44a6f286bfe948ec105268dcb4270b2f514e2f9b
[p5sagit/p5-mst-13.2.git] / pod / perlfunc.pod
1 =head1 NAME
2
3 perlfunc - Perl builtin functions
4
5 =head1 DESCRIPTION
6
7 The functions in this section can serve as terms in an expression.
8 They fall into two major categories: list operators and named unary
9 operators.  These differ in their precedence relationship with a
10 following comma.  (See the precedence table in L<perlop>.)  List
11 operators take more than one argument, while unary operators can never
12 take more than one argument.  Thus, a comma terminates the argument of
13 a unary operator, but merely separates the arguments of a list
14 operator.  A unary operator generally provides a scalar context to its
15 argument, while a list operator may provide either scalar or list
16 contexts for its arguments.  If it does both, the scalar arguments will
17 be first, and the list argument will follow.  (Note that there can ever
18 be only one such list argument.)  For instance, splice() has three scalar
19 arguments followed by a list, whereas gethostbyname() has four scalar
20 arguments.
21
22 In the syntax descriptions that follow, list operators that expect a
23 list (and provide list context for the elements of the list) are shown
24 with LIST as an argument.  Such a list may consist of any combination
25 of scalar arguments or list values; the list values will be included
26 in the list as if each individual element were interpolated at that
27 point in the list, forming a longer single-dimensional list value.
28 Elements of the LIST should be separated by commas.
29
30 Any function in the list below may be used either with or without
31 parentheses around its arguments.  (The syntax descriptions omit the
32 parentheses.)  If you use the parentheses, the simple (but occasionally
33 surprising) rule is this: It I<looks> like a function, therefore it I<is> a
34 function, and precedence doesn't matter.  Otherwise it's a list
35 operator or unary operator, and precedence does matter.  And whitespace
36 between the function and left parenthesis doesn't count--so you need to
37 be careful sometimes:
38
39     print 1+2+4;        # Prints 7.
40     print(1+2) + 4;     # Prints 3.
41     print (1+2)+4;      # Also prints 3!
42     print +(1+2)+4;     # Prints 7.
43     print ((1+2)+4);    # Prints 7.
44
45 If you run Perl with the B<-w> switch it can warn you about this.  For
46 example, the third line above produces:
47
48     print (...) interpreted as function at - line 1.
49     Useless use of integer addition in void context at - line 1.
50
51 A few functions take no arguments at all, and therefore work as neither
52 unary nor list operators.  These include such functions as C<time>
53 and C<endpwent>.  For example, C<time+86_400> always means
54 C<time() + 86_400>.
55
56 For functions that can be used in either a scalar or list context,
57 nonabortive failure is generally indicated in a scalar context by
58 returning the undefined value, and in a list context by returning the
59 null list.
60
61 Remember the following important rule: There is B<no rule> that relates
62 the behavior of an expression in list context to its behavior in scalar
63 context, or vice versa.  It might do two totally different things.
64 Each operator and function decides which sort of value it would be most
65 appropriate to return in scalar context.  Some operators return the
66 length of the list that would have been returned in list context.  Some
67 operators return the first value in the list.  Some operators return the
68 last value in the list.  Some operators return a count of successful
69 operations.  In general, they do what you want, unless you want
70 consistency.
71
72 A named array in scalar context is quite different from what would at
73 first glance appear to be a list in scalar context.  You can't get a list
74 like C<(1,2,3)> into being in scalar context, because the compiler knows
75 the context at compile time.  It would generate the scalar comma operator
76 there, not the list construction version of the comma.  That means it
77 was never a list to start with.
78
79 In general, functions in Perl that serve as wrappers for system calls
80 of the same name (like chown(2), fork(2), closedir(2), etc.) all return
81 true when they succeed and C<undef> otherwise, as is usually mentioned
82 in the descriptions below.  This is different from the C interfaces,
83 which return C<-1> on failure.  Exceptions to this rule are C<wait>,
84 C<waitpid>, and C<syscall>.  System calls also set the special C<$!>
85 variable on failure.  Other functions do not, except accidentally.
86
87 =head2 Perl Functions by Category
88
89 Here are Perl's functions (including things that look like
90 functions, like some keywords and named operators)
91 arranged by category.  Some functions appear in more
92 than one place.
93
94 =over 4
95
96 =item Functions for SCALARs or strings
97
98 C<chomp>, C<chop>, C<chr>, C<crypt>, C<hex>, C<index>, C<lc>, C<lcfirst>,
99 C<length>, C<oct>, C<ord>, C<pack>, C<q/STRING/>, C<qq/STRING/>, C<reverse>,
100 C<rindex>, C<sprintf>, C<substr>, C<tr///>, C<uc>, C<ucfirst>, C<y///>
101
102 =item Regular expressions and pattern matching
103
104 C<m//>, C<pos>, C<quotemeta>, C<s///>, C<split>, C<study>, C<qr//>
105
106 =item Numeric functions
107
108 C<abs>, C<atan2>, C<cos>, C<exp>, C<hex>, C<int>, C<log>, C<oct>, C<rand>,
109 C<sin>, C<sqrt>, C<srand>
110
111 =item Functions for real @ARRAYs
112
113 C<pop>, C<push>, C<shift>, C<splice>, C<unshift>
114
115 =item Functions for list data
116
117 C<grep>, C<join>, C<map>, C<qw/STRING/>, C<reverse>, C<sort>, C<unpack>
118
119 =item Functions for real %HASHes
120
121 C<delete>, C<each>, C<exists>, C<keys>, C<values>
122
123 =item Input and output functions
124
125 C<binmode>, C<close>, C<closedir>, C<dbmclose>, C<dbmopen>, C<die>, C<eof>,
126 C<fileno>, C<flock>, C<format>, C<getc>, C<print>, C<printf>, C<read>,
127 C<readdir>, C<rewinddir>, C<seek>, C<seekdir>, C<select>, C<syscall>,
128 C<sysread>, C<sysseek>, C<syswrite>, C<tell>, C<telldir>, C<truncate>,
129 C<warn>, C<write>
130
131 =item Functions for fixed length data or records
132
133 C<pack>, C<read>, C<syscall>, C<sysread>, C<syswrite>, C<unpack>, C<vec>
134
135 =item Functions for filehandles, files, or directories
136
137 C<-I<X>>, C<chdir>, C<chmod>, C<chown>, C<chroot>, C<fcntl>, C<glob>,
138 C<ioctl>, C<link>, C<lstat>, C<mkdir>, C<open>, C<opendir>,
139 C<readlink>, C<rename>, C<rmdir>, C<stat>, C<symlink>, C<sysopen>,
140 C<umask>, C<unlink>, C<utime>
141
142 =item Keywords related to the control flow of your perl program
143
144 C<caller>, C<continue>, C<die>, C<do>, C<dump>, C<eval>, C<exit>,
145 C<goto>, C<last>, C<next>, C<redo>, C<return>, C<sub>, C<wantarray>
146
147 =item Keywords related to scoping
148
149 C<caller>, C<import>, C<local>, C<my>, C<our>, C<package>, C<use>
150
151 =item Miscellaneous functions
152
153 C<defined>, C<dump>, C<eval>, C<formline>, C<local>, C<my>, C<our>, C<reset>,
154 C<scalar>, C<undef>, C<wantarray>
155
156 =item Functions for processes and process groups
157
158 C<alarm>, C<exec>, C<fork>, C<getpgrp>, C<getppid>, C<getpriority>, C<kill>,
159 C<pipe>, C<qx/STRING/>, C<setpgrp>, C<setpriority>, C<sleep>, C<system>,
160 C<times>, C<wait>, C<waitpid>
161
162 =item Keywords related to perl modules
163
164 C<do>, C<import>, C<no>, C<package>, C<require>, C<use>
165
166 =item Keywords related to classes and object-orientedness
167
168 C<bless>, C<dbmclose>, C<dbmopen>, C<package>, C<ref>, C<tie>, C<tied>,
169 C<untie>, C<use>
170
171 =item Low-level socket functions
172
173 C<accept>, C<bind>, C<connect>, C<getpeername>, C<getsockname>,
174 C<getsockopt>, C<listen>, C<recv>, C<send>, C<setsockopt>, C<shutdown>,
175 C<socket>, C<socketpair>
176
177 =item System V interprocess communication functions
178
179 C<msgctl>, C<msgget>, C<msgrcv>, C<msgsnd>, C<semctl>, C<semget>, C<semop>,
180 C<shmctl>, C<shmget>, C<shmread>, C<shmwrite>
181
182 =item Fetching user and group info
183
184 C<endgrent>, C<endhostent>, C<endnetent>, C<endpwent>, C<getgrent>,
185 C<getgrgid>, C<getgrnam>, C<getlogin>, C<getpwent>, C<getpwnam>,
186 C<getpwuid>, C<setgrent>, C<setpwent>
187
188 =item Fetching network info
189
190 C<endprotoent>, C<endservent>, C<gethostbyaddr>, C<gethostbyname>,
191 C<gethostent>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
192 C<getprotobyname>, C<getprotobynumber>, C<getprotoent>,
193 C<getservbyname>, C<getservbyport>, C<getservent>, C<sethostent>,
194 C<setnetent>, C<setprotoent>, C<setservent>
195
196 =item Time-related functions
197
198 C<gmtime>, C<localtime>, C<time>, C<times>
199
200 =item Functions new in perl5
201
202 C<abs>, C<bless>, C<chomp>, C<chr>, C<exists>, C<formline>, C<glob>,
203 C<import>, C<lc>, C<lcfirst>, C<map>, C<my>, C<no>, C<our>, C<prototype>,
204 C<qx>, C<qw>, C<readline>, C<readpipe>, C<ref>, C<sub*>, C<sysopen>, C<tie>,
205 C<tied>, C<uc>, C<ucfirst>, C<untie>, C<use>
206
207 * - C<sub> was a keyword in perl4, but in perl5 it is an
208 operator, which can be used in expressions.
209
210 =item Functions obsoleted in perl5
211
212 C<dbmclose>, C<dbmopen>
213
214 =back
215
216 =head2 Portability
217
218 Perl was born in Unix and can therefore access all common Unix
219 system calls.  In non-Unix environments, the functionality of some
220 Unix system calls may not be available, or details of the available
221 functionality may differ slightly.  The Perl functions affected
222 by this are:
223
224 C<-X>, C<binmode>, C<chmod>, C<chown>, C<chroot>, C<crypt>,
225 C<dbmclose>, C<dbmopen>, C<dump>, C<endgrent>, C<endhostent>,
226 C<endnetent>, C<endprotoent>, C<endpwent>, C<endservent>, C<exec>,
227 C<fcntl>, C<flock>, C<fork>, C<getgrent>, C<getgrgid>, C<gethostbyname>,
228 C<gethostent>, C<getlogin>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
229 C<getppid>, C<getprgp>, C<getpriority>, C<getprotobynumber>,
230 C<getprotoent>, C<getpwent>, C<getpwnam>, C<getpwuid>,
231 C<getservbyport>, C<getservent>, C<getsockopt>, C<glob>, C<ioctl>,
232 C<kill>, C<link>, C<lstat>, C<msgctl>, C<msgget>, C<msgrcv>,
233 C<msgsnd>, C<open>, C<pipe>, C<readlink>, C<rename>, C<select>, C<semctl>,
234 C<semget>, C<semop>, C<setgrent>, C<sethostent>, C<setnetent>,
235 C<setpgrp>, C<setpriority>, C<setprotoent>, C<setpwent>,
236 C<setservent>, C<setsockopt>, C<shmctl>, C<shmget>, C<shmread>,
237 C<shmwrite>, C<socket>, C<socketpair>,
238 C<stat>, C<symlink>, C<syscall>, C<sysopen>, C<system>,
239 C<times>, C<truncate>, C<umask>, C<unlink>,
240 C<utime>, C<wait>, C<waitpid>
241
242 For more information about the portability of these functions, see
243 L<perlport> and other available platform-specific documentation.
244
245 =head2 Alphabetical Listing of Perl Functions
246
247 =over 8
248
249 =item -X FILEHANDLE
250
251 =item -X EXPR
252
253 =item -X
254
255 A file test, where X is one of the letters listed below.  This unary
256 operator takes one argument, either a filename or a filehandle, and
257 tests the associated file to see if something is true about it.  If the
258 argument is omitted, tests C<$_>, except for C<-t>, which tests STDIN.
259 Unless otherwise documented, it returns C<1> for true and C<''> for false, or
260 the undefined value if the file doesn't exist.  Despite the funny
261 names, precedence is the same as any other named unary operator, and
262 the argument may be parenthesized like any other unary operator.  The
263 operator may be any of:
264 X<-r>X<-w>X<-x>X<-o>X<-R>X<-W>X<-X>X<-O>X<-e>X<-z>X<-s>X<-f>X<-d>X<-l>X<-p>
265 X<-S>X<-b>X<-c>X<-t>X<-u>X<-g>X<-k>X<-T>X<-B>X<-M>X<-A>X<-C>
266
267     -r  File is readable by effective uid/gid.
268     -w  File is writable by effective uid/gid.
269     -x  File is executable by effective uid/gid.
270     -o  File is owned by effective uid.
271
272     -R  File is readable by real uid/gid.
273     -W  File is writable by real uid/gid.
274     -X  File is executable by real uid/gid.
275     -O  File is owned by real uid.
276
277     -e  File exists.
278     -z  File has zero size (is empty).
279     -s  File has nonzero size (returns size in bytes).
280
281     -f  File is a plain file.
282     -d  File is a directory.
283     -l  File is a symbolic link.
284     -p  File is a named pipe (FIFO), or Filehandle is a pipe.
285     -S  File is a socket.
286     -b  File is a block special file.
287     -c  File is a character special file.
288     -t  Filehandle is opened to a tty.
289
290     -u  File has setuid bit set.
291     -g  File has setgid bit set.
292     -k  File has sticky bit set.
293
294     -T  File is an ASCII text file (heuristic guess).
295     -B  File is a "binary" file (opposite of -T).
296
297     -M  Script start time minus file modification time, in days.
298     -A  Same for access time.
299     -C  Same for inode change time (Unix, may differ for other platforms)
300
301 Example:
302
303     while (<>) {
304         chomp;
305         next unless -f $_;      # ignore specials
306         #...
307     }
308
309 The interpretation of the file permission operators C<-r>, C<-R>,
310 C<-w>, C<-W>, C<-x>, and C<-X> is by default based solely on the mode
311 of the file and the uids and gids of the user.  There may be other
312 reasons you can't actually read, write, or execute the file.  Such
313 reasons may be for example network filesystem access controls, ACLs
314 (access control lists), read-only filesystems, and unrecognized
315 executable formats.
316
317 Also note that, for the superuser on the local filesystems, the C<-r>,
318 C<-R>, C<-w>, and C<-W> tests always return 1, and C<-x> and C<-X> return 1
319 if any execute bit is set in the mode.  Scripts run by the superuser
320 may thus need to do a stat() to determine the actual mode of the file,
321 or temporarily set their effective uid to something else.
322
323 If you are using ACLs, there is a pragma called C<filetest> that may
324 produce more accurate results than the bare stat() mode bits.
325 When under the C<use filetest 'access'> the above-mentioned filetests
326 will test whether the permission can (not) be granted using the
327 access() family of system calls.  Also note that the C<-x> and C<-X> may
328 under this pragma return true even if there are no execute permission
329 bits set (nor any extra execute permission ACLs).  This strangeness is
330 due to the underlying system calls' definitions.  Read the
331 documentation for the C<filetest> pragma for more information.
332
333 Note that C<-s/a/b/> does not do a negated substitution.  Saying
334 C<-exp($foo)> still works as expected, however--only single letters
335 following a minus are interpreted as file tests.
336
337 The C<-T> and C<-B> switches work as follows.  The first block or so of the
338 file is examined for odd characters such as strange control codes or
339 characters with the high bit set.  If too many strange characters (>30%)
340 are found, it's a C<-B> file, otherwise it's a C<-T> file.  Also, any file
341 containing null in the first block is considered a binary file.  If C<-T>
342 or C<-B> is used on a filehandle, the current IO buffer is examined
343 rather than the first block.  Both C<-T> and C<-B> return true on a null
344 file, or a file at EOF when testing a filehandle.  Because you have to
345 read a file to do the C<-T> test, on most occasions you want to use a C<-f>
346 against the file first, as in C<next unless -f $file && -T $file>.
347
348 If any of the file tests (or either the C<stat> or C<lstat> operators) are given
349 the special filehandle consisting of a solitary underline, then the stat
350 structure of the previous file test (or stat operator) is used, saving
351 a system call.  (This doesn't work with C<-t>, and you need to remember
352 that lstat() and C<-l> will leave values in the stat structure for the
353 symbolic link, not the real file.)  (Also, if the stat buffer was filled by
354 a C<lstat> call, C<-T> and C<-B> will reset it with the results of C<stat _>).
355 Example:
356
357     print "Can do.\n" if -r $a || -w _ || -x _;
358
359     stat($filename);
360     print "Readable\n" if -r _;
361     print "Writable\n" if -w _;
362     print "Executable\n" if -x _;
363     print "Setuid\n" if -u _;
364     print "Setgid\n" if -g _;
365     print "Sticky\n" if -k _;
366     print "Text\n" if -T _;
367     print "Binary\n" if -B _;
368
369 =item abs VALUE
370
371 =item abs
372
373 Returns the absolute value of its argument.
374 If VALUE is omitted, uses C<$_>.
375
376 =item accept NEWSOCKET,GENERICSOCKET
377
378 Accepts an incoming socket connect, just as the accept(2) system call
379 does.  Returns the packed address if it succeeded, false otherwise.
380 See the example in L<perlipc/"Sockets: Client/Server Communication">.
381
382 On systems that support a close-on-exec flag on files, the flag will
383 be set for the newly opened file descriptor, as determined by the
384 value of $^F.  See L<perlvar/$^F>.
385
386 =item alarm SECONDS
387
388 =item alarm
389
390 Arranges to have a SIGALRM delivered to this process after the
391 specified number of wallclock seconds have elapsed.  If SECONDS is not
392 specified, the value stored in C<$_> is used. (On some machines,
393 unfortunately, the elapsed time may be up to one second less or more
394 than you specified because of how seconds are counted, and process
395 scheduling may delay the delivery of the signal even further.)
396
397 Only one timer may be counting at once.  Each call disables the
398 previous timer, and an argument of C<0> may be supplied to cancel the
399 previous timer without starting a new one.  The returned value is the
400 amount of time remaining on the previous timer.
401
402 For delays of finer granularity than one second, you may use Perl's
403 four-argument version of select() leaving the first three arguments
404 undefined, or you might be able to use the C<syscall> interface to
405 access setitimer(2) if your system supports it.  The Time::HiRes
406 module (from CPAN, and starting from Perl 5.8 part of the standard
407 distribution) may also prove useful.
408
409 It is usually a mistake to intermix C<alarm> and C<sleep> calls.
410 (C<sleep> may be internally implemented in your system with C<alarm>)
411
412 If you want to use C<alarm> to time out a system call you need to use an
413 C<eval>/C<die> pair.  You can't rely on the alarm causing the system call to
414 fail with C<$!> set to C<EINTR> because Perl sets up signal handlers to
415 restart system calls on some systems.  Using C<eval>/C<die> always works,
416 modulo the caveats given in L<perlipc/"Signals">.
417
418     eval {
419         local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
420         alarm $timeout;
421         $nread = sysread SOCKET, $buffer, $size;
422         alarm 0;
423     };
424     if ($@) {
425         die unless $@ eq "alarm\n";   # propagate unexpected errors
426         # timed out
427     }
428     else {
429         # didn't
430     }
431
432 For more information see L<perlipc>.
433
434 =item atan2 Y,X
435
436 Returns the arctangent of Y/X in the range -PI to PI.
437
438 For the tangent operation, you may use the C<Math::Trig::tan>
439 function, or use the familiar relation:
440
441     sub tan { sin($_[0]) / cos($_[0])  }
442
443 =item bind SOCKET,NAME
444
445 Binds a network address to a socket, just as the bind system call
446 does.  Returns true if it succeeded, false otherwise.  NAME should be a
447 packed address of the appropriate type for the socket.  See the examples in
448 L<perlipc/"Sockets: Client/Server Communication">.
449
450 =item binmode FILEHANDLE, LAYER
451
452 =item binmode FILEHANDLE
453
454 Arranges for FILEHANDLE to be read or written in "binary" or "text"
455 mode on systems where the run-time libraries distinguish between
456 binary and text files.  If FILEHANDLE is an expression, the value is
457 taken as the name of the filehandle.  Returns true on success,
458 otherwise it returns C<undef> and sets C<$!> (errno).
459
460 If LAYER is omitted or specified as C<:raw> the filehandle is made
461 suitable for passing binary data. This includes turning off possible CRLF
462 translation and marking it as bytes (as opposed to Unicode characters).
463 Note that as desipite what may be implied in I<"Programming Perl">
464 (the Camel) or elsewhere C<:raw> is I<not> the simply inverse of C<:crlf>
465 -- other layers which would affect binary nature of the stream are
466 I<also> disabled. See L<PerlIO>, L<perlrun> and the discussion about the
467 PERLIO environment variable.
468
469 I<The LAYER parameter of the binmode() function is described as "DISCIPLINE"
470 in "Programming Perl, 3rd Edition".  However, since the publishing of this
471 book, by many known as "Camel III", the consensus of the naming of this
472 functionality has moved from "discipline" to "layer".  All documentation
473 of this version of Perl therefore refers to "layers" rather than to
474 "disciplines".  Now back to the regularly scheduled documentation...>
475
476 On some systems (in general, DOS and Windows-based systems) binmode()
477 is necessary when you're not working with a text file.  For the sake
478 of portability it is a good idea to always use it when appropriate,
479 and to never use it when it isn't appropriate.
480
481 In other words: regardless of platform, use binmode() on binary files
482 (like for example images).
483
484 If LAYER is present it is a single string, but may contain
485 multiple directives. The directives alter the behaviour of the
486 file handle. When LAYER is present using binmode on text
487 file makes sense.
488
489 To mark FILEHANDLE as UTF-8, use C<:utf8>.
490
491 The C<:bytes>, C<:crlf>, and C<:utf8>, and any other directives of the
492 form C<:...>, are called I/O I<layers>.  The C<open> pragma can be used to
493 establish default I/O layers.  See L<open>.
494
495 In general, binmode() should be called after open() but before any I/O
496 is done on the filehandle.  Calling binmode() will normally flush any
497 pending buffered output data (and perhaps pending input data) on the
498 handle.  An exception to this is the C<:encoding> layer that
499 changes the default character encoding of the handle, see L<open>.
500 The C<:encoding> layer sometimes needs to be called in
501 mid-stream, and it doesn't flush the stream.
502
503 The operating system, device drivers, C libraries, and Perl run-time
504 system all work together to let the programmer treat a single
505 character (C<\n>) as the line terminator, irrespective of the external
506 representation.  On many operating systems, the native text file
507 representation matches the internal representation, but on some
508 platforms the external representation of C<\n> is made up of more than
509 one character.
510
511 Mac OS, all variants of Unix, and Stream_LF files on VMS use a single
512 character to end each line in the external representation of text (even
513 though that single character is CARRIAGE RETURN on Mac OS and LINE FEED
514 on Unix and most VMS files). In other systems like OS/2, DOS and the
515 various flavors of MS-Windows your program sees a C<\n> as a simple C<\cJ>,
516 but what's stored in text files are the two characters C<\cM\cJ>.  That
517 means that, if you don't use binmode() on these systems, C<\cM\cJ>
518 sequences on disk will be converted to C<\n> on input, and any C<\n> in
519 your program will be converted back to C<\cM\cJ> on output.  This is what
520 you want for text files, but it can be disastrous for binary files.
521
522 Another consequence of using binmode() (on some systems) is that
523 special end-of-file markers will be seen as part of the data stream.
524 For systems from the Microsoft family this means that if your binary
525 data contains C<\cZ>, the I/O subsystem will regard it as the end of
526 the file, unless you use binmode().
527
528 binmode() is not only important for readline() and print() operations,
529 but also when using read(), seek(), sysread(), syswrite() and tell()
530 (see L<perlport> for more details).  See the C<$/> and C<$\> variables
531 in L<perlvar> for how to manually set your input and output
532 line-termination sequences.
533
534 =item bless REF,CLASSNAME
535
536 =item bless REF
537
538 This function tells the thingy referenced by REF that it is now an object
539 in the CLASSNAME package.  If CLASSNAME is omitted, the current package
540 is used.  Because a C<bless> is often the last thing in a constructor,
541 it returns the reference for convenience.  Always use the two-argument
542 version if the function doing the blessing might be inherited by a
543 derived class.  See L<perltoot> and L<perlobj> for more about the blessing
544 (and blessings) of objects.
545
546 Consider always blessing objects in CLASSNAMEs that are mixed case.
547 Namespaces with all lowercase names are considered reserved for
548 Perl pragmata.  Builtin types have all uppercase names, so to prevent
549 confusion, you may wish to avoid such package names as well.  Make sure
550 that CLASSNAME is a true value.
551
552 See L<perlmod/"Perl Modules">.
553
554 =item caller EXPR
555
556 =item caller
557
558 Returns the context of the current subroutine call.  In scalar context,
559 returns the caller's package name if there is a caller, that is, if
560 we're in a subroutine or C<eval> or C<require>, and the undefined value
561 otherwise.  In list context, returns
562
563     ($package, $filename, $line) = caller;
564
565 With EXPR, it returns some extra information that the debugger uses to
566 print a stack trace.  The value of EXPR indicates how many call frames
567 to go back before the current one.
568
569     ($package, $filename, $line, $subroutine, $hasargs,
570     $wantarray, $evaltext, $is_require, $hints, $bitmask) = caller($i);
571
572 Here $subroutine may be C<(eval)> if the frame is not a subroutine
573 call, but an C<eval>.  In such a case additional elements $evaltext and
574 C<$is_require> are set: C<$is_require> is true if the frame is created by a
575 C<require> or C<use> statement, $evaltext contains the text of the
576 C<eval EXPR> statement.  In particular, for an C<eval BLOCK> statement,
577 $filename is C<(eval)>, but $evaltext is undefined.  (Note also that
578 each C<use> statement creates a C<require> frame inside an C<eval EXPR>
579 frame.)  $subroutine may also be C<(unknown)> if this particular
580 subroutine happens to have been deleted from the symbol table.
581 C<$hasargs> is true if a new instance of C<@_> was set up for the frame.
582 C<$hints> and C<$bitmask> contain pragmatic hints that the caller was
583 compiled with.  The C<$hints> and C<$bitmask> values are subject to change
584 between versions of Perl, and are not meant for external use.
585
586 Furthermore, when called from within the DB package, caller returns more
587 detailed information: it sets the list variable C<@DB::args> to be the
588 arguments with which the subroutine was invoked.
589
590 Be aware that the optimizer might have optimized call frames away before
591 C<caller> had a chance to get the information.  That means that C<caller(N)>
592 might not return information about the call frame you expect it do, for
593 C<< N > 1 >>.  In particular, C<@DB::args> might have information from the
594 previous time C<caller> was called.
595
596 =item chdir EXPR
597
598 Changes the working directory to EXPR, if possible. If EXPR is omitted,
599 changes to the directory specified by C<$ENV{HOME}>, if set; if not,
600 changes to the directory specified by C<$ENV{LOGDIR}>. (Under VMS, the
601 variable C<$ENV{SYS$LOGIN}> is also checked, and used if it is set.) If
602 neither is set, C<chdir> does nothing. It returns true upon success,
603 false otherwise. See the example under C<die>.
604
605 =item chmod LIST
606
607 Changes the permissions of a list of files.  The first element of the
608 list must be the numerical mode, which should probably be an octal
609 number, and which definitely should I<not> a string of octal digits:
610 C<0644> is okay, C<'0644'> is not.  Returns the number of files
611 successfully changed.  See also L</oct>, if all you have is a string.
612
613     $cnt = chmod 0755, 'foo', 'bar';
614     chmod 0755, @executables;
615     $mode = '0644'; chmod $mode, 'foo';      # !!! sets mode to
616                                              # --w----r-T
617     $mode = '0644'; chmod oct($mode), 'foo'; # this is better
618     $mode = 0644;   chmod $mode, 'foo';      # this is best
619
620 You can also import the symbolic C<S_I*> constants from the Fcntl
621 module:
622
623     use Fcntl ':mode';
624
625     chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
626     # This is identical to the chmod 0755 of the above example.
627
628 =item chomp VARIABLE
629
630 =item chomp( LIST )
631
632 =item chomp
633
634 This safer version of L</chop> removes any trailing string
635 that corresponds to the current value of C<$/> (also known as
636 $INPUT_RECORD_SEPARATOR in the C<English> module).  It returns the total
637 number of characters removed from all its arguments.  It's often used to
638 remove the newline from the end of an input record when you're worried
639 that the final record may be missing its newline.  When in paragraph
640 mode (C<$/ = "">), it removes all trailing newlines from the string.
641 When in slurp mode (C<$/ = undef>) or fixed-length record mode (C<$/> is
642 a reference to an integer or the like, see L<perlvar>) chomp() won't
643 remove anything.
644 If VARIABLE is omitted, it chomps C<$_>.  Example:
645
646     while (<>) {
647         chomp;  # avoid \n on last field
648         @array = split(/:/);
649         # ...
650     }
651
652 If VARIABLE is a hash, it chomps the hash's values, but not its keys.
653
654 You can actually chomp anything that's an lvalue, including an assignment:
655
656     chomp($cwd = `pwd`);
657     chomp($answer = <STDIN>);
658
659 If you chomp a list, each element is chomped, and the total number of
660 characters removed is returned.
661
662 Note that parentheses are necessary when you're chomping anything
663 that is not a simple variable.  This is because C<chomp $cwd = `pwd`;>
664 is interpreted as C<(chomp $cwd) = `pwd`;>, rather than as
665 C<chomp( $cwd = `pwd` )> which you might expect.  Similarly,
666 C<chomp $a, $b> is interpreted as C<chomp($a), $b> rather than
667 as C<chomp($a, $b)>.
668
669 =item chop VARIABLE
670
671 =item chop( LIST )
672
673 =item chop
674
675 Chops off the last character of a string and returns the character
676 chopped.  It is much more efficient than C<s/.$//s> because it neither
677 scans nor copies the string.  If VARIABLE is omitted, chops C<$_>.
678 If VARIABLE is a hash, it chops the hash's values, but not its keys.
679
680 You can actually chop anything that's an lvalue, including an assignment.
681
682 If you chop a list, each element is chopped.  Only the value of the
683 last C<chop> is returned.
684
685 Note that C<chop> returns the last character.  To return all but the last
686 character, use C<substr($string, 0, -1)>.
687
688 See also L</chomp>.
689
690 =item chown LIST
691
692 Changes the owner (and group) of a list of files.  The first two
693 elements of the list must be the I<numeric> uid and gid, in that
694 order.  A value of -1 in either position is interpreted by most
695 systems to leave that value unchanged.  Returns the number of files
696 successfully changed.
697
698     $cnt = chown $uid, $gid, 'foo', 'bar';
699     chown $uid, $gid, @filenames;
700
701 Here's an example that looks up nonnumeric uids in the passwd file:
702
703     print "User: ";
704     chomp($user = <STDIN>);
705     print "Files: ";
706     chomp($pattern = <STDIN>);
707
708     ($login,$pass,$uid,$gid) = getpwnam($user)
709         or die "$user not in passwd file";
710
711     @ary = glob($pattern);      # expand filenames
712     chown $uid, $gid, @ary;
713
714 On most systems, you are not allowed to change the ownership of the
715 file unless you're the superuser, although you should be able to change
716 the group to any of your secondary groups.  On insecure systems, these
717 restrictions may be relaxed, but this is not a portable assumption.
718 On POSIX systems, you can detect this condition this way:
719
720     use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
721     $can_chown_giveaway = not sysconf(_PC_CHOWN_RESTRICTED);
722
723 =item chr NUMBER
724
725 =item chr
726
727 Returns the character represented by that NUMBER in the character set.
728 For example, C<chr(65)> is C<"A"> in either ASCII or Unicode, and
729 chr(0x263a) is a Unicode smiley face.  Note that characters from 127
730 to 255 (inclusive) are by default not encoded in Unicode for backward
731 compatibility reasons (but see L<encoding>).
732
733 For the reverse, use L</ord>.
734 See L<perlunicode> and L<encoding> for more about Unicode.
735
736 If NUMBER is omitted, uses C<$_>.
737
738 =item chroot FILENAME
739
740 =item chroot
741
742 This function works like the system call by the same name: it makes the
743 named directory the new root directory for all further pathnames that
744 begin with a C</> by your process and all its children.  (It doesn't
745 change your current working directory, which is unaffected.)  For security
746 reasons, this call is restricted to the superuser.  If FILENAME is
747 omitted, does a C<chroot> to C<$_>.
748
749 =item close FILEHANDLE
750
751 =item close
752
753 Closes the file or pipe associated with the file handle, returning
754 true only if IO buffers are successfully flushed and closes the system
755 file descriptor.  Closes the currently selected filehandle if the
756 argument is omitted.
757
758 You don't have to close FILEHANDLE if you are immediately going to do
759 another C<open> on it, because C<open> will close it for you.  (See
760 C<open>.)  However, an explicit C<close> on an input file resets the line
761 counter (C<$.>), while the implicit close done by C<open> does not.
762
763 If the file handle came from a piped open C<close> will additionally
764 return false if one of the other system calls involved fails or if the
765 program exits with non-zero status.  (If the only problem was that the
766 program exited non-zero C<$!> will be set to C<0>.)  Closing a pipe
767 also waits for the process executing on the pipe to complete, in case you
768 want to look at the output of the pipe afterwards, and
769 implicitly puts the exit status value of that command into C<$?>.
770
771 Prematurely closing the read end of a pipe (i.e. before the process
772 writing to it at the other end has closed it) will result in a
773 SIGPIPE being delivered to the writer.  If the other end can't
774 handle that, be sure to read all the data before closing the pipe.
775
776 Example:
777
778     open(OUTPUT, '|sort >foo')  # pipe to sort
779         or die "Can't start sort: $!";
780     #...                        # print stuff to output
781     close OUTPUT                # wait for sort to finish
782         or warn $! ? "Error closing sort pipe: $!"
783                    : "Exit status $? from sort";
784     open(INPUT, 'foo')          # get sort's results
785         or die "Can't open 'foo' for input: $!";
786
787 FILEHANDLE may be an expression whose value can be used as an indirect
788 filehandle, usually the real filehandle name.
789
790 =item closedir DIRHANDLE
791
792 Closes a directory opened by C<opendir> and returns the success of that
793 system call.
794
795 =item connect SOCKET,NAME
796
797 Attempts to connect to a remote socket, just as the connect system call
798 does.  Returns true if it succeeded, false otherwise.  NAME should be a
799 packed address of the appropriate type for the socket.  See the examples in
800 L<perlipc/"Sockets: Client/Server Communication">.
801
802 =item continue BLOCK
803
804 Actually a flow control statement rather than a function.  If there is a
805 C<continue> BLOCK attached to a BLOCK (typically in a C<while> or
806 C<foreach>), it is always executed just before the conditional is about to
807 be evaluated again, just like the third part of a C<for> loop in C.  Thus
808 it can be used to increment a loop variable, even when the loop has been
809 continued via the C<next> statement (which is similar to the C C<continue>
810 statement).
