3ad23c51d3491e914661768e7b28038a14c5f594
[p5sagit/p5-mst-13.2.git] / pod / perlfunc.pod
1 =head1 NAME
2
3 perlfunc - Perl builtin functions
4
5 =head1 DESCRIPTION
6
7 The functions in this section can serve as terms in an expression.
8 They fall into two major categories: list operators and named unary
9 operators.  These differ in their precedence relationship with a
10 following comma.  (See the precedence table in L<perlop>.)  List
11 operators take more than one argument, while unary operators can never
12 take more than one argument.  Thus, a comma terminates the argument of
13 a unary operator, but merely separates the arguments of a list
14 operator.  A unary operator generally provides a scalar context to its
15 argument, while a list operator may provide either scalar or list
16 contexts for its arguments.  If it does both, the scalar arguments will
17 be first, and the list argument will follow.  (Note that there can ever
18 be only one such list argument.)  For instance, splice() has three scalar
19 arguments followed by a list, whereas gethostbyname() has four scalar
20 arguments.
21
22 In the syntax descriptions that follow, list operators that expect a
23 list (and provide list context for the elements of the list) are shown
24 with LIST as an argument.  Such a list may consist of any combination
25 of scalar arguments or list values; the list values will be included
26 in the list as if each individual element were interpolated at that
27 point in the list, forming a longer single-dimensional list value.
28 Elements of the LIST should be separated by commas.
29
30 Any function in the list below may be used either with or without
31 parentheses around its arguments.  (The syntax descriptions omit the
32 parentheses.)  If you use the parentheses, the simple (but occasionally
33 surprising) rule is this: It I<looks> like a function, therefore it I<is> a
34 function, and precedence doesn't matter.  Otherwise it's a list
35 operator or unary operator, and precedence does matter.  And whitespace
36 between the function and left parenthesis doesn't count--so you need to
37 be careful sometimes:
38
39     print 1+2+4;        # Prints 7.
40     print(1+2) + 4;     # Prints 3.
41     print (1+2)+4;      # Also prints 3!
42     print +(1+2)+4;     # Prints 7.
43     print ((1+2)+4);    # Prints 7.
44
45 If you run Perl with the B<-w> switch it can warn you about this.  For
46 example, the third line above produces:
47
48     print (...) interpreted as function at - line 1.
49     Useless use of integer addition in void context at - line 1.
50
51 A few functions take no arguments at all, and therefore work as neither
52 unary nor list operators.  These include such functions as C<time>
53 and C<endpwent>.  For example, C<time+86_400> always means
54 C<time() + 86_400>.
55
56 For functions that can be used in either a scalar or list context,
57 nonabortive failure is generally indicated in a scalar context by
58 returning the undefined value, and in a list context by returning the
59 null list.
60
61 Remember the following important rule: There is B<no rule> that relates
62 the behavior of an expression in list context to its behavior in scalar
63 context, or vice versa.  It might do two totally different things.
64 Each operator and function decides which sort of value it would be most
65 appropriate to return in scalar context.  Some operators return the
66 length of the list that would have been returned in list context.  Some
67 operators return the first value in the list.  Some operators return the
68 last value in the list.  Some operators return a count of successful
69 operations.  In general, they do what you want, unless you want
70 consistency.
71
72 A named array in scalar context is quite different from what would at
73 first glance appear to be a list in scalar context.  You can't get a list
74 like C<(1,2,3)> into being in scalar context, because the compiler knows
75 the context at compile time.  It would generate the scalar comma operator
76 there, not the list construction version of the comma.  That means it
77 was never a list to start with.
78
79 In general, functions in Perl that serve as wrappers for system calls
80 of the same name (like chown(2), fork(2), closedir(2), etc.) all return
81 true when they succeed and C<undef> otherwise, as is usually mentioned
82 in the descriptions below.  This is different from the C interfaces,
83 which return C<-1> on failure.  Exceptions to this rule are C<wait>,
84 C<waitpid>, and C<syscall>.  System calls also set the special C<$!>
85 variable on failure.  Other functions do not, except accidentally.
86
87 =head2 Perl Functions by Category
88
89 Here are Perl's functions (including things that look like
90 functions, like some keywords and named operators)
91 arranged by category.  Some functions appear in more
92 than one place.
93
94 =over 4
95
96 =item Functions for SCALARs or strings
97
98 C<chomp>, C<chop>, C<chr>, C<crypt>, C<hex>, C<index>, C<lc>, C<lcfirst>,
99 C<length>, C<oct>, C<ord>, C<pack>, C<q/STRING/>, C<qq/STRING/>, C<reverse>,
100 C<rindex>, C<sprintf>, C<substr>, C<tr///>, C<uc>, C<ucfirst>, C<y///>
101
102 =item Regular expressions and pattern matching
103
104 C<m//>, C<pos>, C<quotemeta>, C<s///>, C<split>, C<study>, C<qr//>
105
106 =item Numeric functions
107
108 C<abs>, C<atan2>, C<cos>, C<exp>, C<hex>, C<int>, C<log>, C<oct>, C<rand>,
109 C<sin>, C<sqrt>, C<srand>
110
111 =item Functions for real @ARRAYs
112
113 C<pop>, C<push>, C<shift>, C<splice>, C<unshift>
114
115 =item Functions for list data
116
117 C<grep>, C<join>, C<map>, C<qw/STRING/>, C<reverse>, C<sort>, C<unpack>
118
119 =item Functions for real %HASHes
120
121 C<delete>, C<each>, C<exists>, C<keys>, C<values>
122
123 =item Input and output functions
124
125 C<binmode>, C<close>, C<closedir>, C<dbmclose>, C<dbmopen>, C<die>, C<eof>,
126 C<fileno>, C<flock>, C<format>, C<getc>, C<print>, C<printf>, C<read>,
127 C<readdir>, C<rewinddir>, C<seek>, C<seekdir>, C<select>, C<syscall>,
128 C<sysread>, C<sysseek>, C<syswrite>, C<tell>, C<telldir>, C<truncate>,
129 C<warn>, C<write>
130
131 =item Functions for fixed length data or records
132
133 C<pack>, C<read>, C<syscall>, C<sysread>, C<syswrite>, C<unpack>, C<vec>
134
135 =item Functions for filehandles, files, or directories
136
137 C<-I<X>>, C<chdir>, C<chmod>, C<chown>, C<chroot>, C<fcntl>, C<glob>,
138 C<ioctl>, C<link>, C<lstat>, C<mkdir>, C<open>, C<opendir>,
139 C<readlink>, C<rename>, C<rmdir>, C<stat>, C<symlink>, C<sysopen>,
140 C<umask>, C<unlink>, C<utime>
141
142 =item Keywords related to the control flow of your perl program
143
144 C<caller>, C<continue>, C<die>, C<do>, C<dump>, C<eval>, C<exit>,
145 C<goto>, C<last>, C<next>, C<redo>, C<return>, C<sub>, C<wantarray>
146
147 =item Keywords related to scoping
148
149 C<caller>, C<import>, C<local>, C<my>, C<our>, C<package>, C<use>
150
151 =item Miscellaneous functions
152
153 C<defined>, C<dump>, C<eval>, C<formline>, C<local>, C<my>, C<our>, C<reset>,
154 C<scalar>, C<undef>, C<wantarray>
155
156 =item Functions for processes and process groups
157
158 C<alarm>, C<exec>, C<fork>, C<getpgrp>, C<getppid>, C<getpriority>, C<kill>,
159 C<pipe>, C<qx/STRING/>, C<setpgrp>, C<setpriority>, C<sleep>, C<system>,
160 C<times>, C<wait>, C<waitpid>
161
162 =item Keywords related to perl modules
163
164 C<do>, C<import>, C<no>, C<package>, C<require>, C<use>
165
166 =item Keywords related to classes and object-orientedness
167
168 C<bless>, C<dbmclose>, C<dbmopen>, C<package>, C<ref>, C<tie>, C<tied>,
169 C<untie>, C<use>
170
171 =item Low-level socket functions
172
173 C<accept>, C<bind>, C<connect>, C<getpeername>, C<getsockname>,
174 C<getsockopt>, C<listen>, C<recv>, C<send>, C<setsockopt>, C<shutdown>,
175 C<socket>, C<socketpair>
176
177 =item System V interprocess communication functions
178
179 C<msgctl>, C<msgget>, C<msgrcv>, C<msgsnd>, C<semctl>, C<semget>, C<semop>,
180 C<shmctl>, C<shmget>, C<shmread>, C<shmwrite>
181
182 =item Fetching user and group info
183
184 C<endgrent>, C<endhostent>, C<endnetent>, C<endpwent>, C<getgrent>,
185 C<getgrgid>, C<getgrnam>, C<getlogin>, C<getpwent>, C<getpwnam>,
186 C<getpwuid>, C<setgrent>, C<setpwent>
187
188 =item Fetching network info
189
190 C<endprotoent>, C<endservent>, C<gethostbyaddr>, C<gethostbyname>,
191 C<gethostent>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
192 C<getprotobyname>, C<getprotobynumber>, C<getprotoent>,
193 C<getservbyname>, C<getservbyport>, C<getservent>, C<sethostent>,
194 C<setnetent>, C<setprotoent>, C<setservent>
195
196 =item Time-related functions
197
198 C<gmtime>, C<localtime>, C<time>, C<times>
199
200 =item Functions new in perl5
201
202 C<abs>, C<bless>, C<chomp>, C<chr>, C<exists>, C<formline>, C<glob>,
203 C<import>, C<lc>, C<lcfirst>, C<map>, C<my>, C<no>, C<our>, C<prototype>,
204 C<qx>, C<qw>, C<readline>, C<readpipe>, C<ref>, C<sub*>, C<sysopen>, C<tie>,
205 C<tied>, C<uc>, C<ucfirst>, C<untie>, C<use>
206
207 * - C<sub> was a keyword in perl4, but in perl5 it is an
208 operator, which can be used in expressions.
