read-write mode.
5779 For historical reasons, some values work on almost every system
5780 supported by perl: zero means read-only, one means write-only, and two
5781 means read/write. We know that these values do I<not> work under
5782 OS/390 & VM/ESA Unix and on the Macintosh; you probably don't want to
5783 use them in new code.
5785 If the file named by FILENAME does not exist and the C<open> call creates
5786 it (typically because MODE includes the C<O_CREAT> flag), then the value of
5787 PERMS specifies the permissions of the newly created file. If you omit
5788 the PERMS argument to C<sysopen>, Perl uses the octal value C<0666>.
5789 These permission values need to be in octal, and are modified by your
5790 process's current C<umask>.
5792 In many systems the C<O_EXCL> flag is available for opening files in
5793 exclusive mode. This is B<not> locking: exclusiveness means here that
5794 if the file already exists, sysopen() fails. C<O_EXCL> may not work
5795 on network filesystems, and has no effect unless the C<O_CREAT> flag
5796 is set as well. Setting C<O_CREAT|O_EXCL> prevents the file from
5797 being opened if it is a symbolic link. It does not protect against
5798 symbolic links in the file's path.
5800 Sometimes you may want to truncate an already-existing file. This
5801 can be done using the C<O_TRUNC> flag. The behavior of
5802 C<O_TRUNC> with C<O_RDONLY> is undefined.
5804 You should seldom if ever use C<0644> as argument to C<sysopen>, because
5805 that takes away the user's option to have a more permissive umask.
5806 Better to omit it. See the perlfunc(1) entry on C<umask> for more
5809 Note that C<sysopen> depends on the fdopen() C library function.
5810 On many UNIX systems, fdopen() is known to fail when file descriptors
5811 exceed a certain value, typically 255. If you need more file
5812 descriptors than that, consider rebuilding Perl to use the C<sfio>
5813 library, or perhaps using the POSIX::open() function.
5815 See L<perlopentut> for a kinder, gentler explanation of opening files.
5817 =item sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
5819 =item sysread FILEHANDLE,SCALAR,LENGTH
5821 Attempts to read LENGTH bytes of data into variable SCALAR from the
5822 specified FILEHANDLE, using the system call read(2). It bypasses
5823 buffered IO, so mixing this with other kinds of reads, C<print>,
5824 C<write>, C<seek>, C<tell>, or C<eof> can cause confusion because the
5825 perlio or stdio layers usually buffers data. Returns the number of
5826 bytes actually read, C<0> at end of file, or undef if there was an
5827 error (in the latter case C<$!> is also set). SCALAR will be grown or
5828 shrunk so that the last byte actually read is the last byte of the
5829 scalar after the read.
5831 An OFFSET may be specified to place the read data at some place in the
5832 string other than the beginning. A negative OFFSET specifies
5833 placement at that many characters counting backwards from the end of
5834 the string. A positive OFFSET greater than the length of SCALAR
5835 results in the string being padded to the required size with C<"\0">
5836 bytes before the result of the read is appended.
5838 There is no syseof() function, which is ok, since eof() doesn't work
5839 very well on device files (like ttys) anyway. Use sysread() and check
5840 for a return value for 0 to decide whether you're done.
5842 Note that if the filehandle has been marked as C<:utf8> Unicode
5843 characters are read instead of bytes (the LENGTH, OFFSET, and the
5844 return value of sysread() are in Unicode characters).
5845 The C<:encoding(...)> layer implicitly introduces the C<:utf8> layer.
5846 See L</binmode>, L</open>, and the C<open> pragma, L<open>.
5848 =item sysseek FILEHANDLE,POSITION,WHENCE
5850 Sets FILEHANDLE's system position in bytes using the system call
5851 lseek(2). FILEHANDLE may be an expression whose value gives the name
5852 of the filehandle. The values for WHENCE are C<0> to set the new
5853 position to POSITION, C<1> to set the it to the current position plus
5854 POSITION, and C<2> to set it to EOF plus POSITION (typically
5857 Note the I<in bytes>: even if the filehandle has been set to operate
5858 on characters (for example by using the C<:utf8> I/O layer), tell()
5859 will return byte offsets, not character offsets (because implementing
5860 that would render sysseek() very slow).
5862 sysseek() bypasses normal buffered IO, so mixing this with reads (other
5863 than C<sysread>, for example C<< <> >> or read()) C<print>, C<write>,
5864 C<seek>, C<tell>, or C<eof> may cause confusion.
5866 For WHENCE, you may also use the constants C<SEEK_SET>, C<SEEK_CUR>,
5867 and C<SEEK_END> (start of the file, current position, end of the file)
5868 from the Fcntl module. Use of the constants is also more portable
5869 than relying on 0, 1, and 2. For example to define a "systell" function:
5871 use Fcntl 'SEEK_CUR';
5872 sub systell { sysseek($_[0], 0, SEEK_CUR) }
5874 Returns the new position, or the undefined value on failure. A position
5875 of zero is returned as the string C<"0 but true">; thus C<sysseek> returns
5876 true on success and false on failure, yet you can still easily determine
5881 =item system PROGRAM LIST
5883 Does exactly the same thing as C<exec LIST>, except that a fork is
5884 done first, and the parent process waits for the child process to
5885 complete. Note that argument processing varies depending on the
5886 number of arguments. If there is more than one argument in LIST,
5887 or if LIST is an array with more than one value, starts the program
5888 given by the first element of the list with arguments given by the
5889 rest of the list. If there is only one scalar argument, the argument
5890 is checked for shell metacharacters, and if there are any, the
5891 entire argument is passed to the system's command shell for parsing
5892 (this is C</bin/sh -c> on Unix platforms, but varies on other
5893 platforms). If there are no shell metacharacters in the argument,
5894 it is split into words and passed directly to C<execvp>, which is
5897 Beginning with v5.6.0, Perl will attempt to flush all files opened for
5898 output before any operation that may do a fork, but this may not be
5899 supported on some platforms (see L<perlport>). To be safe, you may need
5900 to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
5901 of C<IO::Handle> on any open handles.