811
812 C<last>, C<next>, or C<redo> may appear within a C<continue>
813 block.  C<last> and C<redo> will behave as if they had been executed within
814 the main block.  So will C<next>, but since it will execute a C<continue>
815 block, it may be more entertaining.
816
817     while (EXPR) {
818         ### redo always comes here
819         do_something;
820     } continue {
821         ### next always comes here
822         do_something_else;
823         # then back the top to re-check EXPR
824     }
825     ### last always comes here
826
827 Omitting the C<continue> section is semantically equivalent to using an
828 empty one, logically enough.  In that case, C<next> goes directly back
829 to check the condition at the top of the loop.
830
831 =item cos EXPR
832
833 =item cos
834
835 Returns the cosine of EXPR (expressed in radians).  If EXPR is omitted,
836 takes cosine of C<$_>.
837
838 For the inverse cosine operation, you may use the C<Math::Trig::acos()>
839 function, or use this relation:
840
841     sub acos { atan2( sqrt(1 - $_[0] * $_[0]), $_[0] ) }
842
843 =item crypt PLAINTEXT,SALT
844
845 Encrypts a string exactly like the crypt(3) function in the C library
846 (assuming that you actually have a version there that has not been
847 extirpated as a potential munition).  This can prove useful for checking
848 the password file for lousy passwords, amongst other things.  Only the
849 guys wearing white hats should do this.
850
851 Note that L<crypt|/crypt> is intended to be a one-way function, much like
852 breaking eggs to make an omelette.  There is no (known) corresponding
853 decrypt function (in other words, the crypt() is a one-way hash
854 function).  As a result, this function isn't all that useful for
855 cryptography.  (For that, see your nearby CPAN mirror.)
856
857 When verifying an existing encrypted string you should use the
858 encrypted text as the salt (like C<crypt($plain, $crypted) eq
859 $crypted>).  This allows your code to work with the standard L<crypt|/crypt>
860 and with more exotic implementations.  In other words, do not assume
861 anything about the returned string itself, or how many bytes in
862 the encrypted string matter.
863
864 Traditionally the result is a string of 13 bytes: two first bytes of
865 the salt, followed by 11 bytes from the set C<[./0-9A-Za-z]>, and only
866 the first eight bytes of the encrypted string mattered, but
867 alternative hashing schemes (like MD5), higher level security schemes
868 (like C2), and implementations on non-UNIX platforms may produce
869 different strings.
870
871 When choosing a new salt create a random two character string whose
872 characters come from the set C<[./0-9A-Za-z]> (like C<join '', ('.',
873 '/', 0..9, 'A'..'Z', 'a'..'z')[rand 64, rand 64]>).  This set of
874 characters is just a recommendation; the characters allowed in
875 the salt depend solely on your system's crypt library, and Perl can't
876 restrict what salts C<crypt()> accepts.
877
878 Here's an example that makes sure that whoever runs this program knows
879 their own password:
880
881     $pwd = (getpwuid($<))[1];
882
883     system "stty -echo";
884     print "Password: ";
885     chomp($word = <STDIN>);
886     print "\n";
887     system "stty echo";
888
889     if (crypt($word, $pwd) ne $pwd) {
890         die "Sorry...\n";
891     } else {
892         print "ok\n";
893     }
894
895 Of course, typing in your own password to whoever asks you
896 for it is unwise.
897
898 The L<crypt|/crypt> function is unsuitable for encrypting large quantities
899 of data, not least of all because you can't get the information
900 back.  Look at the F<by-module/Crypt> and F<by-module/PGP> directories
901 on your favorite CPAN mirror for a slew of potentially useful
902 modules.
903
904 If using crypt() on a Unicode string (which I<potentially> has
905 characters with codepoints above 255), Perl tries to make sense
906 of the situation by trying to downgrade (a copy of the string)
907 the string back to an eight-bit byte string before calling crypt()
908 (on that copy).  If that works, good.  If not, crypt() dies with
909 C<Wide character in crypt>.
910
911 =item dbmclose HASH
912
913 [This function has been largely superseded by the C<untie> function.]
914
915 Breaks the binding between a DBM file and a hash.
916
917 =item dbmopen HASH,DBNAME,MASK
918
919 [This function has been largely superseded by the C<tie> function.]
920
921 This binds a dbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a
922 hash.  HASH is the name of the hash.  (Unlike normal C<open>, the first
923 argument is I<not> a filehandle, even though it looks like one).  DBNAME
924 is the name of the database (without the F<.dir> or F<.pag> extension if
925 any).  If the database does not exist, it is created with protection
926 specified by MASK (as modified by the C<umask>).  If your system supports
927 only the older DBM functions, you may perform only one C<dbmopen> in your
928 program.  In older versions of Perl, if your system had neither DBM nor
929 ndbm, calling C<dbmopen> produced a fatal error; it now falls back to
930 sdbm(3).
931
932 If you don't have write access to the DBM file, you can only read hash
933 variables, not set them.  If you want to test whether you can write,
934 either use file tests or try setting a dummy hash entry inside an C<eval>,
935 which will trap the error.
936
937 Note that functions such as C<keys> and C<values> may return huge lists
938 when used on large DBM files.  You may prefer to use the C<each>
939 function to iterate over large DBM files.  Example:
940
941     # print out history file offsets
942     dbmopen(%HIST,'/usr/lib/news/history',0666);
943     while (($key,$val) = each %HIST) {
944         print $key, ' = ', unpack('L',$val), "\n";
945     }
946     dbmclose(%HIST);
947
948 See also L<AnyDBM_File> for a more general description of the pros and
949 cons of the various dbm approaches, as well as L<DB_File> for a particularly
950 rich implementation.
951
952 You can control which DBM library you use by loading that library
953 before you call dbmopen():
954
955     use DB_File;
956     dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")
957         or die "Can't open netscape history file: $!";
958
959 =item defined EXPR
960
961 =item defined
962
963 Returns a Boolean value telling whether EXPR has a value other than
964 the undefined value C<undef>.  If EXPR is not present, C<$_> will be
965 checked.
966
967 Many operations return C<undef> to indicate failure, end of file,
968 system error, uninitialized variable, and other exceptional
969 conditions.  This function allows you to distinguish C<undef> from
970 other values.  (A simple Boolean test will not distinguish among
971 C<undef>, zero, the empty string, and C<"0">, which are all equally
972 false.)  Note that since C<undef> is a valid scalar, its presence
973 doesn't I<necessarily> indicate an exceptional condition: C<pop>
974 returns C<undef> when its argument is an empty array, I<or> when the
975 element to return happens to be C<undef>.
976
977 You may also use C<defined(&func)> to check whether subroutine C<&func>
978 has ever been defined.  The return value is unaffected by any forward
979 declarations of C<&func>.  Note that a subroutine which is not defined
980 may still be callable: its package may have an C<AUTOLOAD> method that
981 makes it spring into existence the first time that it is called -- see
982 L<perlsub>.
983
984 Use of C<defined> on aggregates (hashes and arrays) is deprecated.  It
985 used to report whether memory for that aggregate has ever been
986 allocated.  This behavior may disappear in future versions of Perl.
987 You should instead use a simple test for size:
988
989     if (@an_array) { print "has array elements\n" }
990     if (%a_hash)   { print "has hash members\n"   }
991
992 When used on a hash element, it tells you whether the value is defined,
993 not whether the key exists in the hash.  Use L</exists> for the latter
994 purpose.
995
996 Examples:
997
998     print if defined $switch{'D'};
999     print "$val\n" while defined($val = pop(@ary));
1000     die "Can't readlink $sym: $!"
1001         unless defined($value = readlink $sym);
1002     sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
1003     $debugging = 0 unless defined $debugging;
1004
1005 Note:  Many folks tend to overuse C<defined>, and then are surprised to
1006 discover that the number C<0> and C<""> (the zero-length string) are, in fact,
1007 defined values.  For example, if you say
1008
1009     "ab" =~ /a(.*)b/;
1010
1011 The pattern match succeeds, and C<$1> is defined, despite the fact that it
1012 matched "nothing".  But it didn't really match nothing--rather, it
1013 matched something that happened to be zero characters long.  This is all
1014 very above-board and honest.  When a function returns an undefined value,
1015 it's an admission that it couldn't give you an honest answer.  So you
1016 should use C<defined> only when you're questioning the integrity of what
1017 you're trying to do.  At other times, a simple comparison to C<0> or C<""> is
1018 what you want.
1019
1020 See also L</undef>, L</exists>, L</ref>.
1021
1022 =item delete EXPR
1023
1024 Given an expression that specifies a hash element, array element, hash slice,
1025 or array slice, deletes the specified element(s) from the hash or array.
1026 In the case of an array, if the array elements happen to be at the end,
1027 the size of the array will shrink to the highest element that tests
1028 true for exists() (or 0 if no such element exists).
1029
1030 Returns each element so deleted or the undefined value if there was no such
1031 element.  Deleting from C<$ENV{}> modifies the environment.  Deleting from
1032 a hash tied to a DBM file deletes the entry from the DBM file.  Deleting
1033 from a C<tie>d hash or array may not necessarily return anything.
1034
1035 Deleting an array element effectively returns that position of the array
1036 to its initial, uninitialized state.  Subsequently testing for the same
1037 element with exists() will return false.  Note that deleting array
1038 elements in the middle of an array will not shift the index of the ones
1039 after them down--use splice() for that.  See L</exists>.
1040
1041 The following (inefficiently) deletes all the values of %HASH and @ARRAY:
1042
1043     foreach $key (keys %HASH) {
1044         delete $HASH{$key};
1045     }
1046
1047     foreach $index (0 .. $#ARRAY) {
1048         delete $ARRAY[$index];
1049     }
1050
1051 And so do these:
1052
1053     delete @HASH{keys %HASH};
1054
1055     delete @ARRAY[0 .. $#ARRAY];
1056
1057 But both of these are slower than just assigning the empty list
1058 or undefining %HASH or @ARRAY:
1059
1060     %HASH = ();         # completely empty %HASH
1061     undef %HASH;        # forget %HASH ever existed
1062
1063     @ARRAY = ();        # completely empty @ARRAY
1064     undef @ARRAY;       # forget @ARRAY ever existed
1065
1066 Note that the EXPR can be arbitrarily complicated as long as the final
1067 operation is a hash element, array element,  hash slice, or array slice
1068 lookup:
1069
1070     delete $ref->[$x][$y]{$key};
1071     delete @{$ref->[$x][$y]}{$key1, $key2, @morekeys};
1072
1073     delete $ref->[$x][$y][$index];
1074     delete @{$ref->[$x][$y]}[$index1, $index2, @moreindices];
1075
1076 =item die LIST
1077
1078 Outside an C<eval>, prints the value of LIST to C<STDERR> and
1079 exits with the current value of C<$!> (errno).  If C<$!> is C<0>,
1080 exits with the value of C<<< ($? >> 8) >>> (backtick `command`
1081 status).  If C<<< ($? >> 8) >>> is C<0>, exits with C<255>.  Inside
1082 an C<eval(),> the error message is stuffed into C<$@> and the
1083 C<eval> is terminated with the undefined value.  This makes
1084 C<die> the way to raise an exception.
1085
1086 Equivalent examples:
1087
1088     die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
1089     chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"
1090
1091 If the last element of LIST does not end in a newline, the current
1092 script line number and input line number (if any) are also printed,
1093 and a newline is supplied.  Note that the "input line number" (also
1094 known as "chunk") is subject to whatever notion of "line" happens to
1095 be currently in effect, and is also available as the special variable
1096 C<$.>.  See L<perlvar/"$/"> and L<perlvar/"$.">.
1097
1098 Hint: sometimes appending C<", stopped"> to your message will cause it
1099 to make better sense when the string C<"at foo line 123"> is appended.
1100 Suppose you are running script "canasta".
1101
1102     die "/etc/games is no good";
1103     die "/etc/games is no good, stopped";
1104
1105 produce, respectively
1106
1107     /etc/games is no good at canasta line 123.
1108     /etc/games is no good, stopped at canasta line 123.
1109
1110 See also exit(), warn(), and the Carp module.
1111
1112 If LIST is empty and C<$@> already contains a value (typically from a
1113 previous eval) that value is reused after appending C<"\t...propagated">.
1114 This is useful for propagating exceptions:
1115
1116     eval { ... };
1117     die unless $@ =~ /Expected exception/;
1118
1119 If LIST is empty and C<$@> contains an object reference that has a
1120 C<PROPAGATE> method, that method will be called with additional file
1121 and line number parameters.  The return value replaces the value in
1122 C<$@>.  ie. as if C<<$@ = eval { $@->PROPAGATE(__FILE__, __LINE__) };>>
1123 were called.
1124
1125 If C<$@> is empty then the string C<"Died"> is used.
1126
1127 die() can also be called with a reference argument.  If this happens to be
1128 trapped within an eval(), $@ contains the reference.  This behavior permits
1129 a more elaborate exception handling implementation using objects that
1130 maintain arbitrary state about the nature of the exception.  Such a scheme
1131 is sometimes preferable to matching particular string values of $@ using
1132 regular expressions.  Here's an example:
1133
1134     eval { ... ; die Some::Module::Exception->new( FOO => "bar" ) };
1135     if ($@) {
1136         if (ref($@) && UNIVERSAL::isa($@,"Some::Module::Exception")) {
1137             # handle Some::Module::Exception
1138         }
1139         else {
1140             # handle all other possible exceptions
1141         }
1142     }
1143
1144 Because perl will stringify uncaught exception messages before displaying
1145 them, you may want to overload stringification operations on such custom
1146 exception objects.  See L<overload> for details about that.
1147
1148 You can arrange for a callback to be run just before the C<die>
1149 does its deed, by setting the C<$SIG{__DIE__}> hook.  The associated
1150 handler will be called with the error text and can change the error
1151 message, if it sees fit, by calling C<die> again.  See
1152 L<perlvar/$SIG{expr}> for details on setting C<%SIG> entries, and
1153 L<"eval BLOCK"> for some examples.  Although this feature was meant
1154 to be run only right before your program was to exit, this is not
1155 currently the case--the C<$SIG{__DIE__}> hook is currently called
1156 even inside eval()ed blocks/strings!  If one wants the hook to do
1157 nothing in such situations, put
1158
1159         die @_ if $^S;
1160
1161 as the first line of the handler (see L<perlvar/$^S>).  Because
1162 this promotes strange action at a distance, this counterintuitive
1163 behavior may be fixed in a future release.
1164
1165 =item do BLOCK
1166
1167 Not really a function.  Returns the value of the last command in the
1168 sequence of commands indicated by BLOCK.  When modified by a loop
1169 modifier, executes the BLOCK once before testing the loop condition.
1170 (On other statements the loop modifiers test the conditional first.)
1171
1172 C<do BLOCK> does I<not> count as a loop, so the loop control statements
1173 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1174 See L<perlsyn> for alternative strategies.
1175
1176 =item do SUBROUTINE(LIST)
1177
1178 A deprecated form of subroutine call.  See L<perlsub>.
1179
1180 =item do EXPR
1181
1182 Uses the value of EXPR as a filename and executes the contents of the
1183 file as a Perl script.  Its primary use is to include subroutines
1184 from a Perl subroutine library.
1185
1186     do 'stat.pl';
1187
1188 is just like
1189
1190     eval `cat stat.pl`;
1191
1192 except that it's more efficient and concise, keeps track of the current
1193 filename for error messages, searches the @INC libraries, and updates
1194 C<%INC> if the file is found.  See L<perlvar/Predefined Names> for these
1195 variables.  It also differs in that code evaluated with C<do FILENAME>
1196 cannot see lexicals in the enclosing scope; C<eval STRING> does.  It's the
1197 same, however, in that it does reparse the file every time you call it,
1198 so you probably don't want to do this inside a loop.
1199
1200 If C<do> cannot read the file, it returns undef and sets C<$!> to the
1201 error.  If C<do> can read the file but cannot compile it, it
1202 returns undef and sets an error message in C<$@>.   If the file is
1203 successfully compiled, C<do> returns the value of the last expression
1204 evaluated.
1205
1206 Note that inclusion of library modules is better done with the
1207 C<use> and C<require> operators, which also do automatic error checking
1208 and raise an exception if there's a problem.
1209
1210 You might like to use C<do> to read in a program configuration
1211 file.  Manual error checking can be done this way:
1212
1213     # read in config files: system first, then user
1214     for $file ("/share/prog/defaults.rc",
1215                "$ENV{HOME}/.someprogrc")
1216    {
1217         unless ($return = do $file) {
1218             warn "couldn't parse $file: $@" if $@;
1219             warn "couldn't do $file: $!"    unless defined $return;
1220             warn "couldn't run $file"       unless $return;
1221         }
1222     }
1223
1224 =item dump LABEL
1225
1226 =item dump
1227
1228 This function causes an immediate core dump.  See also the B<-u>
1229 command-line switch in L<perlrun>, which does the same thing.
1230 Primarily this is so that you can use the B<undump> program (not
1231 supplied) to turn your core dump into an executable binary after
1232 having initialized all your variables at the beginning of the
1233 program.  When the new binary is executed it will begin by executing
1234 a C<goto LABEL> (with all the restrictions that C<goto> suffers).
1235 Think of it as a goto with an intervening core dump and reincarnation.
1236 If C<LABEL> is omitted, restarts the program from the top.
1237
1238 B<WARNING>: Any files opened at the time of the dump will I<not>
1239 be open any more when the program is reincarnated, with possible
1240 resulting confusion on the part of Perl.
1241
1242 This function is now largely obsolete, partly because it's very
1243 hard to convert a core file into an executable, and because the
1244 real compiler backends for generating portable bytecode and compilable
1245 C code have superseded it.  That's why you should now invoke it as
1246 C<CORE::dump()>, if you don't want to be warned against a possible
1247 typo.
1248
1249 If you're looking to use L<dump> to speed up your program, consider
1250 generating bytecode or native C code as described in L<perlcc>.  If
1251 you're just trying to accelerate a CGI script, consider using the
1252 C<mod_perl> extension to B<Apache>, or the CPAN module, CGI::Fast.
1253 You might also consider autoloading or selfloading, which at least
1254 make your program I<appear> to run faster.
1255
1256 =item each HASH
1257
1258 When called in list context, returns a 2-element list consisting of the
1259 key and value for the next element of a hash, so that you can iterate over
1260 it.  When called in scalar context, returns only the key for the next
1261 element in the hash.
1262
1263 Entries are returned in an apparently random order.  The actual random
1264 order is subject to change in future versions of perl, but it is guaranteed
1265 to be in the same order as either the C<keys> or C<values> function
1266 would produce on the same (unmodified) hash.
1267
1268 When the hash is entirely read, a null array is returned in list context
1269 (which when assigned produces a false (C<0>) value), and C<undef> in
1270 scalar context.  The next call to C<each> after that will start iterating
1271 again.  There is a single iterator for each hash, shared by all C<each>,
1272 C<keys>, and C<values> function calls in the program; it can be reset by
1273 reading all the elements from the hash, or by evaluating C<keys HASH> or
1274 C<values HASH>.  If you add or delete elements of a hash while you're
1275 iterating over it, you may get entries skipped or duplicated, so
1276 don't.  Exception: It is always safe to delete the item most recently
1277 returned by C<each()>, which means that the following code will work:
1278
1279         while (($key, $value) = each %hash) {
1280           print $key, "\n";
1281           delete $hash{$key};   # This is safe
1282         }
1283
1284 The following prints out your environment like the printenv(1) program,
1285 only in a different order:
1286
1287     while (($key,$value) = each %ENV) {
1288         print "$key=$value\n";
1289     }
1290
1291 See also C<keys>, C<values> and C<sort>.
1292
1293 =item eof FILEHANDLE
1294
1295 =item eof ()
1296
1297 =item eof
1298
1299 Returns 1 if the next read on FILEHANDLE will return end of file, or if
1300 FILEHANDLE is not open.  FILEHANDLE may be an expression whose value
1301 gives the real filehandle.  (Note that this function actually
1302 reads a character and then C<ungetc>s it, so isn't very useful in an
1303 interactive context.)  Do not read from a terminal file (or call
1304 C<eof(FILEHANDLE)> on it) after end-of-file is reached.  File types such
1305 as terminals may lose the end-of-file condition if you do.
1306
1307 An C<eof> without an argument uses the last file read.  Using C<eof()>
1308 with empty parentheses is very different.  It refers to the pseudo file
1309 formed from the files listed on the command line and accessed via the
1310 C<< <> >> operator.  Since C<< <> >> isn't explicitly opened,
1311 as a normal filehandle is, an C<eof()> before C<< <> >> has been
1312 used will cause C<@ARGV> to be examined to determine if input is
1313 available.   Similarly, an C<eof()> after C<< <> >> has returned
1314 end-of-file will assume you are processing another C<@ARGV> list,
1315 and if you haven't set C<@ARGV>, will read input from C<STDIN>;
1316 see L<perlop/"I/O Operators">.
1317
1318 In a C<< while (<>) >> loop, C<eof> or C<eof(ARGV)> can be used to
1319 detect the end of each file, C<eof()> will only detect the end of the
1320 last file.  Examples:
1321
1322     # reset line numbering on each input file
1323     while (<>) {
1324         next if /^\s*#/;        # skip comments
1325         print "$.\t$_";
1326     } continue {
1327         close ARGV  if eof;     # Not eof()!
1328     }
1329
1330     # insert dashes just before last line of last file
1331     while (<>) {
1332         if (eof()) {            # check for end of last file
1333             print "--------------\n";
1334         }
1335         print;
1336         last if eof();          # needed if we're reading from a terminal
1337     }
1338
1339 Practical hint: you almost never need to use C<eof> in Perl, because the
1340 input operators typically return C<undef> when they run out of data, or if
1341 there was an error.
1342
1343 =item eval EXPR
1344
1345 =item eval BLOCK
1346
1347 In the first form, the return value of EXPR is parsed and executed as if it
1348 were a little Perl program.  The value of the expression (which is itself
1349 determined within scalar context) is first parsed, and if there weren't any
1350 errors, executed in the lexical context of the current Perl program, so
1351 that any variable settings or subroutine and format definitions remain
1352 afterwards.  Note that the value is parsed every time the eval executes.
1353 If EXPR is omitted, evaluates C<$_>.  This form is typically used to
1354 delay parsing and subsequent execution of the text of EXPR until run time.
1355
1356 In the second form, the code within the BLOCK is parsed only once--at the
1357 same time the code surrounding the eval itself was parsed--and executed
1358 within the context of the current Perl program.  This form is typically
1359 used to trap exceptions more efficiently than the first (see below), while
1360 also providing the benefit of checking the code within BLOCK at compile
1361 time.
1362
1363 The final semicolon, if any, may be omitted from the value of EXPR or within
1364 the BLOCK.
1365
1366 In both forms, the value returned is the value of the last expression
1367 evaluated inside the mini-program; a return statement may be also used, just
1368 as with subroutines.  The expression providing the return value is evaluated
1369 in void, scalar, or list context, depending on the context of the eval itself.
1370 See L</wantarray> for more on how the evaluation context can be determined.
1371
1372 If there is a syntax error or runtime error, or a C<die> statement is
1373 executed, an undefined value is returned by C<eval>, and C<$@> is set to the
1374 error message.  If there was no error, C<$@> is guaranteed to be a null
1375 string.  Beware that using C<eval> neither silences perl from printing
1376 warnings to STDERR, nor does it stuff the text of warning messages into C<$@>.
1377 To do either of those, you have to use the C<$SIG{__WARN__}> facility, or
1378 turn off warnings inside the BLOCK or EXPR using S<C<no warnings 'all'>>.
1379 See L</warn>, L<perlvar>, L<warnings> and L<perllexwarn>.
1380
1381 Note that, because C<eval> traps otherwise-fatal errors, it is useful for
1382 determining whether a particular feature (such as C<socket> or C<symlink>)
1383 is implemented.  It is also Perl's exception trapping mechanism, where
1384 the die operator is used to raise exceptions.
1385
1386 If the code to be executed doesn't vary, you may use the eval-BLOCK
1387 form to trap run-time errors without incurring the penalty of
1388 recompiling each time.  The error, if any, is still returned in C<$@>.
1389 Examples:
1390
1391     # make divide-by-zero nonfatal
1392     eval { $answer = $a / $b; }; warn $@ if $@;
1393
1394     # same thing, but less efficient
1395     eval '$answer = $a / $b'; warn $@ if $@;
1396
1397     # a compile-time error
1398     eval { $answer = };                 # WRONG
1399
1400     # a run-time error
1401     eval '$answer =';   # sets $@
1402
1403 Due to the current arguably broken state of C<__DIE__> hooks, when using
1404 the C<eval{}> form as an exception trap in libraries, you may wish not
1405 to trigger any C<__DIE__> hooks that user code may have installed.
1406 You can use the C<local $SIG{__DIE__}> construct for this purpose,
1407 as shown in this example:
1408
1409     # a very private exception trap for divide-by-zero
1410     eval { local $SIG{'__DIE__'}; $answer = $a / $b; };
1411     warn $@ if $@;
1412
1413 This is especially significant, given that C<__DIE__> hooks can call
1414 C<die> again, which has the effect of changing their error messages:
1415
1416     # __DIE__ hooks may modify error messages
1417     {
1418        local $SIG{'__DIE__'} =
1419               sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x };
1420        eval { die "foo lives here" };
1421        print $@ if $@;                # prints "bar lives here"
1422     }
1423
1424 Because this promotes action at a distance, this counterintuitive behavior
1425 may be fixed in a future release.
1426
1427 With an C<eval>, you should be especially careful to remember what's
1428 being looked at when:
1429
1430     eval $x;            # CASE 1
1431     eval "$x";          # CASE 2
1432
1433     eval '$x';          # CASE 3
1434     eval { $x };        # CASE 4
1435
1436     eval "\$$x++";      # CASE 5
1437     $$x++;              # CASE 6
1438
1439 Cases 1 and 2 above behave identically: they run the code contained in
1440 the variable $x.  (Although case 2 has misleading double quotes making
1441 the reader wonder what else might be happening (nothing is).)  Cases 3
1442 and 4 likewise behave in the same way: they run the code C<'$x'>, which
1443 does nothing but return the value of $x.  (Case 4 is preferred for
1444 purely visual reasons, but it also has the advantage of compiling at
1445 compile-time instead of at run-time.)  Case 5 is a place where
1446 normally you I<would> like to use double quotes, except that in this
1447 particular situation, you can just use symbolic references instead, as
1448 in case 6.
1449
1450 C<eval BLOCK> does I<not> count as a loop, so the loop control statements
1451 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1452
1453 Note that as a very special case, an C<eval ''> executed within the C<DB>
1454 package doesn't see the usual surrounding lexical scope, but rather the
1455 scope of the first non-DB piece of code that called it. You don't normally
1456 need to worry about this unless you are writing a Perl debugger.
1457
1458 =item exec LIST
1459
1460 =item exec PROGRAM LIST
1461
1462 The C<exec> function executes a system command I<and never returns>--
1463 use C<system> instead of C<exec> if you want it to return.  It fails and
1464 returns false only if the command does not exist I<and> it is executed
1465 directly instead of via your system's command shell (see below).
1466
1467 Since it's a common mistake to use C<exec> instead of C<system>, Perl
1468 warns you if there is a following statement which isn't C<die>, C<warn>,
1469 or C<exit> (if C<-w> is set  -  but you always do that).   If you
1470 I<really> want to follow an C<exec> with some other statement, you
1471 can use one of these styles to avoid the warning:
1472
1473     exec ('foo')   or print STDERR "couldn't exec foo: $!";
1474     { exec ('foo') }; print STDERR "couldn't exec foo: $!";
1475
1476 If there is more than one argument in LIST, or if LIST is an array
1477 with more than one value, calls execvp(3) with the arguments in LIST.
1478 If there is only one scalar argument or an array with one element in it,
1479 the argument is checked for shell metacharacters, and if there are any,
1480 the entire argument is passed to the system's command shell for parsing
1481 (this is C</bin/sh -c> on Unix platforms, but varies on other platforms).
1482 If there are no shell metacharacters in the argument, it is split into
1483 words and passed directly to C<execvp>, which is more efficient.
1484 Examples:
1485
1486     exec '/bin/echo', 'Your arguments are: ', @ARGV;
1487     exec "sort $outfile | uniq";
1488
1489 If you don't really want to execute the first argument, but want to lie
1490 to the program you are executing about its own name, you can specify
1491 the program you actually want to run as an "indirect object" (without a
1492 comma) in front of the LIST.  (This always forces interpretation of the
1493 LIST as a multivalued list, even if there is only a single scalar in
1494 the list.)  Example:
1495
1496     $shell = '/bin/csh';
1497     exec $shell '-sh';          # pretend it's a login shell
1498
1499 or, more directly,
1500
1501     exec {'/bin/csh'} '-sh';    # pretend it's a login shell
1502
1503 When the arguments get executed via the system shell, results will
1504 be subject to its quirks and capabilities.  See L<perlop/"`STRING`">
1505 for details.
1506
1507 Using an indirect object with C<exec> or C<system> is also more
1508 secure.  This usage (which also works fine with system()) forces
1509 interpretation of the arguments as a multivalued list, even if the
1510 list had just one argument.  That way you're safe from the shell
1511 expanding wildcards or splitting up words with whitespace in them.
1512
1513     @args = ( "echo surprise" );
1514
1515     exec @args;               # subject to shell escapes
1516                                 # if @args == 1
1517     exec { $args[0] } @args;  # safe even with one-arg list
1518
1519 The first version, the one without the indirect object, ran the I<echo>
1520 program, passing it C<"surprise"> an argument.  The second version
1521 didn't--it tried to run a program literally called I<"echo surprise">,
1522 didn't find it, and set C<$?> to a non-zero value indicating failure.
1523
1524 Beginning with v5.6.0, Perl will attempt to flush all files opened for
1525 output before the exec, but this may not be supported on some platforms
1526 (see L<perlport>).  To be safe, you may need to set C<$|> ($AUTOFLUSH
1527 in English) or call the C<autoflush()> method of C<IO::Handle> on any
1528 open handles in order to avoid lost output.
1529
1530 Note that C<exec> will not call your C<END> blocks, nor will it call
1531 any C<DESTROY> methods in your objects.
1532
1533 =item exists EXPR
1534
1535 Given an expression that specifies a hash element or array element,
1536 returns true if the specified element in the hash or array has ever
1537 been initialized, even if the corresponding value is undefined.  The
1538 element is not autovivified if it doesn't exist.
1539
1540     print "Exists\n"    if exists $hash{$key};
1541     print "Defined\n"   if defined $hash{$key};
1542     print "True\n"      if $hash{$key};
1543
1544     print "Exists\n"    if exists $array[$index];
1545     print "Defined\n"   if defined $array[$index];
1546     print "True\n"      if $array[$index];
1547
1548 A hash or array element can be true only if it's defined, and defined if
1549 it exists, but the reverse doesn't necessarily hold true.
1550
1551 Given an expression that specifies the name of a subroutine,
1552 returns true if the specified subroutine has ever been declared, even
1553 if it is undefined.  Mentioning a subroutine name for exists or defined
1554 does not count as declaring it.  Note that a subroutine which does not
1555 exist may still be callable: its package may have an C<AUTOLOAD>
1556 method that makes it spring into existence the first time that it is
1557 called -- see L<perlsub>.
1558
1559     print "Exists\n"    if exists &subroutine;
1560     print "Defined\n"   if defined &subroutine;
1561
1562 Note that the EXPR can be arbitrarily complicated as long as the final
1563 operation is a hash or array key lookup or subroutine name:
1564
1565     if (exists $ref->{A}->{B}->{$key})  { }
1566     if (exists $hash{A}{B}{$key})       { }
1567
1568     if (exists $ref->{A}->{B}->[$ix])   { }
1569     if (exists $hash{A}{B}[$ix])        { }
1570
1571     if (exists &{$ref->{A}{B}{$key}})   { }
1572
1573 Although the deepest nested array or hash will not spring into existence
1574 just because its existence was tested, any intervening ones will.
1575 Thus C<< $ref->{"A"} >> and C<< $ref->{"A"}->{"B"} >> will spring
1576 into existence due to the existence test for the $key element above.
1577 This happens anywhere the arrow operator is used, including even:
1578
1579     undef $ref;
1580     if (exists $ref->{"Some key"})      { }
1581     print $ref;             # prints HASH(0x80d3d5c)
1582
1583 This surprising autovivification in what does not at first--or even
1584 second--glance appear to be an lvalue context may be fixed in a future
1585 release.
1586
1587 Use of a subroutine call, rather than a subroutine name, as an argument
1588 to exists() is an error.
1589
1590     exists &sub;        # OK
1591     exists &sub();      # Error
1592
1593 =item exit EXPR
1594
1595 Evaluates EXPR and exits immediately with that value.    Example:
1596
1597     $ans = <STDIN>;
1598     exit 0 if $ans =~ /^[Xx]/;
1599
1600 See also C<die>.  If EXPR is omitted, exits with C<0> status.  The only
1601 universally recognized values for EXPR are C<0> for success and C<1>
1602 for error; other values are subject to interpretation depending on the
1603 environment in which the Perl program is running.  For example, exiting
1604 69 (EX_UNAVAILABLE) from a I<sendmail> incoming-mail filter will cause
1605 the mailer to return the item undelivered, but that's not true everywhere.
1606
1607 Don't use C<exit> to abort a subroutine if there's any chance that
1608 someone might want to trap whatever error happened.  Use C<die> instead,
1609 which can be trapped by an C<eval>.
1610
1611 The exit() function does not always exit immediately.  It calls any
1612 defined C<END> routines first, but these C<END> routines may not
1613 themselves abort the exit.  Likewise any object destructors that need to
1614 be called are called before the real exit.  If this is a problem, you
1615 can call C<POSIX:_exit($status)> to avoid END and destructor processing.
1616 See L<perlmod> for details.
1617
1618 =item exp EXPR
1619
1620 =item exp
1621
1622 Returns I<e> (the natural logarithm base) to the power of EXPR.
1623 If EXPR is omitted, gives C<exp($_)>.
1624
1625 =item fcntl FILEHANDLE,FUNCTION,SCALAR
1626
1627 Implements the fcntl(2) function.  You'll probably have to say
1628
1629     use Fcntl;
1630
1631 first to get the correct constant definitions.  Argument processing and
1632 value return works just like C<ioctl> below.
1633 For example:
1634
1635     use Fcntl;
1636     fcntl($filehandle, F_GETFL, $packed_return_buffer)
1637         or die "can't fcntl F_GETFL: $!";
1638
1639 You don't have to check for C<defined> on the return from C<fnctl>.
1640 Like C<ioctl>, it maps a C<0> return from the system call into
1641 C<"0 but true"> in Perl.  This string is true in boolean context and C<0>
1642 in numeric context.  It is also exempt from the normal B<-w> warnings
1643 on improper numeric conversions.
1644
1645 Note that C<fcntl> will produce a fatal error if used on a machine that
1646 doesn't implement fcntl(2).  See the Fcntl module or your fcntl(2)
1647 manpage to learn what functions are available on your system.