209
210 =item Functions obsoleted in perl5
211
212 C<dbmclose>, C<dbmopen>
213
214 =back
215
216 =head2 Portability
217
218 Perl was born in Unix and can therefore access all common Unix
219 system calls.  In non-Unix environments, the functionality of some
220 Unix system calls may not be available, or details of the available
221 functionality may differ slightly.  The Perl functions affected
222 by this are:
223
224 C<-X>, C<binmode>, C<chmod>, C<chown>, C<chroot>, C<crypt>,
225 C<dbmclose>, C<dbmopen>, C<dump>, C<endgrent>, C<endhostent>,
226 C<endnetent>, C<endprotoent>, C<endpwent>, C<endservent>, C<exec>,
227 C<fcntl>, C<flock>, C<fork>, C<getgrent>, C<getgrgid>, C<gethostbyname>,
228 C<gethostent>, C<getlogin>, C<getnetbyaddr>, C<getnetbyname>, C<getnetent>,
229 C<getppid>, C<getprgp>, C<getpriority>, C<getprotobynumber>,
230 C<getprotoent>, C<getpwent>, C<getpwnam>, C<getpwuid>,
231 C<getservbyport>, C<getservent>, C<getsockopt>, C<glob>, C<ioctl>,
232 C<kill>, C<link>, C<lstat>, C<msgctl>, C<msgget>, C<msgrcv>,
233 C<msgsnd>, C<open>, C<pipe>, C<readlink>, C<rename>, C<select>, C<semctl>,
234 C<semget>, C<semop>, C<setgrent>, C<sethostent>, C<setnetent>,
235 C<setpgrp>, C<setpriority>, C<setprotoent>, C<setpwent>,
236 C<setservent>, C<setsockopt>, C<shmctl>, C<shmget>, C<shmread>,
237 C<shmwrite>, C<socket>, C<socketpair>,
238 C<stat>, C<symlink>, C<syscall>, C<sysopen>, C<system>,
239 C<times>, C<truncate>, C<umask>, C<unlink>,
240 C<utime>, C<wait>, C<waitpid>
241
242 For more information about the portability of these functions, see
243 L<perlport> and other available platform-specific documentation.
244
245 =head2 Alphabetical Listing of Perl Functions
246
247 =over 8
248
249 =item -X FILEHANDLE
250
251 =item -X EXPR
252
253 =item -X
254
255 A file test, where X is one of the letters listed below.  This unary
256 operator takes one argument, either a filename or a filehandle, and
257 tests the associated file to see if something is true about it.  If the
258 argument is omitted, tests C<$_>, except for C<-t>, which tests STDIN.
259 Unless otherwise documented, it returns C<1> for true and C<''> for false, or
260 the undefined value if the file doesn't exist.  Despite the funny
261 names, precedence is the same as any other named unary operator, and
262 the argument may be parenthesized like any other unary operator.  The
263 operator may be any of:
264 X<-r>X<-w>X<-x>X<-o>X<-R>X<-W>X<-X>X<-O>X<-e>X<-z>X<-s>X<-f>X<-d>X<-l>X<-p>
265 X<-S>X<-b>X<-c>X<-t>X<-u>X<-g>X<-k>X<-T>X<-B>X<-M>X<-A>X<-C>
266
267     -r  File is readable by effective uid/gid.
268     -w  File is writable by effective uid/gid.
269     -x  File is executable by effective uid/gid.
270     -o  File is owned by effective uid.
271
272     -R  File is readable by real uid/gid.
273     -W  File is writable by real uid/gid.
274     -X  File is executable by real uid/gid.
275     -O  File is owned by real uid.
276
277     -e  File exists.
278     -z  File has zero size (is empty).
279     -s  File has nonzero size (returns size in bytes).
280
281     -f  File is a plain file.
282     -d  File is a directory.
283     -l  File is a symbolic link.
284     -p  File is a named pipe (FIFO), or Filehandle is a pipe.
285     -S  File is a socket.
286     -b  File is a block special file.
287     -c  File is a character special file.
288     -t  Filehandle is opened to a tty.
289
290     -u  File has setuid bit set.
291     -g  File has setgid bit set.
292     -k  File has sticky bit set.
293
294     -T  File is an ASCII text file (heuristic guess).
295     -B  File is a "binary" file (opposite of -T).
296
297     -M  Script start time minus file modification time, in days.
298     -A  Same for access time.
299     -C  Same for inode change time (Unix, may differ for other platforms)
300
301 Example:
302
303     while (<>) {
304         chomp;
305         next unless -f $_;      # ignore specials
306         #...
307     }
308
309 The interpretation of the file permission operators C<-r>, C<-R>,
310 C<-w>, C<-W>, C<-x>, and C<-X> is by default based solely on the mode
311 of the file and the uids and gids of the user.  There may be other
312 reasons you can't actually read, write, or execute the file.  Such
313 reasons may be for example network filesystem access controls, ACLs
314 (access control lists), read-only filesystems, and unrecognized
315 executable formats.
316
317 Also note that, for the superuser on the local filesystems, the C<-r>,
318 C<-R>, C<-w>, and C<-W> tests always return 1, and C<-x> and C<-X> return 1
319 if any execute bit is set in the mode.  Scripts run by the superuser
320 may thus need to do a stat() to determine the actual mode of the file,
321 or temporarily set their effective uid to something else.
322
323 If you are using ACLs, there is a pragma called C<filetest> that may
324 produce more accurate results than the bare stat() mode bits.
325 When under the C<use filetest 'access'> the above-mentioned filetests
326 will test whether the permission can (not) be granted using the
327 access() family of system calls.  Also note that the C<-x> and C<-X> may
328 under this pragma return true even if there are no execute permission
329 bits set (nor any extra execute permission ACLs).  This strangeness is
330 due to the underlying system calls' definitions.  Read the
331 documentation for the C<filetest> pragma for more information.
332
333 Note that C<-s/a/b/> does not do a negated substitution.  Saying
334 C<-exp($foo)> still works as expected, however--only single letters
335 following a minus are interpreted as file tests.
336
337 The C<-T> and C<-B> switches work as follows.  The first block or so of the
338 file is examined for odd characters such as strange control codes or
339 characters with the high bit set.  If too many strange characters (>30%)
340 are found, it's a C<-B> file, otherwise it's a C<-T> file.  Also, any file
341 containing null in the first block is considered a binary file.  If C<-T>
342 or C<-B> is used on a filehandle, the current IO buffer is examined
343 rather than the first block.  Both C<-T> and C<-B> return true on a null
344 file, or a file at EOF when testing a filehandle.  Because you have to
345 read a file to do the C<-T> test, on most occasions you want to use a C<-f>
346 against the file first, as in C<next unless -f $file && -T $file>.
347
348 If any of the file tests (or either the C<stat> or C<lstat> operators) are given
349 the special filehandle consisting of a solitary underline, then the stat
350 structure of the previous file test (or stat operator) is used, saving
351 a system call.  (This doesn't work with C<-t>, and you need to remember
352 that lstat() and C<-l> will leave values in the stat structure for the
353 symbolic link, not the real file.)  (Also, if the stat buffer was filled by
354 a C<lstat> call, C<-T> and C<-B> will reset it with the results of C<stat _>).
355 Example:
356
357     print "Can do.\n" if -r $a || -w _ || -x _;
358
359     stat($filename);
360     print "Readable\n" if -r _;
361     print "Writable\n" if -w _;
362     print "Executable\n" if -x _;
363     print "Setuid\n" if -u _;
364     print "Setgid\n" if -g _;
365     print "Sticky\n" if -k _;
366     print "Text\n" if -T _;
367     print "Binary\n" if -B _;
368
369 =item abs VALUE
370
371 =item abs
372
373 Returns the absolute value of its argument.
374 If VALUE is omitted, uses C<$_>.
375
376 =item accept NEWSOCKET,GENERICSOCKET
377
378 Accepts an incoming socket connect, just as the accept(2) system call
379 does.  Returns the packed address if it succeeded, false otherwise.
380 See the example in L<perlipc/"Sockets: Client/Server Communication">.
381
382 On systems that support a close-on-exec flag on files, the flag will
383 be set for the newly opened file descriptor, as determined by the
384 value of $^F.  See L<perlvar/$^F>.
385
386 =item alarm SECONDS
387
388 =item alarm
389
390 Arranges to have a SIGALRM delivered to this process after the
391 specified number of wallclock seconds have elapsed.  If SECONDS is not
392 specified, the value stored in C<$_> is used. (On some machines,
393 unfortunately, the elapsed time may be up to one second less or more
394 than you specified because of how seconds are counted, and process
395 scheduling may delay the delivery of the signal even further.)
396
397 Only one timer may be counting at once.  Each call disables the
398 previous timer, and an argument of C<0> may be supplied to cancel the
399 previous timer without starting a new one.  The returned value is the
400 amount of time remaining on the previous timer.
401
402 For delays of finer granularity than one second, you may use Perl's
403 four-argument version of select() leaving the first three arguments
404 undefined, or you might be able to use the C<syscall> interface to
405 access setitimer(2) if your system supports it.  The Time::HiRes
406 module (from CPAN, and starting from Perl 5.8 part of the standard
407 distribution) may also prove useful.
408
409 It is usually a mistake to intermix C<alarm> and C<sleep> calls.
410 (C<sleep> may be internally implemented in your system with C<alarm>)
411
412 If you want to use C<alarm> to time out a system call you need to use an
413 C<eval>/C<die> pair.  You can't rely on the alarm causing the system call to
414 fail with C<$!> set to C<EINTR> because Perl sets up signal handlers to
415 restart system calls on some systems.  Using C<eval>/C<die> always works,
416 modulo the caveats given in L<perlipc/"Signals">.
417
418     eval {
419         local $SIG{ALRM} = sub { die "alarm\n" }; # NB: \n required
420         alarm $timeout;
421         $nread = sysread SOCKET, $buffer, $size;
422         alarm 0;
423     };
424     if ($@) {
425         die unless $@ eq "alarm\n";   # propagate unexpected errors
426         # timed out
427     }
428     else {
429         # didn't
430     }
431
432 For more information see L<perlipc>.
433
434 =item atan2 Y,X
435
436 Returns the arctangent of Y/X in the range -PI to PI.
437
438 For the tangent operation, you may use the C<Math::Trig::tan>
439 function, or use the familiar relation:
440
441     sub tan { sin($_[0]) / cos($_[0])  }
442
443 =item bind SOCKET,NAME
444
445 Binds a network address to a socket, just as the bind system call
446 does.  Returns true if it succeeded, false otherwise.  NAME should be a
447 packed address of the appropriate type for the socket.  See the examples in
448 L<perlipc/"Sockets: Client/Server Communication">.
449
450 =item binmode FILEHANDLE, LAYER
451
452 =item binmode FILEHANDLE
453
454 Arranges for FILEHANDLE to be read or written in "binary" or "text"
455 mode on systems where the run-time libraries distinguish between
456 binary and text files.  If FILEHANDLE is an expression, the value is
457 taken as the name of the filehandle.  Returns true on success,
458 otherwise it returns C<undef> and sets C<$!> (errno).
459
460 If LAYER is omitted or specified as C<:raw> the filehandle is made
461 suitable for passing binary data. This includes turning off possible CRLF
462 translation and marking it as bytes (as opposed to Unicode characters).
463 Note that as despite what may be implied in I<"Programming Perl">
464 (the Camel) or elsewhere C<:raw> is I<not> the simply inverse of C<:crlf>
465 -- other layers which would affect binary nature of the stream are
466 I<also> disabled. See L<PerlIO>, L<perlrun> and the discussion about the
467 PERLIO environment variable.
468
469 I<The LAYER parameter of the binmode() function is described as "DISCIPLINE"
470 in "Programming Perl, 3rd Edition".  However, since the publishing of this
471 book, by many known as "Camel III", the consensus of the naming of this
472 functionality has moved from "discipline" to "layer".  All documentation
473 of this version of Perl therefore refers to "layers" rather than to
474 "disciplines".  Now back to the regularly scheduled documentation...>
475
476 On some systems (in general, DOS and Windows-based systems) binmode()
477 is necessary when you're not working with a text file.  For the sake
478 of portability it is a good idea to always use it when appropriate,
479 and to never use it when it isn't appropriate.
480
481 In other words: regardless of platform, use binmode() on binary files
482 (like for example images).