5903 The return value is the exit status of the program as returned by the
5904 C<wait> call. To get the actual exit value shift right by eight (see below).
5905 See also L</exec>. This is I<not> what you want to use to capture
5906 the output from a command, for that you should use merely backticks or
5907 C<qx//>, as described in L<perlop/"`STRING`">. Return value of -1
5908 indicates a failure to start the program (inspect $! for the reason).
5910 Like C<exec>, C<system> allows you to lie to a program about its name if
5911 you use the C<system PROGRAM LIST> syntax. Again, see L</exec>.
5913 Since C<SIGINT> and C<SIGQUIT> are ignored during the execution of
5914 C<system>, if you expect your program to terminate on receipt of these
5915 signals you will need to arrange to do so yourself based on the return
5918 @args = ("command", "arg1", "arg2");
5920 or die "system @args failed: $?"
5922 You can check all the failure possibilities by inspecting
5926 print "failed to execute: $!\n";
5929 printf "child died with signal %d, %s coredump\n",
5930 ($? & 127), ($? & 128) ? 'with' : 'without';
5933 printf "child exited with value %d\n", $? >> 8;
5936 or more portably by using the W*() calls of the POSIX extension;
5937 see L<perlport> for more information.
5939 When the arguments get executed via the system shell, results
5940 and return codes will be subject to its quirks and capabilities.
5941 See L<perlop/"`STRING`"> and L</exec> for details.
5943 =item syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
5945 =item syswrite FILEHANDLE,SCALAR,LENGTH
5947 =item syswrite FILEHANDLE,SCALAR
5949 Attempts to write LENGTH bytes of data from variable SCALAR to the
5950 specified FILEHANDLE, using the system call write(2). If LENGTH is
5951 not specified, writes whole SCALAR. It bypasses buffered IO, so
5952 mixing this with reads (other than C<sysread())>, C<print>, C<write>,
5953 C<seek>, C<tell>, or C<eof> may cause confusion because the perlio and
5954 stdio layers usually buffers data. Returns the number of bytes
5955 actually written, or C<undef> if there was an error (in this case the
5956 errno variable C<$!> is also set). If the LENGTH is greater than the
5957 available data in the SCALAR after the OFFSET, only as much data as is
5958 available will be written.
5960 An OFFSET may be specified to write the data from some part of the
5961 string other than the beginning. A negative OFFSET specifies writing
5962 that many characters counting backwards from the end of the string.
5963 In the case the SCALAR is empty you can use OFFSET but only zero offset.
5965 Note that if the filehandle has been marked as C<:utf8>, Unicode
5966 characters are written instead of bytes (the LENGTH, OFFSET, and the
5967 return value of syswrite() are in UTF-8 encoded Unicode characters).
5968 The C<:encoding(...)> layer implicitly introduces the C<:utf8> layer.
5969 See L</binmode>, L</open>, and the C<open> pragma, L<open>.
5971 =item tell FILEHANDLE
5975 Returns the current position I<in bytes> for FILEHANDLE, or -1 on
5976 error. FILEHANDLE may be an expression whose value gives the name of
5977 the actual filehandle. If FILEHANDLE is omitted, assumes the file
5980 Note the I<in bytes>: even if the filehandle has been set to
5981 operate on characters (for example by using the C<:utf8> open
5982 layer), tell() will return byte offsets, not character offsets
5983 (because that would render seek() and tell() rather slow).
5985 The return value of tell() for the standard streams like the STDIN
5986 depends on the operating system: it may return -1 or something else.
5987 tell() on pipes, fifos, and sockets usually returns -1.
5989 There is no C<systell> function. Use C<sysseek(FH, 0, 1)> for that.
5991 Do not use tell() (or other buffered I/O operations) on a file handle
5992 that has been manipulated by sysread(), syswrite() or sysseek().
5993 Those functions ignore the buffering, while tell() does not.
5995 =item telldir DIRHANDLE
5997 Returns the current position of the C<readdir> routines on DIRHANDLE.
5998 Value may be given to C<seekdir> to access a particular location in a
5999 directory. Has the same caveats about possible directory compaction as
6000 the corresponding system library routine.
6002 =item tie VARIABLE,CLASSNAME,LIST
6004 This function binds a variable to a package class that will provide the
6005 implementation for the variable. VARIABLE is the name of the variable
6006 to be enchanted. CLASSNAME is the name of a class implementing objects
6007 of correct type. Any additional arguments are passed to the C<new>
6008 method of the class (meaning C<TIESCALAR>, C<TIEHANDLE>, C<TIEARRAY>,
6009 or C<TIEHASH>). Typically these are arguments such as might be passed
6010 to the C<dbm_open()> function of C. The object returned by the C<new>
6011 method is also returned by the C<tie> function, which would be useful
6012 if you want to access other methods in CLASSNAME.
6014 Note that functions such as C<keys> and C<values> may return huge lists
6015 when used on large objects, like DBM files. You may prefer to use the
6016 C<each> function to iterate over such. Example:
6018 # print out history file offsets
6020 tie(%HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
6021 while (($key,$val) = each %HIST) {
6022 print $key, ' = ', unpack('L',$val), "\n";
6026 A class implementing a hash should have the following methods:
6028 TIEHASH classname, LIST
6030 STORE this, key, value
6035 NEXTKEY this, lastkey
6040 A class implementing an ordinary array should have the following methods:
6042 TIEARRAY classname, LIST
6044 STORE this, key, value
6046 STORESIZE this, count
6052 SPLICE this, offset, length, LIST
6057 A class implementing a file handle should have the following methods:
6059 TIEHANDLE classname, LIST
6060 READ this, scalar, length, offset
6063 WRITE this, scalar, length, offset
6065 PRINTF this, format, LIST
6069 SEEK this, position, whence
6071 OPEN this, mode, LIST
6076 A class implementing a scalar should have the following methods:
6078 TIESCALAR classname, LIST
6084 Not all methods indicated above need be implemented. See L<perltie>,
6085 L<Tie::Hash>, L<Tie::Array>, L<Tie::Scalar>, and L<Tie::Handle>.
6087 Unlike C<dbmopen>, the C<tie> function will not use or require a module
6088 for you--you need to do that explicitly yourself. See L<DB_File>
6089 or the F<Config> module for interesting C<tie> implementations.