1648
1649 =item fileno FILEHANDLE
1650
1651 Returns the file descriptor for a filehandle, or undefined if the
1652 filehandle is not open.  This is mainly useful for constructing
1653 bitmaps for C<select> and low-level POSIX tty-handling operations.
1654 If FILEHANDLE is an expression, the value is taken as an indirect
1655 filehandle, generally its name.
1656
1657 You can use this to find out whether two handles refer to the
1658 same underlying descriptor:
1659
1660     if (fileno(THIS) == fileno(THAT)) {
1661         print "THIS and THAT are dups\n";
1662     }
1663
1664 (Filehandles connected to memory objects via new features of C<open> may
1665 return undefined even though they are open.)
1666
1667
1668 =item flock FILEHANDLE,OPERATION
1669
1670 Calls flock(2), or an emulation of it, on FILEHANDLE.  Returns true
1671 for success, false on failure.  Produces a fatal error if used on a
1672 machine that doesn't implement flock(2), fcntl(2) locking, or lockf(3).
1673 C<flock> is Perl's portable file locking interface, although it locks
1674 only entire files, not records.
1675
1676 Two potentially non-obvious but traditional C<flock> semantics are
1677 that it waits indefinitely until the lock is granted, and that its locks
1678 B<merely advisory>.  Such discretionary locks are more flexible, but offer
1679 fewer guarantees.  This means that files locked with C<flock> may be
1680 modified by programs that do not also use C<flock>.  See L<perlport>,
1681 your port's specific documentation, or your system-specific local manpages
1682 for details.  It's best to assume traditional behavior if you're writing
1683 portable programs.  (But if you're not, you should as always feel perfectly
1684 free to write for your own system's idiosyncrasies (sometimes called
1685 "features").  Slavish adherence to portability concerns shouldn't get
1686 in the way of your getting your job done.)
1687
1688 OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with
1689 LOCK_NB.  These constants are traditionally valued 1, 2, 8 and 4, but
1690 you can use the symbolic names if you import them from the Fcntl module,
1691 either individually, or as a group using the ':flock' tag.  LOCK_SH
1692 requests a shared lock, LOCK_EX requests an exclusive lock, and LOCK_UN
1693 releases a previously requested lock.  If LOCK_NB is bitwise-or'ed with
1694 LOCK_SH or LOCK_EX then C<flock> will return immediately rather than blocking
1695 waiting for the lock (check the return status to see if you got it).
1696
1697 To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE
1698 before locking or unlocking it.
1699
1700 Note that the emulation built with lockf(3) doesn't provide shared
1701 locks, and it requires that FILEHANDLE be open with write intent.  These
1702 are the semantics that lockf(3) implements.  Most if not all systems
1703 implement lockf(3) in terms of fcntl(2) locking, though, so the
1704 differing semantics shouldn't bite too many people.
1705
1706 Note that the fcntl(2) emulation of flock(3) requires that FILEHANDLE
1707 be open with read intent to use LOCK_SH and requires that it be open
1708 with write intent to use LOCK_EX.
1709
1710 Note also that some versions of C<flock> cannot lock things over the
1711 network; you would need to use the more system-specific C<fcntl> for
1712 that.  If you like you can force Perl to ignore your system's flock(2)
1713 function, and so provide its own fcntl(2)-based emulation, by passing
1714 the switch C<-Ud_flock> to the F<Configure> program when you configure
1715 perl.
1716
1717 Here's a mailbox appender for BSD systems.
1718
1719     use Fcntl ':flock'; # import LOCK_* constants
1720
1721     sub lock {
1722         flock(MBOX,LOCK_EX);
1723         # and, in case someone appended
1724         # while we were waiting...
1725         seek(MBOX, 0, 2);
1726     }
1727
1728     sub unlock {
1729         flock(MBOX,LOCK_UN);
1730     }
1731
1732     open(MBOX, ">>/usr/spool/mail/$ENV{'USER'}")
1733             or die "Can't open mailbox: $!";
1734
1735     lock();
1736     print MBOX $msg,"\n\n";
1737     unlock();
1738
1739 On systems that support a real flock(), locks are inherited across fork()
1740 calls, whereas those that must resort to the more capricious fcntl()
1741 function lose the locks, making it harder to write servers.
1742
1743 See also L<DB_File> for other flock() examples.
1744
1745 =item fork
1746
1747 Does a fork(2) system call to create a new process running the
1748 same program at the same point.  It returns the child pid to the
1749 parent process, C<0> to the child process, or C<undef> if the fork is
1750 unsuccessful.  File descriptors (and sometimes locks on those descriptors)
1751 are shared, while everything else is copied.  On most systems supporting
1752 fork(), great care has gone into making it extremely efficient (for
1753 example, using copy-on-write technology on data pages), making it the
1754 dominant paradigm for multitasking over the last few decades.
1755
1756 Beginning with v5.6.0, Perl will attempt to flush all files opened for
1757 output before forking the child process, but this may not be supported
1758 on some platforms (see L<perlport>).  To be safe, you may need to set
1759 C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method of
1760 C<IO::Handle> on any open handles in order to avoid duplicate output.
1761
1762 If you C<fork> without ever waiting on your children, you will
1763 accumulate zombies.  On some systems, you can avoid this by setting
1764 C<$SIG{CHLD}> to C<"IGNORE">.  See also L<perlipc> for more examples of
1765 forking and reaping moribund children.
1766
1767 Note that if your forked child inherits system file descriptors like
1768 STDIN and STDOUT that are actually connected by a pipe or socket, even
1769 if you exit, then the remote server (such as, say, a CGI script or a
1770 backgrounded job launched from a remote shell) won't think you're done.
1771 You should reopen those to F</dev/null> if it's any issue.
1772
1773 =item format
1774
1775 Declare a picture format for use by the C<write> function.  For
1776 example:
1777
1778     format Something =
1779         Test: @<<<<<<<< @||||| @>>>>>
1780               $str,     $%,    '$' . int($num)
1781     .
1782
1783     $str = "widget";
1784     $num = $cost/$quantity;
1785     $~ = 'Something';
1786     write;
1787
1788 See L<perlform> for many details and examples.
1789
1790 =item formline PICTURE,LIST
1791
1792 This is an internal function used by C<format>s, though you may call it,
1793 too.  It formats (see L<perlform>) a list of values according to the
1794 contents of PICTURE, placing the output into the format output
1795 accumulator, C<$^A> (or C<$ACCUMULATOR> in English).
1796 Eventually, when a C<write> is done, the contents of
1797 C<$^A> are written to some filehandle, but you could also read C<$^A>
1798 yourself and then set C<$^A> back to C<"">.  Note that a format typically
1799 does one C<formline> per line of form, but the C<formline> function itself
1800 doesn't care how many newlines are embedded in the PICTURE.  This means
1801 that the C<~> and C<~~> tokens will treat the entire PICTURE as a single line.
1802 You may therefore need to use multiple formlines to implement a single
1803 record format, just like the format compiler.
1804
1805 Be careful if you put double quotes around the picture, because an C<@>
1806 character may be taken to mean the beginning of an array name.
1807 C<formline> always returns true.  See L<perlform> for other examples.
1808
1809 =item getc FILEHANDLE
1810
1811 =item getc
1812
1813 Returns the next character from the input file attached to FILEHANDLE,
1814 or the undefined value at end of file, or if there was an error (in
1815 the latter case C<$!> is set).  If FILEHANDLE is omitted, reads from
1816 STDIN.  This is not particularly efficient.  However, it cannot be
1817 used by itself to fetch single characters without waiting for the user
1818 to hit enter.  For that, try something more like:
1819
1820     if ($BSD_STYLE) {
1821         system "stty cbreak </dev/tty >/dev/tty 2>&1";
1822     }
1823     else {
1824         system "stty", '-icanon', 'eol', "\001";
1825     }
1826
1827     $key = getc(STDIN);
1828
1829     if ($BSD_STYLE) {
1830         system "stty -cbreak </dev/tty >/dev/tty 2>&1";
1831     }
1832     else {
1833         system "stty", 'icanon', 'eol', '^@'; # ASCII null
1834     }
1835     print "\n";
1836
1837 Determination of whether $BSD_STYLE should be set
1838 is left as an exercise to the reader.
1839
1840 The C<POSIX::getattr> function can do this more portably on
1841 systems purporting POSIX compliance.  See also the C<Term::ReadKey>
1842 module from your nearest CPAN site; details on CPAN can be found on
1843 L<perlmodlib/CPAN>.
1844
1845 =item getlogin
1846
1847 Implements the C library function of the same name, which on most
1848 systems returns the current login from F</etc/utmp>, if any.  If null,
1849 use C<getpwuid>.
1850
1851     $login = getlogin || getpwuid($<) || "Kilroy";
1852
1853 Do not consider C<getlogin> for authentication: it is not as
1854 secure as C<getpwuid>.
1855
1856 =item getpeername SOCKET
1857
1858 Returns the packed sockaddr address of other end of the SOCKET connection.
1859
1860     use Socket;
1861     $hersockaddr    = getpeername(SOCK);
1862     ($port, $iaddr) = sockaddr_in($hersockaddr);
1863     $herhostname    = gethostbyaddr($iaddr, AF_INET);
1864     $herstraddr     = inet_ntoa($iaddr);
1865
1866 =item getpgrp PID
1867
1868 Returns the current process group for the specified PID.  Use
1869 a PID of C<0> to get the current process group for the
1870 current process.  Will raise an exception if used on a machine that
1871 doesn't implement getpgrp(2).  If PID is omitted, returns process
1872 group of current process.  Note that the POSIX version of C<getpgrp>
1873 does not accept a PID argument, so only C<PID==0> is truly portable.
1874
1875 =item getppid
1876
1877 Returns the process id of the parent process.
1878
1879 Note for Linux users: on Linux, the C functions C<getpid()> and
1880 C<getppid()> return different values from different threads. In order to
1881 be portable, this behavior is not reflected by the perl-level function
1882 C<getppid()>, that returns a consistent value across threads. If you want
1883 to call the underlying C<getppid()>, you may use the CPAN module
1884 C<Linux::Pid>.
1885
1886 =item getpriority WHICH,WHO
1887
1888 Returns the current priority for a process, a process group, or a user.
1889 (See L<getpriority(2)>.)  Will raise a fatal exception if used on a
1890 machine that doesn't implement getpriority(2).
1891
1892 =item getpwnam NAME
1893
1894 =item getgrnam NAME
1895
1896 =item gethostbyname NAME
1897
1898 =item getnetbyname NAME
1899
1900 =item getprotobyname NAME
1901
1902 =item getpwuid UID
1903
1904 =item getgrgid GID
1905
1906 =item getservbyname NAME,PROTO
1907
1908 =item gethostbyaddr ADDR,ADDRTYPE
1909
1910 =item getnetbyaddr ADDR,ADDRTYPE
1911
1912 =item getprotobynumber NUMBER
1913
1914 =item getservbyport PORT,PROTO
1915
1916 =item getpwent
1917
1918 =item getgrent
1919
1920 =item gethostent
1921
1922 =item getnetent
1923
1924 =item getprotoent
1925
1926 =item getservent
1927
1928 =item setpwent
1929
1930 =item setgrent
1931
1932 =item sethostent STAYOPEN
1933
1934 =item setnetent STAYOPEN
1935
1936 =item setprotoent STAYOPEN
1937
1938 =item setservent STAYOPEN
1939
1940 =item endpwent
1941
1942 =item endgrent
1943
1944 =item endhostent
1945
1946 =item endnetent
1947
1948 =item endprotoent
1949
1950 =item endservent
1951
1952 These routines perform the same functions as their counterparts in the
1953 system library.  In list context, the return values from the
1954 various get routines are as follows:
1955
1956     ($name,$passwd,$uid,$gid,
1957        $quota,$comment,$gcos,$dir,$shell,$expire) = getpw*
1958     ($name,$passwd,$gid,$members) = getgr*
1959     ($name,$aliases,$addrtype,$length,@addrs) = gethost*
1960     ($name,$aliases,$addrtype,$net) = getnet*
1961     ($name,$aliases,$proto) = getproto*
1962     ($name,$aliases,$port,$proto) = getserv*
1963
1964 (If the entry doesn't exist you get a null list.)
1965
1966 The exact meaning of the $gcos field varies but it usually contains
1967 the real name of the user (as opposed to the login name) and other
1968 information pertaining to the user.  Beware, however, that in many
1969 system users are able to change this information and therefore it
1970 cannot be trusted and therefore the $gcos is tainted (see
1971 L<perlsec>).  The $passwd and $shell, user's encrypted password and
1972 login shell, are also tainted, because of the same reason.
1973
1974 In scalar context, you get the name, unless the function was a
1975 lookup by name, in which case you get the other thing, whatever it is.
1976 (If the entry doesn't exist you get the undefined value.)  For example:
1977
1978     $uid   = getpwnam($name);
1979     $name  = getpwuid($num);
1980     $name  = getpwent();
1981     $gid   = getgrnam($name);
1982     $name  = getgrgid($num);
1983     $name  = getgrent();
1984     #etc.
1985
1986 In I<getpw*()> the fields $quota, $comment, and $expire are special
1987 cases in the sense that in many systems they are unsupported.  If the
1988 $quota is unsupported, it is an empty scalar.  If it is supported, it
1989 usually encodes the disk quota.  If the $comment field is unsupported,
1990 it is an empty scalar.  If it is supported it usually encodes some
1991 administrative comment about the user.  In some systems the $quota
1992 field may be $change or $age, fields that have to do with password
1993 aging.  In some systems the $comment field may be $class.  The $expire
1994 field, if present, encodes the expiration period of the account or the
1995 password.  For the availability and the exact meaning of these fields
1996 in your system, please consult your getpwnam(3) documentation and your
1997 F<pwd.h> file.  You can also find out from within Perl what your
1998 $quota and $comment fields mean and whether you have the $expire field
1999 by using the C<Config> module and the values C<d_pwquota>, C<d_pwage>,
2000 C<d_pwchange>, C<d_pwcomment>, and C<d_pwexpire>.  Shadow password
2001 files are only supported if your vendor has implemented them in the
2002 intuitive fashion that calling the regular C library routines gets the
2003 shadow versions if you're running under privilege or if there exists
2004 the shadow(3) functions as found in System V ( this includes Solaris
2005 and Linux.)  Those systems which implement a proprietary shadow password
2006 facility are unlikely to be supported.
2007
2008 The $members value returned by I<getgr*()> is a space separated list of
2009 the login names of the members of the group.
2010
2011 For the I<gethost*()> functions, if the C<h_errno> variable is supported in
2012 C, it will be returned to you via C<$?> if the function call fails.  The
2013 C<@addrs> value returned by a successful call is a list of the raw
2014 addresses returned by the corresponding system library call.  In the
2015 Internet domain, each address is four bytes long and you can unpack it
2016 by saying something like:
2017
2018     ($a,$b,$c,$d) = unpack('C4',$addr[0]);
2019
2020 The Socket library makes this slightly easier:
2021
2022     use Socket;
2023     $iaddr = inet_aton("127.1"); # or whatever address
2024     $name  = gethostbyaddr($iaddr, AF_INET);
2025
2026     # or going the other way
2027     $straddr = inet_ntoa($iaddr);
2028
2029 If you get tired of remembering which element of the return list
2030 contains which return value, by-name interfaces are provided
2031 in standard modules: C<File::stat>, C<Net::hostent>, C<Net::netent>,
2032 C<Net::protoent>, C<Net::servent>, C<Time::gmtime>, C<Time::localtime>,
2033 and C<User::grent>.  These override the normal built-ins, supplying
2034 versions that return objects with the appropriate names
2035 for each field.  For example:
2036
2037    use File::stat;
2038    use User::pwent;
2039    $is_his = (stat($filename)->uid == pwent($whoever)->uid);
2040
2041 Even though it looks like they're the same method calls (uid),
2042 they aren't, because a C<File::stat> object is different from
2043 a C<User::pwent> object.
2044
2045 =item getsockname SOCKET
2046
2047 Returns the packed sockaddr address of this end of the SOCKET connection,
2048 in case you don't know the address because you have several different
2049 IPs that the connection might have come in on.
2050
2051     use Socket;
2052     $mysockaddr = getsockname(SOCK);
2053     ($port, $myaddr) = sockaddr_in($mysockaddr);
2054     printf "Connect to %s [%s]\n",
2055        scalar gethostbyaddr($myaddr, AF_INET),
2056        inet_ntoa($myaddr);
2057
2058 =item getsockopt SOCKET,LEVEL,OPTNAME
2059
2060 Returns the socket option requested, or undef if there is an error.
2061
2062 =item glob EXPR
2063
2064 =item glob
2065
2066 In list context, returns a (possibly empty) list of filename expansions on
2067 the value of EXPR such as the standard Unix shell F</bin/csh> would do. In
2068 scalar context, glob iterates through such filename expansions, returning
2069 undef when the list is exhausted. This is the internal function
2070 implementing the C<< <*.c> >> operator, but you can use it directly. If
2071 EXPR is omitted, C<$_> is used.  The C<< <*.c> >> operator is discussed in
2072 more detail in L<perlop/"I/O Operators">.
2073
2074 Beginning with v5.6.0, this operator is implemented using the standard
2075 C<File::Glob> extension.  See L<File::Glob> for details.
2076
2077 =item gmtime EXPR
2078
2079 Converts a time as returned by the time function to an 8-element list
2080 with the time localized for the standard Greenwich time zone.
2081 Typically used as follows:
2082
2083     #  0    1    2     3     4    5     6     7
2084     ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday) =
2085                                             gmtime(time);
2086
2087 All list elements are numeric, and come straight out of the C `struct
2088 tm'.  $sec, $min, and $hour are the seconds, minutes, and hours of the
2089 specified time.  $mday is the day of the month, and $mon is the month
2090 itself, in the range C<0..11> with 0 indicating January and 11
2091 indicating December.  $year is the number of years since 1900.  That
2092 is, $year is C<123> in year 2023.  $wday is the day of the week, with
2093 0 indicating Sunday and 3 indicating Wednesday.  $yday is the day of
2094 the year, in the range C<0..364> (or C<0..365> in leap years.)
2095
2096 Note that the $year element is I<not> simply the last two digits of
2097 the year.  If you assume it is, then you create non-Y2K-compliant
2098 programs--and you wouldn't want to do that, would you?
2099
2100 The proper way to get a complete 4-digit year is simply:
2101
2102         $year += 1900;
2103
2104 And to get the last two digits of the year (e.g., '01' in 2001) do:
2105
2106         $year = sprintf("%02d", $year % 100);
2107
2108 If EXPR is omitted, C<gmtime()> uses the current time (C<gmtime(time)>).
2109
2110 In scalar context, C<gmtime()> returns the ctime(3) value:
2111
2112     $now_string = gmtime;  # e.g., "Thu Oct 13 04:54:34 1994"
2113
2114 Also see the C<timegm> function provided by the C<Time::Local> module,
2115 and the strftime(3) function available via the POSIX module.
2116
2117 This scalar value is B<not> locale dependent (see L<perllocale>), but
2118 is instead a Perl builtin.  Also see the C<Time::Local> module, and the
2119 strftime(3) and mktime(3) functions available via the POSIX module.  To
2120 get somewhat similar but locale dependent date strings, set up your
2121 locale environment variables appropriately (please see L<perllocale>)
2122 and try for example:
2123
2124     use POSIX qw(strftime);
2125     $now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;
2126
2127 Note that the C<%a> and C<%b> escapes, which represent the short forms
2128 of the day of the week and the month of the year, may not necessarily
2129 be three characters wide in all locales.
2130
2131 =item goto LABEL
2132
2133 =item goto EXPR
2134
2135 =item goto &NAME
2136
2137 The C<goto-LABEL> form finds the statement labeled with LABEL and resumes
2138 execution there.  It may not be used to go into any construct that
2139 requires initialization, such as a subroutine or a C<foreach> loop.  It
2140 also can't be used to go into a construct that is optimized away,
2141 or to get out of a block or subroutine given to C<sort>.
2142 It can be used to go almost anywhere else within the dynamic scope,
2143 including out of subroutines, but it's usually better to use some other
2144 construct such as C<last> or C<die>.  The author of Perl has never felt the
2145 need to use this form of C<goto> (in Perl, that is--C is another matter).
2146 (The difference being that C does not offer named loops combined with
2147 loop control.  Perl does, and this replaces most structured uses of C<goto>
2148 in other languages.)
2149
2150 The C<goto-EXPR> form expects a label name, whose scope will be resolved
2151 dynamically.  This allows for computed C<goto>s per FORTRAN, but isn't
2152 necessarily recommended if you're optimizing for maintainability:
2153
2154     goto ("FOO", "BAR", "GLARCH")[$i];
2155
2156 The C<goto-&NAME> form is quite different from the other forms of
2157 C<goto>.  In fact, it isn't a goto in the normal sense at all, and
2158 doesn't have the stigma associated with other gotos.  Instead, it
2159 exits the current subroutine (losing any changes set by local()) and
2160 immediately calls in its place the named subroutine using the current
2161 value of @_.  This is used by C<AUTOLOAD> subroutines that wish to
2162 load another subroutine and then pretend that the other subroutine had
2163 been called in the first place (except that any modifications to C<@_>
2164 in the current subroutine are propagated to the other subroutine.)
2165 After the C<goto>, not even C<caller> will be able to tell that this
2166 routine was called first.
2167
2168 NAME needn't be the name of a subroutine; it can be a scalar variable
2169 containing a code reference, or a block which evaluates to a code
2170 reference.
2171
2172 =item grep BLOCK LIST
2173
2174 =item grep EXPR,LIST
2175
2176 This is similar in spirit to, but not the same as, grep(1) and its
2177 relatives.  In particular, it is not limited to using regular expressions.
2178
2179 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
2180 C<$_> to each element) and returns the list value consisting of those
2181 elements for which the expression evaluated to true.  In scalar
2182 context, returns the number of times the expression was true.
2183
2184     @foo = grep(!/^#/, @bar);    # weed out comments
2185
2186 or equivalently,
2187
2188     @foo = grep {!/^#/} @bar;    # weed out comments
2189
2190 Note that C<$_> is an alias to the list value, so it can be used to
2191 modify the elements of the LIST.  While this is useful and supported,
2192 it can cause bizarre results if the elements of LIST are not variables.
2193 Similarly, grep returns aliases into the original list, much as a for
2194 loop's index variable aliases the list elements.  That is, modifying an
2195 element of a list returned by grep (for example, in a C<foreach>, C<map>
2196 or another C<grep>) actually modifies the element in the original list.
2197 This is usually something to be avoided when writing clear code.
2198
2199 See also L</map> for a list composed of the results of the BLOCK or EXPR.
2200
2201 =item hex EXPR
2202
2203 =item hex
2204
2205 Interprets EXPR as a hex string and returns the corresponding value.
2206 (To convert strings that might start with either 0, 0x, or 0b, see
2207 L</oct>.)  If EXPR is omitted, uses C<$_>.
2208
2209     print hex '0xAf'; # prints '175'
2210     print hex 'aF';   # same
2211
2212 Hex strings may only represent integers.  Strings that would cause
2213 integer overflow trigger a warning.  Leading whitespace is not stripped,
2214 unlike oct().
2215
2216 =item import
2217
2218 There is no builtin C<import> function.  It is just an ordinary
2219 method (subroutine) defined (or inherited) by modules that wish to export
2220 names to another module.  The C<use> function calls the C<import> method
2221 for the package used.  See also L</use>, L<perlmod>, and L<Exporter>.
2222
2223 =item index STR,SUBSTR,POSITION
2224
2225 =item index STR,SUBSTR
2226
2227 The index function searches for one string within another, but without
2228 the wildcard-like behavior of a full regular-expression pattern match.
2229 It returns the position of the first occurrence of SUBSTR in STR at
2230 or after POSITION.  If POSITION is omitted, starts searching from the
2231 beginning of the string.  The return value is based at C<0> (or whatever
2232 you've set the C<$[> variable to--but don't do that).  If the substring
2233 is not found, returns one less than the base, ordinarily C<-1>.
2234
2235 =item int EXPR
2236
2237 =item int
2238
2239 Returns the integer portion of EXPR.  If EXPR is omitted, uses C<$_>.
2240 You should not use this function for rounding: one because it truncates
2241 towards C<0>, and two because machine representations of floating point
2242 numbers can sometimes produce counterintuitive results.  For example,
2243 C<int(-6.725/0.025)> produces -268 rather than the correct -269; that's
2244 because it's really more like -268.99999999999994315658 instead.  Usually,
2245 the C<sprintf>, C<printf>, or the C<POSIX::floor> and C<POSIX::ceil>
2246 functions will serve you better than will int().
2247
2248 =item ioctl FILEHANDLE,FUNCTION,SCALAR
2249
2250 Implements the ioctl(2) function.  You'll probably first have to say
2251
2252     require "ioctl.ph"; # probably in /usr/local/lib/perl/ioctl.ph
2253
2254 to get the correct function definitions.  If F<ioctl.ph> doesn't
2255 exist or doesn't have the correct definitions you'll have to roll your
2256 own, based on your C header files such as F<< <sys/ioctl.h> >>.
2257 (There is a Perl script called B<h2ph> that comes with the Perl kit that
2258 may help you in this, but it's nontrivial.)  SCALAR will be read and/or
2259 written depending on the FUNCTION--a pointer to the string value of SCALAR
2260 will be passed as the third argument of the actual C<ioctl> call.  (If SCALAR
2261 has no string value but does have a numeric value, that value will be
2262 passed rather than a pointer to the string value.  To guarantee this to be
2263 true, add a C<0> to the scalar before using it.)  The C<pack> and C<unpack>
2264 functions may be needed to manipulate the values of structures used by
2265 C<ioctl>.
2266
2267 The return value of C<ioctl> (and C<fcntl>) is as follows:
2268
2269         if OS returns:          then Perl returns:
2270             -1                    undefined value
2271              0                  string "0 but true"
2272         anything else               that number
2273
2274 Thus Perl returns true on success and false on failure, yet you can
2275 still easily determine the actual value returned by the operating
2276 system:
2277
2278     $retval = ioctl(...) || -1;
2279     printf "System returned %d\n", $retval;
2280
2281 The special string "C<0> but true" is exempt from B<-w> complaints
2282 about improper numeric conversions.
2283
2284 Here's an example of setting a filehandle named C<REMOTE> to be
2285 non-blocking at the system level.  You'll have to negotiate C<$|>
2286 on your own, though.
2287
2288     use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);
2289
2290     $flags = fcntl(REMOTE, F_GETFL, 0)
2291                 or die "Can't get flags for the socket: $!\n";
2292
2293     $flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
2294                 or die "Can't set flags for the socket: $!\n";
2295
2296 =item join EXPR,LIST
2297
2298 Joins the separate strings of LIST into a single string with fields
2299 separated by the value of EXPR, and returns that new string.  Example:
2300
2301     $rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);
2302
2303 Beware that unlike C<split>, C<join> doesn't take a pattern as its
2304 first argument.  Compare L</split>.
2305
2306 =item keys HASH
2307
2308 Returns a list consisting of all the keys of the named hash.  (In
2309 scalar context, returns the number of keys.)  The keys are returned in
2310 an apparently random order.  The actual random order is subject to
2311 change in future versions of perl, but it is guaranteed to be the same
2312 order as either the C<values> or C<each> function produces (given
2313 that the hash has not been modified).  As a side effect, it resets
2314 HASH's iterator.
2315
2316 Here is yet another way to print your environment:
2317
2318     @keys = keys %ENV;
2319     @values = values %ENV;
2320     while (@keys) {
2321         print pop(@keys), '=', pop(@values), "\n";
2322     }
2323
2324 or how about sorted by key:
2325
2326     foreach $key (sort(keys %ENV)) {
2327         print $key, '=', $ENV{$key}, "\n";
2328     }
2329
2330 The returned values are copies of the original keys in the hash, so
2331 modifying them will not affect the original hash.  Compare L</values>.
2332
2333 To sort a hash by value, you'll need to use a C<sort> function.
2334 Here's a descending numeric sort of a hash by its values:
2335
2336     foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
2337         printf "%4d %s\n", $hash{$key}, $key;
2338     }
2339
2340 As an lvalue C<keys> allows you to increase the number of hash buckets
2341 allocated for the given hash.  This can gain you a measure of efficiency if
2342 you know the hash is going to get big.  (This is similar to pre-extending
2343 an array by assigning a larger number to $#array.)  If you say
2344
2345     keys %hash = 200;
2346
2347 then C<%hash> will have at least 200 buckets allocated for it--256 of them,
2348 in fact, since it rounds up to the next power of two.  These
2349 buckets will be retained even if you do C<%hash = ()>, use C<undef
2350 %hash> if you want to free the storage while C<%hash> is still in scope.
2351 You can't shrink the number of buckets allocated for the hash using
2352 C<keys> in this way (but you needn't worry about doing this by accident,
2353 as trying has no effect).
2354
2355 See also C<each>, C<values> and C<sort>.
2356
2357 =item kill SIGNAL, LIST
2358
2359 Sends a signal to a list of processes.  Returns the number of
2360 processes successfully signaled (which is not necessarily the
2361 same as the number actually killed).
2362
2363     $cnt = kill 1, $child1, $child2;
2364     kill 9, @goners;
2365
2366 If SIGNAL is zero, no signal is sent to the process.  This is a
2367 useful way to check that the process is alive and hasn't changed
2368 its UID.  See L<perlport> for notes on the portability of this
2369 construct.
2370
2371 Unlike in the shell, if SIGNAL is negative, it kills
2372 process groups instead of processes.  (On System V, a negative I<PROCESS>
2373 number will also kill process groups, but that's not portable.)  That
2374 means you usually want to use positive not negative signals.  You may also
2375 use a signal name in quotes.  See L<perlipc/"Signals"> for details.
2376
2377 =item last LABEL
2378
2379 =item last
2380
2381 The C<last> command is like the C<break> statement in C (as used in
2382 loops); it immediately exits the loop in question.  If the LABEL is
2383 omitted, the command refers to the innermost enclosing loop.  The
2384 C<continue> block, if any, is not executed:
2385
2386     LINE: while (<STDIN>) {
2387         last LINE if /^$/;      # exit when done with header
2388         #...
2389     }
2390
2391 C<last> cannot be used to exit a block which returns a value such as
2392 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
2393 a grep() or map() operation.
2394
2395 Note that a block by itself is semantically identical to a loop
2396 that executes once.  Thus C<last> can be used to effect an early
2397 exit out of such a block.
2398
2399 See also L</continue> for an illustration of how C<last>, C<next>, and
2400 C<redo> work.
2401
2402 =item lc EXPR
2403
2404 =item lc
2405
2406 Returns a lowercased version of EXPR.  This is the internal function
2407 implementing the C<\L> escape in double-quoted strings.  Respects
2408 current LC_CTYPE locale if C<use locale> in force.  See L<perllocale>
2409 and L<perlunicode> for more details about locale and Unicode support.
2410
2411 If EXPR is omitted, uses C<$_>.
2412
2413 =item lcfirst EXPR
2414
2415 =item lcfirst
2416
2417 Returns the value of EXPR with the first character lowercased.  This
2418 is the internal function implementing the C<\l> escape in
2419 double-quoted strings.  Respects current LC_CTYPE locale if C<use
2420 locale> in force.  See L<perllocale> and L<perlunicode> for more
2421 details about locale and Unicode support.
2422
2423 If EXPR is omitted, uses C<$_>.
2424
2425 =item length EXPR
2426
2427 =item length
2428
2429 Returns the length in characters of the value of EXPR.  If EXPR is
2430 omitted, returns length of C<$_>.  Note that this cannot be used on
2431 an entire array or hash to find out how many elements these have.
2432 For that, use C<scalar @array> and C<scalar keys %hash> respectively.
2433
2434 =item link OLDFILE,NEWFILE
2435
2436 Creates a new filename linked to the old filename.  Returns true for
2437 success, false otherwise.
2438
2439 =item listen SOCKET,QUEUESIZE
2440
2441 Does the same thing that the listen system call does.  Returns true if
2442 it succeeded, false otherwise.  See the example in
2443 L<perlipc/"Sockets: Client/Server Communication">.
2444
2445 =item local EXPR
2446
2447 You really probably want to be using C<my> instead, because C<local> isn't
2448 what most people think of as "local".  See
2449 L<perlsub/"Private Variables via my()"> for details.
2450
2451 A local modifies the listed variables to be local to the enclosing
2452 block, file, or eval.  If more than one value is listed, the list must
2453 be placed in parentheses.  See L<perlsub/"Temporary Values via local()">
2454 for details, including issues with tied arrays and hashes.
2455
2456 =item localtime EXPR
2457
2458 Converts a time as returned by the time function to a 9-element list
2459 with the time analyzed for the local time zone.  Typically used as
2460 follows:
2461
2462     #  0    1    2     3     4    5     6     7     8
2463     ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
2464                                                 localtime(time);
2465
2466 All list elements are numeric, and come straight out of the C `struct
2467 tm'.  $sec, $min, and $hour are the seconds, minutes, and hours of the
2468 specified time.  $mday is the day of the month, and $mon is the month
2469 itself, in the range C<0..11> with 0 indicating January and 11
2470 indicating December.  $year is the number of years since 1900.  That
2471 is, $year is C<123> in year 2023.  $wday is the day of the week, with
2472 0 indicating Sunday and 3 indicating Wednesday.  $yday is the day of
2473 the year, in the range C<0..364> (or C<0..365> in leap years.)  $isdst
2474 is true if the specified time occurs during daylight savings time,
2475 false otherwise.
2476
2477 Note that the $year element is I<not> simply the last two digits of
2478 the year.  If you assume it is, then you create non-Y2K-compliant
2479 programs--and you wouldn't want to do that, would you?
2480
2481 The proper way to get a complete 4-digit year is simply:
2482
2483         $year += 1900;
2484
2485 And to get the last two digits of the year (e.g., '01' in 2001) do:
2486
2487         $year = sprintf("%02d", $year % 100);
2488
2489 If EXPR is omitted, C<localtime()> uses the current time (C<localtime(time)>).
2490
2491 In scalar context, C<localtime()> returns the ctime(3) value:
2492
2493     $now_string = localtime;  # e.g., "Thu Oct 13 04:54:34 1994"
2494
2495 This scalar value is B<not> locale dependent, see L<perllocale>, but
2496 instead a Perl builtin.  Also see the C<Time::Local> module
2497 (to convert the second, minutes, hours, ... back to seconds since the
2498 stroke of midnight the 1st of January 1970, the value returned by
2499 time()), and the strftime(3) and mktime(3) functions available via the
2500 POSIX module.  To get somewhat similar but locale dependent date
2501 strings, set up your locale environment variables appropriately
2502 (please see L<perllocale>) and try for example:
2503
2504     use POSIX qw(strftime);
2505     $now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
2506
2507 Note that the C<%a> and C<%b>, the short forms of the day of the week
2508 and the month of the year, may not necessarily be three characters wide.
2509
2510 =item lock THING
2511
2512 This function places an advisory lock on a shared variable, or referenced
2513 object contained in I<THING> until the lock goes out of scope.
2514
2515 lock() is a "weak keyword" : this means that if you've defined a function
2516 by this name (before any calls to it), that function will be called
2517 instead. (However, if you've said C<use threads>, lock() is always a
2518 keyword.) See L<threads>.