483
484 If LAYER is present it is a single string, but may contain
485 multiple directives. The directives alter the behaviour of the
486 file handle. When LAYER is present using binmode on text
487 file makes sense.
488
489 To mark FILEHANDLE as UTF-8, use C<:utf8>.
490
491 The C<:bytes>, C<:crlf>, and C<:utf8>, and any other directives of the
492 form C<:...>, are called I/O I<layers>.  The C<open> pragma can be used to
493 establish default I/O layers.  See L<open>.
494
495 In general, binmode() should be called after open() but before any I/O
496 is done on the filehandle.  Calling binmode() will normally flush any
497 pending buffered output data (and perhaps pending input data) on the
498 handle.  An exception to this is the C<:encoding> layer that
499 changes the default character encoding of the handle, see L<open>.
500 The C<:encoding> layer sometimes needs to be called in
501 mid-stream, and it doesn't flush the stream.  The C<:encoding>
502 also implicitly pushes on top of itself the C<:utf8> layer because
503 internally Perl will operate on UTF-8 encoded Unicode characters.
504
505 The operating system, device drivers, C libraries, and Perl run-time
506 system all work together to let the programmer treat a single
507 character (C<\n>) as the line terminator, irrespective of the external
508 representation.  On many operating systems, the native text file
509 representation matches the internal representation, but on some
510 platforms the external representation of C<\n> is made up of more than
511 one character.
512
513 Mac OS, all variants of Unix, and Stream_LF files on VMS use a single
514 character to end each line in the external representation of text (even
515 though that single character is CARRIAGE RETURN on Mac OS and LINE FEED
516 on Unix and most VMS files). In other systems like OS/2, DOS and the
517 various flavors of MS-Windows your program sees a C<\n> as a simple C<\cJ>,
518 but what's stored in text files are the two characters C<\cM\cJ>.  That
519 means that, if you don't use binmode() on these systems, C<\cM\cJ>
520 sequences on disk will be converted to C<\n> on input, and any C<\n> in
521 your program will be converted back to C<\cM\cJ> on output.  This is what
522 you want for text files, but it can be disastrous for binary files.
523
524 Another consequence of using binmode() (on some systems) is that
525 special end-of-file markers will be seen as part of the data stream.
526 For systems from the Microsoft family this means that if your binary
527 data contains C<\cZ>, the I/O subsystem will regard it as the end of
528 the file, unless you use binmode().
529
530 binmode() is not only important for readline() and print() operations,
531 but also when using read(), seek(), sysread(), syswrite() and tell()
532 (see L<perlport> for more details).  See the C<$/> and C<$\> variables
533 in L<perlvar> for how to manually set your input and output
534 line-termination sequences.
535
536 =item bless REF,CLASSNAME
537
538 =item bless REF
539
540 This function tells the thingy referenced by REF that it is now an object
541 in the CLASSNAME package.  If CLASSNAME is omitted, the current package
542 is used.  Because a C<bless> is often the last thing in a constructor,
543 it returns the reference for convenience.  Always use the two-argument
544 version if the function doing the blessing might be inherited by a
545 derived class.  See L<perltoot> and L<perlobj> for more about the blessing
546 (and blessings) of objects.
547
548 Consider always blessing objects in CLASSNAMEs that are mixed case.
549 Namespaces with all lowercase names are considered reserved for
550 Perl pragmata.  Builtin types have all uppercase names, so to prevent
551 confusion, you may wish to avoid such package names as well.  Make sure
552 that CLASSNAME is a true value.
553
554 See L<perlmod/"Perl Modules">.
555
556 =item caller EXPR
557
558 =item caller
559
560 Returns the context of the current subroutine call.  In scalar context,
561 returns the caller's package name if there is a caller, that is, if
562 we're in a subroutine or C<eval> or C<require>, and the undefined value
563 otherwise.  In list context, returns
564
565     ($package, $filename, $line) = caller;
566
567 With EXPR, it returns some extra information that the debugger uses to
568 print a stack trace.  The value of EXPR indicates how many call frames
569 to go back before the current one.
570
571     ($package, $filename, $line, $subroutine, $hasargs,
572     $wantarray, $evaltext, $is_require, $hints, $bitmask) = caller($i);
573
574 Here $subroutine may be C<(eval)> if the frame is not a subroutine
575 call, but an C<eval>.  In such a case additional elements $evaltext and
576 C<$is_require> are set: C<$is_require> is true if the frame is created by a
577 C<require> or C<use> statement, $evaltext contains the text of the
578 C<eval EXPR> statement.  In particular, for an C<eval BLOCK> statement,
579 $filename is C<(eval)>, but $evaltext is undefined.  (Note also that
580 each C<use> statement creates a C<require> frame inside an C<eval EXPR>
581 frame.)  $subroutine may also be C<(unknown)> if this particular
582 subroutine happens to have been deleted from the symbol table.
583 C<$hasargs> is true if a new instance of C<@_> was set up for the frame.
584 C<$hints> and C<$bitmask> contain pragmatic hints that the caller was
585 compiled with.  The C<$hints> and C<$bitmask> values are subject to change
586 between versions of Perl, and are not meant for external use.
587
588 Furthermore, when called from within the DB package, caller returns more
589 detailed information: it sets the list variable C<@DB::args> to be the
590 arguments with which the subroutine was invoked.
591
592 Be aware that the optimizer might have optimized call frames away before
593 C<caller> had a chance to get the information.  That means that C<caller(N)>
594 might not return information about the call frame you expect it do, for
595 C<< N > 1 >>.  In particular, C<@DB::args> might have information from the
596 previous time C<caller> was called.
597
598 =item chdir EXPR
599
600 Changes the working directory to EXPR, if possible. If EXPR is omitted,
601 changes to the directory specified by C<$ENV{HOME}>, if set; if not,
602 changes to the directory specified by C<$ENV{LOGDIR}>. (Under VMS, the
603 variable C<$ENV{SYS$LOGIN}> is also checked, and used if it is set.) If
604 neither is set, C<chdir> does nothing. It returns true upon success,
605 false otherwise. See the example under C<die>.
606
607 =item chmod LIST
608
609 Changes the permissions of a list of files.  The first element of the
610 list must be the numerical mode, which should probably be an octal
611 number, and which definitely should I<not> a string of octal digits:
612 C<0644> is okay, C<'0644'> is not.  Returns the number of files
613 successfully changed.  See also L</oct>, if all you have is a string.
614
615     $cnt = chmod 0755, 'foo', 'bar';
616     chmod 0755, @executables;
617     $mode = '0644'; chmod $mode, 'foo';      # !!! sets mode to
618                                              # --w----r-T
619     $mode = '0644'; chmod oct($mode), 'foo'; # this is better
620     $mode = 0644;   chmod $mode, 'foo';      # this is best
621
622 You can also import the symbolic C<S_I*> constants from the Fcntl
623 module:
624
625     use Fcntl ':mode';
626
627     chmod S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH, @executables;
628     # This is identical to the chmod 0755 of the above example.
629
630 =item chomp VARIABLE
631
632 =item chomp( LIST )
633
634 =item chomp
635
636 This safer version of L</chop> removes any trailing string
637 that corresponds to the current value of C<$/> (also known as
638 $INPUT_RECORD_SEPARATOR in the C<English> module).  It returns the total
639 number of characters removed from all its arguments.  It's often used to
640 remove the newline from the end of an input record when you're worried
641 that the final record may be missing its newline.  When in paragraph
642 mode (C<$/ = "">), it removes all trailing newlines from the string.
643 When in slurp mode (C<$/ = undef>) or fixed-length record mode (C<$/> is
644 a reference to an integer or the like, see L<perlvar>) chomp() won't
645 remove anything.
646 If VARIABLE is omitted, it chomps C<$_>.  Example:
647
648     while (<>) {
649         chomp;  # avoid \n on last field
650         @array = split(/:/);
651         # ...
652     }
653
654 If VARIABLE is a hash, it chomps the hash's values, but not its keys.
655
656 You can actually chomp anything that's an lvalue, including an assignment:
657
658     chomp($cwd = `pwd`);
659     chomp($answer = <STDIN>);
660
661 If you chomp a list, each element is chomped, and the total number of
662 characters removed is returned.
663
664 Note that parentheses are necessary when you're chomping anything
665 that is not a simple variable.  This is because C<chomp $cwd = `pwd`;>
666 is interpreted as C<(chomp $cwd) = `pwd`;>, rather than as
667 C<chomp( $cwd = `pwd` )> which you might expect.  Similarly,
668 C<chomp $a, $b> is interpreted as C<chomp($a), $b> rather than
669 as C<chomp($a, $b)>.
670
671 =item chop VARIABLE
672
673 =item chop( LIST )
674
675 =item chop
676
677 Chops off the last character of a string and returns the character
678 chopped.  It is much more efficient than C<s/.$//s> because it neither
679 scans nor copies the string.  If VARIABLE is omitted, chops C<$_>.
680 If VARIABLE is a hash, it chops the hash's values, but not its keys.
681
682 You can actually chop anything that's an lvalue, including an assignment.
683
684 If you chop a list, each element is chopped.  Only the value of the
685 last C<chop> is returned.
686
687 Note that C<chop> returns the last character.  To return all but the last
688 character, use C<substr($string, 0, -1)>.
689
690 See also L</chomp>.
691
692 =item chown LIST
693
694 Changes the owner (and group) of a list of files.  The first two
695 elements of the list must be the I<numeric> uid and gid, in that
696 order.  A value of -1 in either position is interpreted by most
697 systems to leave that value unchanged.  Returns the number of files
698 successfully changed.
699
700     $cnt = chown $uid, $gid, 'foo', 'bar';
701     chown $uid, $gid, @filenames;
702
703 Here's an example that looks up nonnumeric uids in the passwd file:
704
705     print "User: ";
706     chomp($user = <STDIN>);
707     print "Files: ";
708     chomp($pattern = <STDIN>);
709
710     ($login,$pass,$uid,$gid) = getpwnam($user)
711         or die "$user not in passwd file";
712
713     @ary = glob($pattern);      # expand filenames
714     chown $uid, $gid, @ary;
715
716 On most systems, you are not allowed to change the ownership of the
717 file unless you're the superuser, although you should be able to change
718 the group to any of your secondary groups.  On insecure systems, these
719 restrictions may be relaxed, but this is not a portable assumption.
720 On POSIX systems, you can detect this condition this way:
721
722     use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
723     $can_chown_giveaway = not sysconf(_PC_CHOWN_RESTRICTED);
724
725 =item chr NUMBER
726
727 =item chr
728
729 Returns the character represented by that NUMBER in the character set.
730 For example, C<chr(65)> is C<"A"> in either ASCII or Unicode, and
731 chr(0x263a) is a Unicode smiley face.  Note that characters from 127
732 to 255 (inclusive) are by default not encoded in Unicode for backward
733 compatibility reasons (but see L<encoding>).