6091 For further details see L<perltie>, L<"tied VARIABLE">.
6095 Returns a reference to the object underlying VARIABLE (the same value
6096 that was originally returned by the C<tie> call that bound the variable
6097 to a package.) Returns the undefined value if VARIABLE isn't tied to a
6102 Returns the number of non-leap seconds since whatever time the system
6103 considers to be the epoch, suitable for feeding to C<gmtime> and
6104 C<localtime>. On most systems the epoch is 00:00:00 UTC, January 1, 1970;
6105 a prominent exception being Mac OS Classic which uses 00:00:00, January 1,
6106 1904 in the current local time zone for its epoch.
6108 For measuring time in better granularity than one second,
6109 you may use either the Time::HiRes module (from CPAN, and starting from
6110 Perl 5.8 part of the standard distribution), or if you have
6111 gettimeofday(2), you may be able to use the C<syscall> interface of Perl.
6112 See L<perlfaq8> for details.
6116 Returns a four-element list giving the user and system times, in
6117 seconds, for this process and the children of this process.
6119 ($user,$system,$cuser,$csystem) = times;
6121 In scalar context, C<times> returns C<$user>.
6125 The transliteration operator. Same as C<y///>. See L<perlop>.
6127 =item truncate FILEHANDLE,LENGTH
6129 =item truncate EXPR,LENGTH
6131 Truncates the file opened on FILEHANDLE, or named by EXPR, to the
6132 specified length. Produces a fatal error if truncate isn't implemented
6133 on your system. Returns true if successful, the undefined value
6136 The behavior is undefined if LENGTH is greater than the length of the
6143 Returns an uppercased version of EXPR. This is the internal function
6144 implementing the C<\U> escape in double-quoted strings. Respects
6145 current LC_CTYPE locale if C<use locale> in force. See L<perllocale>
6146 and L<perlunicode> for more details about locale and Unicode support.
6147 It does not attempt to do titlecase mapping on initial letters. See
6148 C<ucfirst> for that.
6150 If EXPR is omitted, uses C<$_>.
6156 Returns the value of EXPR with the first character in uppercase
6157 (titlecase in Unicode). This is the internal function implementing
6158 the C<\u> escape in double-quoted strings. Respects current LC_CTYPE
6159 locale if C<use locale> in force. See L<perllocale> and L<perlunicode>
6160 for more details about locale and Unicode support.
6162 If EXPR is omitted, uses C<$_>.
6168 Sets the umask for the process to EXPR and returns the previous value.
6169 If EXPR is omitted, merely returns the current umask.
6171 The Unix permission C<rwxr-x---> is represented as three sets of three
6172 bits, or three octal digits: C<0750> (the leading 0 indicates octal
6173 and isn't one of the digits). The C<umask> value is such a number
6174 representing disabled permissions bits. The permission (or "mode")
6175 values you pass C<mkdir> or C<sysopen> are modified by your umask, so
6176 even if you tell C<sysopen> to create a file with permissions C<0777>,
6177 if your umask is C<0022> then the file will actually be created with
6178 permissions C<0755>. If your C<umask> were C<0027> (group can't
6179 write; others can't read, write, or execute), then passing
6180 C<sysopen> C<0666> would create a file with mode C<0640> (C<0666 &~
6183 Here's some advice: supply a creation mode of C<0666> for regular
6184 files (in C<sysopen>) and one of C<0777> for directories (in
6185 C<mkdir>) and executable files. This gives users the freedom of
6186 choice: if they want protected files, they might choose process umasks
6187 of C<022>, C<027>, or even the particularly antisocial mask of C<077>.
6188 Programs should rarely if ever make policy decisions better left to
6189 the user. The exception to this is when writing files that should be
6190 kept private: mail files, web browser cookies, I<.rhosts> files, and
6193 If umask(2) is not implemented on your system and you are trying to
6194 restrict access for I<yourself> (i.e., (EXPR & 0700) > 0), produces a
6195 fatal error at run time. If umask(2) is not implemented and you are
6196 not trying to restrict access for yourself, returns C<undef>.
6198 Remember that a umask is a number, usually given in octal; it is I<not> a
6199 string of octal digits. See also L</oct>, if all you have is a string.
6205 Undefines the value of EXPR, which must be an lvalue. Use only on a
6206 scalar value, an array (using C<@>), a hash (using C<%>), a subroutine
6207 (using C<&>), or a typeglob (using C<*>). (Saying C<undef $hash{$key}>
6208 will probably not do what you expect on most predefined variables or
6209 DBM list values, so don't do that; see L<delete>.) Always returns the
6210 undefined value. You can omit the EXPR, in which case nothing is
6211 undefined, but you still get an undefined value that you could, for
6212 instance, return from a subroutine, assign to a variable or pass as a
6213 parameter. Examples:
6216 undef $bar{'blurfl'}; # Compare to: delete $bar{'blurfl'};
6220 undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.
6221 return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
6222 select undef, undef, undef, 0.25;
6223 ($a, $b, undef, $c) = &foo; # Ignore third value returned
6225 Note that this is a unary operator, not a list operator.
6231 Deletes a list of files. Returns the number of files successfully
6234 $cnt = unlink 'a', 'b', 'c';
6238 Note: C<unlink> will not delete directories unless you are superuser and
6239 the B<-U> flag is supplied to Perl. Even if these conditions are
6240 met, be warned that unlinking a directory can inflict damage on your
6241 filesystem. Use C<rmdir> instead.