2519
2520 =item log EXPR
2521
2522 =item log
2523
2524 Returns the natural logarithm (base I<e>) of EXPR.  If EXPR is omitted,
2525 returns log of C<$_>.  To get the log of another base, use basic algebra:
2526 The base-N log of a number is equal to the natural log of that number
2527 divided by the natural log of N.  For example:
2528
2529     sub log10 {
2530         my $n = shift;
2531         return log($n)/log(10);
2532     }
2533
2534 See also L</exp> for the inverse operation.
2535
2536 =item lstat EXPR
2537
2538 =item lstat
2539
2540 Does the same thing as the C<stat> function (including setting the
2541 special C<_> filehandle) but stats a symbolic link instead of the file
2542 the symbolic link points to.  If symbolic links are unimplemented on
2543 your system, a normal C<stat> is done.  For much more detailed
2544 information, please see the documentation for C<stat>.
2545
2546 If EXPR is omitted, stats C<$_>.
2547
2548 =item m//
2549
2550 The match operator.  See L<perlop>.
2551
2552 =item map BLOCK LIST
2553
2554 =item map EXPR,LIST
2555
2556 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
2557 C<$_> to each element) and returns the list value composed of the
2558 results of each such evaluation.  In scalar context, returns the
2559 total number of elements so generated.  Evaluates BLOCK or EXPR in
2560 list context, so each element of LIST may produce zero, one, or
2561 more elements in the returned value.
2562
2563     @chars = map(chr, @nums);
2564
2565 translates a list of numbers to the corresponding characters.  And
2566
2567     %hash = map { getkey($_) => $_ } @array;
2568
2569 is just a funny way to write
2570
2571     %hash = ();
2572     foreach $_ (@array) {
2573         $hash{getkey($_)} = $_;
2574     }
2575
2576 Note that C<$_> is an alias to the list value, so it can be used to
2577 modify the elements of the LIST.  While this is useful and supported,
2578 it can cause bizarre results if the elements of LIST are not variables.
2579 Using a regular C<foreach> loop for this purpose would be clearer in
2580 most cases.  See also L</grep> for an array composed of those items of
2581 the original list for which the BLOCK or EXPR evaluates to true.
2582
2583 C<{> starts both hash references and blocks, so C<map { ...> could be either
2584 the start of map BLOCK LIST or map EXPR, LIST. Because perl doesn't look
2585 ahead for the closing C<}> it has to take a guess at which its dealing with
2586 based what it finds just after the C<{>. Usually it gets it right, but if it
2587 doesn't it won't realize something is wrong until it gets to the C<}> and
2588 encounters the missing (or unexpected) comma. The syntax error will be
2589 reported close to the C<}> but you'll need to change something near the C<{>
2590 such as using a unary C<+> to give perl some help:
2591
2592     %hash = map {  "\L$_", 1  } @array  # perl guesses EXPR.  wrong
2593     %hash = map { +"\L$_", 1  } @array  # perl guesses BLOCK. right
2594     %hash = map { ("\L$_", 1) } @array  # this also works
2595     %hash = map {  lc($_), 1  } @array  # as does this.
2596     %hash = map +( lc($_), 1 ), @array  # this is EXPR and works!
2597
2598     %hash = map  ( lc($_), 1 ), @array  # evaluates to (1, @array)
2599
2600 or to force an anon hash constructor use C<+{>
2601
2602    @hashes = map +{ lc($_), 1 }, @array # EXPR, so needs , at end
2603
2604 and you get list of anonymous hashes each with only 1 entry.
2605
2606 =item mkdir FILENAME,MASK
2607
2608 =item mkdir FILENAME
2609
2610 Creates the directory specified by FILENAME, with permissions
2611 specified by MASK (as modified by C<umask>).  If it succeeds it
2612 returns true, otherwise it returns false and sets C<$!> (errno).
2613 If omitted, MASK defaults to 0777.
2614
2615 In general, it is better to create directories with permissive MASK,
2616 and let the user modify that with their C<umask>, than it is to supply
2617 a restrictive MASK and give the user no way to be more permissive.
2618 The exceptions to this rule are when the file or directory should be
2619 kept private (mail files, for instance).  The perlfunc(1) entry on
2620 C<umask> discusses the choice of MASK in more detail.
2621
2622 Note that according to the POSIX 1003.1-1996 the FILENAME may have any
2623 number of trailing slashes.  Some operating and filesystems do not get
2624 this right, so Perl automatically removes all trailing slashes to keep
2625 everyone happy.
2626
2627 =item msgctl ID,CMD,ARG
2628
2629 Calls the System V IPC function msgctl(2).  You'll probably have to say
2630
2631     use IPC::SysV;
2632
2633 first to get the correct constant definitions.  If CMD is C<IPC_STAT>,
2634 then ARG must be a variable which will hold the returned C<msqid_ds>
2635 structure.  Returns like C<ioctl>: the undefined value for error,
2636 C<"0 but true"> for zero, or the actual return value otherwise.  See also
2637 L<perlipc/"SysV IPC">, C<IPC::SysV>, and C<IPC::Semaphore> documentation.
2638
2639 =item msgget KEY,FLAGS
2640
2641 Calls the System V IPC function msgget(2).  Returns the message queue
2642 id, or the undefined value if there is an error.  See also
2643 L<perlipc/"SysV IPC"> and C<IPC::SysV> and C<IPC::Msg> documentation.
2644
2645 =item msgrcv ID,VAR,SIZE,TYPE,FLAGS
2646
2647 Calls the System V IPC function msgrcv to receive a message from
2648 message queue ID into variable VAR with a maximum message size of
2649 SIZE.  Note that when a message is received, the message type as a
2650 native long integer will be the first thing in VAR, followed by the
2651 actual message.  This packing may be opened with C<unpack("l! a*")>.
2652 Taints the variable.  Returns true if successful, or false if there is
2653 an error.  See also L<perlipc/"SysV IPC">, C<IPC::SysV>, and
2654 C<IPC::SysV::Msg> documentation.
2655
2656 =item msgsnd ID,MSG,FLAGS
2657
2658 Calls the System V IPC function msgsnd to send the message MSG to the
2659 message queue ID.  MSG must begin with the native long integer message
2660 type, and be followed by the length of the actual message, and finally
2661 the message itself.  This kind of packing can be achieved with
2662 C<pack("l! a*", $type, $message)>.  Returns true if successful,
2663 or false if there is an error.  See also C<IPC::SysV>
2664 and C<IPC::SysV::Msg> documentation.
2665
2666 =item my EXPR
2667
2668 =item my TYPE EXPR
2669
2670 =item my EXPR : ATTRS
2671
2672 =item my TYPE EXPR : ATTRS
2673
2674 A C<my> declares the listed variables to be local (lexically) to the
2675 enclosing block, file, or C<eval>.  If more than one value is listed,
2676 the list must be placed in parentheses.
2677
2678 The exact semantics and interface of TYPE and ATTRS are still
2679 evolving.  TYPE is currently bound to the use of C<fields> pragma,
2680 and attributes are handled using the C<attributes> pragma, or starting
2681 from Perl 5.8.0 also via the C<Attribute::Handlers> module.  See
2682 L<perlsub/"Private Variables via my()"> for details, and L<fields>,
2683 L<attributes>, and L<Attribute::Handlers>.
2684
2685 =item next LABEL
2686
2687 =item next
2688
2689 The C<next> command is like the C<continue> statement in C; it starts
2690 the next iteration of the loop:
2691
2692     LINE: while (<STDIN>) {
2693         next LINE if /^#/;      # discard comments
2694         #...
2695     }
2696
2697 Note that if there were a C<continue> block on the above, it would get
2698 executed even on discarded lines.  If the LABEL is omitted, the command
2699 refers to the innermost enclosing loop.
2700
2701 C<next> cannot be used to exit a block which returns a value such as
2702 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
2703 a grep() or map() operation.
2704
2705 Note that a block by itself is semantically identical to a loop
2706 that executes once.  Thus C<next> will exit such a block early.
2707
2708 See also L</continue> for an illustration of how C<last>, C<next>, and
2709 C<redo> work.
2710
2711 =item no Module VERSION LIST
2712
2713 =item no Module VERSION
2714
2715 =item no Module LIST
2716
2717 =item no Module
2718
2719 See the C<use> function, which C<no> is the opposite of.
2720
2721 =item oct EXPR
2722
2723 =item oct
2724
2725 Interprets EXPR as an octal string and returns the corresponding
2726 value.  (If EXPR happens to start off with C<0x>, interprets it as a
2727 hex string.  If EXPR starts off with C<0b>, it is interpreted as a
2728 binary string.  Leading whitespace is ignored in all three cases.)
2729 The following will handle decimal, binary, octal, and hex in the standard
2730 Perl or C notation:
2731
2732     $val = oct($val) if $val =~ /^0/;
2733
2734 If EXPR is omitted, uses C<$_>.   To go the other way (produce a number
2735 in octal), use sprintf() or printf():
2736
2737     $perms = (stat("filename"))[2] & 07777;
2738     $oct_perms = sprintf "%lo", $perms;
2739
2740 The oct() function is commonly used when a string such as C<644> needs
2741 to be converted into a file mode, for example. (Although perl will
2742 automatically convert strings into numbers as needed, this automatic
2743 conversion assumes base 10.)
2744
2745 =item open FILEHANDLE,EXPR
2746
2747 =item open FILEHANDLE,MODE,EXPR
2748
2749 =item open FILEHANDLE,MODE,EXPR,LIST
2750
2751 =item open FILEHANDLE,MODE,REFERENCE
2752
2753 =item open FILEHANDLE
2754
2755 Opens the file whose filename is given by EXPR, and associates it with
2756 FILEHANDLE.
2757
2758 (The following is a comprehensive reference to open(): for a gentler
2759 introduction you may consider L<perlopentut>.)
2760
2761 If FILEHANDLE is an undefined scalar variable (or array or hash element)
2762 the variable is assigned a reference to a new anonymous filehandle,
2763 otherwise if FILEHANDLE is an expression, its value is used as the name of
2764 the real filehandle wanted.  (This is considered a symbolic reference, so
2765 C<use strict 'refs'> should I<not> be in effect.)
2766
2767 If EXPR is omitted, the scalar variable of the same name as the
2768 FILEHANDLE contains the filename.  (Note that lexical variables--those
2769 declared with C<my>--will not work for this purpose; so if you're
2770 using C<my>, specify EXPR in your call to open.)
2771
2772 If three or more arguments are specified then the mode of opening and
2773 the file name are separate. If MODE is C<< '<' >> or nothing, the file
2774 is opened for input.  If MODE is C<< '>' >>, the file is truncated and
2775 opened for output, being created if necessary.  If MODE is C<<< '>>' >>>,
2776 the file is opened for appending, again being created if necessary.
2777
2778 You can put a C<'+'> in front of the C<< '>' >> or C<< '<' >> to
2779 indicate that you want both read and write access to the file; thus
2780 C<< '+<' >> is almost always preferred for read/write updates--the C<<
2781 '+>' >> mode would clobber the file first.  You can't usually use
2782 either read-write mode for updating textfiles, since they have
2783 variable length records.  See the B<-i> switch in L<perlrun> for a
2784 better approach.  The file is created with permissions of C<0666>
2785 modified by the process' C<umask> value.
2786
2787 These various prefixes correspond to the fopen(3) modes of C<'r'>,
2788 C<'r+'>, C<'w'>, C<'w+'>, C<'a'>, and C<'a+'>.
2789
2790 In the 2-arguments (and 1-argument) form of the call the mode and
2791 filename should be concatenated (in this order), possibly separated by
2792 spaces.  It is possible to omit the mode in these forms if the mode is
2793 C<< '<' >>.
2794
2795 If the filename begins with C<'|'>, the filename is interpreted as a
2796 command to which output is to be piped, and if the filename ends with a
2797 C<'|'>, the filename is interpreted as a command which pipes output to
2798 us.  See L<perlipc/"Using open() for IPC">
2799 for more examples of this.  (You are not allowed to C<open> to a command
2800 that pipes both in I<and> out, but see L<IPC::Open2>, L<IPC::Open3>,
2801 and L<perlipc/"Bidirectional Communication with Another Process">
2802 for alternatives.)
2803
2804 For three or more arguments if MODE is C<'|-'>, the filename is
2805 interpreted as a command to which output is to be piped, and if MODE
2806 is C<'-|'>, the filename is interpreted as a command which pipes
2807 output to us.  In the 2-arguments (and 1-argument) form one should
2808 replace dash (C<'-'>) with the command.
2809 See L<perlipc/"Using open() for IPC"> for more examples of this.
2810 (You are not allowed to C<open> to a command that pipes both in I<and>
2811 out, but see L<IPC::Open2>, L<IPC::Open3>, and
2812 L<perlipc/"Bidirectional Communication"> for alternatives.)
2813
2814 In the three-or-more argument form of pipe opens, if LIST is specified
2815 (extra arguments after the command name) then LIST becomes arguments
2816 to the command invoked if the platform supports it.  The meaning of
2817 C<open> with more than three arguments for non-pipe modes is not yet
2818 specified. Experimental "layers" may give extra LIST arguments
2819 meaning.
2820
2821 In the 2-arguments (and 1-argument) form opening C<'-'> opens STDIN
2822 and opening C<< '>-' >> opens STDOUT.
2823
2824 You may use the three-argument form of open to specify IO "layers"
2825 (sometimes also referred to as "disciplines") to be applied to the handle
2826 that affect how the input and output are processed (see L<open> and
2827 L<PerlIO> for more details). For example
2828
2829   open(FH, "<:utf8", "file")
2830
2831 will open the UTF-8 encoded file containing Unicode characters,
2832 see L<perluniintro>. (Note that if layers are specified in the
2833 three-arg form then default layers set by the C<open> pragma are
2834 ignored.)
2835
2836 Open returns nonzero upon success, the undefined value otherwise.  If
2837 the C<open> involved a pipe, the return value happens to be the pid of
2838 the subprocess.
2839
2840 If you're running Perl on a system that distinguishes between text
2841 files and binary files, then you should check out L</binmode> for tips
2842 for dealing with this.  The key distinction between systems that need
2843 C<binmode> and those that don't is their text file formats.  Systems
2844 like Unix, Mac OS, and Plan 9, which delimit lines with a single
2845 character, and which encode that character in C as C<"\n">, do not
2846 need C<binmode>.  The rest need it.
2847
2848 When opening a file, it's usually a bad idea to continue normal execution
2849 if the request failed, so C<open> is frequently used in connection with
2850 C<die>.  Even if C<die> won't do what you want (say, in a CGI script,
2851 where you want to make a nicely formatted error message (but there are
2852 modules that can help with that problem)) you should always check
2853 the return value from opening a file.  The infrequent exception is when
2854 working with an unopened filehandle is actually what you want to do.
2855
2856 As a special case the 3 arg form with a read/write mode and the third
2857 argument being C<undef>:
2858
2859     open(TMP, "+>", undef) or die ...
2860
2861 opens a filehandle to an anonymous temporary file.  Also using "+<"
2862 works for symmetry, but you really should consider writing something
2863 to the temporary file first.  You will need to seek() to do the
2864 reading.  Starting from Perl 5.8.1 the temporary files are created
2865 using the File::Temp module for greater portability, in Perl 5.8.0 the
2866 mkstemp() system call (which has known bugs in some platforms) was used.
2867
2868 File handles can be opened to "in memory" files held in Perl scalars via:
2869
2870     open($fh, '>', \$variable) || ..
2871
2872 Though if you try to re-open C<STDOUT> or C<STDERR> as an "in memory"
2873 file, you have to close it first:
2874
2875     close STDOUT;
2876     open STDOUT, '>', \$variable or die "Can't open STDOUT: $!";
2877
2878 Examples:
2879
2880     $ARTICLE = 100;
2881     open ARTICLE or die "Can't find article $ARTICLE: $!\n";
2882     while (<ARTICLE>) {...
2883
2884     open(LOG, '>>/usr/spool/news/twitlog');     # (log is reserved)
2885     # if the open fails, output is discarded
2886
2887     open(DBASE, '+<', 'dbase.mine')             # open for update
2888         or die "Can't open 'dbase.mine' for update: $!";
2889
2890     open(DBASE, '+<dbase.mine')                 # ditto
2891         or die "Can't open 'dbase.mine' for update: $!";
2892
2893     open(ARTICLE, '-|', "caesar <$article")     # decrypt article
2894         or die "Can't start caesar: $!";
2895
2896     open(ARTICLE, "caesar <$article |")         # ditto
2897         or die "Can't start caesar: $!";
2898
2899     open(EXTRACT, "|sort >/tmp/Tmp$$")          # $$ is our process id
2900         or die "Can't start sort: $!";
2901
2902     # in memory files
2903     open(MEMORY,'>', \$var)
2904         or die "Can't open memory file: $!";
2905     print MEMORY "foo!\n";                      # output will end up in $var
2906
2907     # process argument list of files along with any includes
2908
2909     foreach $file (@ARGV) {
2910         process($file, 'fh00');
2911     }
2912
2913     sub process {
2914         my($filename, $input) = @_;
2915         $input++;               # this is a string increment
2916         unless (open($input, $filename)) {
2917             print STDERR "Can't open $filename: $!\n";
2918             return;
2919         }
2920
2921         local $_;
2922         while (<$input>) {              # note use of indirection
2923             if (/^#include "(.*)"/) {
2924                 process($1, $input);
2925                 next;
2926             }
2927             #...                # whatever
2928         }
2929     }
2930
2931 You may also, in the Bourne shell tradition, specify an EXPR beginning
2932 with C<< '>&' >>, in which case the rest of the string is interpreted as the
2933 name of a filehandle (or file descriptor, if numeric) to be
2934 duped and opened.  You may use C<&> after C<< > >>, C<<< >> >>>,
2935 C<< < >>, C<< +> >>, C<<< +>> >>>, and C<< +< >>.  The
2936 mode you specify should match the mode of the original filehandle.
2937 (Duping a filehandle does not take into account any existing contents of
2938 IO buffers.) If you use the 3 arg form then you can pass either a number,
2939 the name of a filehandle or the normal "reference to a glob".
2940
2941 Here is a script that saves, redirects, and restores C<STDOUT> and
2942 C<STDERR> using various methods:
2943
2944     #!/usr/bin/perl
2945     open my $oldout, ">&STDOUT"     or die "Can't dup STDOUT: $!";
2946     open OLDERR,     ">&", \*STDERR or die "Can't dup STDERR: $!";
2947
2948     open STDOUT, '>', "foo.out" or die "Can't redirect STDOUT: $!";
2949     open STDERR, ">&STDOUT"     or die "Can't dup STDOUT: $!";
2950
2951     select STDERR; $| = 1;      # make unbuffered
2952     select STDOUT; $| = 1;      # make unbuffered
2953
2954     print STDOUT "stdout 1\n";  # this works for
2955     print STDERR "stderr 1\n";  # subprocesses too
2956
2957     close STDOUT;
2958     close STDERR;
2959
2960     open STDOUT, ">&", $oldout or die "Can't dup \$oldout: $!";
2961     open STDERR, ">&OLDERR"    or die "Can't dup OLDERR: $!";
2962
2963     print STDOUT "stdout 2\n";
2964     print STDERR "stderr 2\n";
2965
2966 If you specify C<< '<&=N' >>, where C<N> is a number, then Perl will
2967 do an equivalent of C's C<fdopen> of that file descriptor; this is
2968 more parsimonious of file descriptors.  For example:
2969
2970     open(FILEHANDLE, "<&=$fd")
2971
2972 or
2973
2974     open(FILEHANDLE, "<&=", $fd)
2975
2976 Note that if Perl is using the standard C libraries' fdopen() then on
2977 many UNIX systems, fdopen() is known to fail when file descriptors
2978 exceed a certain value, typically 255. If you need more file
2979 descriptors than that, consider rebuilding Perl to use the C<PerlIO>.
2980
2981 You can see whether Perl has been compiled with PerlIO or not by
2982 running C<perl -V> and looking for C<useperlio=> line.  If C<useperlio>
2983 is C<define>, you have PerlIO, otherwise you don't.
2984
2985 If you open a pipe on the command C<'-'>, i.e., either C<'|-'> or C<'-|'>
2986 with 2-arguments (or 1-argument) form of open(), then
2987 there is an implicit fork done, and the return value of open is the pid
2988 of the child within the parent process, and C<0> within the child
2989 process.  (Use C<defined($pid)> to determine whether the open was successful.)
2990 The filehandle behaves normally for the parent, but i/o to that
2991 filehandle is piped from/to the STDOUT/STDIN of the child process.
2992 In the child process the filehandle isn't opened--i/o happens from/to
2993 the new STDOUT or STDIN.  Typically this is used like the normal
2994 piped open when you want to exercise more control over just how the
2995 pipe command gets executed, such as when you are running setuid, and
2996 don't want to have to scan shell commands for metacharacters.
2997 The following triples are more or less equivalent:
2998
2999     open(FOO, "|tr '[a-z]' '[A-Z]'");
3000     open(FOO, '|-', "tr '[a-z]' '[A-Z]'");
3001     open(FOO, '|-') || exec 'tr', '[a-z]', '[A-Z]';
3002     open(FOO, '|-', "tr", '[a-z]', '[A-Z]');
3003
3004     open(FOO, "cat -n '$file'|");
3005     open(FOO, '-|', "cat -n '$file'");
3006     open(FOO, '-|') || exec 'cat', '-n', $file;
3007     open(FOO, '-|', "cat", '-n', $file);
3008
3009 The last example in each block shows the pipe as "list form", which is
3010 not yet supported on all platforms.  A good rule of thumb is that if
3011 your platform has true C<fork()> (in other words, if your platform is
3012 UNIX) you can use the list form.
3013
3014 See L<perlipc/"Safe Pipe Opens"> for more examples of this.
3015
3016 Beginning with v5.6.0, Perl will attempt to flush all files opened for
3017 output before any operation that may do a fork, but this may not be
3018 supported on some platforms (see L<perlport>).  To be safe, you may need
3019 to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
3020 of C<IO::Handle> on any open handles.
3021
3022 On systems that support a close-on-exec flag on files, the flag will
3023 be set for the newly opened file descriptor as determined by the value
3024 of $^F.  See L<perlvar/$^F>.
3025
3026 Closing any piped filehandle causes the parent process to wait for the
3027 child to finish, and returns the status value in C<$?>.
3028
3029 The filename passed to 2-argument (or 1-argument) form of open() will
3030 have leading and trailing whitespace deleted, and the normal
3031 redirection characters honored.  This property, known as "magic open",
3032 can often be used to good effect.  A user could specify a filename of
3033 F<"rsh cat file |">, or you could change certain filenames as needed:
3034
3035     $filename =~ s/(.*\.gz)\s*$/gzip -dc < $1|/;
3036     open(FH, $filename) or die "Can't open $filename: $!";
3037
3038 Use 3-argument form to open a file with arbitrary weird characters in it,
3039
3040     open(FOO, '<', $file);
3041
3042 otherwise it's necessary to protect any leading and trailing whitespace:
3043
3044     $file =~ s#^(\s)#./$1#;
3045     open(FOO, "< $file\0");
3046
3047 (this may not work on some bizarre filesystems).  One should
3048 conscientiously choose between the I<magic> and 3-arguments form
3049 of open():
3050
3051     open IN, $ARGV[0];
3052
3053 will allow the user to specify an argument of the form C<"rsh cat file |">,
3054 but will not work on a filename which happens to have a trailing space, while
3055
3056     open IN, '<', $ARGV[0];
3057
3058 will have exactly the opposite restrictions.
3059
3060 If you want a "real" C C<open> (see L<open(2)> on your system), then you
3061 should use the C<sysopen> function, which involves no such magic (but
3062 may use subtly different filemodes than Perl open(), which is mapped
3063 to C fopen()).  This is
3064 another way to protect your filenames from interpretation.  For example:
3065
3066     use IO::Handle;
3067     sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)
3068         or die "sysopen $path: $!";
3069     $oldfh = select(HANDLE); $| = 1; select($oldfh);
3070     print HANDLE "stuff $$\n";
3071     seek(HANDLE, 0, 0);
3072     print "File contains: ", <HANDLE>;
3073
3074 Using the constructor from the C<IO::Handle> package (or one of its
3075 subclasses, such as C<IO::File> or C<IO::Socket>), you can generate anonymous
3076 filehandles that have the scope of whatever variables hold references to
3077 them, and automatically close whenever and however you leave that scope:
3078
3079     use IO::File;
3080     #...
3081     sub read_myfile_munged {
3082         my $ALL = shift;
3083         my $handle = new IO::File;
3084         open($handle, "myfile") or die "myfile: $!";
3085         $first = <$handle>
3086             or return ();     # Automatically closed here.
3087         mung $first or die "mung failed";       # Or here.
3088         return $first, <$handle> if $ALL;       # Or here.
3089         $first;                                 # Or here.
3090     }
3091
3092 See L</seek> for some details about mixing reading and writing.
3093
3094 =item opendir DIRHANDLE,EXPR
3095
3096 Opens a directory named EXPR for processing by C<readdir>, C<telldir>,
3097 C<seekdir>, C<rewinddir>, and C<closedir>.  Returns true if successful.
3098 DIRHANDLE may be an expression whose value can be used as an indirect
3099 dirhandle, usually the real dirhandle name.  If DIRHANDLE is an undefined
3100 scalar variable (or array or hash element), the variable is assigned a
3101 reference to a new anonymous dirhandle.
3102 DIRHANDLEs have their own namespace separate from FILEHANDLEs.
3103
3104 =item ord EXPR
3105
3106 =item ord
3107
3108 Returns the numeric (the native 8-bit encoding, like ASCII or EBCDIC,
3109 or Unicode) value of the first character of EXPR.  If EXPR is omitted,
3110 uses C<$_>.
3111
3112 For the reverse, see L</chr>.
3113 See L<perlunicode> and L<encoding> for more about Unicode.
3114
3115 =item our EXPR
3116
3117 =item our EXPR TYPE
3118
3119 =item our EXPR : ATTRS
3120
3121 =item our TYPE EXPR : ATTRS
3122
3123 An C<our> declares the listed variables to be valid globals within
3124 the enclosing block, file, or C<eval>.  That is, it has the same
3125 scoping rules as a "my" declaration, but does not create a local
3126 variable.  If more than one value is listed, the list must be placed
3127 in parentheses.  The C<our> declaration has no semantic effect unless
3128 "use strict vars" is in effect, in which case it lets you use the
3129 declared global variable without qualifying it with a package name.
3130 (But only within the lexical scope of the C<our> declaration.  In this
3131 it differs from "use vars", which is package scoped.)
3132
3133 An C<our> declaration declares a global variable that will be visible
3134 across its entire lexical scope, even across package boundaries.  The
3135 package in which the variable is entered is determined at the point
3136 of the declaration, not at the point of use.  This means the following
3137 behavior holds:
3138
3139     package Foo;
3140     our $bar;           # declares $Foo::bar for rest of lexical scope
3141     $bar = 20;
3142
3143     package Bar;
3144     print $bar;         # prints 20
3145
3146 Multiple C<our> declarations in the same lexical scope are allowed
3147 if they are in different packages.  If they happened to be in the same
3148 package, Perl will emit warnings if you have asked for them.
3149
3150     use warnings;
3151     package Foo;
3152     our $bar;           # declares $Foo::bar for rest of lexical scope
3153     $bar = 20;
3154
3155     package Bar;
3156     our $bar = 30;      # declares $Bar::bar for rest of lexical scope
3157     print $bar;         # prints 30
3158
3159     our $bar;           # emits warning
3160
3161 An C<our> declaration may also have a list of attributes associated
3162 with it.
3163
3164 The exact semantics and interface of TYPE and ATTRS are still
3165 evolving.  TYPE is currently bound to the use of C<fields> pragma,
3166 and attributes are handled using the C<attributes> pragma, or starting
3167 from Perl 5.8.0 also via the C<Attribute::Handlers> module.  See
3168 L<perlsub/"Private Variables via my()"> for details, and L<fields>,
3169 L<attributes>, and L<Attribute::Handlers>.
3170
3171 The only currently recognized C<our()> attribute is C<unique> which
3172 indicates that a single copy of the global is to be used by all
3173 interpreters should the program happen to be running in a
3174 multi-interpreter environment. (The default behaviour would be for
3175 each interpreter to have its own copy of the global.)  Examples:
3176
3177     our @EXPORT : unique = qw(foo);
3178     our %EXPORT_TAGS : unique = (bar => [qw(aa bb cc)]);
3179     our $VERSION : unique = "1.00";
3180
3181 Note that this attribute also has the effect of making the global
3182 readonly when the first new interpreter is cloned (for example,
3183 when the first new thread is created).
3184
3185 Multi-interpreter environments can come to being either through the
3186 fork() emulation on Windows platforms, or by embedding perl in a
3187 multi-threaded application.  The C<unique> attribute does nothing in
3188 all other environments.
3189
3190 =item pack TEMPLATE,LIST
3191
3192 Takes a LIST of values and converts it into a string using the rules
3193 given by the TEMPLATE.  The resulting string is the concatenation of
3194 the converted values.  Typically, each converted value looks
3195 like its machine-level representation.  For example, on 32-bit machines
3196 a converted integer may be represented by a sequence of 4 bytes.
3197
3198 The TEMPLATE is a sequence of characters that give the order and type
3199 of values, as follows:
3200
3201     a   A string with arbitrary binary data, will be null padded.
3202     A   A text (ASCII) string, will be space padded.
3203     Z   A null terminated (ASCIZ) string, will be null padded.
3204
3205     b   A bit string (ascending bit order inside each byte, like vec()).
3206     B   A bit string (descending bit order inside each byte).
3207     h   A hex string (low nybble first).
3208     H   A hex string (high nybble first).
3209
3210     c   A signed char value.
3211     C   An unsigned char value.  Only does bytes.  See U for Unicode.
3212
3213     s   A signed short value.
3214     S   An unsigned short value.
3215           (This 'short' is _exactly_ 16 bits, which may differ from
3216            what a local C compiler calls 'short'.  If you want
3217            native-length shorts, use the '!' suffix.)
3218
3219     i   A signed integer value.
3220     I   An unsigned integer value.
3221           (This 'integer' is _at_least_ 32 bits wide.  Its exact
3222            size depends on what a local C compiler calls 'int',
3223            and may even be larger than the 'long' described in
3224            the next item.)
3225
3226     l   A signed long value.
3227     L   An unsigned long value.
3228           (This 'long' is _exactly_ 32 bits, which may differ from
3229            what a local C compiler calls 'long'.  If you want
3230            native-length longs, use the '!' suffix.)
3231
3232     n   An unsigned short in "network" (big-endian) order.
3233     N   An unsigned long in "network" (big-endian) order.
3234     v   An unsigned short in "VAX" (little-endian) order.
3235     V   An unsigned long in "VAX" (little-endian) order.
3236           (These 'shorts' and 'longs' are _exactly_ 16 bits and
3237            _exactly_ 32 bits, respectively.)
3238
3239     q   A signed quad (64-bit) value.
3240     Q   An unsigned quad value.
3241           (Quads are available only if your system supports 64-bit
3242            integer values _and_ if Perl has been compiled to support those.
3243            Causes a fatal error otherwise.)
3244
3245     j   A signed integer value (a Perl internal integer, IV).
3246     J   An unsigned integer value (a Perl internal unsigned integer, UV).
3247
3248     f   A single-precision float in the native format.
3249     d   A double-precision float in the native format.
3250
3251     F   A floating point value in the native native format
3252            (a Perl internal floating point value, NV).
3253     D   A long double-precision float in the native format.
3254           (Long doubles are available only if your system supports long
3255            double values _and_ if Perl has been compiled to support those.
3256            Causes a fatal error otherwise.)
3257
3258     p   A pointer to a null-terminated string.
3259     P   A pointer to a structure (fixed-length string).
3260
3261     u   A uuencoded string.
3262     U   A Unicode character number.  Encodes to UTF-8 internally
3263         (or UTF-EBCDIC in EBCDIC platforms).
3264
3265     w   A BER compressed integer.  Its bytes represent an unsigned
3266         integer in base 128, most significant digit first, with as
3267         few digits as possible.  Bit eight (the high bit) is set
3268         on each byte except the last.
3269
3270     x   A null byte.
3271     X   Back up a byte.
3272     @   Null fill to absolute position, counted from the start of
3273         the innermost ()-group.
3274     (   Start of a ()-group.
3275
3276 The following rules apply:
3277
3278 =over 8
3279
3280 =item *
3281
3282 Each letter may optionally be followed by a number giving a repeat
3283 count.  With all types except C<a>, C<A>, C<Z>, C<b>, C<B>, C<h>,
3284 C<H>, C<@>, C<x>, C<X> and C<P> the pack function will gobble up that
3285 many values from the LIST.  A C<*> for the repeat count means to use
3286 however many items are left, except for C<@>, C<x>, C<X>, where it is
3287 equivalent to C<0>, and C<u>, where it is equivalent to 1 (or 45, what
3288 is the same).  A numeric repeat count may optionally be enclosed in
3289 brackets, as in C<pack 'C[80]', @arr>.
3290
3291 One can replace the numeric repeat count by a template enclosed in brackets;
3292 then the packed length of this template in bytes is used as a count.
3293 For example, C<x[L]> skips a long (it skips the number of bytes in a long);
3294 the template C<$t X[$t] $t> unpack()s twice what $t unpacks.
3295 If the template in brackets contains alignment commands (such as C<x![d]>),
3296 its packed length is calculated as if the start of the template has the maximal
3297 possible alignment.
3298
3299 When used with C<Z>, C<*> results in the addition of a trailing null
3300 byte (so the packed result will be one longer than the byte C<length>
3301 of the item).
3302
3303 The repeat count for C<u> is interpreted as the maximal number of bytes
3304 to encode per line of output, with 0 and 1 replaced by 45.
3305
3306 =item *
3307
3308 The C<a>, C<A>, and C<Z> types gobble just one value, but pack it as a
3309 string of length count, padding with nulls or spaces as necessary.  When
3310 unpacking, C<A> strips trailing spaces and nulls, C<Z> strips everything
3311 after the first null, and C<a> returns data verbatim.  When packing,
3312 C<a>, and C<Z> are equivalent.
3313
3314 If the value-to-pack is too long, it is truncated.  If too long and an
3315 explicit count is provided, C<Z> packs only C<$count-1> bytes, followed
3316 by a null byte.  Thus C<Z> always packs a trailing null byte under
3317 all circumstances.
3318
3319 =item *
3320
3321 Likewise, the C<b> and C<B> fields pack a string that many bits long.
3322 Each byte of the input field of pack() generates 1 bit of the result.
3323 Each result bit is based on the least-significant bit of the corresponding
3324 input byte, i.e., on C<ord($byte)%2>.  In particular, bytes C<"0"> and
3325 C<"1"> generate bits 0 and 1, as do bytes C<"\0"> and C<"\1">.
3326
3327 Starting from the beginning of the input string of pack(), each 8-tuple
3328 of bytes is converted to 1 byte of output.  With format C<b>
3329 the first byte of the 8-tuple determines the least-significant bit of a
3330 byte, and with format C<B> it determines the most-significant bit of
3331 a byte.