734
735 For the reverse, use L</ord>.
736 See L<perlunicode> and L<encoding> for more about Unicode.
737
738 If NUMBER is omitted, uses C<$_>.
739
740 =item chroot FILENAME
741
742 =item chroot
743
744 This function works like the system call by the same name: it makes the
745 named directory the new root directory for all further pathnames that
746 begin with a C</> by your process and all its children.  (It doesn't
747 change your current working directory, which is unaffected.)  For security
748 reasons, this call is restricted to the superuser.  If FILENAME is
749 omitted, does a C<chroot> to C<$_>.
750
751 =item close FILEHANDLE
752
753 =item close
754
755 Closes the file or pipe associated with the file handle, returning
756 true only if IO buffers are successfully flushed and closes the system
757 file descriptor.  Closes the currently selected filehandle if the
758 argument is omitted.
759
760 You don't have to close FILEHANDLE if you are immediately going to do
761 another C<open> on it, because C<open> will close it for you.  (See
762 C<open>.)  However, an explicit C<close> on an input file resets the line
763 counter (C<$.>), while the implicit close done by C<open> does not.
764
765 If the file handle came from a piped open C<close> will additionally
766 return false if one of the other system calls involved fails or if the
767 program exits with non-zero status.  (If the only problem was that the
768 program exited non-zero C<$!> will be set to C<0>.)  Closing a pipe
769 also waits for the process executing on the pipe to complete, in case you
770 want to look at the output of the pipe afterwards, and
771 implicitly puts the exit status value of that command into C<$?>.
772
773 Prematurely closing the read end of a pipe (i.e. before the process
774 writing to it at the other end has closed it) will result in a
775 SIGPIPE being delivered to the writer.  If the other end can't
776 handle that, be sure to read all the data before closing the pipe.
777
778 Example:
779
780     open(OUTPUT, '|sort >foo')  # pipe to sort
781         or die "Can't start sort: $!";
782     #...                        # print stuff to output
783     close OUTPUT                # wait for sort to finish
784         or warn $! ? "Error closing sort pipe: $!"
785                    : "Exit status $? from sort";
786     open(INPUT, 'foo')          # get sort's results
787         or die "Can't open 'foo' for input: $!";
788
789 FILEHANDLE may be an expression whose value can be used as an indirect
790 filehandle, usually the real filehandle name.
791
792 =item closedir DIRHANDLE
793
794 Closes a directory opened by C<opendir> and returns the success of that
795 system call.
796
797 =item connect SOCKET,NAME
798
799 Attempts to connect to a remote socket, just as the connect system call
800 does.  Returns true if it succeeded, false otherwise.  NAME should be a
801 packed address of the appropriate type for the socket.  See the examples in
802 L<perlipc/"Sockets: Client/Server Communication">.
803
804 =item continue BLOCK
805
806 Actually a flow control statement rather than a function.  If there is a
807 C<continue> BLOCK attached to a BLOCK (typically in a C<while> or
808 C<foreach>), it is always executed just before the conditional is about to
809 be evaluated again, just like the third part of a C<for> loop in C.  Thus
810 it can be used to increment a loop variable, even when the loop has been
811 continued via the C<next> statement (which is similar to the C C<continue>
812 statement).
813
814 C<last>, C<next>, or C<redo> may appear within a C<continue>
815 block.  C<last> and C<redo> will behave as if they had been executed within
816 the main block.  So will C<next>, but since it will execute a C<continue>
817 block, it may be more entertaining.
818
819     while (EXPR) {
820         ### redo always comes here
821         do_something;
822     } continue {
823         ### next always comes here
824         do_something_else;
825         # then back the top to re-check EXPR
826     }
827     ### last always comes here
828
829 Omitting the C<continue> section is semantically equivalent to using an
830 empty one, logically enough.  In that case, C<next> goes directly back
831 to check the condition at the top of the loop.
832
833 =item cos EXPR
834
835 =item cos
836
837 Returns the cosine of EXPR (expressed in radians).  If EXPR is omitted,
838 takes cosine of C<$_>.
839
840 For the inverse cosine operation, you may use the C<Math::Trig::acos()>
841 function, or use this relation:
842
843     sub acos { atan2( sqrt(1 - $_[0] * $_[0]), $_[0] ) }
844
845 =item crypt PLAINTEXT,SALT
846
847 Encrypts a string exactly like the crypt(3) function in the C library
848 (assuming that you actually have a version there that has not been
849 extirpated as a potential munition).  This can prove useful for checking
850 the password file for lousy passwords, amongst other things.  Only the
851 guys wearing white hats should do this.
852
853 Note that L<crypt|/crypt> is intended to be a one-way function, much like
854 breaking eggs to make an omelette.  There is no (known) corresponding
855 decrypt function (in other words, the crypt() is a one-way hash
856 function).  As a result, this function isn't all that useful for
857 cryptography.  (For that, see your nearby CPAN mirror.)
858
859 When verifying an existing encrypted string you should use the
860 encrypted text as the salt (like C<crypt($plain, $crypted) eq
861 $crypted>).  This allows your code to work with the standard L<crypt|/crypt>
862 and with more exotic implementations.  In other words, do not assume
863 anything about the returned string itself, or how many bytes in
864 the encrypted string matter.
865
866 Traditionally the result is a string of 13 bytes: two first bytes of
867 the salt, followed by 11 bytes from the set C<[./0-9A-Za-z]>, and only
868 the first eight bytes of the encrypted string mattered, but
869 alternative hashing schemes (like MD5), higher level security schemes
870 (like C2), and implementations on non-UNIX platforms may produce
871 different strings.
872
873 When choosing a new salt create a random two character string whose
874 characters come from the set C<[./0-9A-Za-z]> (like C<join '', ('.',
875 '/', 0..9, 'A'..'Z', 'a'..'z')[rand 64, rand 64]>).  This set of
876 characters is just a recommendation; the characters allowed in
877 the salt depend solely on your system's crypt library, and Perl can't
878 restrict what salts C<crypt()> accepts.
879
880 Here's an example that makes sure that whoever runs this program knows
881 their own password:
882
883     $pwd = (getpwuid($<))[1];
884
885     system "stty -echo";
886     print "Password: ";
887     chomp($word = <STDIN>);
888     print "\n";
889     system "stty echo";
890
891     if (crypt($word, $pwd) ne $pwd) {
892         die "Sorry...\n";
893     } else {
894         print "ok\n";
895     }
896
897 Of course, typing in your own password to whoever asks you
898 for it is unwise.
899
900 The L<crypt|/crypt> function is unsuitable for encrypting large quantities
901 of data, not least of all because you can't get the information
902 back.  Look at the F<by-module/Crypt> and F<by-module/PGP> directories
903 on your favorite CPAN mirror for a slew of potentially useful
904 modules.
905
906 If using crypt() on a Unicode string (which I<potentially> has
907 characters with codepoints above 255), Perl tries to make sense
908 of the situation by trying to downgrade (a copy of the string)
909 the string back to an eight-bit byte string before calling crypt()
910 (on that copy).  If that works, good.  If not, crypt() dies with
911 C<Wide character in crypt>.
912
913 =item dbmclose HASH
914
915 [This function has been largely superseded by the C<untie> function.]
916
917 Breaks the binding between a DBM file and a hash.
918
919 =item dbmopen HASH,DBNAME,MASK
920
921 [This function has been largely superseded by the C<tie> function.]
922
923 This binds a dbm(3), ndbm(3), sdbm(3), gdbm(3), or Berkeley DB file to a
924 hash.  HASH is the name of the hash.  (Unlike normal C<open>, the first
925 argument is I<not> a filehandle, even though it looks like one).  DBNAME
926 is the name of the database (without the F<.dir> or F<.pag> extension if
927 any).  If the database does not exist, it is created with protection
928 specified by MASK (as modified by the C<umask>).  If your system supports
929 only the older DBM functions, you may perform only one C<dbmopen> in your
930 program.  In older versions of Perl, if your system had neither DBM nor
931 ndbm, calling C<dbmopen> produced a fatal error; it now falls back to
932 sdbm(3).
933
934 If you don't have write access to the DBM file, you can only read hash
935 variables, not set them.  If you want to test whether you can write,
936 either use file tests or try setting a dummy hash entry inside an C<eval>,
937 which will trap the error.
938
939 Note that functions such as C<keys> and C<values> may return huge lists
940 when used on large DBM files.  You may prefer to use the C<each>
941 function to iterate over large DBM files.  Example:
942
943     # print out history file offsets
944     dbmopen(%HIST,'/usr/lib/news/history',0666);
945     while (($key,$val) = each %HIST) {
946         print $key, ' = ', unpack('L',$val), "\n";
947     }
948     dbmclose(%HIST);
949
950 See also L<AnyDBM_File> for a more general description of the pros and
951 cons of the various dbm approaches, as well as L<DB_File> for a particularly
952 rich implementation.
953
954 You can control which DBM library you use by loading that library
955 before you call dbmopen():
956
957     use DB_File;
958     dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.db")
959         or die "Can't open netscape history file: $!";
960
961 =item defined EXPR
962
963 =item defined
964
965 Returns a Boolean value telling whether EXPR has a value other than
966 the undefined value C<undef>.  If EXPR is not present, C<$_> will be
967 checked.
968
969 Many operations return C<undef> to indicate failure, end of file,
970 system error, uninitialized variable, and other exceptional
971 conditions.  This function allows you to distinguish C<undef> from
972 other values.  (A simple Boolean test will not distinguish among
973 C<undef>, zero, the empty string, and C<"0">, which are all equally
974 false.)  Note that since C<undef> is a valid scalar, its presence
975 doesn't I<necessarily> indicate an exceptional condition: C<pop>
976 returns C<undef> when its argument is an empty array, I<or> when the
977 element to return happens to be C<undef>.
978
979 You may also use C<defined(&func)> to check whether subroutine C<&func>
980 has ever been defined.  The return value is unaffected by any forward
981 declarations of C<&func>.  Note that a subroutine which is not defined
982 may still be callable: its package may have an C<AUTOLOAD> method that
983 makes it spring into existence the first time that it is called -- see
984 L<perlsub>.
985
986 Use of C<defined> on aggregates (hashes and arrays) is deprecated.  It
987 used to report whether memory for that aggregate has ever been
988 allocated.  This behavior may disappear in future versions of Perl.
989 You should instead use a simple test for size:
990
991     if (@an_array) { print "has array elements\n" }
992     if (%a_hash)   { print "has hash members\n"   }
993
994 When used on a hash element, it tells you whether the value is defined,
995 not whether the key exists in the hash.  Use L</exists> for the latter
996 purpose.
997
998 Examples:
999
1000     print if defined $switch{'D'};
1001     print "$val\n" while defined($val = pop(@ary));
1002     die "Can't readlink $sym: $!"
1003         unless defined($value = readlink $sym);
1004     sub foo { defined &$bar ? &$bar(@_) : die "No bar"; }
1005     $debugging = 0 unless defined $debugging;
1006
1007 Note:  Many folks tend to overuse C<defined>, and then are surprised to
1008 discover that the number C<0> and C<""> (the zero-length string) are, in fact,
1009 defined values.  For example, if you say
1010
1011     "ab" =~ /a(.*)b/;
1012
1013 The pattern match succeeds, and C<$1> is defined, despite the fact that it
1014 matched "nothing".  But it didn't really match nothing--rather, it
1015 matched something that happened to be zero characters long.  This is all
1016 very above-board and honest.  When a function returns an undefined value,
1017 it's an admission that it couldn't give you an honest answer.  So you
1018 should use C<defined> only when you're questioning the integrity of what
1019 you're trying to do.  At other times, a simple comparison to C<0> or C<""> is
1020 what you want.