6243 If LIST is omitted, uses C<$_>.
6245 =item unpack TEMPLATE,EXPR
6247 =item unpack TEMPLATE
6249 C<unpack> does the reverse of C<pack>: it takes a string
6250 and expands it out into a list of values.
6251 (In scalar context, it returns merely the first value produced.)
6253 If EXPR is omitted, unpacks the C<$_> string.
6255 The string is broken into chunks described by the TEMPLATE. Each chunk
6256 is converted separately to a value. Typically, either the string is a result
6257 of C<pack>, or the characters of the string represent a C structure of some
6260 The TEMPLATE has the same format as in the C<pack> function.
6261 Here's a subroutine that does substring:
6264 my($what,$where,$howmuch) = @_;
6265 unpack("x$where a$howmuch", $what);
6270 sub ordinal { unpack("W",$_[0]); } # same as ord()
6272 In addition to fields allowed in pack(), you may prefix a field with
6273 a %<number> to indicate that
6274 you want a <number>-bit checksum of the items instead of the items
6275 themselves. Default is a 16-bit checksum. Checksum is calculated by
6276 summing numeric values of expanded values (for string fields the sum of
6277 C<ord($char)> is taken, for bit fields the sum of zeroes and ones).
6279 For example, the following
6280 computes the same number as the System V sum program:
6284 unpack("%32W*",<>) % 65535;
6287 The following efficiently counts the number of set bits in a bit vector:
6289 $setbits = unpack("%32b*", $selectmask);
6291 The C<p> and C<P> formats should be used with care. Since Perl
6292 has no way of checking whether the value passed to C<unpack()>
6293 corresponds to a valid memory location, passing a pointer value that's
6294 not known to be valid is likely to have disastrous consequences.
6296 If there are more pack codes or if the repeat count of a field or a group
6297 is larger than what the remainder of the input string allows, the result
6298 is not well defined: in some cases, the repeat count is decreased, or
6299 C<unpack()> will produce null strings or zeroes, or terminate with an
6300 error. If the input string is longer than one described by the TEMPLATE,
6301 the rest is ignored.
6303 See L</pack> for more examples and notes.
6305 =item untie VARIABLE
6307 Breaks the binding between a variable and a package. (See C<tie>.)
6308 Has no effect if the variable is not tied.
6310 =item unshift ARRAY,LIST
6312 Does the opposite of a C<shift>. Or the opposite of a C<push>,
6313 depending on how you look at it. Prepends list to the front of the
6314 array, and returns the new number of elements in the array.
6316 unshift(@ARGV, '-e') unless $ARGV[0] =~ /^-/;
6318 Note the LIST is prepended whole, not one element at a time, so the
6319 prepended elements stay in the same order. Use C<reverse> to do the
6322 =item use Module VERSION LIST
6324 =item use Module VERSION
6326 =item use Module LIST
6332 Imports some semantics into the current package from the named module,
6333 generally by aliasing certain subroutine or variable names into your
6334 package. It is exactly equivalent to
6336 BEGIN { require Module; import Module LIST; }
6338 except that Module I<must> be a bareword.
6340 VERSION may be either a numeric argument such as 5.006, which will be
6341 compared to C<$]>, or a literal of the form v5.6.1, which will be compared
6342 to C<$^V> (aka $PERL_VERSION. A fatal error is produced if VERSION is
6343 greater than the version of the current Perl interpreter; Perl will not
6344 attempt to parse the rest of the file. Compare with L</require>, which can
6345 do a similar check at run time.
6347 Specifying VERSION as a literal of the form v5.6.1 should generally be
6348 avoided, because it leads to misleading error messages under earlier
6349 versions of Perl which do not support this syntax. The equivalent numeric
6350 version should be used instead.
6352 use v5.6.1; # compile time version check
6354 use 5.006_001; # ditto; preferred for backwards compatibility
6356 This is often useful if you need to check the current Perl version before
6357 C<use>ing library modules that have changed in incompatible ways from
6358 older versions of Perl. (We try not to do this more than we have to.)
6360 The C<BEGIN> forces the C<require> and C<import> to happen at compile time. The
6361 C<require> makes sure the module is loaded into memory if it hasn't been
6362 yet. The C<import> is not a builtin--it's just an ordinary static method
6363 call into the C<Module> package to tell the module to import the list of
6364 features back into the current package. The module can implement its
6365 C<import> method any way it likes, though most modules just choose to
6366 derive their C<import> method via inheritance from the C<Exporter> class that
6367 is defined in the C<Exporter> module. See L<Exporter>. If no C<import>
6368 method can be found then the call is skipped, even if there is an AUTOLOAD
6371 If you do not want to call the package's C<import> method (for instance,
6372 to stop your namespace from being altered), explicitly supply the empty list:
6376 That is exactly equivalent to
6378 BEGIN { require Module }
6380 If the VERSION argument is present between Module and LIST, then the
6381 C<use> will call the VERSION method in class Module with the given
6382 version as an argument. The default VERSION method, inherited from
6383 the UNIVERSAL class, croaks if the given version is larger than the
6384 value of the variable C<$Module::VERSION>.
6386 Again, there is a distinction between omitting LIST (C<import> called
6387 with no arguments) and an explicit empty LIST C<()> (C<import> not
6388 called). Note that there is no comma after VERSION!
6390 Because this is a wide-open interface, pragmas (compiler directives)
6391 are also implemented this way. Currently implemented pragmas are:
6396 use sigtrap qw(SEGV BUS);
6397 use strict qw(subs vars refs);
6398 use subs qw(afunc blurfl);
6399 use warnings qw(all);
6400 use sort qw(stable _quicksort _mergesort);
6402 Some of these pseudo-modules import semantics into the current
6403 block scope (like C<strict> or C<integer>, unlike ordinary modules,
6404 which import symbols into the current package (which are effective
6405 through the end of the file).