3332
3333 If the length of the input string is not exactly divisible by 8, the
3334 remainder is packed as if the input string were padded by null bytes
3335 at the end.  Similarly, during unpack()ing the "extra" bits are ignored.
3336
3337 If the input string of pack() is longer than needed, extra bytes are ignored.
3338 A C<*> for the repeat count of pack() means to use all the bytes of
3339 the input field.  On unpack()ing the bits are converted to a string
3340 of C<"0">s and C<"1">s.
3341
3342 =item *
3343
3344 The C<h> and C<H> fields pack a string that many nybbles (4-bit groups,
3345 representable as hexadecimal digits, 0-9a-f) long.
3346
3347 Each byte of the input field of pack() generates 4 bits of the result.
3348 For non-alphabetical bytes the result is based on the 4 least-significant
3349 bits of the input byte, i.e., on C<ord($byte)%16>.  In particular,
3350 bytes C<"0"> and C<"1"> generate nybbles 0 and 1, as do bytes
3351 C<"\0"> and C<"\1">.  For bytes C<"a".."f"> and C<"A".."F"> the result
3352 is compatible with the usual hexadecimal digits, so that C<"a"> and
3353 C<"A"> both generate the nybble C<0xa==10>.  The result for bytes
3354 C<"g".."z"> and C<"G".."Z"> is not well-defined.
3355
3356 Starting from the beginning of the input string of pack(), each pair
3357 of bytes is converted to 1 byte of output.  With format C<h> the
3358 first byte of the pair determines the least-significant nybble of the
3359 output byte, and with format C<H> it determines the most-significant
3360 nybble.
3361
3362 If the length of the input string is not even, it behaves as if padded
3363 by a null byte at the end.  Similarly, during unpack()ing the "extra"
3364 nybbles are ignored.
3365
3366 If the input string of pack() is longer than needed, extra bytes are ignored.
3367 A C<*> for the repeat count of pack() means to use all the bytes of
3368 the input field.  On unpack()ing the bits are converted to a string
3369 of hexadecimal digits.
3370
3371 =item *
3372
3373 The C<p> type packs a pointer to a null-terminated string.  You are
3374 responsible for ensuring the string is not a temporary value (which can
3375 potentially get deallocated before you get around to using the packed result).
3376 The C<P> type packs a pointer to a structure of the size indicated by the
3377 length.  A NULL pointer is created if the corresponding value for C<p> or
3378 C<P> is C<undef>, similarly for unpack().
3379
3380 =item *
3381
3382 The C</> template character allows packing and unpacking of strings where
3383 the packed structure contains a byte count followed by the string itself.
3384 You write I<length-item>C</>I<string-item>.
3385
3386 The I<length-item> can be any C<pack> template letter, and describes
3387 how the length value is packed.  The ones likely to be of most use are
3388 integer-packing ones like C<n> (for Java strings), C<w> (for ASN.1 or
3389 SNMP) and C<N> (for Sun XDR).
3390
3391 For C<pack>, the I<string-item> must, at present, be C<"A*">, C<"a*"> or
3392 C<"Z*">. For C<unpack> the length of the string is obtained from the
3393 I<length-item>, but if you put in the '*' it will be ignored. For all other
3394 codes, C<unpack> applies the length value to the next item, which must not
3395 have a repeat count.
3396
3397     unpack 'C/a', "\04Gurusamy";        gives 'Guru'
3398     unpack 'a3/A* A*', '007 Bond  J ';  gives (' Bond','J')
3399     pack 'n/a* w/a*','hello,','world';  gives "\000\006hello,\005world"
3400
3401 The I<length-item> is not returned explicitly from C<unpack>.
3402
3403 Adding a count to the I<length-item> letter is unlikely to do anything
3404 useful, unless that letter is C<A>, C<a> or C<Z>.  Packing with a
3405 I<length-item> of C<a> or C<Z> may introduce C<"\000"> characters,
3406 which Perl does not regard as legal in numeric strings.
3407
3408 =item *
3409
3410 The integer types C<s>, C<S>, C<l>, and C<L> may be
3411 immediately followed by a C<!> suffix to signify native shorts or
3412 longs--as you can see from above for example a bare C<l> does mean
3413 exactly 32 bits, the native C<long> (as seen by the local C compiler)
3414 may be larger.  This is an issue mainly in 64-bit platforms.  You can
3415 see whether using C<!> makes any difference by
3416
3417         print length(pack("s")), " ", length(pack("s!")), "\n";
3418         print length(pack("l")), " ", length(pack("l!")), "\n";
3419
3420 C<i!> and C<I!> also work but only because of completeness;
3421 they are identical to C<i> and C<I>.
3422
3423 The actual sizes (in bytes) of native shorts, ints, longs, and long
3424 longs on the platform where Perl was built are also available via
3425 L<Config>:
3426
3427        use Config;
3428        print $Config{shortsize},    "\n";
3429        print $Config{intsize},      "\n";
3430        print $Config{longsize},     "\n";
3431        print $Config{longlongsize}, "\n";
3432
3433 (The C<$Config{longlongsize}> will be undefined if your system does
3434 not support long longs.)
3435
3436 =item *
3437
3438 The integer formats C<s>, C<S>, C<i>, C<I>, C<l>, C<L>, C<j>, and C<J>
3439 are inherently non-portable between processors and operating systems
3440 because they obey the native byteorder and endianness.  For example a
3441 4-byte integer 0x12345678 (305419896 decimal) would be ordered natively
3442 (arranged in and handled by the CPU registers) into bytes as
3443
3444         0x12 0x34 0x56 0x78     # big-endian
3445         0x78 0x56 0x34 0x12     # little-endian
3446
3447 Basically, the Intel and VAX CPUs are little-endian, while everybody
3448 else, for example Motorola m68k/88k, PPC, Sparc, HP PA, Power, and
3449 Cray are big-endian.  Alpha and MIPS can be either: Digital/Compaq
3450 used/uses them in little-endian mode; SGI/Cray uses them in big-endian
3451 mode.
3452
3453 The names `big-endian' and `little-endian' are comic references to
3454 the classic "Gulliver's Travels" (via the paper "On Holy Wars and a
3455 Plea for Peace" by Danny Cohen, USC/ISI IEN 137, April 1, 1980) and
3456 the egg-eating habits of the Lilliputians.
3457
3458 Some systems may have even weirder byte orders such as
3459
3460         0x56 0x78 0x12 0x34
3461         0x34 0x12 0x78 0x56
3462
3463 You can see your system's preference with
3464
3465         print join(" ", map { sprintf "%#02x", $_ }
3466                             unpack("C*",pack("L",0x12345678))), "\n";
3467
3468 The byteorder on the platform where Perl was built is also available
3469 via L<Config>:
3470
3471         use Config;
3472         print $Config{byteorder}, "\n";
3473
3474 Byteorders C<'1234'> and C<'12345678'> are little-endian, C<'4321'>
3475 and C<'87654321'> are big-endian.
3476
3477 If you want portable packed integers use the formats C<n>, C<N>,
3478 C<v>, and C<V>, their byte endianness and size are known.
3479 See also L<perlport>.
3480
3481 =item *
3482
3483 Real numbers (floats and doubles) are in the native machine format only;
3484 due to the multiplicity of floating formats around, and the lack of a
3485 standard "network" representation, no facility for interchange has been
3486 made.  This means that packed floating point data written on one machine
3487 may not be readable on another - even if both use IEEE floating point
3488 arithmetic (as the endian-ness of the memory representation is not part
3489 of the IEEE spec).  See also L<perlport>.
3490
3491 Note that Perl uses doubles internally for all numeric calculation, and
3492 converting from double into float and thence back to double again will
3493 lose precision (i.e., C<unpack("f", pack("f", $foo)>) will not in general
3494 equal $foo).
3495
3496 =item *
3497
3498 If the pattern begins with a C<U>, the resulting string will be treated
3499 as Unicode-encoded. You can force UTF8 encoding on in a string with an
3500 initial C<U0>, and the bytes that follow will be interpreted as Unicode
3501 characters. If you don't want this to happen, you can begin your pattern
3502 with C<C0> (or anything else) to force Perl not to UTF8 encode your
3503 string, and then follow this with a C<U*> somewhere in your pattern.
3504
3505 =item *
3506
3507 You must yourself do any alignment or padding by inserting for example
3508 enough C<'x'>es while packing.  There is no way to pack() and unpack()
3509 could know where the bytes are going to or coming from.  Therefore
3510 C<pack> (and C<unpack>) handle their output and input as flat
3511 sequences of bytes.
3512
3513 =item *
3514
3515 A ()-group is a sub-TEMPLATE enclosed in parentheses.  A group may
3516 take a repeat count, both as postfix, and for unpack() also via the C</>
3517 template character. Within each repetition of a group, positioning with
3518 C<@> starts again at 0. Therefore, the result of
3519
3520     pack( '@1A((@2A)@3A)', 'a', 'b', 'c' )
3521
3522 is the string "\0a\0\0bc".
3523
3524
3525 =item *
3526
3527 C<x> and C<X> accept C<!> modifier.  In this case they act as
3528 alignment commands: they jump forward/back to the closest position
3529 aligned at a multiple of C<count> bytes.  For example, to pack() or
3530 unpack() C's C<struct {char c; double d; char cc[2]}> one may need to
3531 use the template C<C x![d] d C[2]>; this assumes that doubles must be
3532 aligned on the double's size.
3533
3534 For alignment commands C<count> of 0 is equivalent to C<count> of 1;
3535 both result in no-ops.
3536
3537 =item *
3538
3539 A comment in a TEMPLATE starts with C<#> and goes to the end of line.
3540 White space may be used to separate pack codes from each other, but
3541 a C<!> modifier and a repeat count must follow immediately.
3542
3543 =item *
3544
3545 If TEMPLATE requires more arguments to pack() than actually given, pack()
3546 assumes additional C<""> arguments.  If TEMPLATE requires less arguments
3547 to pack() than actually given, extra arguments are ignored.
3548
3549 =back
3550
3551 Examples:
3552
3553     $foo = pack("CCCC",65,66,67,68);
3554     # foo eq "ABCD"
3555     $foo = pack("C4",65,66,67,68);
3556     # same thing
3557     $foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
3558     # same thing with Unicode circled letters
3559
3560     $foo = pack("ccxxcc",65,66,67,68);
3561     # foo eq "AB\0\0CD"
3562
3563     # note: the above examples featuring "C" and "c" are true
3564     # only on ASCII and ASCII-derived systems such as ISO Latin 1
3565     # and UTF-8.  In EBCDIC the first example would be
3566     # $foo = pack("CCCC",193,194,195,196);
3567
3568     $foo = pack("s2",1,2);
3569     # "\1\0\2\0" on little-endian
3570     # "\0\1\0\2" on big-endian
3571
3572     $foo = pack("a4","abcd","x","y","z");
3573     # "abcd"
3574
3575     $foo = pack("aaaa","abcd","x","y","z");
3576     # "axyz"
3577
3578     $foo = pack("a14","abcdefg");
3579     # "abcdefg\0\0\0\0\0\0\0"
3580
3581     $foo = pack("i9pl", gmtime);
3582     # a real struct tm (on my system anyway)
3583
3584     $utmp_template = "Z8 Z8 Z16 L";
3585     $utmp = pack($utmp_template, @utmp1);
3586     # a struct utmp (BSDish)
3587
3588     @utmp2 = unpack($utmp_template, $utmp);
3589     # "@utmp1" eq "@utmp2"
3590
3591     sub bintodec {
3592         unpack("N", pack("B32", substr("0" x 32 . shift, -32)));
3593     }
3594
3595     $foo = pack('sx2l', 12, 34);
3596     # short 12, two zero bytes padding, long 34
3597     $bar = pack('s@4l', 12, 34);
3598     # short 12, zero fill to position 4, long 34
3599     # $foo eq $bar
3600
3601 The same template may generally also be used in unpack().
3602
3603 =item package NAMESPACE
3604
3605 =item package
3606
3607 Declares the compilation unit as being in the given namespace.  The scope
3608 of the package declaration is from the declaration itself through the end
3609 of the enclosing block, file, or eval (the same as the C<my> operator).
3610 All further unqualified dynamic identifiers will be in this namespace.
3611 A package statement affects only dynamic variables--including those
3612 you've used C<local> on--but I<not> lexical variables, which are created
3613 with C<my>.  Typically it would be the first declaration in a file to
3614 be included by the C<require> or C<use> operator.  You can switch into a
3615 package in more than one place; it merely influences which symbol table
3616 is used by the compiler for the rest of that block.  You can refer to
3617 variables and filehandles in other packages by prefixing the identifier
3618 with the package name and a double colon:  C<$Package::Variable>.
3619 If the package name is null, the C<main> package as assumed.  That is,
3620 C<$::sail> is equivalent to C<$main::sail> (as well as to C<$main'sail>,
3621 still seen in older code).
3622
3623 If NAMESPACE is omitted, then there is no current package, and all
3624 identifiers must be fully qualified or lexicals.  However, you are
3625 strongly advised not to make use of this feature. Its use can cause
3626 unexpected behaviour, even crashing some versions of Perl. It is
3627 deprecated, and will be removed from a future release.
3628
3629 See L<perlmod/"Packages"> for more information about packages, modules,
3630 and classes.  See L<perlsub> for other scoping issues.
3631
3632 =item pipe READHANDLE,WRITEHANDLE
3633
3634 Opens a pair of connected pipes like the corresponding system call.
3635 Note that if you set up a loop of piped processes, deadlock can occur
3636 unless you are very careful.  In addition, note that Perl's pipes use
3637 IO buffering, so you may need to set C<$|> to flush your WRITEHANDLE
3638 after each command, depending on the application.
3639
3640 See L<IPC::Open2>, L<IPC::Open3>, and L<perlipc/"Bidirectional Communication">
3641 for examples of such things.
3642
3643 On systems that support a close-on-exec flag on files, the flag will be set
3644 for the newly opened file descriptors as determined by the value of $^F.
3645 See L<perlvar/$^F>.
3646
3647 =item pop ARRAY
3648
3649 =item pop
3650
3651 Pops and returns the last value of the array, shortening the array by
3652 one element.  Has an effect similar to
3653
3654     $ARRAY[$#ARRAY--]
3655
3656 If there are no elements in the array, returns the undefined value
3657 (although this may happen at other times as well).  If ARRAY is
3658 omitted, pops the C<@ARGV> array in the main program, and the C<@_>
3659 array in subroutines, just like C<shift>.
3660
3661 =item pos SCALAR
3662
3663 =item pos
3664
3665 Returns the offset of where the last C<m//g> search left off for the variable
3666 in question (C<$_> is used when the variable is not specified).  May be
3667 modified to change that offset.  Such modification will also influence
3668 the C<\G> zero-width assertion in regular expressions.  See L<perlre> and
3669 L<perlop>.
3670
3671 =item print FILEHANDLE LIST
3672
3673 =item print LIST
3674
3675 =item print
3676
3677 Prints a string or a list of strings.  Returns true if successful.
3678 FILEHANDLE may be a scalar variable name, in which case the variable
3679 contains the name of or a reference to the filehandle, thus introducing
3680 one level of indirection.  (NOTE: If FILEHANDLE is a variable and
3681 the next token is a term, it may be misinterpreted as an operator
3682 unless you interpose a C<+> or put parentheses around the arguments.)
3683 If FILEHANDLE is omitted, prints by default to standard output (or
3684 to the last selected output channel--see L</select>).  If LIST is
3685 also omitted, prints C<$_> to the currently selected output channel.
3686 To set the default output channel to something other than STDOUT
3687 use the select operation.  The current value of C<$,> (if any) is
3688 printed between each LIST item.  The current value of C<$\> (if
3689 any) is printed after the entire LIST has been printed.  Because
3690 print takes a LIST, anything in the LIST is evaluated in list
3691 context, and any subroutine that you call will have one or more of
3692 its expressions evaluated in list context.  Also be careful not to
3693 follow the print keyword with a left parenthesis unless you want
3694 the corresponding right parenthesis to terminate the arguments to
3695 the print--interpose a C<+> or put parentheses around all the
3696 arguments.
3697
3698 Note that if you're storing FILEHANDLES in an array or other expression,
3699 you will have to use a block returning its value instead:
3700
3701     print { $files[$i] } "stuff\n";
3702     print { $OK ? STDOUT : STDERR } "stuff\n";
3703
3704 =item printf FILEHANDLE FORMAT, LIST
3705
3706 =item printf FORMAT, LIST
3707
3708 Equivalent to C<print FILEHANDLE sprintf(FORMAT, LIST)>, except that C<$\>
3709 (the output record separator) is not appended.  The first argument
3710 of the list will be interpreted as the C<printf> format. See C<sprintf>
3711 for an explanation of the format argument. If C<use locale> is in effect,
3712 the character used for the decimal point in formatted real numbers is
3713 affected by the LC_NUMERIC locale.  See L<perllocale>.
3714
3715 Don't fall into the trap of using a C<printf> when a simple
3716 C<print> would do.  The C<print> is more efficient and less
3717 error prone.
3718
3719 =item prototype FUNCTION
3720
3721 Returns the prototype of a function as a string (or C<undef> if the
3722 function has no prototype).  FUNCTION is a reference to, or the name of,
3723 the function whose prototype you want to retrieve.
3724
3725 If FUNCTION is a string starting with C<CORE::>, the rest is taken as a
3726 name for Perl builtin.  If the builtin is not I<overridable> (such as
3727 C<qw//>) or its arguments cannot be expressed by a prototype (such as
3728 C<system>) returns C<undef> because the builtin does not really behave
3729 like a Perl function.  Otherwise, the string describing the equivalent
3730 prototype is returned.
3731
3732 =item push ARRAY,LIST
3733
3734 Treats ARRAY as a stack, and pushes the values of LIST
3735 onto the end of ARRAY.  The length of ARRAY increases by the length of
3736 LIST.  Has the same effect as
3737
3738     for $value (LIST) {
3739         $ARRAY[++$#ARRAY] = $value;
3740     }
3741
3742 but is more efficient.  Returns the new number of elements in the array.
3743
3744 =item q/STRING/
3745
3746 =item qq/STRING/
3747
3748 =item qr/STRING/
3749
3750 =item qx/STRING/
3751
3752 =item qw/STRING/
3753
3754 Generalized quotes.  See L<perlop/"Regexp Quote-Like Operators">.
3755
3756 =item quotemeta EXPR
3757
3758 =item quotemeta
3759
3760 Returns the value of EXPR with all non-"word"
3761 characters backslashed.  (That is, all characters not matching
3762 C</[A-Za-z_0-9]/> will be preceded by a backslash in the
3763 returned string, regardless of any locale settings.)
3764 This is the internal function implementing
3765 the C<\Q> escape in double-quoted strings.
3766
3767 If EXPR is omitted, uses C<$_>.
3768
3769 =item rand EXPR
3770
3771 =item rand
3772
3773 Returns a random fractional number greater than or equal to C<0> and less
3774 than the value of EXPR.  (EXPR should be positive.)  If EXPR is
3775 omitted, the value C<1> is used.  Currently EXPR with the value C<0> is
3776 also special-cased as C<1> - this has not been documented before perl 5.8.0
3777 and is subject to change in future versions of perl.  Automatically calls
3778 C<srand> unless C<srand> has already been called.  See also C<srand>.
3779
3780 Apply C<int()> to the value returned by C<rand()> if you want random
3781 integers instead of random fractional numbers.  For example,
3782
3783     int(rand(10))
3784
3785 returns a random integer between C<0> and C<9>, inclusive.
3786
3787 (Note: If your rand function consistently returns numbers that are too
3788 large or too small, then your version of Perl was probably compiled
3789 with the wrong number of RANDBITS.)
3790
3791 =item read FILEHANDLE,SCALAR,LENGTH,OFFSET
3792
3793 =item read FILEHANDLE,SCALAR,LENGTH
3794
3795 Attempts to read LENGTH I<characters> of data into variable SCALAR
3796 from the specified FILEHANDLE.  Returns the number of characters
3797 actually read, C<0> at end of file, or undef if there was an error (in
3798 the latter case C<$!> is also set).  SCALAR will be grown or shrunk to
3799 the length actually read.  If SCALAR needs growing, the new bytes will
3800 be zero bytes.  An OFFSET may be specified to place the read data into
3801 some other place in SCALAR than the beginning.  The call is actually
3802 implemented in terms of either Perl's or system's fread() call.  To
3803 get a true read(2) system call, see C<sysread>.
3804
3805 Note the I<characters>: depending on the status of the filehandle,
3806 either (8-bit) bytes or characters are read.  By default all
3807 filehandles operate on bytes, but for example if the filehandle has
3808 been opened with the C<:utf8> I/O layer (see L</open>, and the C<open>
3809 pragma, L<open>), the I/O will operate on characters, not bytes.
3810
3811 =item readdir DIRHANDLE
3812
3813 Returns the next directory entry for a directory opened by C<opendir>.
3814 If used in list context, returns all the rest of the entries in the
3815 directory.  If there are no more entries, returns an undefined value in
3816 scalar context or a null list in list context.
3817
3818 If you're planning to filetest the return values out of a C<readdir>, you'd
3819 better prepend the directory in question.  Otherwise, because we didn't
3820 C<chdir> there, it would have been testing the wrong file.
3821
3822     opendir(DIR, $some_dir) || die "can't opendir $some_dir: $!";
3823     @dots = grep { /^\./ && -f "$some_dir/$_" } readdir(DIR);
3824     closedir DIR;
3825
3826 =item readline EXPR
3827
3828 Reads from the filehandle whose typeglob is contained in EXPR.  In scalar
3829 context, each call reads and returns the next line, until end-of-file is
3830 reached, whereupon the subsequent call returns undef.  In list context,
3831 reads until end-of-file is reached and returns a list of lines.  Note that
3832 the notion of "line" used here is however you may have defined it
3833 with C<$/> or C<$INPUT_RECORD_SEPARATOR>).  See L<perlvar/"$/">.
3834
3835 When C<$/> is set to C<undef>, when readline() is in scalar
3836 context (i.e. file slurp mode), and when an empty file is read, it
3837 returns C<''> the first time, followed by C<undef> subsequently.
3838
3839 This is the internal function implementing the C<< <EXPR> >>
3840 operator, but you can use it directly.  The C<< <EXPR> >>
3841 operator is discussed in more detail in L<perlop/"I/O Operators">.
3842
3843     $line = <STDIN>;
3844     $line = readline(*STDIN);           # same thing
3845
3846 If readline encounters an operating system error, C<$!> will be set with the
3847 corresponding error message.  It can be helpful to check C<$!> when you are
3848 reading from filehandles you don't trust, such as a tty or a socket.  The
3849 following example uses the operator form of C<readline>, and takes the necessary
3850 steps to ensure that C<readline> was successful.
3851
3852     for (;;) {
3853         undef $!;
3854         unless (defined( $line = <> )) {
3855             die $! if $!;
3856             last; # reached EOF
3857         }
3858         # ...
3859     }
3860
3861 =item readlink EXPR
3862
3863 =item readlink
3864
3865 Returns the value of a symbolic link, if symbolic links are
3866 implemented.  If not, gives a fatal error.  If there is some system
3867 error, returns the undefined value and sets C<$!> (errno).  If EXPR is
3868 omitted, uses C<$_>.
3869
3870 =item readpipe EXPR
3871
3872 EXPR is executed as a system command.
3873 The collected standard output of the command is returned.
3874 In scalar context, it comes back as a single (potentially
3875 multi-line) string.  In list context, returns a list of lines
3876 (however you've defined lines with C<$/> or C<$INPUT_RECORD_SEPARATOR>).
3877 This is the internal function implementing the C<qx/EXPR/>
3878 operator, but you can use it directly.  The C<qx/EXPR/>
3879 operator is discussed in more detail in L<perlop/"I/O Operators">.
3880
3881 =item recv SOCKET,SCALAR,LENGTH,FLAGS
3882
3883 Receives a message on a socket.  Attempts to receive LENGTH characters
3884 of data into variable SCALAR from the specified SOCKET filehandle.
3885 SCALAR will be grown or shrunk to the length actually read.  Takes the
3886 same flags as the system call of the same name.  Returns the address
3887 of the sender if SOCKET's protocol supports this; returns an empty
3888 string otherwise.  If there's an error, returns the undefined value.
3889 This call is actually implemented in terms of recvfrom(2) system call.
3890 See L<perlipc/"UDP: Message Passing"> for examples.
3891
3892 Note the I<characters>: depending on the status of the socket, either
3893 (8-bit) bytes or characters are received.  By default all sockets
3894 operate on bytes, but for example if the socket has been changed using
3895 binmode() to operate with the C<:utf8> I/O layer (see the C<open>
3896 pragma, L<open>), the I/O will operate on characters, not bytes.
3897
3898 =item redo LABEL
3899
3900 =item redo
3901
3902 The C<redo> command restarts the loop block without evaluating the
3903 conditional again.  The C<continue> block, if any, is not executed.  If
3904 the LABEL is omitted, the command refers to the innermost enclosing
3905 loop.  This command is normally used by programs that want to lie to
3906 themselves about what was just input:
3907
3908     # a simpleminded Pascal comment stripper
3909     # (warning: assumes no { or } in strings)
3910     LINE: while (<STDIN>) {
3911         while (s|({.*}.*){.*}|$1 |) {}
3912         s|{.*}| |;
3913         if (s|{.*| |) {
3914             $front = $_;
3915             while (<STDIN>) {
3916                 if (/}/) {      # end of comment?
3917                     s|^|$front\{|;
3918                     redo LINE;
3919                 }
3920             }
3921         }
3922         print;
3923     }
3924
3925 C<redo> cannot be used to retry a block which returns a value such as
3926 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
3927 a grep() or map() operation.
3928
3929 Note that a block by itself is semantically identical to a loop
3930 that executes once.  Thus C<redo> inside such a block will effectively
3931 turn it into a looping construct.
3932
3933 See also L</continue> for an illustration of how C<last>, C<next>, and
3934 C<redo> work.
3935
3936 =item ref EXPR
3937
3938 =item ref
3939
3940 Returns a true value if EXPR is a reference, false otherwise.  If EXPR
3941 is not specified, C<$_> will be used.  The value returned depends on the
3942 type of thing the reference is a reference to.
3943 Builtin types include:
3944
3945     SCALAR
3946     ARRAY
3947     HASH
3948     CODE
3949     REF
3950     GLOB
3951     LVALUE
3952
3953 If the referenced object has been blessed into a package, then that package
3954 name is returned instead.  You can think of C<ref> as a C<typeof> operator.
3955
3956     if (ref($r) eq "HASH") {
3957         print "r is a reference to a hash.\n";
3958     }
3959     unless (ref($r)) {
3960         print "r is not a reference at all.\n";
3961     }
3962     if (UNIVERSAL::isa($r, "HASH")) {  # for subclassing
3963         print "r is a reference to something that isa hash.\n";
3964     }
3965
3966 See also L<perlref>.
3967
3968 =item rename OLDNAME,NEWNAME
3969
3970 Changes the name of a file; an existing file NEWNAME will be
3971 clobbered.  Returns true for success, false otherwise.
3972
3973 Behavior of this function varies wildly depending on your system
3974 implementation.  For example, it will usually not work across file system
3975 boundaries, even though the system I<mv> command sometimes compensates
3976 for this.  Other restrictions include whether it works on directories,
3977 open files, or pre-existing files.  Check L<perlport> and either the
3978 rename(2) manpage or equivalent system documentation for details.
3979
3980 =item require VERSION
3981
3982 =item require EXPR
3983
3984 =item require
3985
3986 Demands a version of Perl specified by VERSION, or demands some semantics
3987 specified by EXPR or by C<$_> if EXPR is not supplied.
3988
3989 VERSION may be either a numeric argument such as 5.006, which will be
3990 compared to C<$]>, or a literal of the form v5.6.1, which will be compared
3991 to C<$^V> (aka $PERL_VERSION).  A fatal error is produced at run time if
3992 VERSION is greater than the version of the current Perl interpreter.
3993 Compare with L</use>, which can do a similar check at compile time.
3994
3995 Specifying VERSION as a literal of the form v5.6.1 should generally be
3996 avoided, because it leads to misleading error messages under earlier
3997 versions of Perl which do not support this syntax.  The equivalent numeric
3998 version should be used instead.
3999
4000     require v5.6.1;     # run time version check
4001     require 5.6.1;      # ditto
4002     require 5.006_001;  # ditto; preferred for backwards compatibility
4003
4004 Otherwise, demands that a library file be included if it hasn't already
4005 been included.  The file is included via the do-FILE mechanism, which is
4006 essentially just a variety of C<eval>.  Has semantics similar to the following
4007 subroutine:
4008
4009     sub require {
4010         my($filename) = @_;
4011         return 1 if $INC{$filename};
4012         my($realfilename,$result);
4013         ITER: {
4014             foreach $prefix (@INC) {
4015                 $realfilename = "$prefix/$filename";
4016                 if (-f $realfilename) {
4017                     $INC{$filename} = $realfilename;
4018                     $result = do $realfilename;
4019                     last ITER;
4020                 }
4021             }
4022             die "Can't find $filename in \@INC";
4023         }
4024         delete $INC{$filename} if $@ || !$result;
4025         die $@ if $@;
4026         die "$filename did not return true value" unless $result;
4027         return $result;
4028     }
4029
4030 Note that the file will not be included twice under the same specified
4031 name.  The file must return true as the last statement to indicate
4032 successful execution of any initialization code, so it's customary to
4033 end such a file with C<1;> unless you're sure it'll return true
4034 otherwise.  But it's better just to put the C<1;>, in case you add more
4035 statements.
4036
4037 If EXPR is a bareword, the require assumes a "F<.pm>" extension and
4038 replaces "F<::>" with "F</>" in the filename for you,
4039 to make it easy to load standard modules.  This form of loading of
4040 modules does not risk altering your namespace.
4041
4042 In other words, if you try this:
4043
4044         require Foo::Bar;    # a splendid bareword
4045
4046 The require function will actually look for the "F<Foo/Bar.pm>" file in the
4047 directories specified in the C<@INC> array.
4048
4049 But if you try this:
4050
4051         $class = 'Foo::Bar';
4052         require $class;      # $class is not a bareword
4053     #or
4054         require "Foo::Bar";  # not a bareword because of the ""
4055
4056 The require function will look for the "F<Foo::Bar>" file in the @INC array and
4057 will complain about not finding "F<Foo::Bar>" there.  In this case you can do:
4058
4059         eval "require $class";
4060
4061 You can also insert hooks into the import facility, by putting directly
4062 Perl code into the @INC array.  There are three forms of hooks: subroutine
4063 references, array references and blessed objects.
4064
4065 Subroutine references are the simplest case.  When the inclusion system
4066 walks through @INC and encounters a subroutine, this subroutine gets
4067 called with two parameters, the first being a reference to itself, and the
4068 second the name of the file to be included (e.g. "F<Foo/Bar.pm>").  The
4069 subroutine should return C<undef> or a filehandle, from which the file to
4070 include will be read.  If C<undef> is returned, C<require> will look at
4071 the remaining elements of @INC.
4072
4073 If the hook is an array reference, its first element must be a subroutine
4074 reference.  This subroutine is called as above, but the first parameter is
4075 the array reference.  This enables to pass indirectly some arguments to
4076 the subroutine.
4077
4078 In other words, you can write:
4079
4080     push @INC, \&my_sub;
4081     sub my_sub {
4082         my ($coderef, $filename) = @_;  # $coderef is \&my_sub
4083         ...
4084     }
4085
4086 or:
4087
4088     push @INC, [ \&my_sub, $x, $y, ... ];
4089     sub my_sub {
4090         my ($arrayref, $filename) = @_;
4091         # Retrieve $x, $y, ...
4092         my @parameters = @$arrayref[1..$#$arrayref];
4093         ...
4094     }
4095
4096 If the hook is an object, it must provide an INC method, that will be
4097 called as above, the first parameter being the object itself.  (Note that
4098 you must fully qualify the sub's name, as it is always forced into package
4099 C<main>.)  Here is a typical code layout:
4100
4101     # In Foo.pm
4102     package Foo;
4103     sub new { ... }
4104     sub Foo::INC {
4105         my ($self, $filename) = @_;
4106         ...
4107     }
4108
4109     # In the main program
4110     push @INC, new Foo(...);
4111
4112 Note that these hooks are also permitted to set the %INC entry
4113 corresponding to the files they have loaded. See L<perlvar/%INC>.
4114
4115 For a yet-more-powerful import facility, see L</use> and L<perlmod>.
4116
4117 =item reset EXPR
4118
4119 =item reset
4120
4121 Generally used in a C<continue> block at the end of a loop to clear
4122 variables and reset C<??> searches so that they work again.  The
4123 expression is interpreted as a list of single characters (hyphens
4124 allowed for ranges).  All variables and arrays beginning with one of
4125 those letters are reset to their pristine state.  If the expression is
4126 omitted, one-match searches (C<?pattern?>) are reset to match again.  Resets
4127 only variables or searches in the current package.  Always returns
4128 1.  Examples:
4129
4130     reset 'X';          # reset all X variables
4131     reset 'a-z';        # reset lower case variables
4132     reset;              # just reset ?one-time? searches
4133
4134 Resetting C<"A-Z"> is not recommended because you'll wipe out your
4135 C<@ARGV> and C<@INC> arrays and your C<%ENV> hash.  Resets only package
4136 variables--lexical variables are unaffected, but they clean themselves
4137 up on scope exit anyway, so you'll probably want to use them instead.
4138 See L</my>.
4139
4140 =item return EXPR
4141
4142 =item return
4143
4144 Returns from a subroutine, C<eval>, or C<do FILE> with the value
4145 given in EXPR.  Evaluation of EXPR may be in list, scalar, or void
4146 context, depending on how the return value will be used, and the context
4147 may vary from one execution to the next (see C<wantarray>).  If no EXPR
4148 is given, returns an empty list in list context, the undefined value in
4149 scalar context, and (of course) nothing at all in a void context.
4150
4151 (Note that in the absence of an explicit C<return>, a subroutine, eval,
4152 or do FILE will automatically return the value of the last expression
4153 evaluated.)
4154
4155 =item reverse LIST
4156
4157 In list context, returns a list value consisting of the elements
4158 of LIST in the opposite order.  In scalar context, concatenates the
4159 elements of LIST and returns a string value with all characters
4160 in the opposite order.
4161
4162     print reverse <>;           # line tac, last line first
4163
4164     undef $/;                   # for efficiency of <>
4165     print scalar reverse <>;    # character tac, last line tsrif
4166
4167 This operator is also handy for inverting a hash, although there are some
4168 caveats.  If a value is duplicated in the original hash, only one of those
4169 can be represented as a key in the inverted hash.  Also, this has to
4170 unwind one hash and build a whole new one, which may take some time
4171 on a large hash, such as from a DBM file.
4172
4173     %by_name = reverse %by_address;     # Invert the hash
4174
4175 =item rewinddir DIRHANDLE
4176
4177 Sets the current position to the beginning of the directory for the
4178 C<readdir> routine on DIRHANDLE.
4179
4180 =item rindex STR,SUBSTR,POSITION
4181
4182 =item rindex STR,SUBSTR
4183
4184 Works just like index() except that it returns the position of the LAST
4185 occurrence of SUBSTR in STR.  If POSITION is specified, returns the
4186 last occurrence at or before that position.