1021
1022 See also L</undef>, L</exists>, L</ref>.
1023
1024 =item delete EXPR
1025
1026 Given an expression that specifies a hash element, array element, hash slice,
1027 or array slice, deletes the specified element(s) from the hash or array.
1028 In the case of an array, if the array elements happen to be at the end,
1029 the size of the array will shrink to the highest element that tests
1030 true for exists() (or 0 if no such element exists).
1031
1032 Returns each element so deleted or the undefined value if there was no such
1033 element.  Deleting from C<$ENV{}> modifies the environment.  Deleting from
1034 a hash tied to a DBM file deletes the entry from the DBM file.  Deleting
1035 from a C<tie>d hash or array may not necessarily return anything.
1036
1037 Deleting an array element effectively returns that position of the array
1038 to its initial, uninitialized state.  Subsequently testing for the same
1039 element with exists() will return false.  Note that deleting array
1040 elements in the middle of an array will not shift the index of the ones
1041 after them down--use splice() for that.  See L</exists>.
1042
1043 The following (inefficiently) deletes all the values of %HASH and @ARRAY:
1044
1045     foreach $key (keys %HASH) {
1046         delete $HASH{$key};
1047     }
1048
1049     foreach $index (0 .. $#ARRAY) {
1050         delete $ARRAY[$index];
1051     }
1052
1053 And so do these:
1054
1055     delete @HASH{keys %HASH};
1056
1057     delete @ARRAY[0 .. $#ARRAY];
1058
1059 But both of these are slower than just assigning the empty list
1060 or undefining %HASH or @ARRAY:
1061
1062     %HASH = ();         # completely empty %HASH
1063     undef %HASH;        # forget %HASH ever existed
1064
1065     @ARRAY = ();        # completely empty @ARRAY
1066     undef @ARRAY;       # forget @ARRAY ever existed
1067
1068 Note that the EXPR can be arbitrarily complicated as long as the final
1069 operation is a hash element, array element,  hash slice, or array slice
1070 lookup:
1071
1072     delete $ref->[$x][$y]{$key};
1073     delete @{$ref->[$x][$y]}{$key1, $key2, @morekeys};
1074
1075     delete $ref->[$x][$y][$index];
1076     delete @{$ref->[$x][$y]}[$index1, $index2, @moreindices];
1077
1078 =item die LIST
1079
1080 Outside an C<eval>, prints the value of LIST to C<STDERR> and
1081 exits with the current value of C<$!> (errno).  If C<$!> is C<0>,
1082 exits with the value of C<<< ($? >> 8) >>> (backtick `command`
1083 status).  If C<<< ($? >> 8) >>> is C<0>, exits with C<255>.  Inside
1084 an C<eval(),> the error message is stuffed into C<$@> and the
1085 C<eval> is terminated with the undefined value.  This makes
1086 C<die> the way to raise an exception.
1087
1088 Equivalent examples:
1089
1090     die "Can't cd to spool: $!\n" unless chdir '/usr/spool/news';
1091     chdir '/usr/spool/news' or die "Can't cd to spool: $!\n"
1092
1093 If the last element of LIST does not end in a newline, the current
1094 script line number and input line number (if any) are also printed,
1095 and a newline is supplied.  Note that the "input line number" (also
1096 known as "chunk") is subject to whatever notion of "line" happens to
1097 be currently in effect, and is also available as the special variable
1098 C<$.>.  See L<perlvar/"$/"> and L<perlvar/"$.">.
1099
1100 Hint: sometimes appending C<", stopped"> to your message will cause it
1101 to make better sense when the string C<"at foo line 123"> is appended.
1102 Suppose you are running script "canasta".
1103
1104     die "/etc/games is no good";
1105     die "/etc/games is no good, stopped";
1106
1107 produce, respectively
1108
1109     /etc/games is no good at canasta line 123.
1110     /etc/games is no good, stopped at canasta line 123.
1111
1112 See also exit(), warn(), and the Carp module.
1113
1114 If LIST is empty and C<$@> already contains a value (typically from a
1115 previous eval) that value is reused after appending C<"\t...propagated">.
1116 This is useful for propagating exceptions:
1117
1118     eval { ... };
1119     die unless $@ =~ /Expected exception/;
1120
1121 If LIST is empty and C<$@> contains an object reference that has a
1122 C<PROPAGATE> method, that method will be called with additional file
1123 and line number parameters.  The return value replaces the value in
1124 C<$@>.  ie. as if C<<$@ = eval { $@->PROPAGATE(__FILE__, __LINE__) };>>
1125 were called.
1126
1127 If C<$@> is empty then the string C<"Died"> is used.
1128
1129 die() can also be called with a reference argument.  If this happens to be
1130 trapped within an eval(), $@ contains the reference.  This behavior permits
1131 a more elaborate exception handling implementation using objects that
1132 maintain arbitrary state about the nature of the exception.  Such a scheme
1133 is sometimes preferable to matching particular string values of $@ using
1134 regular expressions.  Here's an example:
1135
1136     eval { ... ; die Some::Module::Exception->new( FOO => "bar" ) };
1137     if ($@) {
1138         if (ref($@) && UNIVERSAL::isa($@,"Some::Module::Exception")) {
1139             # handle Some::Module::Exception
1140         }
1141         else {
1142             # handle all other possible exceptions
1143         }
1144     }
1145
1146 Because perl will stringify uncaught exception messages before displaying
1147 them, you may want to overload stringification operations on such custom
1148 exception objects.  See L<overload> for details about that.
1149
1150 You can arrange for a callback to be run just before the C<die>
1151 does its deed, by setting the C<$SIG{__DIE__}> hook.  The associated
1152 handler will be called with the error text and can change the error
1153 message, if it sees fit, by calling C<die> again.  See
1154 L<perlvar/$SIG{expr}> for details on setting C<%SIG> entries, and
1155 L<"eval BLOCK"> for some examples.  Although this feature was meant
1156 to be run only right before your program was to exit, this is not
1157 currently the case--the C<$SIG{__DIE__}> hook is currently called
1158 even inside eval()ed blocks/strings!  If one wants the hook to do
1159 nothing in such situations, put
1160
1161         die @_ if $^S;
1162
1163 as the first line of the handler (see L<perlvar/$^S>).  Because
1164 this promotes strange action at a distance, this counterintuitive
1165 behavior may be fixed in a future release.
1166
1167 =item do BLOCK
1168
1169 Not really a function.  Returns the value of the last command in the
1170 sequence of commands indicated by BLOCK.  When modified by a loop
1171 modifier, executes the BLOCK once before testing the loop condition.
1172 (On other statements the loop modifiers test the conditional first.)
1173
1174 C<do BLOCK> does I<not> count as a loop, so the loop control statements
1175 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1176 See L<perlsyn> for alternative strategies.
1177
1178 =item do SUBROUTINE(LIST)
1179
1180 A deprecated form of subroutine call.  See L<perlsub>.
1181
1182 =item do EXPR
1183
1184 Uses the value of EXPR as a filename and executes the contents of the
1185 file as a Perl script.  Its primary use is to include subroutines
1186 from a Perl subroutine library.
1187
1188     do 'stat.pl';
1189
1190 is just like
1191
1192     eval `cat stat.pl`;
1193
1194 except that it's more efficient and concise, keeps track of the current
1195 filename for error messages, searches the @INC libraries, and updates
1196 C<%INC> if the file is found.  See L<perlvar/Predefined Names> for these
1197 variables.  It also differs in that code evaluated with C<do FILENAME>
1198 cannot see lexicals in the enclosing scope; C<eval STRING> does.  It's the
1199 same, however, in that it does reparse the file every time you call it,
1200 so you probably don't want to do this inside a loop.
1201
1202 If C<do> cannot read the file, it returns undef and sets C<$!> to the
1203 error.  If C<do> can read the file but cannot compile it, it
1204 returns undef and sets an error message in C<$@>.   If the file is
1205 successfully compiled, C<do> returns the value of the last expression
1206 evaluated.
1207
1208 Note that inclusion of library modules is better done with the
1209 C<use> and C<require> operators, which also do automatic error checking
1210 and raise an exception if there's a problem.
1211
1212 You might like to use C<do> to read in a program configuration
1213 file.  Manual error checking can be done this way:
1214
1215     # read in config files: system first, then user
1216     for $file ("/share/prog/defaults.rc",
1217                "$ENV{HOME}/.someprogrc")
1218    {
1219         unless ($return = do $file) {
1220             warn "couldn't parse $file: $@" if $@;
1221             warn "couldn't do $file: $!"    unless defined $return;
1222             warn "couldn't run $file"       unless $return;
1223         }
1224     }
1225
1226 =item dump LABEL
1227
1228 =item dump
1229
1230 This function causes an immediate core dump.  See also the B<-u>
1231 command-line switch in L<perlrun>, which does the same thing.
1232 Primarily this is so that you can use the B<undump> program (not
1233 supplied) to turn your core dump into an executable binary after
1234 having initialized all your variables at the beginning of the
1235 program.  When the new binary is executed it will begin by executing
1236 a C<goto LABEL> (with all the restrictions that C<goto> suffers).
1237 Think of it as a goto with an intervening core dump and reincarnation.
1238 If C<LABEL> is omitted, restarts the program from the top.
1239
1240 B<WARNING>: Any files opened at the time of the dump will I<not>
1241 be open any more when the program is reincarnated, with possible
1242 resulting confusion on the part of Perl.
1243
1244 This function is now largely obsolete, partly because it's very
1245 hard to convert a core file into an executable, and because the
1246 real compiler backends for generating portable bytecode and compilable
1247 C code have superseded it.  That's why you should now invoke it as
1248 C<CORE::dump()>, if you don't want to be warned against a possible
1249 typo.
1250
1251 If you're looking to use L<dump> to speed up your program, consider
1252 generating bytecode or native C code as described in L<perlcc>.  If
1253 you're just trying to accelerate a CGI script, consider using the
1254 C<mod_perl> extension to B<Apache>, or the CPAN module, CGI::Fast.
1255 You might also consider autoloading or selfloading, which at least
1256 make your program I<appear> to run faster.
1257
1258 =item each HASH
1259
1260 When called in list context, returns a 2-element list consisting of the
1261 key and value for the next element of a hash, so that you can iterate over
1262 it.  When called in scalar context, returns only the key for the next
1263 element in the hash.
1264
1265 Entries are returned in an apparently random order.  The actual random
1266 order is subject to change in future versions of perl, but it is guaranteed
1267 to be in the same order as either the C<keys> or C<values> function
1268 would produce on the same (unmodified) hash.