6407 There's a corresponding C<no> command that unimports meanings imported
6408 by C<use>, i.e., it calls C<unimport Module LIST> instead of C<import>.
6409 It behaves exactly as C<import> does with respect to VERSION, an
6410 omitted LIST, empty LIST, or no unimport method being found.
6416 See L<perlmodlib> for a list of standard modules and pragmas. See L<perlrun>
6417 for the C<-M> and C<-m> command-line options to perl that give C<use>
6418 functionality from the command-line.
6422 Changes the access and modification times on each file of a list of
6423 files. The first two elements of the list must be the NUMERICAL access
6424 and modification times, in that order. Returns the number of files
6425 successfully changed. The inode change time of each file is set
6426 to the current time. For example, this code has the same effect as the
6427 Unix touch(1) command when the files I<already exist> and belong to
6428 the user running the program:
6431 $atime = $mtime = time;
6432 utime $atime, $mtime, @ARGV;
6434 Since perl 5.7.2, if the first two elements of the list are C<undef>, then
6435 the utime(2) function in the C library will be called with a null second
6436 argument. On most systems, this will set the file's access and
6437 modification times to the current time (i.e. equivalent to the example
6438 above) and will even work on other users' files where you have write
6441 utime undef, undef, @ARGV;
6443 Under NFS this will use the time of the NFS server, not the time of
6444 the local machine. If there is a time synchronization problem, the
6445 NFS server and local machine will have different times. The Unix
6446 touch(1) command will in fact normally use this form instead of the
6447 one shown in the first example.
6449 Note that only passing one of the first two elements as C<undef> will
6450 be equivalent of passing it as 0 and will not have the same effect as
6451 described when they are both C<undef>. This case will also trigger an
6452 uninitialized warning.
6456 Returns a list consisting of all the values of the named hash.
6457 (In a scalar context, returns the number of values.)
6459 The values are returned in an apparently random order. The actual
6460 random order is subject to change in future versions of perl, but it
6461 is guaranteed to be the same order as either the C<keys> or C<each>
6462 function would produce on the same (unmodified) hash. Since Perl
6463 5.8.1 the ordering is different even between different runs of Perl
6464 for security reasons (see L<perlsec/"Algorithmic Complexity Attacks">).
6466 As a side effect, calling values() resets the HASH's internal iterator,
6467 see L</each>. (In particular, calling values() in void context resets
6468 the iterator with no other overhead.)
6470 Note that the values are not copied, which means modifying them will
6471 modify the contents of the hash:
6473 for (values %hash) { s/foo/bar/g } # modifies %hash values
6474 for (@hash{keys %hash}) { s/foo/bar/g } # same
6476 See also C<keys>, C<each>, and C<sort>.
6478 =item vec EXPR,OFFSET,BITS
6480 Treats the string in EXPR as a bit vector made up of elements of
6481 width BITS, and returns the value of the element specified by OFFSET
6482 as an unsigned integer. BITS therefore specifies the number of bits
6483 that are reserved for each element in the bit vector. This must
6484 be a power of two from 1 to 32 (or 64, if your platform supports
6487 If BITS is 8, "elements" coincide with bytes of the input string.
6489 If BITS is 16 or more, bytes of the input string are grouped into chunks
6490 of size BITS/8, and each group is converted to a number as with
6491 pack()/unpack() with big-endian formats C<n>/C<N> (and analogously
6492 for BITS==64). See L<"pack"> for details.
6494 If bits is 4 or less, the string is broken into bytes, then the bits
6495 of each byte are broken into 8/BITS groups. Bits of a byte are
6496 numbered in a little-endian-ish way, as in C<0x01>, C<0x02>,
6497 C<0x04>, C<0x08>, C<0x10>, C<0x20>, C<0x40>, C<0x80>. For example,
6498 breaking the single input byte C<chr(0x36)> into two groups gives a list
6499 C<(0x6, 0x3)>; breaking it into 4 groups gives C<(0x2, 0x1, 0x3, 0x0)>.
6501 C<vec> may also be assigned to, in which case parentheses are needed
6502 to give the expression the correct precedence as in
6504 vec($image, $max_x * $x + $y, 8) = 3;
6506 If the selected element is outside the string, the value 0 is returned.
6507 If an element off the end of the string is written to, Perl will first
6508 extend the string with sufficiently many zero bytes. It is an error
6509 to try to write off the beginning of the string (i.e. negative OFFSET).
6511 The string should not contain any character with the value > 255 (which
6512 can only happen if you're using UTF-8 encoding). If it does, it will be
6513 treated as something which is not UTF-8 encoded. When the C<vec> was
6514 assigned to, other parts of your program will also no longer consider the
6515 string to be UTF-8 encoded. In other words, if you do have such characters
6516 in your string, vec() will operate on the actual byte string, and not the
6517 conceptual character string.
6519 Strings created with C<vec> can also be manipulated with the logical
6520 operators C<|>, C<&>, C<^>, and C<~>. These operators will assume a bit
6521 vector operation is desired when both operands are strings.
6522 See L<perlop/"Bitwise String Operators">.
6524 The following code will build up an ASCII string saying C<'PerlPerlPerl'>.
6525 The comments show the string after each step. Note that this code works
6526 in the same way on big-endian or little-endian machines.