4187
4188 =item rmdir FILENAME
4189
4190 =item rmdir
4191
4192 Deletes the directory specified by FILENAME if that directory is empty.  If it
4193 succeeds it returns true, otherwise it returns false and sets C<$!> (errno).  If
4194 FILENAME is omitted, uses C<$_>.
4195
4196 =item s///
4197
4198 The substitution operator.  See L<perlop>.
4199
4200 =item scalar EXPR
4201
4202 Forces EXPR to be interpreted in scalar context and returns the value
4203 of EXPR.
4204
4205     @counts = ( scalar @a, scalar @b, scalar @c );
4206
4207 There is no equivalent operator to force an expression to
4208 be interpolated in list context because in practice, this is never
4209 needed.  If you really wanted to do so, however, you could use
4210 the construction C<@{[ (some expression) ]}>, but usually a simple
4211 C<(some expression)> suffices.
4212
4213 Because C<scalar> is unary operator, if you accidentally use for EXPR a
4214 parenthesized list, this behaves as a scalar comma expression, evaluating
4215 all but the last element in void context and returning the final element
4216 evaluated in scalar context.  This is seldom what you want.
4217
4218 The following single statement:
4219
4220         print uc(scalar(&foo,$bar)),$baz;
4221
4222 is the moral equivalent of these two:
4223
4224         &foo;
4225         print(uc($bar),$baz);
4226
4227 See L<perlop> for more details on unary operators and the comma operator.
4228
4229 =item seek FILEHANDLE,POSITION,WHENCE
4230
4231 Sets FILEHANDLE's position, just like the C<fseek> call of C<stdio>.
4232 FILEHANDLE may be an expression whose value gives the name of the
4233 filehandle.  The values for WHENCE are C<0> to set the new position
4234 I<in bytes> to POSITION, C<1> to set it to the current position plus
4235 POSITION, and C<2> to set it to EOF plus POSITION (typically
4236 negative).  For WHENCE you may use the constants C<SEEK_SET>,
4237 C<SEEK_CUR>, and C<SEEK_END> (start of the file, current position, end
4238 of the file) from the Fcntl module.  Returns C<1> upon success, C<0>
4239 otherwise.
4240
4241 Note the I<in bytes>: even if the filehandle has been set to
4242 operate on characters (for example by using the C<:utf8> open
4243 layer), tell() will return byte offsets, not character offsets
4244 (because implementing that would render seek() and tell() rather slow).
4245
4246 If you want to position file for C<sysread> or C<syswrite>, don't use
4247 C<seek>--buffering makes its effect on the file's system position
4248 unpredictable and non-portable.  Use C<sysseek> instead.
4249
4250 Due to the rules and rigors of ANSI C, on some systems you have to do a
4251 seek whenever you switch between reading and writing.  Amongst other
4252 things, this may have the effect of calling stdio's clearerr(3).
4253 A WHENCE of C<1> (C<SEEK_CUR>) is useful for not moving the file position:
4254
4255     seek(TEST,0,1);
4256
4257 This is also useful for applications emulating C<tail -f>.  Once you hit
4258 EOF on your read, and then sleep for a while, you might have to stick in a
4259 seek() to reset things.  The C<seek> doesn't change the current position,
4260 but it I<does> clear the end-of-file condition on the handle, so that the
4261 next C<< <FILE> >> makes Perl try again to read something.  We hope.
4262
4263 If that doesn't work (some IO implementations are particularly
4264 cantankerous), then you may need something more like this:
4265
4266     for (;;) {
4267         for ($curpos = tell(FILE); $_ = <FILE>;
4268              $curpos = tell(FILE)) {
4269             # search for some stuff and put it into files
4270         }
4271         sleep($for_a_while);
4272         seek(FILE, $curpos, 0);
4273     }
4274
4275 =item seekdir DIRHANDLE,POS
4276
4277 Sets the current position for the C<readdir> routine on DIRHANDLE.  POS
4278 must be a value returned by C<telldir>.  Has the same caveats about
4279 possible directory compaction as the corresponding system library
4280 routine.
4281
4282 =item select FILEHANDLE
4283
4284 =item select
4285
4286 Returns the currently selected filehandle.  Sets the current default
4287 filehandle for output, if FILEHANDLE is supplied.  This has two
4288 effects: first, a C<write> or a C<print> without a filehandle will
4289 default to this FILEHANDLE.  Second, references to variables related to
4290 output will refer to this output channel.  For example, if you have to
4291 set the top of form format for more than one output channel, you might
4292 do the following:
4293
4294     select(REPORT1);
4295     $^ = 'report1_top';
4296     select(REPORT2);
4297     $^ = 'report2_top';
4298
4299 FILEHANDLE may be an expression whose value gives the name of the
4300 actual filehandle.  Thus:
4301
4302     $oldfh = select(STDERR); $| = 1; select($oldfh);
4303
4304 Some programmers may prefer to think of filehandles as objects with
4305 methods, preferring to write the last example as:
4306
4307     use IO::Handle;
4308     STDERR->autoflush(1);
4309
4310 =item select RBITS,WBITS,EBITS,TIMEOUT
4311
4312 This calls the select(2) system call with the bit masks specified, which
4313 can be constructed using C<fileno> and C<vec>, along these lines:
4314
4315     $rin = $win = $ein = '';
4316     vec($rin,fileno(STDIN),1) = 1;
4317     vec($win,fileno(STDOUT),1) = 1;
4318     $ein = $rin | $win;
4319
4320 If you want to select on many filehandles you might wish to write a
4321 subroutine:
4322
4323     sub fhbits {
4324         my(@fhlist) = split(' ',$_[0]);
4325         my($bits);
4326         for (@fhlist) {
4327             vec($bits,fileno($_),1) = 1;
4328         }
4329         $bits;
4330     }
4331     $rin = fhbits('STDIN TTY SOCK');
4332
4333 The usual idiom is:
4334
4335     ($nfound,$timeleft) =
4336       select($rout=$rin, $wout=$win, $eout=$ein, $timeout);
4337
4338 or to block until something becomes ready just do this
4339
4340     $nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);
4341
4342 Most systems do not bother to return anything useful in $timeleft, so
4343 calling select() in scalar context just returns $nfound.
4344
4345 Any of the bit masks can also be undef.  The timeout, if specified, is
4346 in seconds, which may be fractional.  Note: not all implementations are
4347 capable of returning the $timeleft.  If not, they always return
4348 $timeleft equal to the supplied $timeout.
4349
4350 You can effect a sleep of 250 milliseconds this way:
4351
4352     select(undef, undef, undef, 0.25);
4353
4354 Note that whether C<select> gets restarted after signals (say, SIGALRM)
4355 is implementation-dependent.
4356
4357 B<WARNING>: One should not attempt to mix buffered I/O (like C<read>
4358 or <FH>) with C<select>, except as permitted by POSIX, and even
4359 then only on POSIX systems.  You have to use C<sysread> instead.
4360
4361 =item semctl ID,SEMNUM,CMD,ARG
4362
4363 Calls the System V IPC function C<semctl>.  You'll probably have to say
4364
4365     use IPC::SysV;
4366
4367 first to get the correct constant definitions.  If CMD is IPC_STAT or
4368 GETALL, then ARG must be a variable which will hold the returned
4369 semid_ds structure or semaphore value array.  Returns like C<ioctl>:
4370 the undefined value for error, "C<0 but true>" for zero, or the actual
4371 return value otherwise.  The ARG must consist of a vector of native
4372 short integers, which may be created with C<pack("s!",(0)x$nsem)>.
4373 See also L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::Semaphore>
4374 documentation.
4375
4376 =item semget KEY,NSEMS,FLAGS
4377
4378 Calls the System V IPC function semget.  Returns the semaphore id, or
4379 the undefined value if there is an error.  See also
4380 L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::SysV::Semaphore>
4381 documentation.
4382
4383 =item semop KEY,OPSTRING
4384
4385 Calls the System V IPC function semop to perform semaphore operations
4386 such as signalling and waiting.  OPSTRING must be a packed array of
4387 semop structures.  Each semop structure can be generated with
4388 C<pack("s!3", $semnum, $semop, $semflag)>.  The number of semaphore
4389 operations is implied by the length of OPSTRING.  Returns true if
4390 successful, or false if there is an error.  As an example, the
4391 following code waits on semaphore $semnum of semaphore id $semid:
4392
4393     $semop = pack("s!3", $semnum, -1, 0);
4394     die "Semaphore trouble: $!\n" unless semop($semid, $semop);
4395
4396 To signal the semaphore, replace C<-1> with C<1>.  See also
4397 L<perlipc/"SysV IPC">, C<IPC::SysV>, and C<IPC::SysV::Semaphore>
4398 documentation.
4399
4400 =item send SOCKET,MSG,FLAGS,TO
4401
4402 =item send SOCKET,MSG,FLAGS
4403
4404 Sends a message on a socket.  Attempts to send the scalar MSG to the
4405 SOCKET filehandle.  Takes the same flags as the system call of the
4406 same name.  On unconnected sockets you must specify a destination to
4407 send TO, in which case it does a C C<sendto>.  Returns the number of
4408 characters sent, or the undefined value if there is an error.  The C
4409 system call sendmsg(2) is currently unimplemented.  See
4410 L<perlipc/"UDP: Message Passing"> for examples.
4411
4412 Note the I<characters>: depending on the status of the socket, either
4413 (8-bit) bytes or characters are sent.  By default all sockets operate
4414 on bytes, but for example if the socket has been changed using
4415 binmode() to operate with the C<:utf8> I/O layer (see L</open>, or
4416 the C<open> pragma, L<open>), the I/O will operate on characters, not
4417 bytes.
4418
4419 =item setpgrp PID,PGRP
4420
4421 Sets the current process group for the specified PID, C<0> for the current
4422 process.  Will produce a fatal error if used on a machine that doesn't
4423 implement POSIX setpgid(2) or BSD setpgrp(2).  If the arguments are omitted,
4424 it defaults to C<0,0>.  Note that the BSD 4.2 version of C<setpgrp> does not
4425 accept any arguments, so only C<setpgrp(0,0)> is portable.  See also
4426 C<POSIX::setsid()>.
4427
4428 =item setpriority WHICH,WHO,PRIORITY
4429
4430 Sets the current priority for a process, a process group, or a user.
4431 (See setpriority(2).)  Will produce a fatal error if used on a machine
4432 that doesn't implement setpriority(2).
4433
4434 =item setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
4435
4436 Sets the socket option requested.  Returns undefined if there is an
4437 error.  OPTVAL may be specified as C<undef> if you don't want to pass an
4438 argument.
4439
4440 =item shift ARRAY
4441
4442 =item shift
4443
4444 Shifts the first value of the array off and returns it, shortening the
4445 array by 1 and moving everything down.  If there are no elements in the
4446 array, returns the undefined value.  If ARRAY is omitted, shifts the
4447 C<@_> array within the lexical scope of subroutines and formats, and the
4448 C<@ARGV> array at file scopes or within the lexical scopes established by
4449 the C<eval ''>, C<BEGIN {}>, C<INIT {}>, C<CHECK {}>, and C<END {}>
4450 constructs.
4451
4452 See also C<unshift>, C<push>, and C<pop>.  C<shift> and C<unshift> do the
4453 same thing to the left end of an array that C<pop> and C<push> do to the
4454 right end.
4455
4456 =item shmctl ID,CMD,ARG
4457
4458 Calls the System V IPC function shmctl.  You'll probably have to say
4459
4460     use IPC::SysV;
4461
4462 first to get the correct constant definitions.  If CMD is C<IPC_STAT>,
4463 then ARG must be a variable which will hold the returned C<shmid_ds>
4464 structure.  Returns like ioctl: the undefined value for error, "C<0> but
4465 true" for zero, or the actual return value otherwise.
4466 See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
4467
4468 =item shmget KEY,SIZE,FLAGS
4469
4470 Calls the System V IPC function shmget.  Returns the shared memory
4471 segment id, or the undefined value if there is an error.
4472 See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
4473
4474 =item shmread ID,VAR,POS,SIZE
4475
4476 =item shmwrite ID,STRING,POS,SIZE
4477
4478 Reads or writes the System V shared memory segment ID starting at
4479 position POS for size SIZE by attaching to it, copying in/out, and
4480 detaching from it.  When reading, VAR must be a variable that will
4481 hold the data read.  When writing, if STRING is too long, only SIZE
4482 bytes are used; if STRING is too short, nulls are written to fill out
4483 SIZE bytes.  Return true if successful, or false if there is an error.
4484 shmread() taints the variable. See also L<perlipc/"SysV IPC">,
4485 C<IPC::SysV> documentation, and the C<IPC::Shareable> module from CPAN.
4486
4487 =item shutdown SOCKET,HOW
4488
4489 Shuts down a socket connection in the manner indicated by HOW, which
4490 has the same interpretation as in the system call of the same name.
4491
4492     shutdown(SOCKET, 0);    # I/we have stopped reading data
4493     shutdown(SOCKET, 1);    # I/we have stopped writing data
4494     shutdown(SOCKET, 2);    # I/we have stopped using this socket
4495
4496 This is useful with sockets when you want to tell the other
4497 side you're done writing but not done reading, or vice versa.
4498 It's also a more insistent form of close because it also
4499 disables the file descriptor in any forked copies in other
4500 processes.
4501
4502 =item sin EXPR
4503
4504 =item sin
4505
4506 Returns the sine of EXPR (expressed in radians).  If EXPR is omitted,
4507 returns sine of C<$_>.
4508
4509 For the inverse sine operation, you may use the C<Math::Trig::asin>
4510 function, or use this relation:
4511
4512     sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }
4513
4514 =item sleep EXPR
4515
4516 =item sleep
4517
4518 Causes the script to sleep for EXPR seconds, or forever if no EXPR.
4519 May be interrupted if the process receives a signal such as C<SIGALRM>.
4520 Returns the number of seconds actually slept.  You probably cannot
4521 mix C<alarm> and C<sleep> calls, because C<sleep> is often implemented
4522 using C<alarm>.
4523
4524 On some older systems, it may sleep up to a full second less than what
4525 you requested, depending on how it counts seconds.  Most modern systems
4526 always sleep the full amount.  They may appear to sleep longer than that,
4527 however, because your process might not be scheduled right away in a
4528 busy multitasking system.
4529
4530 For delays of finer granularity than one second, you may use Perl's
4531 C<syscall> interface to access setitimer(2) if your system supports
4532 it, or else see L</select> above.  The Time::HiRes module (from CPAN,
4533 and starting from Perl 5.8 part of the standard distribution) may also
4534 help.
4535
4536 See also the POSIX module's C<pause> function.
4537
4538 =item socket SOCKET,DOMAIN,TYPE,PROTOCOL
4539
4540 Opens a socket of the specified kind and attaches it to filehandle
4541 SOCKET.  DOMAIN, TYPE, and PROTOCOL are specified the same as for
4542 the system call of the same name.  You should C<use Socket> first
4543 to get the proper definitions imported.  See the examples in
4544 L<perlipc/"Sockets: Client/Server Communication">.
4545
4546 On systems that support a close-on-exec flag on files, the flag will
4547 be set for the newly opened file descriptor, as determined by the
4548 value of $^F.  See L<perlvar/$^F>.
4549
4550 =item socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
4551
4552 Creates an unnamed pair of sockets in the specified domain, of the
4553 specified type.  DOMAIN, TYPE, and PROTOCOL are specified the same as
4554 for the system call of the same name.  If unimplemented, yields a fatal
4555 error.  Returns true if successful.
4556
4557 On systems that support a close-on-exec flag on files, the flag will
4558 be set for the newly opened file descriptors, as determined by the value
4559 of $^F.  See L<perlvar/$^F>.
4560
4561 Some systems defined C<pipe> in terms of C<socketpair>, in which a call
4562 to C<pipe(Rdr, Wtr)> is essentially:
4563
4564     use Socket;
4565     socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
4566     shutdown(Rdr, 1);        # no more writing for reader
4567     shutdown(Wtr, 0);        # no more reading for writer
4568
4569 See L<perlipc> for an example of socketpair use.  Perl 5.8 and later will
4570 emulate socketpair using IP sockets to localhost if your system implements
4571 sockets but not socketpair.
4572
4573 =item sort SUBNAME LIST
4574
4575 =item sort BLOCK LIST
4576
4577 =item sort LIST
4578
4579 In list context, this sorts the LIST and returns the sorted list value.
4580 In scalar context, the behaviour of C<sort()> is undefined.
4581
4582 If SUBNAME or BLOCK is omitted, C<sort>s in standard string comparison
4583 order.  If SUBNAME is specified, it gives the name of a subroutine
4584 that returns an integer less than, equal to, or greater than C<0>,
4585 depending on how the elements of the list are to be ordered.  (The C<<
4586 <=> >> and C<cmp> operators are extremely useful in such routines.)
4587 SUBNAME may be a scalar variable name (unsubscripted), in which case
4588 the value provides the name of (or a reference to) the actual
4589 subroutine to use.  In place of a SUBNAME, you can provide a BLOCK as
4590 an anonymous, in-line sort subroutine.
4591
4592 If the subroutine's prototype is C<($$)>, the elements to be compared
4593 are passed by reference in C<@_>, as for a normal subroutine.  This is
4594 slower than unprototyped subroutines, where the elements to be
4595 compared are passed into the subroutine
4596 as the package global variables $a and $b (see example below).  Note that
4597 in the latter case, it is usually counter-productive to declare $a and
4598 $b as lexicals.
4599
4600 In either case, the subroutine may not be recursive.  The values to be
4601 compared are always passed by reference, so don't modify them.
4602
4603 You also cannot exit out of the sort block or subroutine using any of the
4604 loop control operators described in L<perlsyn> or with C<goto>.
4605
4606 When C<use locale> is in effect, C<sort LIST> sorts LIST according to the
4607 current collation locale.  See L<perllocale>.
4608
4609 Perl 5.6 and earlier used a quicksort algorithm to implement sort.
4610 That algorithm was not stable, and I<could> go quadratic.  (A I<stable> sort
4611 preserves the input order of elements that compare equal.  Although
4612 quicksort's run time is O(NlogN) when averaged over all arrays of
4613 length N, the time can be O(N**2), I<quadratic> behavior, for some
4614 inputs.)  In 5.7, the quicksort implementation was replaced with
4615 a stable mergesort algorithm whose worst case behavior is O(NlogN).
4616 But benchmarks indicated that for some inputs, on some platforms,
4617 the original quicksort was faster.  5.8 has a sort pragma for
4618 limited control of the sort.  Its rather blunt control of the
4619 underlying algorithm may not persist into future perls, but the
4620 ability to characterize the input or output in implementation
4621 independent ways quite probably will.  See L<sort>.
4622
4623 Examples:
4624
4625     # sort lexically
4626     @articles = sort @files;
4627
4628     # same thing, but with explicit sort routine
4629     @articles = sort {$a cmp $b} @files;
4630
4631     # now case-insensitively
4632     @articles = sort {uc($a) cmp uc($b)} @files;
4633
4634     # same thing in reversed order
4635     @articles = sort {$b cmp $a} @files;
4636
4637     # sort numerically ascending
4638     @articles = sort {$a <=> $b} @files;
4639
4640     # sort numerically descending
4641     @articles = sort {$b <=> $a} @files;
4642
4643     # this sorts the %age hash by value instead of key
4644     # using an in-line function
4645     @eldest = sort { $age{$b} <=> $age{$a} } keys %age;
4646
4647     # sort using explicit subroutine name
4648     sub byage {
4649         $age{$a} <=> $age{$b};  # presuming numeric
4650     }
4651     @sortedclass = sort byage @class;
4652
4653     sub backwards { $b cmp $a }
4654     @harry  = qw(dog cat x Cain Abel);
4655     @george = qw(gone chased yz Punished Axed);
4656     print sort @harry;
4657             # prints AbelCaincatdogx
4658     print sort backwards @harry;
4659             # prints xdogcatCainAbel
4660     print sort @george, 'to', @harry;
4661             # prints AbelAxedCainPunishedcatchaseddoggonetoxyz
4662
4663     # inefficiently sort by descending numeric compare using
4664     # the first integer after the first = sign, or the
4665     # whole record case-insensitively otherwise
4666
4667     @new = sort {
4668         ($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]
4669                             ||
4670                     uc($a)  cmp  uc($b)
4671     } @old;
4672
4673     # same thing, but much more efficiently;
4674     # we'll build auxiliary indices instead
4675     # for speed
4676     @nums = @caps = ();
4677     for (@old) {
4678         push @nums, /=(\d+)/;
4679         push @caps, uc($_);
4680     }
4681
4682     @new = @old[ sort {
4683                         $nums[$b] <=> $nums[$a]
4684                                  ||
4685                         $caps[$a] cmp $caps[$b]
4686                        } 0..$#old
4687                ];
4688
4689     # same thing, but without any temps
4690     @new = map { $_->[0] }
4691            sort { $b->[1] <=> $a->[1]
4692                            ||
4693                   $a->[2] cmp $b->[2]
4694            } map { [$_, /=(\d+)/, uc($_)] } @old;
4695
4696     # using a prototype allows you to use any comparison subroutine
4697     # as a sort subroutine (including other package's subroutines)
4698     package other;
4699     sub backwards ($$) { $_[1] cmp $_[0]; }     # $a and $b are not set here
4700
4701     package main;
4702     @new = sort other::backwards @old;
4703
4704     # guarantee stability, regardless of algorithm
4705     use sort 'stable';
4706     @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;
4707
4708     # force use of mergesort (not portable outside Perl 5.8)
4709     use sort '_mergesort';  # note discouraging _
4710     @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;
4711
4712 If you're using strict, you I<must not> declare $a
4713 and $b as lexicals.  They are package globals.  That means
4714 if you're in the C<main> package and type
4715
4716     @articles = sort {$b <=> $a} @files;
4717
4718 then C<$a> and C<$b> are C<$main::a> and C<$main::b> (or C<$::a> and C<$::b>),
4719 but if you're in the C<FooPack> package, it's the same as typing
4720
4721     @articles = sort {$FooPack::b <=> $FooPack::a} @files;
4722
4723 The comparison function is required to behave.  If it returns
4724 inconsistent results (sometimes saying C<$x[1]> is less than C<$x[2]> and
4725 sometimes saying the opposite, for example) the results are not
4726 well-defined.
4727
4728 =item splice ARRAY,OFFSET,LENGTH,LIST
4729
4730 =item splice ARRAY,OFFSET,LENGTH
4731
4732 =item splice ARRAY,OFFSET
4733
4734 =item splice ARRAY
4735
4736 Removes the elements designated by OFFSET and LENGTH from an array, and
4737 replaces them with the elements of LIST, if any.  In list context,
4738 returns the elements removed from the array.  In scalar context,
4739 returns the last element removed, or C<undef> if no elements are
4740 removed.  The array grows or shrinks as necessary.
4741 If OFFSET is negative then it starts that far from the end of the array.
4742 If LENGTH is omitted, removes everything from OFFSET onward.
4743 If LENGTH is negative, removes the elements from OFFSET onward
4744 except for -LENGTH elements at the end of the array.
4745 If both OFFSET and LENGTH are omitted, removes everything. If OFFSET is
4746 past the end of the array, perl issues a warning, and splices at the
4747 end of the array.
4748
4749 The following equivalences hold (assuming C<< $[ == 0 and $#a >= $i >> )
4750
4751     push(@a,$x,$y)      splice(@a,@a,0,$x,$y)
4752     pop(@a)             splice(@a,-1)
4753     shift(@a)           splice(@a,0,1)
4754     unshift(@a,$x,$y)   splice(@a,0,0,$x,$y)
4755     $a[$i] = $y         splice(@a,$i,1,$y)
4756
4757 Example, assuming array lengths are passed before arrays:
4758
4759     sub aeq {   # compare two list values
4760         my(@a) = splice(@_,0,shift);
4761         my(@b) = splice(@_,0,shift);
4762         return 0 unless @a == @b;       # same len?
4763         while (@a) {
4764             return 0 if pop(@a) ne pop(@b);
4765         }
4766         return 1;
4767     }
4768     if (&aeq($len,@foo[1..$len],0+@bar,@bar)) { ... }
4769
4770 =item split /PATTERN/,EXPR,LIMIT
4771
4772 =item split /PATTERN/,EXPR
4773
4774 =item split /PATTERN/
4775
4776 =item split
4777
4778 Splits a string into a list of strings and returns that list.  By default,
4779 empty leading fields are preserved, and empty trailing ones are deleted.
4780
4781 In scalar context, returns the number of fields found and splits into
4782 the C<@_> array.  Use of split in scalar context is deprecated, however,
4783 because it clobbers your subroutine arguments.
4784
4785 If EXPR is omitted, splits the C<$_> string.  If PATTERN is also omitted,
4786 splits on whitespace (after skipping any leading whitespace).  Anything
4787 matching PATTERN is taken to be a delimiter separating the fields.  (Note
4788 that the delimiter may be longer than one character.)
4789
4790 If LIMIT is specified and positive, it represents the maximum number
4791 of fields the EXPR will be split into, though the actual number of
4792 fields returned depends on the number of times PATTERN matches within
4793 EXPR.  If LIMIT is unspecified or zero, trailing null fields are
4794 stripped (which potential users of C<pop> would do well to remember).
4795 If LIMIT is negative, it is treated as if an arbitrarily large LIMIT
4796 had been specified.  Note that splitting an EXPR that evaluates to the
4797 empty string always returns the empty list, regardless of the LIMIT
4798 specified.
4799
4800 A pattern matching the null string (not to be confused with
4801 a null pattern C<//>, which is just one member of the set of patterns
4802 matching a null string) will split the value of EXPR into separate
4803 characters at each point it matches that way.  For example:
4804
4805     print join(':', split(/ */, 'hi there'));
4806
4807 produces the output 'h:i:t:h:e:r:e'.
4808
4809 Using the empty pattern C<//> specifically matches the null string, and is
4810 not be confused with the use of C<//> to mean "the last successful pattern
4811 match".
4812
4813 Empty leading (or trailing) fields are produced when there are positive width
4814 matches at the beginning (or end) of the string; a zero-width match at the
4815 beginning (or end) of the string does not produce an empty field.  For
4816 example:
4817
4818    print join(':', split(/(?=\w)/, 'hi there!'));
4819
4820 produces the output 'h:i :t:h:e:r:e!'.
4821
4822 The LIMIT parameter can be used to split a line partially
4823
4824     ($login, $passwd, $remainder) = split(/:/, $_, 3);
4825
4826 When assigning to a list, if LIMIT is omitted, Perl supplies a LIMIT
4827 one larger than the number of variables in the list, to avoid
4828 unnecessary work.  For the list above LIMIT would have been 4 by
4829 default.  In time critical applications it behooves you not to split
4830 into more fields than you really need.
4831
4832 If the PATTERN contains parentheses, additional list elements are
4833 created from each matching substring in the delimiter.
4834
4835     split(/([,-])/, "1-10,20", 3);
4836
4837 produces the list value
4838
4839     (1, '-', 10, ',', 20)
4840
4841 If you had the entire header of a normal Unix email message in $header,
4842 you could split it up into fields and their values this way:
4843
4844     $header =~ s/\n\s+/ /g;  # fix continuation lines
4845     %hdrs   =  (UNIX_FROM => split /^(\S*?):\s*/m, $header);
4846
4847 The pattern C</PATTERN/> may be replaced with an expression to specify
4848 patterns that vary at runtime.  (To do runtime compilation only once,
4849 use C</$variable/o>.)
4850
4851 As a special case, specifying a PATTERN of space (S<C<' '>>) will split on
4852 white space just as C<split> with no arguments does.  Thus, S<C<split(' ')>> can
4853 be used to emulate B<awk>'s default behavior, whereas S<C<split(/ /)>>
4854 will give you as many null initial fields as there are leading spaces.
4855 A C<split> on C</\s+/> is like a S<C<split(' ')>> except that any leading
4856 whitespace produces a null first field.  A C<split> with no arguments
4857 really does a S<C<split(' ', $_)>> internally.
4858
4859 A PATTERN of C</^/> is treated as if it were C</^/m>, since it isn't
4860 much use otherwise.
4861
4862 Example:
4863
4864     open(PASSWD, '/etc/passwd');
4865     while (<PASSWD>) {
4866         chomp;
4867         ($login, $passwd, $uid, $gid,
4868          $gcos, $home, $shell) = split(/:/);
4869         #...
4870     }
4871
4872 As with regular pattern matching, any capturing parentheses that are not
4873 matched in a C<split()> will be set to C<undef> when returned:
4874
4875     @fields = split /(A)|B/, "1A2B3";
4876     # @fields is (1, 'A', 2, undef, 3)
4877
4878 =item sprintf FORMAT, LIST
4879
4880 Returns a string formatted by the usual C<printf> conventions of the C
4881 library function C<sprintf>.  See below for more details
4882 and see L<sprintf(3)> or L<printf(3)> on your system for an explanation of
4883 the general principles.
4884
4885 For example:
4886
4887         # Format number with up to 8 leading zeroes
4888         $result = sprintf("%08d", $number);
4889
4890         # Round number to 3 digits after decimal point
4891         $rounded = sprintf("%.3f", $number);
4892
4893 Perl does its own C<sprintf> formatting--it emulates the C
4894 function C<sprintf>, but it doesn't use it (except for floating-point
4895 numbers, and even then only the standard modifiers are allowed).  As a
4896 result, any non-standard extensions in your local C<sprintf> are not
4897 available from Perl.
4898
4899 Unlike C<printf>, C<sprintf> does not do what you probably mean when you
4900 pass it an array as your first argument. The array is given scalar context,
4901 and instead of using the 0th element of the array as the format, Perl will
4902 use the count of elements in the array as the format, which is almost never
4903 useful.
4904
4905 Perl's C<sprintf> permits the following universally-known conversions:
4906
4907    %%   a percent sign
4908    %c   a character with the given number
4909    %s   a string
4910    %d   a signed integer, in decimal
4911    %u   an unsigned integer, in decimal
4912    %o   an unsigned integer, in octal
4913    %x   an unsigned integer, in hexadecimal
4914    %e   a floating-point number, in scientific notation
4915    %f   a floating-point number, in fixed decimal notation
4916    %g   a floating-point number, in %e or %f notation
4917
4918 In addition, Perl permits the following widely-supported conversions:
4919
4920    %X   like %x, but using upper-case letters
4921    %E   like %e, but using an upper-case "E"
4922    %G   like %g, but with an upper-case "E" (if applicable)
4923    %b   an unsigned integer, in binary
4924    %p   a pointer (outputs the Perl value's address in hexadecimal)
4925    %n   special: *stores* the number of characters output so far
4926         into the next variable in the parameter list
4927
4928 Finally, for backward (and we do mean "backward") compatibility, Perl
4929 permits these unnecessary but widely-supported conversions:
4930
4931    %i   a synonym for %d
4932    %D   a synonym for %ld
4933    %U   a synonym for %lu
4934    %O   a synonym for %lo
4935    %F   a synonym for %f
4936
4937 Note that the number of exponent digits in the scientific notation produced
4938 by C<%e>, C<%E>, C<%g> and C<%G> for numbers with the modulus of the
4939 exponent less than 100 is system-dependent: it may be three or less
4940 (zero-padded as necessary).  In other words, 1.23 times ten to the
4941 99th may be either "1.23e99" or "1.23e099".
4942
4943 Between the C<%> and the format letter, you may specify a number of
4944 additional attributes controlling the interpretation of the format.
4945 In order, these are:
4946
4947 =over 4
4948
4949 =item format parameter index
4950
4951 An explicit format parameter index, such as C<2$>. By default sprintf
4952 will format the next unused argument in the list, but this allows you
4953 to take the arguments out of order. Eg:
4954
4955   printf '%2$d %1$d', 12, 34;      # prints "34 12"
4956   printf '%3$d %d %1$d', 1, 2, 3;  # prints "3 1 1"
4957
4958 =item flags
4959
4960 one or more of:
4961    space   prefix positive number with a space
4962    +       prefix positive number with a plus sign
4963    -       left-justify within the field
4964    0       use zeros, not spaces, to right-justify
4965    #       prefix non-zero octal with "0", non-zero hex with "0x",
4966            non-zero binary with "0b"
4967
4968 For example:
4969
4970   printf '<% d>', 12;   # prints "< 12>"
4971   printf '<%+d>', 12;   # prints "<+12>"
4972   printf '<%6s>', 12;   # prints "<    12>"
4973   printf '<%-6s>', 12;  # prints "<12    >"
4974   printf '<%06s>', 12;  # prints "<000012>"
4975   printf '<%#x>', 12;   # prints "<0xc>"
4976
4977 =item vector flag
4978
4979 The vector flag C<v>, optionally specifying the join string to use.
4980 This flag tells perl to interpret the supplied string as a vector
4981 of integers, one for each character in the string, separated by
4982 a given string (a dot C<.> by default). This can be useful for
4983 displaying ordinal values of characters in arbitrary strings:
4984
4985   printf "version is v%vd\n", $^V;     # Perl's version
4986
4987 Put an asterisk C<*> before the C<v> to override the string to
4988 use to separate the numbers:
4989
4990   printf "address is %*vX\n", ":", $addr;   # IPv6 address
4991   printf "bits are %0*v8b\n", " ", $bits;   # random bitstring
4992
4993 You can also explicitly specify the argument number to use for
4994 the join string using eg C<*2$v>:
4995
4996   printf '%*4$vX %*4$vX %*4$vX', @addr[1..3], ":";   # 3 IPv6 addresses
4997
4998 =item (minimum) width
4999
5000 Arguments are usually formatted to be only as wide as required to
5001 display the given value. You can override the width by putting
5002 a number here, or get the width from the next argument (with C<*>)
5003 or from a specified argument (with eg C<*2$>):
5004
5005   printf '<%s>', "a";       # prints "<a>"
5006   printf '<%6s>', "a";      # prints "<     a>"
5007   printf '<%*s>', 6, "a";   # prints "<     a>"
5008   printf '<%*2$s>', "a", 6; # prints "<     a>"
5009   printf '<%2s>', "long";   # prints "<long>" (does not truncate)
5010
5011 If a field width obtained through C<*> is negative, it has the same
5012 effect as the C<-> flag: left-justification.
5013
5014 =item precision, or maximum width
5015
5016 You can specify a precision (for numeric conversions) or a maximum
5017 width (for string conversions) by specifying a C<.> followed by a number.