1269
1270 When the hash is entirely read, a null array is returned in list context
1271 (which when assigned produces a false (C<0>) value), and C<undef> in
1272 scalar context.  The next call to C<each> after that will start iterating
1273 again.  There is a single iterator for each hash, shared by all C<each>,
1274 C<keys>, and C<values> function calls in the program; it can be reset by
1275 reading all the elements from the hash, or by evaluating C<keys HASH> or
1276 C<values HASH>.  If you add or delete elements of a hash while you're
1277 iterating over it, you may get entries skipped or duplicated, so
1278 don't.  Exception: It is always safe to delete the item most recently
1279 returned by C<each()>, which means that the following code will work:
1280
1281         while (($key, $value) = each %hash) {
1282           print $key, "\n";
1283           delete $hash{$key};   # This is safe
1284         }
1285
1286 The following prints out your environment like the printenv(1) program,
1287 only in a different order:
1288
1289     while (($key,$value) = each %ENV) {
1290         print "$key=$value\n";
1291     }
1292
1293 See also C<keys>, C<values> and C<sort>.
1294
1295 =item eof FILEHANDLE
1296
1297 =item eof ()
1298
1299 =item eof
1300
1301 Returns 1 if the next read on FILEHANDLE will return end of file, or if
1302 FILEHANDLE is not open.  FILEHANDLE may be an expression whose value
1303 gives the real filehandle.  (Note that this function actually
1304 reads a character and then C<ungetc>s it, so isn't very useful in an
1305 interactive context.)  Do not read from a terminal file (or call
1306 C<eof(FILEHANDLE)> on it) after end-of-file is reached.  File types such
1307 as terminals may lose the end-of-file condition if you do.
1308
1309 An C<eof> without an argument uses the last file read.  Using C<eof()>
1310 with empty parentheses is very different.  It refers to the pseudo file
1311 formed from the files listed on the command line and accessed via the
1312 C<< <> >> operator.  Since C<< <> >> isn't explicitly opened,
1313 as a normal filehandle is, an C<eof()> before C<< <> >> has been
1314 used will cause C<@ARGV> to be examined to determine if input is
1315 available.   Similarly, an C<eof()> after C<< <> >> has returned
1316 end-of-file will assume you are processing another C<@ARGV> list,
1317 and if you haven't set C<@ARGV>, will read input from C<STDIN>;
1318 see L<perlop/"I/O Operators">.
1319
1320 In a C<< while (<>) >> loop, C<eof> or C<eof(ARGV)> can be used to
1321 detect the end of each file, C<eof()> will only detect the end of the
1322 last file.  Examples:
1323
1324     # reset line numbering on each input file
1325     while (<>) {
1326         next if /^\s*#/;        # skip comments
1327         print "$.\t$_";
1328     } continue {
1329         close ARGV  if eof;     # Not eof()!
1330     }
1331
1332     # insert dashes just before last line of last file
1333     while (<>) {
1334         if (eof()) {            # check for end of last file
1335             print "--------------\n";
1336         }
1337         print;
1338         last if eof();          # needed if we're reading from a terminal
1339     }
1340
1341 Practical hint: you almost never need to use C<eof> in Perl, because the
1342 input operators typically return C<undef> when they run out of data, or if
1343 there was an error.
1344
1345 =item eval EXPR
1346
1347 =item eval BLOCK
1348
1349 In the first form, the return value of EXPR is parsed and executed as if it
1350 were a little Perl program.  The value of the expression (which is itself
1351 determined within scalar context) is first parsed, and if there weren't any
1352 errors, executed in the lexical context of the current Perl program, so
1353 that any variable settings or subroutine and format definitions remain
1354 afterwards.  Note that the value is parsed every time the eval executes.
1355 If EXPR is omitted, evaluates C<$_>.  This form is typically used to
1356 delay parsing and subsequent execution of the text of EXPR until run time.
1357
1358 In the second form, the code within the BLOCK is parsed only once--at the
1359 same time the code surrounding the eval itself was parsed--and executed
1360 within the context of the current Perl program.  This form is typically
1361 used to trap exceptions more efficiently than the first (see below), while
1362 also providing the benefit of checking the code within BLOCK at compile
1363 time.
1364
1365 The final semicolon, if any, may be omitted from the value of EXPR or within
1366 the BLOCK.
1367
1368 In both forms, the value returned is the value of the last expression
1369 evaluated inside the mini-program; a return statement may be also used, just
1370 as with subroutines.  The expression providing the return value is evaluated
1371 in void, scalar, or list context, depending on the context of the eval itself.
1372 See L</wantarray> for more on how the evaluation context can be determined.
1373
1374 If there is a syntax error or runtime error, or a C<die> statement is
1375 executed, an undefined value is returned by C<eval>, and C<$@> is set to the
1376 error message.  If there was no error, C<$@> is guaranteed to be a null
1377 string.  Beware that using C<eval> neither silences perl from printing
1378 warnings to STDERR, nor does it stuff the text of warning messages into C<$@>.
1379 To do either of those, you have to use the C<$SIG{__WARN__}> facility, or
1380 turn off warnings inside the BLOCK or EXPR using S<C<no warnings 'all'>>.
1381 See L</warn>, L<perlvar>, L<warnings> and L<perllexwarn>.
1382
1383 Note that, because C<eval> traps otherwise-fatal errors, it is useful for
1384 determining whether a particular feature (such as C<socket> or C<symlink>)
1385 is implemented.  It is also Perl's exception trapping mechanism, where
1386 the die operator is used to raise exceptions.
1387
1388 If the code to be executed doesn't vary, you may use the eval-BLOCK
1389 form to trap run-time errors without incurring the penalty of
1390 recompiling each time.  The error, if any, is still returned in C<$@>.
1391 Examples:
1392
1393     # make divide-by-zero nonfatal
1394     eval { $answer = $a / $b; }; warn $@ if $@;
1395
1396     # same thing, but less efficient
1397     eval '$answer = $a / $b'; warn $@ if $@;
1398
1399     # a compile-time error
1400     eval { $answer = };                 # WRONG
1401
1402     # a run-time error
1403     eval '$answer =';   # sets $@
1404
1405 Due to the current arguably broken state of C<__DIE__> hooks, when using
1406 the C<eval{}> form as an exception trap in libraries, you may wish not
1407 to trigger any C<__DIE__> hooks that user code may have installed.
1408 You can use the C<local $SIG{__DIE__}> construct for this purpose,
1409 as shown in this example:
1410
1411     # a very private exception trap for divide-by-zero
1412     eval { local $SIG{'__DIE__'}; $answer = $a / $b; };
1413     warn $@ if $@;
1414
1415 This is especially significant, given that C<__DIE__> hooks can call
1416 C<die> again, which has the effect of changing their error messages:
1417
1418     # __DIE__ hooks may modify error messages
1419     {
1420        local $SIG{'__DIE__'} =
1421               sub { (my $x = $_[0]) =~ s/foo/bar/g; die $x };
1422        eval { die "foo lives here" };
1423        print $@ if $@;                # prints "bar lives here"
1424     }
1425
1426 Because this promotes action at a distance, this counterintuitive behavior
1427 may be fixed in a future release.
1428
1429 With an C<eval>, you should be especially careful to remember what's
1430 being looked at when:
1431
1432     eval $x;            # CASE 1
1433     eval "$x";          # CASE 2
1434
1435     eval '$x';          # CASE 3
1436     eval { $x };        # CASE 4
1437
1438     eval "\$$x++";      # CASE 5
1439     $$x++;              # CASE 6
1440
1441 Cases 1 and 2 above behave identically: they run the code contained in
1442 the variable $x.  (Although case 2 has misleading double quotes making
1443 the reader wonder what else might be happening (nothing is).)  Cases 3
1444 and 4 likewise behave in the same way: they run the code C<'$x'>, which
1445 does nothing but return the value of $x.  (Case 4 is preferred for
1446 purely visual reasons, but it also has the advantage of compiling at
1447 compile-time instead of at run-time.)  Case 5 is a place where
1448 normally you I<would> like to use double quotes, except that in this
1449 particular situation, you can just use symbolic references instead, as
1450 in case 6.
1451
1452 C<eval BLOCK> does I<not> count as a loop, so the loop control statements
1453 C<next>, C<last>, or C<redo> cannot be used to leave or restart the block.
1454
1455 Note that as a very special case, an C<eval ''> executed within the C<DB>
1456 package doesn't see the usual surrounding lexical scope, but rather the
1457 scope of the first non-DB piece of code that called it. You don't normally
1458 need to worry about this unless you are writing a Perl debugger.
1459
1460 =item exec LIST
1461
1462 =item exec PROGRAM LIST
1463
1464 The C<exec> function executes a system command I<and never returns>--
1465 use C<system> instead of C<exec> if you want it to return.  It fails and
1466 returns false only if the command does not exist I<and> it is executed
1467 directly instead of via your system's command shell (see below).
1468
1469 Since it's a common mistake to use C<exec> instead of C<system>, Perl
1470 warns you if there is a following statement which isn't C<die>, C<warn>,
1471 or C<exit> (if C<-w> is set  -  but you always do that).   If you
1472 I<really> want to follow an C<exec> with some other statement, you
1473 can use one of these styles to avoid the warning:
1474
1475     exec ('foo')   or print STDERR "couldn't exec foo: $!";
1476     { exec ('foo') }; print STDERR "couldn't exec foo: $!";
1477
1478 If there is more than one argument in LIST, or if LIST is an array
1479 with more than one value, calls execvp(3) with the arguments in LIST.
1480 If there is only one scalar argument or an array with one element in it,
1481 the argument is checked for shell metacharacters, and if there are any,
1482 the entire argument is passed to the system's command shell for parsing
1483 (this is C</bin/sh -c> on Unix platforms, but varies on other platforms).
1484 If there are no shell metacharacters in the argument, it is split into
1485 words and passed directly to C<execvp>, which is more efficient.
1486 Examples:
1487
1488     exec '/bin/echo', 'Your arguments are: ', @ARGV;
1489     exec "sort $outfile | uniq";
1490
1491 If you don't really want to execute the first argument, but want to lie
1492 to the program you are executing about its own name, you can specify
1493 the program you actually want to run as an "indirect object" (without a
1494 comma) in front of the LIST.  (This always forces interpretation of the
1495 LIST as a multivalued list, even if there is only a single scalar in
1496 the list.)  Example:
1497
1498     $shell = '/bin/csh';
1499     exec $shell '-sh';          # pretend it's a login shell
1500
1501 or, more directly,
1502
1503     exec {'/bin/csh'} '-sh';    # pretend it's a login shell
1504
1505 When the arguments get executed via the system shell, results will
1506 be subject to its quirks and capabilities.  See L<perlop/"`STRING`">
1507 for details.
1508
1509 Using an indirect object with C<exec> or C<system> is also more
1510 secure.  This usage (which also works fine with system()) forces
1511 interpretation of the arguments as a multivalued list, even if the
1512 list had just one argument.  That way you're safe from the shell
1513 expanding wildcards or splitting up words with whitespace in them.
1514
1515     @args = ( "echo surprise" );
1516
1517     exec @args;               # subject to shell escapes
1518                                 # if @args == 1
1519     exec { $args[0] } @args;  # safe even with one-arg list
1520
1521 The first version, the one without the indirect object, ran the I<echo>
1522 program, passing it C<"surprise"> an argument.  The second version
1523 didn't--it tried to run a program literally called I<"echo surprise">,
1524 didn't find it, and set C<$?> to a non-zero value indicating failure.