6529 vec($foo, 0, 32) = 0x5065726C; # 'Perl'
6531 # $foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
6532 print vec($foo, 0, 8); # prints 80 == 0x50 == ord('P')
6534 vec($foo, 2, 16) = 0x5065; # 'PerlPe'
6535 vec($foo, 3, 16) = 0x726C; # 'PerlPerl'
6536 vec($foo, 8, 8) = 0x50; # 'PerlPerlP'
6537 vec($foo, 9, 8) = 0x65; # 'PerlPerlPe'
6538 vec($foo, 20, 4) = 2; # 'PerlPerlPe' . "\x02"
6539 vec($foo, 21, 4) = 7; # 'PerlPerlPer'
6541 vec($foo, 45, 2) = 3; # 'PerlPerlPer' . "\x0c"
6542 vec($foo, 93, 1) = 1; # 'PerlPerlPer' . "\x2c"
6543 vec($foo, 94, 1) = 1; # 'PerlPerlPerl'
6546 To transform a bit vector into a string or list of 0's and 1's, use these:
6548 $bits = unpack("b*", $vector);
6549 @bits = split(//, unpack("b*", $vector));
6551 If you know the exact length in bits, it can be used in place of the C<*>.
6553 Here is an example to illustrate how the bits actually fall in place:
6559 unpack("V",$_) 01234567890123456789012345678901
6560 ------------------------------------------------------------------
6565 for ($shift=0; $shift < $width; ++$shift) {
6566 for ($off=0; $off < 32/$width; ++$off) {
6567 $str = pack("B*", "0"x32);
6568 $bits = (1<<$shift);
6569 vec($str, $off, $width) = $bits;
6570 $res = unpack("b*",$str);
6571 $val = unpack("V", $str);
6578 vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
6579 $off, $width, $bits, $val, $res
6583 Regardless of the machine architecture on which it is run, the above
6584 example should print the following table:
6587 unpack("V",$_) 01234567890123456789012345678901
6588 ------------------------------------------------------------------
6589 vec($_, 0, 1) = 1 == 1 10000000000000000000000000000000
6590 vec($_, 1, 1) = 1 == 2 01000000000000000000000000000000
6591 vec($_, 2, 1) = 1 == 4 00100000000000000000000000000000
6592 vec($_, 3, 1) = 1 == 8 00010000000000000000000000000000
6593 vec($_, 4, 1) = 1 == 16 00001000000000000000000000000000
6594 vec($_, 5, 1) = 1 == 32 00000100000000000000000000000000
6595 vec($_, 6, 1) = 1 == 64 00000010000000000000000000000000
6596 vec($_, 7, 1) = 1 == 128 00000001000000000000000000000000
6597 vec($_, 8, 1) = 1 == 256 00000000100000000000000000000000
6598 vec($_, 9, 1) = 1 == 512 00000000010000000000000000000000
6599 vec($_,10, 1) = 1 == 1024 00000000001000000000000000000000
6600 vec($_,11, 1) = 1 == 2048 00000000000100000000000000000000
6601 vec($_,12, 1) = 1 == 4096 00000000000010000000000000000000
6602 vec($_,13, 1) = 1 == 8192 00000000000001000000000000000000
6603 vec($_,14, 1) = 1 == 16384 00000000000000100000000000000000
6604 vec($_,15, 1) = 1 == 32768 00000000000000010000000000000000
6605 vec($_,16, 1) = 1 == 65536 00000000000000001000000000000000
6606 vec($_,17, 1) = 1 == 131072 00000000000000000100000000000000
6607 vec($_,18, 1) = 1 == 262144 00000000000000000010000000000000
6608 vec($_,19, 1) = 1 == 524288 00000000000000000001000000000000
6609 vec($_,20, 1) = 1 == 1048576 00000000000000000000100000000000
6610 vec($_,21, 1) = 1 == 2097152 00000000000000000000010000000000
6611 vec($_,22, 1) = 1 == 4194304 00000000000000000000001000000000
6612 vec($_,23, 1) = 1 == 8388608 00000000000000000000000100000000
6613 vec($_,24, 1) = 1 == 16777216 00000000000000000000000010000000
6614 vec($_,25, 1) = 1 == 33554432 00000000000000000000000001000000
6615 vec($_,26, 1) = 1 == 67108864 00000000000000000000000000100000
6616 vec($_,27, 1) = 1 == 134217728 00000000000000000000000000010000
6617 vec($_,28, 1) = 1 == 268435456 00000000000000000000000000001000
6618 vec($_,29, 1) = 1 == 536870912 00000000000000000000000000000100
6619 vec($_,30, 1) = 1 == 1073741824 00000000000000000000000000000010
6620 vec($_,31, 1) = 1 == 2147483648 00000000000000000000000000000001
6621 vec($_, 0, 2) = 1 == 1 10000000000000000000000000000000
6622 vec($_, 1, 2) = 1 == 4 00100000000000000000000000000000
6623 vec($_, 2, 2) = 1 == 16 00001000000000000000000000000000
6624 vec($_, 3, 2) = 1 == 64 00000010000000000000000000000000
6625 vec($_, 4, 2) = 1 == 256 00000000100000000000000000000000
6626 vec($_, 5, 2) = 1 == 1024 00000000001000000000000000000000
6627 vec($_, 6, 2) = 1 == 4096 00000000000010000000000000000000
6628 vec($_, 7, 2) = 1 == 16384 00000000000000100000000000000000
6629 vec($_, 8, 2) = 1 == 65536 00000000000000001000000000000000
6630 vec($_, 9, 2) = 1 == 262144 00000000000000000010000000000000
6631 vec($_,10, 2) = 1 == 1048576 00000000000000000000100000000000
6632 vec($_,11, 2) = 1 == 4194304 00000000000000000000001000000000
6633 vec($_,12, 2) = 1 == 16777216 00000000000000000000000010000000
6634 vec($_,13, 2) = 1 == 67108864 00000000000000000000000000100000
6635 vec($_,14, 2) = 1 == 268435456 00000000000000000000000000001000
6636 vec($_,15, 2) = 1 == 1073741824 00000000000000000000000000000010
6637 vec($_, 0, 2) = 2 == 2 01000000000000000000000000000000
6638 vec($_, 1, 2) = 2 == 8 00010000000000000000000000000000
6639 vec($_, 2, 2) = 2 == 32 00000100000000000000000000000000
6640 vec($_, 3, 2) = 2 == 128 00000001000000000000000000000000
6641 vec($_, 4, 2) = 2 == 512 00000000010000000000000000000000
6642 vec($_, 5, 2) = 2 == 2048 00000000000100000000000000000000
6643 vec($_, 6, 2) = 2 == 8192 00000000000001000000000000000000
6644 vec($_, 7, 2) = 2 == 32768 00000000000000010000000000000000
6645 vec($_, 8, 2) = 2 == 131072 00000000000000000100000000000000
6646 vec($_, 9, 2) = 2 == 524288 00000000000000000001000000000000
6647 vec($_,10, 2) = 2 == 2097152 00000000000000000000010000000000
6648 vec($_,11, 2) = 2 == 8388608 00000000000000000000000100000000
6649 vec($_,12, 2) = 2 == 33554432 00000000000000000000000001000000
6650 vec($_,13, 2) = 2 == 134217728 00000000000000000000000000010000
6651 vec($_,14, 2) = 2 == 536870912 00000000000000000000000000000100
6652 vec($_,15, 2) = 2 == 2147483648 00000000000000000000000000000001
6653 vec($_, 0, 4) = 1 == 1 10000000000000000000000000000000
6654 vec($_, 1, 4) = 1 == 16 00001000000000000000000000000000
6655 vec($_, 2, 4) = 1 == 256 00000000100000000000000000000000
6656 vec($_, 3, 4) = 1 == 4096 00000000000010000000000000000000
6657 vec($_, 4, 4) = 1 == 65536 00000000000000001000000000000000
6658 vec($_, 5, 4) = 1 == 1048576 00000000000000000000100000000000
6659 vec($_, 6, 4) = 1 == 16777216 00000000000000000000000010000000
6660 vec($_, 7, 4) = 1 == 268435456 00000000000000000000000000001000
6661 vec($_, 0, 4) = 2 == 2 01000000000000000000000000000000
6662 vec($_, 1, 4) = 2 == 32 00000100000000000000000000000000
6663 vec($_, 2, 4) = 2 == 512 00000000010000000000000000000000
6664 vec($_, 3, 4) = 2 == 8192 00000000000001000000000000000000
6665 vec($_, 4, 4) = 2 == 131072 00000000000000000100000000000000
6666 vec($_, 5, 4) = 2 == 2097152 00000000000000000000010000000000
6667 vec($_, 6, 4) = 2 == 33554432 00000000000000000000000001000000
6668 vec($_, 7, 4) = 2 == 536870912 00000000000000000000000000000100
6669 vec($_, 0, 4) = 4 == 4 00100000000000000000000000000000
6670 vec($_, 1, 4) = 4 == 64 00000010000000000000000000000000
6671 vec($_, 2, 4) = 4 == 1024 00000000001000000000000000000000
6672 vec($_, 3, 4) = 4 == 16384 00000000000000100000000000000000
6673 vec($_, 4, 4) = 4 == 262144 00000000000000000010000000000000
6674 vec($_, 5, 4) = 4 == 4194304 00000000000000000000001000000000
6675 vec($_, 6, 4) = 4 == 67108864 00000000000000000000000000100000
6676 vec($_, 7, 4) = 4 == 1073741824 00000000000000000000000000000010
6677 vec($_, 0, 4) = 8 == 8 00010000000000000000000000000000
6678 vec($_, 1, 4) = 8 == 128 00000001000000000000000000000000
6679 vec($_, 2, 4) = 8 == 2048 00000000000100000000000000000000
6680 vec($_, 3, 4) = 8 == 32768 00000000000000010000000000000000
6681 vec($_, 4, 4) = 8 == 524288 00000000000000000001000000000000
6682 vec($_, 5, 4) = 8 == 8388608 00000000000000000000000100000000
6683 vec($_, 6, 4) = 8 == 134217728 00000000000000000000000000010000
6684 vec($_, 7, 4) = 8 == 2147483648 00000000000000000000000000000001
6685 vec($_, 0, 8) = 1 == 1 10000000000000000000000000000000
6686 vec($_, 1, 8) = 1 == 256 00000000100000000000000000000000
6687 vec($_, 2, 8) = 1 == 65536 00000000000000001000000000000000
6688 vec($_, 3, 8) = 1 == 16777216 00000000000000000000000010000000
6689 vec($_, 0, 8) = 2 == 2 01000000000000000000000000000000
6690 vec($_, 1, 8) = 2 == 512 00000000010000000000000000000000
6691 vec($_, 2, 8) = 2 == 131072 00000000000000000100000000000000
6692 vec($_, 3, 8) = 2 == 33554432 00000000000000000000000001000000