5018 For floating point formats, with the exception of 'g' and 'G', this specifies
5019 the number of decimal places to show (the default being 6), eg:
5020
5021   # these examples are subject to system-specific variation
5022   printf '<%f>', 1;    # prints "<1.000000>"
5023   printf '<%.1f>', 1;  # prints "<1.0>"
5024   printf '<%.0f>', 1;  # prints "<1>"
5025   printf '<%e>', 10;   # prints "<1.000000e+01>"
5026   printf '<%.1e>', 10; # prints "<1.0e+01>"
5027
5028 For 'g' and 'G', this specifies the maximum number of digits to show,
5029 including prior to the decimal point as well as after it, eg:
5030
5031   # these examples are subject to system-specific variation
5032   printf '<%g>', 1;        # prints "<1>"
5033   printf '<%.10g>', 1;     # prints "<1>"
5034   printf '<%g>', 100;      # prints "<100>"
5035   printf '<%.1g>', 100;    # prints "<1e+02>"
5036   printf '<%.2g>', 100.01; # prints "<1e+02>"
5037   printf '<%.5g>', 100.01; # prints "<100.01>"
5038   printf '<%.4g>', 100.01; # prints "<100>"
5039
5040 For integer conversions, specifying a precision implies that the
5041 output of the number itself should be zero-padded to this width:
5042
5043   printf '<%.6x>', 1;      # prints "<000001>"
5044   printf '<%#.6x>', 1;     # prints "<0x000001>"
5045   printf '<%-10.6x>', 1;   # prints "<000001    >"
5046
5047 For string conversions, specifying a precision truncates the string
5048 to fit in the specified width:
5049
5050   printf '<%.5s>', "truncated";   # prints "<trunc>"
5051   printf '<%10.5s>', "truncated"; # prints "<     trunc>"
5052
5053 You can also get the precision from the next argument using C<.*>:
5054
5055   printf '<%.6x>', 1;       # prints "<000001>"
5056   printf '<%.*x>', 6, 1;    # prints "<000001>"
5057
5058 You cannot currently get the precision from a specified number,
5059 but it is intended that this will be possible in the future using
5060 eg C<.*2$>:
5061
5062   printf '<%.*2$x>', 1, 6;   # INVALID, but in future will print "<000001>"
5063
5064 =item size
5065
5066 For numeric conversions, you can specify the size to interpret the
5067 number as using C<l>, C<h>, C<V>, C<q>, C<L>, or C<ll>. For integer
5068 conversions (C<d u o x X b i D U O>), numbers are usually assumed to be
5069 whatever the default integer size is on your platform (usually 32 or 64
5070 bits), but you can override this to use instead one of the standard C types,
5071 as supported by the compiler used to build Perl:
5072
5073    l           interpret integer as C type "long" or "unsigned long"
5074    h           interpret integer as C type "short" or "unsigned short"
5075    q, L or ll  interpret integer as C type "long long", "unsigned long long".
5076                or "quads" (typically 64-bit integers)
5077
5078 The last will produce errors if Perl does not understand "quads" in your
5079 installation. (This requires that either the platform natively supports quads
5080 or Perl was specifically compiled to support quads.) You can find out
5081 whether your Perl supports quads via L<Config>:
5082
5083         use Config;
5084         ($Config{use64bitint} eq 'define' || $Config{longsize} >= 8) &&
5085                 print "quads\n";
5086
5087 For floating point conversions (C<e f g E F G>), numbers are usually assumed
5088 to be the default floating point size on your platform (double or long double),
5089 but you can force 'long double' with C<q>, C<L>, or C<ll> if your
5090 platform supports them. You can find out whether your Perl supports long
5091 doubles via L<Config>:
5092
5093         use Config;
5094         $Config{d_longdbl} eq 'define' && print "long doubles\n";
5095
5096 You can find out whether Perl considers 'long double' to be the default
5097 floating point size to use on your platform via L<Config>:
5098
5099         use Config;
5100         ($Config{uselongdouble} eq 'define') &&
5101                 print "long doubles by default\n";
5102
5103 It can also be the case that long doubles and doubles are the same thing:
5104
5105         use Config;
5106         ($Config{doublesize} == $Config{longdblsize}) &&
5107                 print "doubles are long doubles\n";
5108
5109 The size specifier C<V> has no effect for Perl code, but it is supported
5110 for compatibility with XS code; it means 'use the standard size for
5111 a Perl integer (or floating-point number)', which is already the
5112 default for Perl code.
5113
5114 =item order of arguments
5115
5116 Normally, sprintf takes the next unused argument as the value to
5117 format for each format specification. If the format specification
5118 uses C<*> to require additional arguments, these are consumed from
5119 the argument list in the order in which they appear in the format
5120 specification I<before> the value to format. Where an argument is
5121 specified using an explicit index, this does not affect the normal
5122 order for the arguments (even when the explicitly specified index
5123 would have been the next argument in any case).
5124
5125 So:
5126
5127   printf '<%*.*s>', $a, $b, $c;
5128
5129 would use C<$a> for the width, C<$b> for the precision and C<$c>
5130 as the value to format, while:
5131
5132   print '<%*1$.*s>', $a, $b;
5133
5134 would use C<$a> for the width and the precision, and C<$b> as the
5135 value to format.
5136
5137 Here are some more examples - beware that when using an explicit
5138 index, the C<$> may need to be escaped:
5139
5140   printf "%2\$d %d\n",    12, 34;               # will print "34 12\n"
5141   printf "%2\$d %d %d\n", 12, 34;               # will print "34 12 34\n"
5142   printf "%3\$d %d %d\n", 12, 34, 56;           # will print "56 12 34\n"
5143   printf "%2\$*3\$d %d\n", 12, 34, 3;           # will print " 34 12\n"
5144
5145 =back
5146
5147 If C<use locale> is in effect, the character used for the decimal
5148 point in formatted real numbers is affected by the LC_NUMERIC locale.
5149 See L<perllocale>.
5150
5151 =item sqrt EXPR
5152
5153 =item sqrt
5154
5155 Return the square root of EXPR.  If EXPR is omitted, returns square
5156 root of C<$_>.  Only works on non-negative operands, unless you've
5157 loaded the standard Math::Complex module.
5158
5159     use Math::Complex;
5160     print sqrt(-2);    # prints 1.4142135623731i
5161
5162 =item srand EXPR
5163
5164 =item srand
5165
5166 Sets the random number seed for the C<rand> operator.
5167
5168 The point of the function is to "seed" the C<rand> function so that
5169 C<rand> can produce a different sequence each time you run your
5170 program.
5171
5172 If srand() is not called explicitly, it is called implicitly at the
5173 first use of the C<rand> operator.  However, this was not the case in
5174 versions of Perl before 5.004, so if your script will run under older
5175 Perl versions, it should call C<srand>.
5176
5177 Most programs won't even call srand() at all, except those that
5178 need a cryptographically-strong starting point rather than the
5179 generally acceptable default, which is based on time of day,
5180 process ID, and memory allocation, or the F</dev/urandom> device,
5181 if available.
5182
5183 You can call srand($seed) with the same $seed to reproduce the
5184 I<same> sequence from rand(), but this is usually reserved for
5185 generating predictable results for testing or debugging.
5186 Otherwise, don't call srand() more than once in your program.
5187
5188 Do B<not> call srand() (i.e. without an argument) more than once in
5189 a script.  The internal state of the random number generator should
5190 contain more entropy than can be provided by any seed, so calling
5191 srand() again actually I<loses> randomness.
5192
5193 Most implementations of C<srand> take an integer and will silently
5194 truncate decimal numbers.  This means C<srand(42)> will usually
5195 produce the same results as C<srand(42.1)>.  To be safe, always pass
5196 C<srand> an integer.
5197
5198 In versions of Perl prior to 5.004 the default seed was just the
5199 current C<time>.  This isn't a particularly good seed, so many old
5200 programs supply their own seed value (often C<time ^ $$> or C<time ^
5201 ($$ + ($$ << 15))>), but that isn't necessary any more.
5202
5203 Note that you need something much more random than the default seed for
5204 cryptographic purposes.  Checksumming the compressed output of one or more
5205 rapidly changing operating system status programs is the usual method.  For
5206 example:
5207
5208     srand (time ^ $$ ^ unpack "%L*", `ps axww | gzip`);
5209
5210 If you're particularly concerned with this, see the C<Math::TrulyRandom>
5211 module in CPAN.
5212
5213 Frequently called programs (like CGI scripts) that simply use
5214
5215     time ^ $$
5216
5217 for a seed can fall prey to the mathematical property that
5218
5219     a^b == (a+1)^(b+1)
5220
5221 one-third of the time.  So don't do that.
5222
5223 =item stat FILEHANDLE
5224
5225 =item stat EXPR
5226
5227 =item stat
5228
5229 Returns a 13-element list giving the status info for a file, either
5230 the file opened via FILEHANDLE, or named by EXPR.  If EXPR is omitted,
5231 it stats C<$_>.  Returns a null list if the stat fails.  Typically used
5232 as follows:
5233
5234     ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
5235        $atime,$mtime,$ctime,$blksize,$blocks)
5236            = stat($filename);
5237
5238 Not all fields are supported on all filesystem types.  Here are the
5239 meaning of the fields:
5240
5241   0 dev      device number of filesystem
5242   1 ino      inode number
5243   2 mode     file mode  (type and permissions)
5244   3 nlink    number of (hard) links to the file
5245   4 uid      numeric user ID of file's owner
5246   5 gid      numeric group ID of file's owner
5247   6 rdev     the device identifier (special files only)
5248   7 size     total size of file, in bytes
5249   8 atime    last access time in seconds since the epoch
5250   9 mtime    last modify time in seconds since the epoch
5251  10 ctime    inode change time in seconds since the epoch (*)
5252  11 blksize  preferred block size for file system I/O
5253  12 blocks   actual number of blocks allocated
5254
5255 (The epoch was at 00:00 January 1, 1970 GMT.)
5256
5257 (*) The ctime field is non-portable, in particular you cannot expect
5258 it to be a "creation time", see L<perlport/"Files and Filesystems">
5259 for details.
5260
5261 If stat is passed the special filehandle consisting of an underline, no
5262 stat is done, but the current contents of the stat structure from the
5263 last stat or filetest are returned.  Example:
5264
5265     if (-x $file && (($d) = stat(_)) && $d < 0) {
5266         print "$file is executable NFS file\n";
5267     }
5268
5269 (This works on machines only for which the device number is negative
5270 under NFS.)
5271
5272 Because the mode contains both the file type and its permissions, you
5273 should mask off the file type portion and (s)printf using a C<"%o">
5274 if you want to see the real permissions.
5275
5276     $mode = (stat($filename))[2];
5277     printf "Permissions are %04o\n", $mode & 07777;
5278
5279 In scalar context, C<stat> returns a boolean value indicating success
5280 or failure, and, if successful, sets the information associated with
5281 the special filehandle C<_>.
5282
5283 The File::stat module provides a convenient, by-name access mechanism:
5284
5285     use File::stat;
5286     $sb = stat($filename);
5287     printf "File is %s, size is %s, perm %04o, mtime %s\n",
5288         $filename, $sb->size, $sb->mode & 07777,
5289         scalar localtime $sb->mtime;
5290
5291 You can import symbolic mode constants (C<S_IF*>) and functions
5292 (C<S_IS*>) from the Fcntl module:
5293
5294     use Fcntl ':mode';
5295
5296     $mode = (stat($filename))[2];
5297
5298     $user_rwx      = ($mode & S_IRWXU) >> 6;
5299     $group_read    = ($mode & S_IRGRP) >> 3;
5300     $other_execute =  $mode & S_IXOTH;
5301
5302     printf "Permissions are %04o\n", S_IMODE($mode), "\n";
5303
5304     $is_setuid     =  $mode & S_ISUID;
5305     $is_setgid     =  S_ISDIR($mode);
5306
5307 You could write the last two using the C<-u> and C<-d> operators.
5308 The commonly available S_IF* constants are
5309
5310     # Permissions: read, write, execute, for user, group, others.
5311
5312     S_IRWXU S_IRUSR S_IWUSR S_IXUSR
5313     S_IRWXG S_IRGRP S_IWGRP S_IXGRP
5314     S_IRWXO S_IROTH S_IWOTH S_IXOTH
5315
5316     # Setuid/Setgid/Stickiness/SaveText.
5317     # Note that the exact meaning of these is system dependent.
5318
5319     S_ISUID S_ISGID S_ISVTX S_ISTXT
5320
5321     # File types.  Not necessarily all are available on your system.
5322
5323     S_IFREG S_IFDIR S_IFLNK S_IFBLK S_ISCHR S_IFIFO S_IFSOCK S_IFWHT S_ENFMT
5324
5325     # The following are compatibility aliases for S_IRUSR, S_IWUSR, S_IXUSR.
5326
5327     S_IREAD S_IWRITE S_IEXEC
5328
5329 and the S_IF* functions are
5330
5331     S_IMODE($mode)      the part of $mode containing the permission bits
5332                         and the setuid/setgid/sticky bits
5333
5334     S_IFMT($mode)       the part of $mode containing the file type
5335                         which can be bit-anded with e.g. S_IFREG
5336                         or with the following functions
5337
5338     # The operators -f, -d, -l, -b, -c, -p, and -s.
5339
5340     S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
5341     S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)
5342
5343     # No direct -X operator counterpart, but for the first one
5344     # the -g operator is often equivalent.  The ENFMT stands for
5345     # record flocking enforcement, a platform-dependent feature.
5346
5347     S_ISENFMT($mode) S_ISWHT($mode)
5348
5349 See your native chmod(2) and stat(2) documentation for more details
5350 about the S_* constants.  To get status info for a symbolic link
5351 instead of the target file behind the link, use the C<lstat> function.
5352
5353 =item study SCALAR
5354
5355 =item study
5356
5357 Takes extra time to study SCALAR (C<$_> if unspecified) in anticipation of
5358 doing many pattern matches on the string before it is next modified.
5359 This may or may not save time, depending on the nature and number of
5360 patterns you are searching on, and on the distribution of character
5361 frequencies in the string to be searched--you probably want to compare
5362 run times with and without it to see which runs faster.  Those loops
5363 which scan for many short constant strings (including the constant
5364 parts of more complex patterns) will benefit most.  You may have only
5365 one C<study> active at a time--if you study a different scalar the first
5366 is "unstudied".  (The way C<study> works is this: a linked list of every
5367 character in the string to be searched is made, so we know, for
5368 example, where all the C<'k'> characters are.  From each search string,
5369 the rarest character is selected, based on some static frequency tables
5370 constructed from some C programs and English text.  Only those places
5371 that contain this "rarest" character are examined.)
5372
5373 For example, here is a loop that inserts index producing entries
5374 before any line containing a certain pattern:
5375
5376     while (<>) {
5377         study;
5378         print ".IX foo\n"       if /\bfoo\b/;
5379         print ".IX bar\n"       if /\bbar\b/;
5380         print ".IX blurfl\n"    if /\bblurfl\b/;
5381         # ...
5382         print;
5383     }
5384
5385 In searching for C</\bfoo\b/>, only those locations in C<$_> that contain C<f>
5386 will be looked at, because C<f> is rarer than C<o>.  In general, this is
5387 a big win except in pathological cases.  The only question is whether
5388 it saves you more time than it took to build the linked list in the
5389 first place.
5390
5391 Note that if you have to look for strings that you don't know till
5392 runtime, you can build an entire loop as a string and C<eval> that to
5393 avoid recompiling all your patterns all the time.  Together with
5394 undefining C<$/> to input entire files as one record, this can be very
5395 fast, often faster than specialized programs like fgrep(1).  The following
5396 scans a list of files (C<@files>) for a list of words (C<@words>), and prints
5397 out the names of those files that contain a match:
5398
5399     $search = 'while (<>) { study;';
5400     foreach $word (@words) {
5401         $search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
5402     }
5403     $search .= "}";
5404     @ARGV = @files;
5405     undef $/;
5406     eval $search;               # this screams
5407     $/ = "\n";          # put back to normal input delimiter
5408     foreach $file (sort keys(%seen)) {
5409         print $file, "\n";
5410     }
5411
5412 =item sub NAME BLOCK
5413
5414 =item sub NAME (PROTO) BLOCK
5415
5416 =item sub NAME : ATTRS BLOCK
5417
5418 =item sub NAME (PROTO) : ATTRS BLOCK
5419
5420 This is subroutine definition, not a real function I<per se>.
5421 Without a BLOCK it's just a forward declaration.  Without a NAME,
5422 it's an anonymous function declaration, and does actually return
5423 a value: the CODE ref of the closure you just created.
5424
5425 See L<perlsub> and L<perlref> for details about subroutines and
5426 references, and L<attributes> and L<Attribute::Handlers> for more
5427 information about attributes.
5428
5429 =item substr EXPR,OFFSET,LENGTH,REPLACEMENT
5430
5431 =item substr EXPR,OFFSET,LENGTH
5432
5433 =item substr EXPR,OFFSET
5434
5435 Extracts a substring out of EXPR and returns it.  First character is at
5436 offset C<0>, or whatever you've set C<$[> to (but don't do that).
5437 If OFFSET is negative (or more precisely, less than C<$[>), starts
5438 that far from the end of the string.  If LENGTH is omitted, returns
5439 everything to the end of the string.  If LENGTH is negative, leaves that
5440 many characters off the end of the string.
5441
5442 You can use the substr() function as an lvalue, in which case EXPR
5443 must itself be an lvalue.  If you assign something shorter than LENGTH,
5444 the string will shrink, and if you assign something longer than LENGTH,
5445 the string will grow to accommodate it.  To keep the string the same
5446 length you may need to pad or chop your value using C<sprintf>.
5447
5448 If OFFSET and LENGTH specify a substring that is partly outside the
5449 string, only the part within the string is returned.  If the substring
5450 is beyond either end of the string, substr() returns the undefined
5451 value and produces a warning.  When used as an lvalue, specifying a
5452 substring that is entirely outside the string is a fatal error.
5453 Here's an example showing the behavior for boundary cases:
5454
5455     my $name = 'fred';
5456     substr($name, 4) = 'dy';            # $name is now 'freddy'
5457     my $null = substr $name, 6, 2;      # returns '' (no warning)
5458     my $oops = substr $name, 7;         # returns undef, with warning
5459     substr($name, 7) = 'gap';           # fatal error
5460
5461 An alternative to using substr() as an lvalue is to specify the
5462 replacement string as the 4th argument.  This allows you to replace
5463 parts of the EXPR and return what was there before in one operation,
5464 just as you can with splice().
5465
5466 If the lvalue returned by substr is used after the EXPR is changed in
5467 any way, the behaviour may not be as expected and is subject to change.
5468 This caveat includes code such as C<print(substr($foo,$a,$b)=$bar)> or
5469 C<(substr($foo,$a,$b)=$bar)=$fud> (where $foo is changed via the
5470 substring assignment, and then the substr is used again), or where a
5471 substr() is aliased via a C<foreach> loop or passed as a parameter or
5472 a reference to it is taken and then the alias, parameter, or deref'd
5473 reference either is used after the original EXPR has been changed or
5474 is assigned to and then used a second time.
5475
5476 =item symlink OLDFILE,NEWFILE
5477
5478 Creates a new filename symbolically linked to the old filename.
5479 Returns C<1> for success, C<0> otherwise.  On systems that don't support
5480 symbolic links, produces a fatal error at run time.  To check for that,
5481 use eval:
5482
5483     $symlink_exists = eval { symlink("",""); 1 };
5484
5485 =item syscall LIST
5486
5487 Calls the system call specified as the first element of the list,
5488 passing the remaining elements as arguments to the system call.  If
5489 unimplemented, produces a fatal error.  The arguments are interpreted
5490 as follows: if a given argument is numeric, the argument is passed as
5491 an int.  If not, the pointer to the string value is passed.  You are
5492 responsible to make sure a string is pre-extended long enough to
5493 receive any result that might be written into a string.  You can't use a
5494 string literal (or other read-only string) as an argument to C<syscall>
5495 because Perl has to assume that any string pointer might be written
5496 through.  If your
5497 integer arguments are not literals and have never been interpreted in a
5498 numeric context, you may need to add C<0> to them to force them to look
5499 like numbers.  This emulates the C<syswrite> function (or vice versa):
5500
5501     require 'syscall.ph';               # may need to run h2ph
5502     $s = "hi there\n";
5503     syscall(&SYS_write, fileno(STDOUT), $s, length $s);
5504
5505 Note that Perl supports passing of up to only 14 arguments to your system call,
5506 which in practice should usually suffice.
5507
5508 Syscall returns whatever value returned by the system call it calls.
5509 If the system call fails, C<syscall> returns C<-1> and sets C<$!> (errno).
5510 Note that some system calls can legitimately return C<-1>.  The proper
5511 way to handle such calls is to assign C<$!=0;> before the call and
5512 check the value of C<$!> if syscall returns C<-1>.
5513
5514 There's a problem with C<syscall(&SYS_pipe)>: it returns the file
5515 number of the read end of the pipe it creates.  There is no way
5516 to retrieve the file number of the other end.  You can avoid this
5517 problem by using C<pipe> instead.
5518
5519 =item sysopen FILEHANDLE,FILENAME,MODE
5520
5521 =item sysopen FILEHANDLE,FILENAME,MODE,PERMS
5522
5523 Opens the file whose filename is given by FILENAME, and associates it
5524 with FILEHANDLE.  If FILEHANDLE is an expression, its value is used as
5525 the name of the real filehandle wanted.  This function calls the
5526 underlying operating system's C<open> function with the parameters
5527 FILENAME, MODE, PERMS.
5528
5529 The possible values and flag bits of the MODE parameter are
5530 system-dependent; they are available via the standard module C<Fcntl>.
5531 See the documentation of your operating system's C<open> to see which
5532 values and flag bits are available.  You may combine several flags
5533 using the C<|>-operator.
5534
5535 Some of the most common values are C<O_RDONLY> for opening the file in
5536 read-only mode, C<O_WRONLY> for opening the file in write-only mode,
5537 and C<O_RDWR> for opening the file in read-write mode, and.
5538
5539 For historical reasons, some values work on almost every system
5540 supported by perl: zero means read-only, one means write-only, and two
5541 means read/write.  We know that these values do I<not> work under
5542 OS/390 & VM/ESA Unix and on the Macintosh; you probably don't want to
5543 use them in new code.
5544
5545 If the file named by FILENAME does not exist and the C<open> call creates
5546 it (typically because MODE includes the C<O_CREAT> flag), then the value of
5547 PERMS specifies the permissions of the newly created file.  If you omit
5548 the PERMS argument to C<sysopen>, Perl uses the octal value C<0666>.
5549 These permission values need to be in octal, and are modified by your
5550 process's current C<umask>.
5551
5552 In many systems the C<O_EXCL> flag is available for opening files in
5553 exclusive mode.  This is B<not> locking: exclusiveness means here that
5554 if the file already exists, sysopen() fails.  The C<O_EXCL> wins
5555 C<O_TRUNC>.
5556
5557 Sometimes you may want to truncate an already-existing file: C<O_TRUNC>.
5558
5559 You should seldom if ever use C<0644> as argument to C<sysopen>, because
5560 that takes away the user's option to have a more permissive umask.
5561 Better to omit it.  See the perlfunc(1) entry on C<umask> for more
5562 on this.
5563
5564 Note that C<sysopen> depends on the fdopen() C library function.
5565 On many UNIX systems, fdopen() is known to fail when file descriptors
5566 exceed a certain value, typically 255. If you need more file
5567 descriptors than that, consider rebuilding Perl to use the C<sfio>
5568 library, or perhaps using the POSIX::open() function.
5569
5570 See L<perlopentut> for a kinder, gentler explanation of opening files.
5571
5572 =item sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
5573
5574 =item sysread FILEHANDLE,SCALAR,LENGTH
5575
5576 Attempts to read LENGTH I<characters> of data into variable SCALAR
5577 from the specified FILEHANDLE, using the system call read(2).  It
5578 bypasses buffered IO, so mixing this with other kinds of reads,
5579 C<print>, C<write>, C<seek>, C<tell>, or C<eof> can cause confusion
5580 because stdio usually buffers data.  Returns the number of characters
5581 actually read, C<0> at end of file, or undef if there was an error (in
5582 the latter case C<$!> is also set).  SCALAR will be grown or shrunk so
5583 that the last byte actually read is the last byte of the scalar after
5584 the read.
5585
5586 Note the I<characters>: depending on the status of the filehandle,
5587 either (8-bit) bytes or characters are read.  By default all
5588 filehandles operate on bytes, but for example if the filehandle has
5589 been opened with the C<:utf8> I/O layer (see L</open>, and the C<open>
5590 pragma, L<open>), the I/O will operate on characters, not bytes.
5591
5592 An OFFSET may be specified to place the read data at some place in the
5593 string other than the beginning.  A negative OFFSET specifies
5594 placement at that many characters counting backwards from the end of
5595 the string.  A positive OFFSET greater than the length of SCALAR
5596 results in the string being padded to the required size with C<"\0">
5597 bytes before the result of the read is appended.
5598
5599 There is no syseof() function, which is ok, since eof() doesn't work
5600 very well on device files (like ttys) anyway.  Use sysread() and check
5601 for a return value for 0 to decide whether you're done.
5602
5603 =item sysseek FILEHANDLE,POSITION,WHENCE
5604
5605 Sets FILEHANDLE's system position I<in bytes> using the system call
5606 lseek(2).  FILEHANDLE may be an expression whose value gives the name
5607 of the filehandle.  The values for WHENCE are C<0> to set the new
5608 position to POSITION, C<1> to set the it to the current position plus
5609 POSITION, and C<2> to set it to EOF plus POSITION (typically
5610 negative).
5611
5612 Note the I<in bytes>: even if the filehandle has been set to operate
5613 on characters (for example by using the C<:utf8> I/O layer), tell()
5614 will return byte offsets, not character offsets (because implementing
5615 that would render sysseek() very slow).
5616
5617 sysseek() bypasses normal buffered io, so mixing this with reads (other
5618 than C<sysread>, for example &gt;&lt or read()) C<print>, C<write>,
5619 C<seek>, C<tell>, or C<eof> may cause confusion.
5620
5621 For WHENCE, you may also use the constants C<SEEK_SET>, C<SEEK_CUR>,
5622 and C<SEEK_END> (start of the file, current position, end of the file)
5623 from the Fcntl module.  Use of the constants is also more portable
5624 than relying on 0, 1, and 2.  For example to define a "systell" function:
5625
5626         use Fnctl 'SEEK_CUR';
5627         sub systell { sysseek($_[0], 0, SEEK_CUR) }
5628
5629 Returns the new position, or the undefined value on failure.  A position
5630 of zero is returned as the string C<"0 but true">; thus C<sysseek> returns
5631 true on success and false on failure, yet you can still easily determine
5632 the new position.
5633
5634 =item system LIST
5635
5636 =item system PROGRAM LIST
5637
5638 Does exactly the same thing as C<exec LIST>, except that a fork is
5639 done first, and the parent process waits for the child process to
5640 complete.  Note that argument processing varies depending on the
5641 number of arguments.  If there is more than one argument in LIST,
5642 or if LIST is an array with more than one value, starts the program
5643 given by the first element of the list with arguments given by the
5644 rest of the list.  If there is only one scalar argument, the argument
5645 is checked for shell metacharacters, and if there are any, the
5646 entire argument is passed to the system's command shell for parsing
5647 (this is C</bin/sh -c> on Unix platforms, but varies on other
5648 platforms).  If there are no shell metacharacters in the argument,
5649 it is split into words and passed directly to C<execvp>, which is
5650 more efficient.
5651
5652 Beginning with v5.6.0, Perl will attempt to flush all files opened for
5653 output before any operation that may do a fork, but this may not be
5654 supported on some platforms (see L<perlport>).  To be safe, you may need
5655 to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
5656 of C<IO::Handle> on any open handles.
5657
5658 The return value is the exit status of the program as returned by the
5659 C<wait> call.  To get the actual exit value shift right by eight (see below).
5660 See also L</exec>.  This is I<not> what you want to use to capture
5661 the output from a command, for that you should use merely backticks or
5662 C<qx//>, as described in L<perlop/"`STRING`">.  Return value of -1
5663 indicates a failure to start the program (inspect $! for the reason).
5664
5665 Like C<exec>, C<system> allows you to lie to a program about its name if
5666 you use the C<system PROGRAM LIST> syntax.  Again, see L</exec>.
5667
5668 Because C<system> and backticks block C<SIGINT> and C<SIGQUIT>,
5669 killing the program they're running doesn't actually interrupt
5670 your program.
5671
5672     @args = ("command", "arg1", "arg2");
5673     system(@args) == 0
5674          or die "system @args failed: $?"
5675
5676 You can check all the failure possibilities by inspecting
5677 C<$?> like this:
5678
5679     $exit_value  = $? >> 8;
5680     $signal_num  = $? & 127;
5681     $dumped_core = $? & 128;
5682
5683 or more portably by using the W*() calls of the POSIX extension;
5684 see L<perlport> for more information.
5685
5686 When the arguments get executed via the system shell, results
5687 and return codes will be subject to its quirks and capabilities.
5688 See L<perlop/"`STRING`"> and L</exec> for details.
5689
5690 =item syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
5691
5692 =item syswrite FILEHANDLE,SCALAR,LENGTH
5693
5694 =item syswrite FILEHANDLE,SCALAR
5695
5696 Attempts to write LENGTH characters of data from variable SCALAR to
5697 the specified FILEHANDLE, using the system call write(2).  If LENGTH
5698 is not specified, writes whole SCALAR.  It bypasses buffered IO, so
5699 mixing this with reads (other than C<sysread())>, C<print>, C<write>,
5700 C<seek>, C<tell>, or C<eof> may cause confusion because stdio usually
5701 buffers data.  Returns the number of characters actually written, or
5702 C<undef> if there was an error (in this case the errno variable C<$!>
5703 is also set).  If the LENGTH is greater than the available data in the
5704 SCALAR after the OFFSET, only as much data as is available will be
5705 written.
5706
5707 An OFFSET may be specified to write the data from some part of the
5708 string other than the beginning.  A negative OFFSET specifies writing
5709 that many characters counting backwards from the end of the string.
5710 In the case the SCALAR is empty you can use OFFSET but only zero offset.
5711
5712 Note the I<characters>: depending on the status of the filehandle,
5713 either (8-bit) bytes or characters are written.  By default all
5714 filehandles operate on bytes, but for example if the filehandle has
5715 been opened with the C<:utf8> I/O layer (see L</open>, and the open
5716 pragma, L<open>), the I/O will operate on characters, not bytes.
5717
5718 =item tell FILEHANDLE
5719
5720 =item tell
5721
5722 Returns the current position I<in bytes> for FILEHANDLE, or -1 on
5723 error.  FILEHANDLE may be an expression whose value gives the name of
5724 the actual filehandle.  If FILEHANDLE is omitted, assumes the file
5725 last read.
5726
5727 Note the I<in bytes>: even if the filehandle has been set to
5728 operate on characters (for example by using the C<:utf8> open
5729 layer), tell() will return byte offsets, not character offsets
5730 (because that would render seek() and tell() rather slow).
5731
5732 The return value of tell() for the standard streams like the STDIN
5733 depends on the operating system: it may return -1 or something else.
5734 tell() on pipes, fifos, and sockets usually returns -1.
5735
5736 There is no C<systell> function.  Use C<sysseek(FH, 0, 1)> for that.
5737
5738 Do not use tell() on a filehandle that has been opened using
5739 sysopen(), use sysseek() for that as described above.  Why?  Because
5740 sysopen() creates unbuffered, "raw", filehandles, while open() creates
5741 buffered filehandles.  sysseek() make sense only on the first kind,
5742 tell() only makes sense on the second kind.
5743
5744 =item telldir DIRHANDLE
5745
5746 Returns the current position of the C<readdir> routines on DIRHANDLE.
5747 Value may be given to C<seekdir> to access a particular location in a
5748 directory.  Has the same caveats about possible directory compaction as
5749 the corresponding system library routine.
5750
5751 =item tie VARIABLE,CLASSNAME,LIST
5752
5753 This function binds a variable to a package class that will provide the
5754 implementation for the variable.  VARIABLE is the name of the variable
5755 to be enchanted.  CLASSNAME is the name of a class implementing objects
5756 of correct type.  Any additional arguments are passed to the C<new>
5757 method of the class (meaning C<TIESCALAR>, C<TIEHANDLE>, C<TIEARRAY>,
5758 or C<TIEHASH>).  Typically these are arguments such as might be passed
5759 to the C<dbm_open()> function of C.  The object returned by the C<new>
5760 method is also returned by the C<tie> function, which would be useful
5761 if you want to access other methods in CLASSNAME.
5762
5763 Note that functions such as C<keys> and C<values> may return huge lists
5764 when used on large objects, like DBM files.  You may prefer to use the
5765 C<each> function to iterate over such.  Example:
5766
5767     # print out history file offsets
5768     use NDBM_File;
5769     tie(%HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
5770     while (($key,$val) = each %HIST) {
5771         print $key, ' = ', unpack('L',$val), "\n";
5772     }
5773     untie(%HIST);
5774
5775 A class implementing a hash should have the following methods:
5776
5777     TIEHASH classname, LIST
5778     FETCH this, key
5779     STORE this, key, value
5780     DELETE this, key
5781     CLEAR this
5782     EXISTS this, key
5783     FIRSTKEY this
5784     NEXTKEY this, lastkey
5785     DESTROY this
5786     UNTIE this
5787
5788 A class implementing an ordinary array should have the following methods:
5789
5790     TIEARRAY classname, LIST
5791     FETCH this, key
5792     STORE this, key, value
5793     FETCHSIZE this
5794     STORESIZE this, count
5795     CLEAR this
5796     PUSH this, LIST
5797     POP this
5798     SHIFT this
5799     UNSHIFT this, LIST
5800     SPLICE this, offset, length, LIST
5801     EXTEND this, count
5802     DESTROY this
5803     UNTIE this
5804
5805 A class implementing a file handle should have the following methods:
5806
5807     TIEHANDLE classname, LIST
5808     READ this, scalar, length, offset
5809     READLINE this
5810     GETC this
5811     WRITE this, scalar, length, offset
5812     PRINT this, LIST
5813     PRINTF this, format, LIST
5814     BINMODE this
5815     EOF this
5816     FILENO this
5817     SEEK this, position, whence
5818     TELL this
5819     OPEN this, mode, LIST
5820     CLOSE this
5821     DESTROY this
5822     UNTIE this
5823
5824 A class implementing a scalar should have the following methods:
5825
5826     TIESCALAR classname, LIST
5827     FETCH this,
5828     STORE this, value
5829     DESTROY this
5830     UNTIE this
5831
5832 Not all methods indicated above need be implemented.  See L<perltie>,
5833 L<Tie::Hash>, L<Tie::Array>, L<Tie::Scalar>, and L<Tie::Handle>.
5834
5835 Unlike C<dbmopen>, the C<tie> function will not use or require a module
5836 for you--you need to do that explicitly yourself.  See L<DB_File>
5837 or the F<Config> module for interesting C<tie> implementations.
5838
5839 For further details see L<perltie>, L<"tied VARIABLE">.
5840
5841 =item tied VARIABLE
5842
5843 Returns a reference to the object underlying VARIABLE (the same value
5844 that was originally returned by the C<tie> call that bound the variable
5845 to a package.)  Returns the undefined value if VARIABLE isn't tied to a
5846 package.
5847
5848 =item time
5849
5850 Returns the number of non-leap seconds since whatever time the system
5851 considers to be the epoch (that's 00:00:00, January 1, 1904 for Mac OS,
5852 and 00:00:00 UTC, January 1, 1970 for most other systems).
5853 Suitable for feeding to C<gmtime> and C<localtime>.
5854
5855 For measuring time in better granularity than one second,
5856 you may use either the Time::HiRes module (from CPAN, and starting from
5857 Perl 5.8 part of the standard distribution), or if you have
5858 gettimeofday(2), you may be able to use the C<syscall> interface of Perl.