1525
1526 Beginning with v5.6.0, Perl will attempt to flush all files opened for
1527 output before the exec, but this may not be supported on some platforms
1528 (see L<perlport>).  To be safe, you may need to set C<$|> ($AUTOFLUSH
1529 in English) or call the C<autoflush()> method of C<IO::Handle> on any
1530 open handles in order to avoid lost output.
1531
1532 Note that C<exec> will not call your C<END> blocks, nor will it call
1533 any C<DESTROY> methods in your objects.
1534
1535 =item exists EXPR
1536
1537 Given an expression that specifies a hash element or array element,
1538 returns true if the specified element in the hash or array has ever
1539 been initialized, even if the corresponding value is undefined.  The
1540 element is not autovivified if it doesn't exist.
1541
1542     print "Exists\n"    if exists $hash{$key};
1543     print "Defined\n"   if defined $hash{$key};
1544     print "True\n"      if $hash{$key};
1545
1546     print "Exists\n"    if exists $array[$index];
1547     print "Defined\n"   if defined $array[$index];
1548     print "True\n"      if $array[$index];
1549
1550 A hash or array element can be true only if it's defined, and defined if
1551 it exists, but the reverse doesn't necessarily hold true.
1552
1553 Given an expression that specifies the name of a subroutine,
1554 returns true if the specified subroutine has ever been declared, even
1555 if it is undefined.  Mentioning a subroutine name for exists or defined
1556 does not count as declaring it.  Note that a subroutine which does not
1557 exist may still be callable: its package may have an C<AUTOLOAD>
1558 method that makes it spring into existence the first time that it is
1559 called -- see L<perlsub>.
1560
1561     print "Exists\n"    if exists &subroutine;
1562     print "Defined\n"   if defined &subroutine;
1563
1564 Note that the EXPR can be arbitrarily complicated as long as the final
1565 operation is a hash or array key lookup or subroutine name:
1566
1567     if (exists $ref->{A}->{B}->{$key})  { }
1568     if (exists $hash{A}{B}{$key})       { }
1569
1570     if (exists $ref->{A}->{B}->[$ix])   { }
1571     if (exists $hash{A}{B}[$ix])        { }
1572
1573     if (exists &{$ref->{A}{B}{$key}})   { }
1574
1575 Although the deepest nested array or hash will not spring into existence
1576 just because its existence was tested, any intervening ones will.
1577 Thus C<< $ref->{"A"} >> and C<< $ref->{"A"}->{"B"} >> will spring
1578 into existence due to the existence test for the $key element above.
1579 This happens anywhere the arrow operator is used, including even:
1580
1581     undef $ref;
1582     if (exists $ref->{"Some key"})      { }
1583     print $ref;             # prints HASH(0x80d3d5c)
1584
1585 This surprising autovivification in what does not at first--or even
1586 second--glance appear to be an lvalue context may be fixed in a future
1587 release.
1588
1589 Use of a subroutine call, rather than a subroutine name, as an argument
1590 to exists() is an error.
1591
1592     exists &sub;        # OK
1593     exists &sub();      # Error
1594
1595 =item exit EXPR
1596
1597 Evaluates EXPR and exits immediately with that value.    Example:
1598
1599     $ans = <STDIN>;
1600     exit 0 if $ans =~ /^[Xx]/;
1601
1602 See also C<die>.  If EXPR is omitted, exits with C<0> status.  The only
1603 universally recognized values for EXPR are C<0> for success and C<1>
1604 for error; other values are subject to interpretation depending on the
1605 environment in which the Perl program is running.  For example, exiting
1606 69 (EX_UNAVAILABLE) from a I<sendmail> incoming-mail filter will cause
1607 the mailer to return the item undelivered, but that's not true everywhere.
1608
1609 Don't use C<exit> to abort a subroutine if there's any chance that
1610 someone might want to trap whatever error happened.  Use C<die> instead,
1611 which can be trapped by an C<eval>.
1612
1613 The exit() function does not always exit immediately.  It calls any
1614 defined C<END> routines first, but these C<END> routines may not
1615 themselves abort the exit.  Likewise any object destructors that need to
1616 be called are called before the real exit.  If this is a problem, you
1617 can call C<POSIX:_exit($status)> to avoid END and destructor processing.
1618 See L<perlmod> for details.
1619
1620 =item exp EXPR
1621
1622 =item exp
1623
1624 Returns I<e> (the natural logarithm base) to the power of EXPR.
1625 If EXPR is omitted, gives C<exp($_)>.
1626
1627 =item fcntl FILEHANDLE,FUNCTION,SCALAR
1628
1629 Implements the fcntl(2) function.  You'll probably have to say
1630
1631     use Fcntl;
1632
1633 first to get the correct constant definitions.  Argument processing and
1634 value return works just like C<ioctl> below.
1635 For example:
1636
1637     use Fcntl;
1638     fcntl($filehandle, F_GETFL, $packed_return_buffer)
1639         or die "can't fcntl F_GETFL: $!";
1640
1641 You don't have to check for C<defined> on the return from C<fnctl>.
1642 Like C<ioctl>, it maps a C<0> return from the system call into
1643 C<"0 but true"> in Perl.  This string is true in boolean context and C<0>
1644 in numeric context.  It is also exempt from the normal B<-w> warnings
1645 on improper numeric conversions.
1646
1647 Note that C<fcntl> will produce a fatal error if used on a machine that
1648 doesn't implement fcntl(2).  See the Fcntl module or your fcntl(2)
1649 manpage to learn what functions are available on your system.
1650
1651 =item fileno FILEHANDLE
1652
1653 Returns the file descriptor for a filehandle, or undefined if the
1654 filehandle is not open.  This is mainly useful for constructing
1655 bitmaps for C<select> and low-level POSIX tty-handling operations.
1656 If FILEHANDLE is an expression, the value is taken as an indirect
1657 filehandle, generally its name.
1658
1659 You can use this to find out whether two handles refer to the
1660 same underlying descriptor:
1661
1662     if (fileno(THIS) == fileno(THAT)) {
1663         print "THIS and THAT are dups\n";
1664     }
1665
1666 (Filehandles connected to memory objects via new features of C<open> may
1667 return undefined even though they are open.)
1668
1669
1670 =item flock FILEHANDLE,OPERATION
1671
1672 Calls flock(2), or an emulation of it, on FILEHANDLE.  Returns true
1673 for success, false on failure.  Produces a fatal error if used on a
1674 machine that doesn't implement flock(2), fcntl(2) locking, or lockf(3).
1675 C<flock> is Perl's portable file locking interface, although it locks
1676 only entire files, not records.
1677
1678 Two potentially non-obvious but traditional C<flock> semantics are
1679 that it waits indefinitely until the lock is granted, and that its locks
1680 B<merely advisory>.  Such discretionary locks are more flexible, but offer
1681 fewer guarantees.  This means that files locked with C<flock> may be
1682 modified by programs that do not also use C<flock>.  See L<perlport>,
1683 your port's specific documentation, or your system-specific local manpages
1684 for details.  It's best to assume traditional behavior if you're writing
1685 portable programs.  (But if you're not, you should as always feel perfectly
1686 free to write for your own system's idiosyncrasies (sometimes called
1687 "features").  Slavish adherence to portability concerns shouldn't get
1688 in the way of your getting your job done.)
1689
1690 OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly combined with
1691 LOCK_NB.  These constants are traditionally valued 1, 2, 8 and 4, but
1692 you can use the symbolic names if you import them from the Fcntl module,
1693 either individually, or as a group using the ':flock' tag.  LOCK_SH
1694 requests a shared lock, LOCK_EX requests an exclusive lock, and LOCK_UN
1695 releases a previously requested lock.  If LOCK_NB is bitwise-or'ed with
1696 LOCK_SH or LOCK_EX then C<flock> will return immediately rather than blocking
1697 waiting for the lock (check the return status to see if you got it).
1698
1699 To avoid the possibility of miscoordination, Perl now flushes FILEHANDLE
1700 before locking or unlocking it.
1701
1702 Note that the emulation built with lockf(3) doesn't provide shared
1703 locks, and it requires that FILEHANDLE be open with write intent.  These
1704 are the semantics that lockf(3) implements.  Most if not all systems
1705 implement lockf(3) in terms of fcntl(2) locking, though, so the
1706 differing semantics shouldn't bite too many people.
1707
1708 Note that the fcntl(2) emulation of flock(3) requires that FILEHANDLE
1709 be open with read intent to use LOCK_SH and requires that it be open
1710 with write intent to use LOCK_EX.
1711
1712 Note also that some versions of C<flock> cannot lock things over the
1713 network; you would need to use the more system-specific C<fcntl> for
1714 that.  If you like you can force Perl to ignore your system's flock(2)
1715 function, and so provide its own fcntl(2)-based emulation, by passing
1716 the switch C<-Ud_flock> to the F<Configure> program when you configure
1717 perl.
1718
1719 Here's a mailbox appender for BSD systems.
1720
1721     use Fcntl ':flock'; # import LOCK_* constants
1722
1723     sub lock {
1724         flock(MBOX,LOCK_EX);
1725         # and, in case someone appended
1726         # while we were waiting...
1727         seek(MBOX, 0, 2);
1728     }
1729
1730     sub unlock {
1731         flock(MBOX,LOCK_UN);
1732     }
1733
1734     open(MBOX, ">>/usr/spool/mail/$ENV{'USER'}")
1735             or die "Can't open mailbox: $!";
1736
1737     lock();
1738     print MBOX $msg,"\n\n";
1739     unlock();
1740
1741 On systems that support a real flock(), locks are inherited across fork()
1742 calls, whereas those that must resort to the more capricious fcntl()
1743 function lose the locks, making it harder to write servers.
1744
1745 See also L<DB_File> for other flock() examples.
1746
1747 =item fork
1748
1749 Does a fork(2) system call to create a new process running the
1750 same program at the same point.  It returns the child pid to the
1751 parent process, C<0> to the child process, or C<undef> if the fork is
1752 unsuccessful.  File descriptors (and sometimes locks on those descriptors)
1753 are shared, while everything else is copied.  On most systems supporting
1754 fork(), great care has gone into making it extremely efficient (for
1755 example, using copy-on-write technology on data pages), making it the
1756 dominant paradigm for multitasking over the last few decades.
1757
1758 Beginning with v5.6.0, Perl will attempt to flush all files opened for
1759 output before forking the child process, but this may not be supported
1760 on some platforms (see L<perlport>).  To be safe, you may need to set
1761 C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method of
1762 C<IO::Handle> on any open handles in order to avoid duplicate output.
1763
1764 If you C<fork> without ever waiting on your children, you will
1765 accumulate zombies.  On some systems, you can avoid this by setting
1766 C<$SIG{CHLD}> to C<"IGNORE">.  See also L<perlipc> for more examples of
1767 forking and reaping moribund children.
1768
1769 Note that if your forked child inherits system file descriptors like
1770 STDIN and STDOUT that are actually connected by a pipe or socket, even
1771 if you exit, then the remote server (such as, say, a CGI script or a
1772 backgrounded job launched from a remote shell) won't think you're done.