6693 vec($_, 0, 8) = 4 == 4 00100000000000000000000000000000
6694 vec($_, 1, 8) = 4 == 1024 00000000001000000000000000000000
6695 vec($_, 2, 8) = 4 == 262144 00000000000000000010000000000000
6696 vec($_, 3, 8) = 4 == 67108864 00000000000000000000000000100000
6697 vec($_, 0, 8) = 8 == 8 00010000000000000000000000000000
6698 vec($_, 1, 8) = 8 == 2048 00000000000100000000000000000000
6699 vec($_, 2, 8) = 8 == 524288 00000000000000000001000000000000
6700 vec($_, 3, 8) = 8 == 134217728 00000000000000000000000000010000
6701 vec($_, 0, 8) = 16 == 16 00001000000000000000000000000000
6702 vec($_, 1, 8) = 16 == 4096 00000000000010000000000000000000
6703 vec($_, 2, 8) = 16 == 1048576 00000000000000000000100000000000
6704 vec($_, 3, 8) = 16 == 268435456 00000000000000000000000000001000
6705 vec($_, 0, 8) = 32 == 32 00000100000000000000000000000000
6706 vec($_, 1, 8) = 32 == 8192 00000000000001000000000000000000
6707 vec($_, 2, 8) = 32 == 2097152 00000000000000000000010000000000
6708 vec($_, 3, 8) = 32 == 536870912 00000000000000000000000000000100
6709 vec($_, 0, 8) = 64 == 64 00000010000000000000000000000000
6710 vec($_, 1, 8) = 64 == 16384 00000000000000100000000000000000
6711 vec($_, 2, 8) = 64 == 4194304 00000000000000000000001000000000
6712 vec($_, 3, 8) = 64 == 1073741824 00000000000000000000000000000010
6713 vec($_, 0, 8) = 128 == 128 00000001000000000000000000000000
6714 vec($_, 1, 8) = 128 == 32768 00000000000000010000000000000000
6715 vec($_, 2, 8) = 128 == 8388608 00000000000000000000000100000000
6716 vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001
6720 Behaves like the wait(2) system call on your system: it waits for a child
6721 process to terminate and returns the pid of the deceased process, or
6722 C<-1> if there are no child processes. The status is returned in C<$?>.
6723 Note that a return value of C<-1> could mean that child processes are
6724 being automatically reaped, as described in L<perlipc>.
6726 =item waitpid PID,FLAGS
6728 Waits for a particular child process to terminate and returns the pid of
6729 the deceased process, or C<-1> if there is no such child process. On some
6730 systems, a value of 0 indicates that there are processes still running.
6731 The status is returned in C<$?>. If you say
6733 use POSIX ":sys_wait_h";
6736 $kid = waitpid(-1, WNOHANG);
6739 then you can do a non-blocking wait for all pending zombie processes.
6740 Non-blocking wait is available on machines supporting either the
6741 waitpid(2) or wait4(2) system calls. However, waiting for a particular
6742 pid with FLAGS of C<0> is implemented everywhere. (Perl emulates the
6743 system call by remembering the status values of processes that have
6744 exited but have not been harvested by the Perl script yet.)
6746 Note that on some systems, a return value of C<-1> could mean that child
6747 processes are being automatically reaped. See L<perlipc> for details,
6748 and for other examples.
6752 Returns true if the context of the currently executing subroutine or
6753 C<eval> is looking for a list value. Returns false if the context is
6754 looking for a scalar. Returns the undefined value if the context is
6755 looking for no value (void context).
6757 return unless defined wantarray; # don't bother doing more
6758 my @a = complex_calculation();
6759 return wantarray ? @a : "@a";
6761 C<wantarray()>'s result is unspecified in the top level of a file,
6762 in a C<BEGIN>, C<CHECK>, C<INIT> or C<END> block, or in a C<DESTROY>
6765 This function should have been named wantlist() instead.
6769 Produces a message on STDERR just like C<die>, but doesn't exit or throw
6772 If LIST is empty and C<$@> already contains a value (typically from a
6773 previous eval) that value is used after appending C<"\t...caught">
6774 to C<$@>. This is useful for staying almost, but not entirely similar to
6777 If C<$@> is empty then the string C<"Warning: Something's wrong"> is used.
6779 No message is printed if there is a C<$SIG{__WARN__}> handler
6780 installed. It is the handler's responsibility to deal with the message
6781 as it sees fit (like, for instance, converting it into a C<die>). Most
6782 handlers must therefore make arrangements to actually display the
6783 warnings that they are not prepared to deal with, by calling C<warn>
6784 again in the handler. Note that this is quite safe and will not
6785 produce an endless loop, since C<__WARN__> hooks are not called from
6788 You will find this behavior is slightly different from that of
6789 C<$SIG{__DIE__}> handlers (which don't suppress the error text, but can
6790 instead call C<die> again to change it).
6792 Using a C<__WARN__> handler provides a powerful way to silence all
6793 warnings (even the so-called mandatory ones). An example:
6795 # wipe out *all* compile-time warnings
6796 BEGIN { $SIG{'__WARN__'} = sub { warn $_[0] if $DOWARN } }
6798 my $foo = 20; # no warning about duplicate my $foo,
6799 # but hey, you asked for it!
6800 # no compile-time or run-time warnings before here
6803 # run-time warnings enabled after here
6804 warn "\$foo is alive and $foo!"; # does show up
6806 See L<perlvar> for details on setting C<%SIG> entries, and for more
6807 examples. See the Carp module for other kinds of warnings using its
6808 carp() and cluck() functions.
6810 =item write FILEHANDLE
6816 Writes a formatted record (possibly multi-line) to the specified FILEHANDLE,
6817 using the format associated with that file. By default the format for
6818 a file is the one having the same name as the filehandle, but the
6819 format for the current output channel (see the C<select> function) may be set
6820 explicitly by assigning the name of the format to the C<$~> variable.
6822 Top of form processing is handled automatically: if there is
6823 insufficient room on the current page for the formatted record, the
6824 page is advanced by writing a form feed, a special top-of-page format
6825 is used to format the new page header, and then the record is written.
6826 By default the top-of-page format is the name of the filehandle with
6827 "_TOP" appended, but it may be dynamically set to the format of your
6828 choice by assigning the name to the C<$^> variable while the filehandle is
6829 selected. The number of lines remaining on the current page is in
6830 variable C<$->, which can be set to C<0> to force a new page.
6832 If FILEHANDLE is unspecified, output goes to the current default output
6833 channel, which starts out as STDOUT but may be changed by the
6834 C<select> operator. If the FILEHANDLE is an EXPR, then the expression
6835 is evaluated and the resulting string is used to look up the name of
6836 the FILEHANDLE at run time. For more on formats, see L<perlform>.
6838 Note that write is I<not> the opposite of C<read>. Unfortunately.
6842 The transliteration operator. Same as C<tr///>. See L<perlop>.