5859 See L<perlfaq8> for details.
5860
5861 =item times
5862
5863 Returns a four-element list giving the user and system times, in
5864 seconds, for this process and the children of this process.
5865
5866     ($user,$system,$cuser,$csystem) = times;
5867
5868 In scalar context, C<times> returns C<$user>.
5869
5870 =item tr///
5871
5872 The transliteration operator.  Same as C<y///>.  See L<perlop>.
5873
5874 =item truncate FILEHANDLE,LENGTH
5875
5876 =item truncate EXPR,LENGTH
5877
5878 Truncates the file opened on FILEHANDLE, or named by EXPR, to the
5879 specified length.  Produces a fatal error if truncate isn't implemented
5880 on your system.  Returns true if successful, the undefined value
5881 otherwise.
5882
5883 The behavior is undefined if LENGTH is greater than the length of the
5884 file.
5885
5886 =item uc EXPR
5887
5888 =item uc
5889
5890 Returns an uppercased version of EXPR.  This is the internal function
5891 implementing the C<\U> escape in double-quoted strings.  Respects
5892 current LC_CTYPE locale if C<use locale> in force.  See L<perllocale>
5893 and L<perlunicode> for more details about locale and Unicode support.
5894 It does not attempt to do titlecase mapping on initial letters.  See
5895 C<ucfirst> for that.
5896
5897 If EXPR is omitted, uses C<$_>.
5898
5899 =item ucfirst EXPR
5900
5901 =item ucfirst
5902
5903 Returns the value of EXPR with the first character in uppercase
5904 (titlecase in Unicode).  This is the internal function implementing
5905 the C<\u> escape in double-quoted strings.  Respects current LC_CTYPE
5906 locale if C<use locale> in force.  See L<perllocale> and L<perlunicode>
5907 for more details about locale and Unicode support.
5908
5909 If EXPR is omitted, uses C<$_>.
5910
5911 =item umask EXPR
5912
5913 =item umask
5914
5915 Sets the umask for the process to EXPR and returns the previous value.
5916 If EXPR is omitted, merely returns the current umask.
5917
5918 The Unix permission C<rwxr-x---> is represented as three sets of three
5919 bits, or three octal digits: C<0750> (the leading 0 indicates octal
5920 and isn't one of the digits).  The C<umask> value is such a number
5921 representing disabled permissions bits.  The permission (or "mode")
5922 values you pass C<mkdir> or C<sysopen> are modified by your umask, so
5923 even if you tell C<sysopen> to create a file with permissions C<0777>,
5924 if your umask is C<0022> then the file will actually be created with
5925 permissions C<0755>.  If your C<umask> were C<0027> (group can't
5926 write; others can't read, write, or execute), then passing
5927 C<sysopen> C<0666> would create a file with mode C<0640> (C<0666 &~
5928 027> is C<0640>).
5929
5930 Here's some advice: supply a creation mode of C<0666> for regular
5931 files (in C<sysopen>) and one of C<0777> for directories (in
5932 C<mkdir>) and executable files.  This gives users the freedom of
5933 choice: if they want protected files, they might choose process umasks
5934 of C<022>, C<027>, or even the particularly antisocial mask of C<077>.
5935 Programs should rarely if ever make policy decisions better left to
5936 the user.  The exception to this is when writing files that should be
5937 kept private: mail files, web browser cookies, I<.rhosts> files, and
5938 so on.
5939
5940 If umask(2) is not implemented on your system and you are trying to
5941 restrict access for I<yourself> (i.e., (EXPR & 0700) > 0), produces a
5942 fatal error at run time.  If umask(2) is not implemented and you are
5943 not trying to restrict access for yourself, returns C<undef>.
5944
5945 Remember that a umask is a number, usually given in octal; it is I<not> a
5946 string of octal digits.  See also L</oct>, if all you have is a string.
5947
5948 =item undef EXPR
5949
5950 =item undef
5951
5952 Undefines the value of EXPR, which must be an lvalue.  Use only on a
5953 scalar value, an array (using C<@>), a hash (using C<%>), a subroutine
5954 (using C<&>), or a typeglob (using <*>).  (Saying C<undef $hash{$key}>
5955 will probably not do what you expect on most predefined variables or
5956 DBM list values, so don't do that; see L<delete>.)  Always returns the
5957 undefined value.  You can omit the EXPR, in which case nothing is
5958 undefined, but you still get an undefined value that you could, for
5959 instance, return from a subroutine, assign to a variable or pass as a
5960 parameter.  Examples:
5961
5962     undef $foo;
5963     undef $bar{'blurfl'};      # Compare to: delete $bar{'blurfl'};
5964     undef @ary;
5965     undef %hash;
5966     undef &mysub;
5967     undef *xyz;       # destroys $xyz, @xyz, %xyz, &xyz, etc.
5968     return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
5969     select undef, undef, undef, 0.25;
5970     ($a, $b, undef, $c) = &foo;       # Ignore third value returned
5971
5972 Note that this is a unary operator, not a list operator.
5973
5974 =item unlink LIST
5975
5976 =item unlink
5977
5978 Deletes a list of files.  Returns the number of files successfully
5979 deleted.
5980
5981     $cnt = unlink 'a', 'b', 'c';
5982     unlink @goners;
5983     unlink <*.bak>;
5984
5985 Note: C<unlink> will not delete directories unless you are superuser and
5986 the B<-U> flag is supplied to Perl.  Even if these conditions are
5987 met, be warned that unlinking a directory can inflict damage on your
5988 filesystem.  Use C<rmdir> instead.
5989
5990 If LIST is omitted, uses C<$_>.
5991
5992 =item unpack TEMPLATE,EXPR
5993
5994 =item unpack TEMPLATE
5995
5996 C<unpack> does the reverse of C<pack>: it takes a string
5997 and expands it out into a list of values.
5998 (In scalar context, it returns merely the first value produced.)
5999
6000 If EXPR is omitted, unpacks the C<$_> string.
6001
6002 The string is broken into chunks described by the TEMPLATE.  Each chunk
6003 is converted separately to a value.  Typically, either the string is a result
6004 of C<pack>, or the bytes of the string represent a C structure of some
6005 kind.
6006
6007 The TEMPLATE has the same format as in the C<pack> function.
6008 Here's a subroutine that does substring:
6009
6010     sub substr {
6011         my($what,$where,$howmuch) = @_;
6012         unpack("x$where a$howmuch", $what);
6013     }
6014
6015 and then there's
6016
6017     sub ordinal { unpack("c",$_[0]); } # same as ord()
6018
6019 In addition to fields allowed in pack(), you may prefix a field with
6020 a %<number> to indicate that
6021 you want a <number>-bit checksum of the items instead of the items
6022 themselves.  Default is a 16-bit checksum.  Checksum is calculated by
6023 summing numeric values of expanded values (for string fields the sum of
6024 C<ord($char)> is taken, for bit fields the sum of zeroes and ones).
6025
6026 For example, the following
6027 computes the same number as the System V sum program:
6028
6029     $checksum = do {
6030         local $/;  # slurp!
6031         unpack("%32C*",<>) % 65535;
6032     };
6033
6034 The following efficiently counts the number of set bits in a bit vector:
6035
6036     $setbits = unpack("%32b*", $selectmask);
6037
6038 The C<p> and C<P> formats should be used with care.  Since Perl
6039 has no way of checking whether the value passed to C<unpack()>
6040 corresponds to a valid memory location, passing a pointer value that's
6041 not known to be valid is likely to have disastrous consequences.
6042
6043 If there are more pack codes or if the repeat count of a field or a group
6044 is larger than what the remainder of the input string allows, the result
6045 is not well defined: in some cases, the repeat count is decreased, or
6046 C<unpack()> will produce null strings or zeroes, or terminate with an
6047 error. If the input string is longer than one described by the TEMPLATE,
6048 the rest is ignored.
6049
6050 See L</pack> for more examples and notes.
6051
6052 =item untie VARIABLE
6053
6054 Breaks the binding between a variable and a package.  (See C<tie>.)
6055 Has no effect if the variable is not tied.
6056
6057 =item unshift ARRAY,LIST
6058
6059 Does the opposite of a C<shift>.  Or the opposite of a C<push>,
6060 depending on how you look at it.  Prepends list to the front of the
6061 array, and returns the new number of elements in the array.
6062
6063     unshift(@ARGV, '-e') unless $ARGV[0] =~ /^-/;
6064
6065 Note the LIST is prepended whole, not one element at a time, so the
6066 prepended elements stay in the same order.  Use C<reverse> to do the
6067 reverse.
6068
6069 =item use Module VERSION LIST
6070
6071 =item use Module VERSION
6072
6073 =item use Module LIST
6074
6075 =item use Module
6076
6077 =item use VERSION
6078
6079 Imports some semantics into the current package from the named module,
6080 generally by aliasing certain subroutine or variable names into your
6081 package.  It is exactly equivalent to
6082
6083     BEGIN { require Module; import Module LIST; }
6084
6085 except that Module I<must> be a bareword.
6086
6087 VERSION may be either a numeric argument such as 5.006, which will be
6088 compared to C<$]>, or a literal of the form v5.6.1, which will be compared
6089 to C<$^V> (aka $PERL_VERSION.  A fatal error is produced if VERSION is
6090 greater than the version of the current Perl interpreter; Perl will not
6091 attempt to parse the rest of the file.  Compare with L</require>, which can
6092 do a similar check at run time.
6093
6094 Specifying VERSION as a literal of the form v5.6.1 should generally be
6095 avoided, because it leads to misleading error messages under earlier
6096 versions of Perl which do not support this syntax.  The equivalent numeric
6097 version should be used instead.
6098
6099     use v5.6.1;         # compile time version check
6100     use 5.6.1;          # ditto
6101     use 5.006_001;      # ditto; preferred for backwards compatibility
6102
6103 This is often useful if you need to check the current Perl version before
6104 C<use>ing library modules that have changed in incompatible ways from
6105 older versions of Perl.  (We try not to do this more than we have to.)
6106
6107 The C<BEGIN> forces the C<require> and C<import> to happen at compile time.  The
6108 C<require> makes sure the module is loaded into memory if it hasn't been
6109 yet.  The C<import> is not a builtin--it's just an ordinary static method
6110 call into the C<Module> package to tell the module to import the list of
6111 features back into the current package.  The module can implement its
6112 C<import> method any way it likes, though most modules just choose to
6113 derive their C<import> method via inheritance from the C<Exporter> class that
6114 is defined in the C<Exporter> module.  See L<Exporter>.  If no C<import>
6115 method can be found then the call is skipped.
6116
6117 If you do not want to call the package's C<import> method (for instance,
6118 to stop your namespace from being altered), explicitly supply the empty list:
6119
6120     use Module ();
6121
6122 That is exactly equivalent to
6123
6124     BEGIN { require Module }
6125
6126 If the VERSION argument is present between Module and LIST, then the
6127 C<use> will call the VERSION method in class Module with the given
6128 version as an argument.  The default VERSION method, inherited from
6129 the UNIVERSAL class, croaks if the given version is larger than the
6130 value of the variable C<$Module::VERSION>.
6131
6132 Again, there is a distinction between omitting LIST (C<import> called
6133 with no arguments) and an explicit empty LIST C<()> (C<import> not
6134 called).  Note that there is no comma after VERSION!
6135
6136 Because this is a wide-open interface, pragmas (compiler directives)
6137 are also implemented this way.  Currently implemented pragmas are:
6138
6139     use constant;
6140     use diagnostics;
6141     use integer;
6142     use sigtrap  qw(SEGV BUS);
6143     use strict   qw(subs vars refs);
6144     use subs     qw(afunc blurfl);
6145     use warnings qw(all);
6146     use sort     qw(stable _quicksort _mergesort);
6147
6148 Some of these pseudo-modules import semantics into the current
6149 block scope (like C<strict> or C<integer>, unlike ordinary modules,
6150 which import symbols into the current package (which are effective
6151 through the end of the file).
6152
6153 There's a corresponding C<no> command that unimports meanings imported
6154 by C<use>, i.e., it calls C<unimport Module LIST> instead of C<import>.
6155
6156     no integer;
6157     no strict 'refs';
6158     no warnings;
6159
6160 See L<perlmodlib> for a list of standard modules and pragmas.  See L<perlrun>
6161 for the C<-M> and C<-m> command-line options to perl that give C<use>
6162 functionality from the command-line.
6163
6164 =item utime LIST
6165
6166 Changes the access and modification times on each file of a list of
6167 files.  The first two elements of the list must be the NUMERICAL access
6168 and modification times, in that order.  Returns the number of files
6169 successfully changed.  The inode change time of each file is set
6170 to the current time.  For example, this code has the same effect as the
6171 Unix touch(1) command when the files I<already exist>.
6172
6173     #!/usr/bin/perl
6174     $now = time;
6175     utime $now, $now, @ARGV;
6176
6177 B<Note:>  Under NFS, touch(1) uses the time of the NFS server, not
6178 the time of the local machine.  If there is a time synchronization
6179 problem, the NFS server and local machine will have different times.
6180
6181 Since perl 5.7.2, if the first two elements of the list are C<undef>, then
6182 the utime(2) function in the C library will be called with a null second
6183 argument. On most systems, this will set the file's access and
6184 modification times to the current time (i.e. equivalent to the example
6185 above.)
6186
6187     utime undef, undef, @ARGV;
6188
6189 =item values HASH
6190
6191 Returns a list consisting of all the values of the named hash.  (In a
6192 scalar context, returns the number of values.)  The values are
6193 returned in an apparently random order.  The actual random order is
6194 subject to change in future versions of perl, but it is guaranteed to
6195 be the same order as either the C<keys> or C<each> function would
6196 produce on the same (unmodified) hash.
6197
6198 Note that the values are not copied, which means modifying them will
6199 modify the contents of the hash:
6200
6201     for (values %hash)      { s/foo/bar/g }   # modifies %hash values
6202     for (@hash{keys %hash}) { s/foo/bar/g }   # same
6203
6204 As a side effect, calling values() resets the HASH's internal iterator.
6205 See also C<keys>, C<each>, and C<sort>.
6206
6207 =item vec EXPR,OFFSET,BITS
6208
6209 Treats the string in EXPR as a bit vector made up of elements of
6210 width BITS, and returns the value of the element specified by OFFSET
6211 as an unsigned integer.  BITS therefore specifies the number of bits
6212 that are reserved for each element in the bit vector.  This must
6213 be a power of two from 1 to 32 (or 64, if your platform supports
6214 that).
6215
6216 If BITS is 8, "elements" coincide with bytes of the input string.
6217
6218 If BITS is 16 or more, bytes of the input string are grouped into chunks
6219 of size BITS/8, and each group is converted to a number as with
6220 pack()/unpack() with big-endian formats C<n>/C<N> (and analogously
6221 for BITS==64).  See L<"pack"> for details.
6222
6223 If bits is 4 or less, the string is broken into bytes, then the bits
6224 of each byte are broken into 8/BITS groups.  Bits of a byte are
6225 numbered in a little-endian-ish way, as in C<0x01>, C<0x02>,
6226 C<0x04>, C<0x08>, C<0x10>, C<0x20>, C<0x40>, C<0x80>.  For example,
6227 breaking the single input byte C<chr(0x36)> into two groups gives a list
6228 C<(0x6, 0x3)>; breaking it into 4 groups gives C<(0x2, 0x1, 0x3, 0x0)>.
6229
6230 C<vec> may also be assigned to, in which case parentheses are needed
6231 to give the expression the correct precedence as in
6232
6233     vec($image, $max_x * $x + $y, 8) = 3;
6234
6235 If the selected element is outside the string, the value 0 is returned.
6236 If an element off the end of the string is written to, Perl will first
6237 extend the string with sufficiently many zero bytes.   It is an error
6238 to try to write off the beginning of the string (i.e. negative OFFSET).
6239
6240 The string should not contain any character with the value > 255 (which
6241 can only happen if you're using UTF8 encoding).  If it does, it will be
6242 treated as something which is not UTF8 encoded.  When the C<vec> was
6243 assigned to, other parts of your program will also no longer consider the
6244 string to be UTF8 encoded.  In other words, if you do have such characters
6245 in your string, vec() will operate on the actual byte string, and not the
6246 conceptual character string.
6247
6248 Strings created with C<vec> can also be manipulated with the logical
6249 operators C<|>, C<&>, C<^>, and C<~>.  These operators will assume a bit
6250 vector operation is desired when both operands are strings.
6251 See L<perlop/"Bitwise String Operators">.
6252
6253 The following code will build up an ASCII string saying C<'PerlPerlPerl'>.
6254 The comments show the string after each step.  Note that this code works
6255 in the same way on big-endian or little-endian machines.
6256
6257     my $foo = '';
6258     vec($foo,  0, 32) = 0x5065726C;     # 'Perl'
6259
6260     # $foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
6261     print vec($foo, 0, 8);              # prints 80 == 0x50 == ord('P')
6262
6263     vec($foo,  2, 16) = 0x5065;         # 'PerlPe'
6264     vec($foo,  3, 16) = 0x726C;         # 'PerlPerl'
6265     vec($foo,  8,  8) = 0x50;           # 'PerlPerlP'
6266     vec($foo,  9,  8) = 0x65;           # 'PerlPerlPe'
6267     vec($foo, 20,  4) = 2;              # 'PerlPerlPe'   . "\x02"
6268     vec($foo, 21,  4) = 7;              # 'PerlPerlPer'
6269                                         # 'r' is "\x72"
6270     vec($foo, 45,  2) = 3;              # 'PerlPerlPer'  . "\x0c"
6271     vec($foo, 93,  1) = 1;              # 'PerlPerlPer'  . "\x2c"
6272     vec($foo, 94,  1) = 1;              # 'PerlPerlPerl'
6273                                         # 'l' is "\x6c"
6274
6275 To transform a bit vector into a string or list of 0's and 1's, use these:
6276
6277     $bits = unpack("b*", $vector);
6278     @bits = split(//, unpack("b*", $vector));
6279
6280 If you know the exact length in bits, it can be used in place of the C<*>.
6281
6282 Here is an example to illustrate how the bits actually fall in place:
6283
6284     #!/usr/bin/perl -wl
6285
6286     print <<'EOT';
6287                                       0         1         2         3
6288                        unpack("V",$_) 01234567890123456789012345678901
6289     ------------------------------------------------------------------
6290     EOT
6291
6292     for $w (0..3) {
6293         $width = 2**$w;
6294         for ($shift=0; $shift < $width; ++$shift) {
6295             for ($off=0; $off < 32/$width; ++$off) {
6296                 $str = pack("B*", "0"x32);
6297                 $bits = (1<<$shift);
6298                 vec($str, $off, $width) = $bits;
6299                 $res = unpack("b*",$str);
6300                 $val = unpack("V", $str);
6301                 write;
6302             }
6303         }
6304     }
6305
6306     format STDOUT =
6307     vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
6308     $off, $width, $bits, $val, $res
6309     .
6310     __END__
6311
6312 Regardless of the machine architecture on which it is run, the above
6313 example should print the following table:
6314
6315                                       0         1         2         3
6316                        unpack("V",$_) 01234567890123456789012345678901
6317     ------------------------------------------------------------------
6318     vec($_, 0, 1) = 1   ==          1 10000000000000000000000000000000
6319     vec($_, 1, 1) = 1   ==          2 01000000000000000000000000000000
6320     vec($_, 2, 1) = 1   ==          4 00100000000000000000000000000000
6321     vec($_, 3, 1) = 1   ==          8 00010000000000000000000000000000
6322     vec($_, 4, 1) = 1   ==         16 00001000000000000000000000000000
6323     vec($_, 5, 1) = 1   ==         32 00000100000000000000000000000000
6324     vec($_, 6, 1) = 1   ==         64 00000010000000000000000000000000
6325     vec($_, 7, 1) = 1   ==        128 00000001000000000000000000000000
6326     vec($_, 8, 1) = 1   ==        256 00000000100000000000000000000000
6327     vec($_, 9, 1) = 1   ==        512 00000000010000000000000000000000
6328     vec($_,10, 1) = 1   ==       1024 00000000001000000000000000000000
6329     vec($_,11, 1) = 1   ==       2048 00000000000100000000000000000000
6330     vec($_,12, 1) = 1   ==       4096 00000000000010000000000000000000
6331     vec($_,13, 1) = 1   ==       8192 00000000000001000000000000000000
6332     vec($_,14, 1) = 1   ==      16384 00000000000000100000000000000000
6333     vec($_,15, 1) = 1   ==      32768 00000000000000010000000000000000
6334     vec($_,16, 1) = 1   ==      65536 00000000000000001000000000000000
6335     vec($_,17, 1) = 1   ==     131072 00000000000000000100000000000000
6336     vec($_,18, 1) = 1   ==     262144 00000000000000000010000000000000
6337     vec($_,19, 1) = 1   ==     524288 00000000000000000001000000000000
6338     vec($_,20, 1) = 1   ==    1048576 00000000000000000000100000000000
6339     vec($_,21, 1) = 1   ==    2097152 00000000000000000000010000000000
6340     vec($_,22, 1) = 1   ==    4194304 00000000000000000000001000000000
6341     vec($_,23, 1) = 1   ==    8388608 00000000000000000000000100000000
6342     vec($_,24, 1) = 1   ==   16777216 00000000000000000000000010000000
6343     vec($_,25, 1) = 1   ==   33554432 00000000000000000000000001000000
6344     vec($_,26, 1) = 1   ==   67108864 00000000000000000000000000100000
6345     vec($_,27, 1) = 1   ==  134217728 00000000000000000000000000010000
6346     vec($_,28, 1) = 1   ==  268435456 00000000000000000000000000001000
6347     vec($_,29, 1) = 1   ==  536870912 00000000000000000000000000000100
6348     vec($_,30, 1) = 1   == 1073741824 00000000000000000000000000000010
6349     vec($_,31, 1) = 1   == 2147483648 00000000000000000000000000000001
6350     vec($_, 0, 2) = 1   ==          1 10000000000000000000000000000000
6351     vec($_, 1, 2) = 1   ==          4 00100000000000000000000000000000
6352     vec($_, 2, 2) = 1   ==         16 00001000000000000000000000000000
6353     vec($_, 3, 2) = 1   ==         64 00000010000000000000000000000000
6354     vec($_, 4, 2) = 1   ==        256 00000000100000000000000000000000
6355     vec($_, 5, 2) = 1   ==       1024 00000000001000000000000000000000
6356     vec($_, 6, 2) = 1   ==       4096 00000000000010000000000000000000
6357     vec($_, 7, 2) = 1   ==      16384 00000000000000100000000000000000
6358     vec($_, 8, 2) = 1   ==      65536 00000000000000001000000000000000
6359     vec($_, 9, 2) = 1   ==     262144 00000000000000000010000000000000
6360     vec($_,10, 2) = 1   ==    1048576 00000000000000000000100000000000
6361     vec($_,11, 2) = 1   ==    4194304 00000000000000000000001000000000
6362     vec($_,12, 2) = 1   ==   16777216 00000000000000000000000010000000
6363     vec($_,13, 2) = 1   ==   67108864 00000000000000000000000000100000
6364     vec($_,14, 2) = 1   ==  268435456 00000000000000000000000000001000
6365     vec($_,15, 2) = 1   == 1073741824 00000000000000000000000000000010
6366     vec($_, 0, 2) = 2   ==          2 01000000000000000000000000000000
6367     vec($_, 1, 2) = 2   ==          8 00010000000000000000000000000000
6368     vec($_, 2, 2) = 2   ==         32 00000100000000000000000000000000
6369     vec($_, 3, 2) = 2   ==        128 00000001000000000000000000000000
6370     vec($_, 4, 2) = 2   ==        512 00000000010000000000000000000000
6371     vec($_, 5, 2) = 2   ==       2048 00000000000100000000000000000000
6372     vec($_, 6, 2) = 2   ==       8192 00000000000001000000000000000000
6373     vec($_, 7, 2) = 2   ==      32768 00000000000000010000000000000000
6374     vec($_, 8, 2) = 2   ==     131072 00000000000000000100000000000000
6375     vec($_, 9, 2) = 2   ==     524288 00000000000000000001000000000000
6376     vec($_,10, 2) = 2   ==    2097152 00000000000000000000010000000000
6377     vec($_,11, 2) = 2   ==    8388608 00000000000000000000000100000000
6378     vec($_,12, 2) = 2   ==   33554432 00000000000000000000000001000000
6379     vec($_,13, 2) = 2   ==  134217728 00000000000000000000000000010000
6380     vec($_,14, 2) = 2   ==  536870912 00000000000000000000000000000100
6381     vec($_,15, 2) = 2   == 2147483648 00000000000000000000000000000001
6382     vec($_, 0, 4) = 1   ==          1 10000000000000000000000000000000
6383     vec($_, 1, 4) = 1   ==         16 00001000000000000000000000000000
6384     vec($_, 2, 4) = 1   ==        256 00000000100000000000000000000000
6385     vec($_, 3, 4) = 1   ==       4096 00000000000010000000000000000000
6386     vec($_, 4, 4) = 1   ==      65536 00000000000000001000000000000000
6387     vec($_, 5, 4) = 1   ==    1048576 00000000000000000000100000000000
6388     vec($_, 6, 4) = 1   ==   16777216 00000000000000000000000010000000
6389     vec($_, 7, 4) = 1   ==  268435456 00000000000000000000000000001000
6390     vec($_, 0, 4) = 2   ==          2 01000000000000000000000000000000
6391     vec($_, 1, 4) = 2   ==         32 00000100000000000000000000000000
6392     vec($_, 2, 4) = 2   ==        512 00000000010000000000000000000000
6393     vec($_, 3, 4) = 2   ==       8192 00000000000001000000000000000000
6394     vec($_, 4, 4) = 2   ==     131072 00000000000000000100000000000000
6395     vec($_, 5, 4) = 2   ==    2097152 00000000000000000000010000000000
6396     vec($_, 6, 4) = 2   ==   33554432 00000000000000000000000001000000
6397     vec($_, 7, 4) = 2   ==  536870912 00000000000000000000000000000100
6398     vec($_, 0, 4) = 4   ==          4 00100000000000000000000000000000
6399     vec($_, 1, 4) = 4   ==         64 00000010000000000000000000000000
6400     vec($_, 2, 4) = 4   ==       1024 00000000001000000000000000000000
6401     vec($_, 3, 4) = 4   ==      16384 00000000000000100000000000000000
6402     vec($_, 4, 4) = 4   ==     262144 00000000000000000010000000000000
6403     vec($_, 5, 4) = 4   ==    4194304 00000000000000000000001000000000
6404     vec($_, 6, 4) = 4   ==   67108864 00000000000000000000000000100000
6405     vec($_, 7, 4) = 4   == 1073741824 00000000000000000000000000000010
6406     vec($_, 0, 4) = 8   ==          8 00010000000000000000000000000000
6407     vec($_, 1, 4) = 8   ==        128 00000001000000000000000000000000
6408     vec($_, 2, 4) = 8   ==       2048 00000000000100000000000000000000
6409     vec($_, 3, 4) = 8   ==      32768 00000000000000010000000000000000
6410     vec($_, 4, 4) = 8   ==     524288 00000000000000000001000000000000
6411     vec($_, 5, 4) = 8   ==    8388608 00000000000000000000000100000000
6412     vec($_, 6, 4) = 8   ==  134217728 00000000000000000000000000010000
6413     vec($_, 7, 4) = 8   == 2147483648 00000000000000000000000000000001
6414     vec($_, 0, 8) = 1   ==          1 10000000000000000000000000000000
6415     vec($_, 1, 8) = 1   ==        256 00000000100000000000000000000000
6416     vec($_, 2, 8) = 1   ==      65536 00000000000000001000000000000000
6417     vec($_, 3, 8) = 1   ==   16777216 00000000000000000000000010000000
6418     vec($_, 0, 8) = 2   ==          2 01000000000000000000000000000000
6419     vec($_, 1, 8) = 2   ==        512 00000000010000000000000000000000
6420     vec($_, 2, 8) = 2   ==     131072 00000000000000000100000000000000
6421     vec($_, 3, 8) = 2   ==   33554432 00000000000000000000000001000000
6422     vec($_, 0, 8) = 4   ==          4 00100000000000000000000000000000
6423     vec($_, 1, 8) = 4   ==       1024 00000000001000000000000000000000
6424     vec($_, 2, 8) = 4   ==     262144 00000000000000000010000000000000
6425     vec($_, 3, 8) = 4   ==   67108864 00000000000000000000000000100000
6426     vec($_, 0, 8) = 8   ==          8 00010000000000000000000000000000
6427     vec($_, 1, 8) = 8   ==       2048 00000000000100000000000000000000
6428     vec($_, 2, 8) = 8   ==     524288 00000000000000000001000000000000
6429     vec($_, 3, 8) = 8   ==  134217728 00000000000000000000000000010000
6430     vec($_, 0, 8) = 16  ==         16 00001000000000000000000000000000
6431     vec($_, 1, 8) = 16  ==       4096 00000000000010000000000000000000
6432     vec($_, 2, 8) = 16  ==    1048576 00000000000000000000100000000000
6433     vec($_, 3, 8) = 16  ==  268435456 00000000000000000000000000001000
6434     vec($_, 0, 8) = 32  ==         32 00000100000000000000000000000000
6435     vec($_, 1, 8) = 32  ==       8192 00000000000001000000000000000000
6436     vec($_, 2, 8) = 32  ==    2097152 00000000000000000000010000000000
6437     vec($_, 3, 8) = 32  ==  536870912 00000000000000000000000000000100
6438     vec($_, 0, 8) = 64  ==         64 00000010000000000000000000000000
6439     vec($_, 1, 8) = 64  ==      16384 00000000000000100000000000000000
6440     vec($_, 2, 8) = 64  ==    4194304 00000000000000000000001000000000
6441     vec($_, 3, 8) = 64  == 1073741824 00000000000000000000000000000010
6442     vec($_, 0, 8) = 128 ==        128 00000001000000000000000000000000
6443     vec($_, 1, 8) = 128 ==      32768 00000000000000010000000000000000
6444     vec($_, 2, 8) = 128 ==    8388608 00000000000000000000000100000000
6445     vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001
6446
6447 =item wait
6448
6449 Behaves like the wait(2) system call on your system: it waits for a child
6450 process to terminate and returns the pid of the deceased process, or
6451 C<-1> if there are no child processes.  The status is returned in C<$?>.
6452 Note that a return value of C<-1> could mean that child processes are
6453 being automatically reaped, as described in L<perlipc>.
6454
6455 =item waitpid PID,FLAGS
6456
6457 Waits for a particular child process to terminate and returns the pid of
6458 the deceased process, or C<-1> if there is no such child process.  On some
6459 systems, a value of 0 indicates that there are processes still running.
6460 The status is returned in C<$?>.  If you say
6461
6462     use POSIX ":sys_wait_h";
6463     #...
6464     do {
6465         $kid = waitpid(-1, WNOHANG);
6466     } until $kid > 0;
6467
6468 then you can do a non-blocking wait for all pending zombie processes.
6469 Non-blocking wait is available on machines supporting either the
6470 waitpid(2) or wait4(2) system calls.  However, waiting for a particular
6471 pid with FLAGS of C<0> is implemented everywhere.  (Perl emulates the
6472 system call by remembering the status values of processes that have
6473 exited but have not been harvested by the Perl script yet.)
6474
6475 Note that on some systems, a return value of C<-1> could mean that child
6476 processes are being automatically reaped.  See L<perlipc> for details,
6477 and for other examples.
6478
6479 =item wantarray
6480
6481 Returns true if the context of the currently executing subroutine is
6482 looking for a list value.  Returns false if the context is looking
6483 for a scalar.  Returns the undefined value if the context is looking
6484 for no value (void context).
6485
6486     return unless defined wantarray;    # don't bother doing more
6487     my @a = complex_calculation();
6488     return wantarray ? @a : "@a";
6489
6490 This function should have been named wantlist() instead.
6491
6492 =item warn LIST
6493
6494 Produces a message on STDERR just like C<die>, but doesn't exit or throw
6495 an exception.
6496
6497 If LIST is empty and C<$@> already contains a value (typically from a
6498 previous eval) that value is used after appending C<"\t...caught">
6499 to C<$@>.  This is useful for staying almost, but not entirely similar to
6500 C<die>.
6501
6502 If C<$@> is empty then the string C<"Warning: Something's wrong"> is used.
6503
6504 No message is printed if there is a C<$SIG{__WARN__}> handler
6505 installed.  It is the handler's responsibility to deal with the message
6506 as it sees fit (like, for instance, converting it into a C<die>).  Most
6507 handlers must therefore make arrangements to actually display the
6508 warnings that they are not prepared to deal with, by calling C<warn>
6509 again in the handler.  Note that this is quite safe and will not
6510 produce an endless loop, since C<__WARN__> hooks are not called from
6511 inside one.
6512
6513 You will find this behavior is slightly different from that of
6514 C<$SIG{__DIE__}> handlers (which don't suppress the error text, but can
6515 instead call C<die> again to change it).
6516
6517 Using a C<__WARN__> handler provides a powerful way to silence all
6518 warnings (even the so-called mandatory ones).  An example:
6519
6520     # wipe out *all* compile-time warnings
6521     BEGIN { $SIG{'__WARN__'} = sub { warn $_[0] if $DOWARN } }
6522     my $foo = 10;
6523     my $foo = 20;          # no warning about duplicate my $foo,
6524                            # but hey, you asked for it!
6525     # no compile-time or run-time warnings before here
6526     $DOWARN = 1;
6527
6528     # run-time warnings enabled after here
6529     warn "\$foo is alive and $foo!";     # does show up
6530
6531 See L<perlvar> for details on setting C<%SIG> entries, and for more
6532 examples.  See the Carp module for other kinds of warnings using its
6533 carp() and cluck() functions.
6534
6535 =item write FILEHANDLE
6536
6537 =item write EXPR
6538
6539 =item write
6540
6541 Writes a formatted record (possibly multi-line) to the specified FILEHANDLE,
6542 using the format associated with that file.  By default the format for
6543 a file is the one having the same name as the filehandle, but the
6544 format for the current output channel (see the C<select> function) may be set
6545 explicitly by assigning the name of the format to the C<$~> variable.
6546
6547 Top of form processing is handled automatically:  if there is
6548 insufficient room on the current page for the formatted record, the
6549 page is advanced by writing a form feed, a special top-of-page format
6550 is used to format the new page header, and then the record is written.
6551 By default the top-of-page format is the name of the filehandle with
6552 "_TOP" appended, but it may be dynamically set to the format of your
6553 choice by assigning the name to the C<$^> variable while the filehandle is
6554 selected.  The number of lines remaining on the current page is in
6555 variable C<$->, which can be set to C<0> to force a new page.
6556
6557 If FILEHANDLE is unspecified, output goes to the current default output
6558 channel, which starts out as STDOUT but may be changed by the
6559 C<select> operator.  If the FILEHANDLE is an EXPR, then the expression
6560 is evaluated and the resulting string is used to look up the name of
6561 the FILEHANDLE at run time.  For more on formats, see L<perlform>.
6562
6563 Note that write is I<not> the opposite of C<read>.  Unfortunately.
6564
6565 =item y///
6566
6567 The transliteration operator.  Same as C<tr///>.  See L<perlop>.
6568
6569 =back