1773 You should reopen those to F</dev/null> if it's any issue.
1774
1775 =item format
1776
1777 Declare a picture format for use by the C<write> function.  For
1778 example:
1779
1780     format Something =
1781         Test: @<<<<<<<< @||||| @>>>>>
1782               $str,     $%,    '$' . int($num)
1783     .
1784
1785     $str = "widget";
1786     $num = $cost/$quantity;
1787     $~ = 'Something';
1788     write;
1789
1790 See L<perlform> for many details and examples.
1791
1792 =item formline PICTURE,LIST
1793
1794 This is an internal function used by C<format>s, though you may call it,
1795 too.  It formats (see L<perlform>) a list of values according to the
1796 contents of PICTURE, placing the output into the format output
1797 accumulator, C<$^A> (or C<$ACCUMULATOR> in English).
1798 Eventually, when a C<write> is done, the contents of
1799 C<$^A> are written to some filehandle, but you could also read C<$^A>
1800 yourself and then set C<$^A> back to C<"">.  Note that a format typically
1801 does one C<formline> per line of form, but the C<formline> function itself
1802 doesn't care how many newlines are embedded in the PICTURE.  This means
1803 that the C<~> and C<~~> tokens will treat the entire PICTURE as a single line.
1804 You may therefore need to use multiple formlines to implement a single
1805 record format, just like the format compiler.
1806
1807 Be careful if you put double quotes around the picture, because an C<@>
1808 character may be taken to mean the beginning of an array name.
1809 C<formline> always returns true.  See L<perlform> for other examples.
1810
1811 =item getc FILEHANDLE
1812
1813 =item getc
1814
1815 Returns the next character from the input file attached to FILEHANDLE,
1816 or the undefined value at end of file, or if there was an error (in
1817 the latter case C<$!> is set).  If FILEHANDLE is omitted, reads from
1818 STDIN.  This is not particularly efficient.  However, it cannot be
1819 used by itself to fetch single characters without waiting for the user
1820 to hit enter.  For that, try something more like:
1821
1822     if ($BSD_STYLE) {
1823         system "stty cbreak </dev/tty >/dev/tty 2>&1";
1824     }
1825     else {
1826         system "stty", '-icanon', 'eol', "\001";
1827     }
1828
1829     $key = getc(STDIN);
1830
1831     if ($BSD_STYLE) {
1832         system "stty -cbreak </dev/tty >/dev/tty 2>&1";
1833     }
1834     else {
1835         system "stty", 'icanon', 'eol', '^@'; # ASCII null
1836     }
1837     print "\n";
1838
1839 Determination of whether $BSD_STYLE should be set
1840 is left as an exercise to the reader.
1841
1842 The C<POSIX::getattr> function can do this more portably on
1843 systems purporting POSIX compliance.  See also the C<Term::ReadKey>
1844 module from your nearest CPAN site; details on CPAN can be found on
1845 L<perlmodlib/CPAN>.
1846
1847 =item getlogin
1848
1849 Implements the C library function of the same name, which on most
1850 systems returns the current login from F</etc/utmp>, if any.  If null,
1851 use C<getpwuid>.
1852
1853     $login = getlogin || getpwuid($<) || "Kilroy";
1854
1855 Do not consider C<getlogin> for authentication: it is not as
1856 secure as C<getpwuid>.
1857
1858 =item getpeername SOCKET
1859
1860 Returns the packed sockaddr address of other end of the SOCKET connection.
1861
1862     use Socket;
1863     $hersockaddr    = getpeername(SOCK);
1864     ($port, $iaddr) = sockaddr_in($hersockaddr);
1865     $herhostname    = gethostbyaddr($iaddr, AF_INET);
1866     $herstraddr     = inet_ntoa($iaddr);
1867
1868 =item getpgrp PID
1869
1870 Returns the current process group for the specified PID.  Use
1871 a PID of C<0> to get the current process group for the
1872 current process.  Will raise an exception if used on a machine that
1873 doesn't implement getpgrp(2).  If PID is omitted, returns process
1874 group of current process.  Note that the POSIX version of C<getpgrp>
1875 does not accept a PID argument, so only C<PID==0> is truly portable.
1876
1877 =item getppid
1878
1879 Returns the process id of the parent process.
1880
1881 Note for Linux users: on Linux, the C functions C<getpid()> and
1882 C<getppid()> return different values from different threads. In order to
1883 be portable, this behavior is not reflected by the perl-level function
1884 C<getppid()>, that returns a consistent value across threads. If you want
1885 to call the underlying C<getppid()>, you may use the CPAN module
1886 C<Linux::Pid>.
1887
1888 =item getpriority WHICH,WHO
1889
1890 Returns the current priority for a process, a process group, or a user.
1891 (See L<getpriority(2)>.)  Will raise a fatal exception if used on a
1892 machine that doesn't implement getpriority(2).
1893
1894 =item getpwnam NAME
1895
1896 =item getgrnam NAME
1897
1898 =item gethostbyname NAME
1899
1900 =item getnetbyname NAME
1901
1902 =item getprotobyname NAME
1903
1904 =item getpwuid UID
1905
1906 =item getgrgid GID
1907
1908 =item getservbyname NAME,PROTO
1909
1910 =item gethostbyaddr ADDR,ADDRTYPE
1911
1912 =item getnetbyaddr ADDR,ADDRTYPE
1913
1914 =item getprotobynumber NUMBER
1915
1916 =item getservbyport PORT,PROTO
1917
1918 =item getpwent
1919
1920 =item getgrent
1921
1922 =item gethostent
1923
1924 =item getnetent
1925
1926 =item getprotoent
1927
1928 =item getservent
1929
1930 =item setpwent
1931
1932 =item setgrent
1933
1934 =item sethostent STAYOPEN
1935
1936 =item setnetent STAYOPEN
1937
1938 =item setprotoent STAYOPEN
1939
1940 =item setservent STAYOPEN
1941
1942 =item endpwent
1943
1944 =item endgrent
1945
1946 =item endhostent
1947
1948 =item endnetent
1949
1950 =item endprotoent
1951
1952 =item endservent
1953
1954 These routines perform the same functions as their counterparts in the
1955 system library.  In list context, the return values from the
1956 various get routines are as follows:
1957
1958     ($name,$passwd,$uid,$gid,
1959        $quota,$comment,$gcos,$dir,$shell,$expire) = getpw*
1960     ($name,$passwd,$gid,$members) = getgr*
1961     ($name,$aliases,$addrtype,$length,@addrs) = gethost*
1962     ($name,$aliases,$addrtype,$net) = getnet*
1963     ($name,$aliases,$proto) = getproto*
1964     ($name,$aliases,$port,$proto) = getserv*
1965
1966 (If the entry doesn't exist you get a null list.)
1967
1968 The exact meaning of the $gcos field varies but it usually contains
1969 the real name of the user (as opposed to the login name) and other
1970 information pertaining to the user.  Beware, however, that in many
1971 system users are able to change this information and therefore it
1972 cannot be trusted and therefore the $gcos is tainted (see
1973 L<perlsec>).  The $passwd and $shell, user's encrypted password and
1974 login shell, are also tainted, because of the same reason.
1975
1976 In scalar context, you get the name, unless the function was a
1977 lookup by name, in which case you get the other thing, whatever it is.
1978 (If the entry doesn't exist you get the undefined value.)  For example:
1979
1980     $uid   = getpwnam($name);
1981     $name  = getpwuid($num);
1982     $name  = getpwent();
1983     $gid   = getgrnam($name);
1984     $name  = getgrgid($num);
1985     $name  = getgrent();
1986     #etc.
1987
1988 In I<getpw*()> the fields $quota, $comment, and $expire are special
1989 cases in the sense that in many systems they are unsupported.  If the
1990 $quota is unsupported, it is an empty scalar.  If it is supported, it
1991 usually encodes the disk quota.  If the $comment field is unsupported,
1992 it is an empty scalar.  If it is supported it usually encodes some
1993 administrative comment about the user.  In some systems the $quota
1994 field may be $change or $age, fields that have to do with password
1995 aging.  In some systems the $comment field may be $class.  The $expire
1996 field, if present, encodes the expiration period of the account or the
1997 password.  For the availability and the exact meaning of these fields
1998 in your system, please consult your getpwnam(3) documentation and your
1999 F<pwd.h> file.  You can also find out from within Perl what your
2000 $quota and $comment fields mean and whether you have the $expire field
2001 by using the C<Config> module and the values C<d_pwquota>, C<d_pwage>,
2002 C<d_pwchange>, C<d_pwcomment>, and C<d_pwexpire>.  Shadow password
2003 files are only supported if your vendor has implemented them in the
2004 intuitive fashion that calling the regular C library routines gets the
2005 shadow versions if you're running under privilege or if there exists
2006 the shadow(3) functions as found in System V ( this includes Solaris
2007 and Linux.)  Those systems which implement a proprietary shadow password
2008 facility are unlikely to be supported.
2009
2010 The $members value returned by I<getgr*()> is a space separated list of
2011 the login names of the members of the group.
2012
2013 For the I<gethost*()> functions, if the C<h_errno> variable is supported in
2014 C, it will be returned to you via C<$?> if the function call fails.  The
2015 C<@addrs> value returned by a successful call is a list of the raw
2016 addresses returned by the corresponding system library call.  In the
2017 Internet domain, each address is four bytes long and you can unpack it
2018 by saying something like:
2019
2020     ($a,$b,$c,$d) = unpack('C4',$addr[0]);
2021
2022 The Socket library makes this slightly easier:
2023
2024     use Socket;
2025     $iaddr = inet_aton("127.1"); # or whatever address
2026     $name  = gethostbyaddr($iaddr, AF_INET);
2027
2028     # or going the other way
2029     $straddr = inet_ntoa($iaddr);
2030
2031 If you get tired of remembering which element of the return list
2032 contains which return value, by-name interfaces are provided
2033 in standard modules: C<File::stat>, C<Net::hostent>, C<Net::netent>,
2034 C<Net::protoent>, C<Net::servent>, C<Time::gmtime>, C<Time::localtime>,
2035 and C<User::grent>.  These override the normal built-ins, supplying
2036 versions that return objects with the appropriate names
2037 for each field.  For example:
2038
2039    use File::stat;
2040    use User::pwent;
2041    $is_his = (stat($filename)->uid == pwent($whoever)->uid);
2042
2043 Even though it looks like they're the same method calls (uid),
2044 they aren't, because a C<File::stat> object is different from
2045 a C<User::pwent> object.
2046
2047 =item getsockname SOCKET
2048
2049 Returns the packed sockaddr address of this end of the SOCKET connection,
2050 in case you don't know the address because you have several different
2051 IPs that the connection might have come in on.
2052
2053     use Socket;
2054     $mysockaddr = getsockname(SOCK);
2055     ($port, $myaddr) = sockaddr_in($mysockaddr);
2056     printf "Connect to %s [%s]\n",
2057        scalar gethostbyaddr($myaddr, AF_INET),
2058        inet_ntoa($myaddr);
2059
2060 =item getsockopt SOCKET,LEVEL,OPTNAME
2061
2062 Returns the socket option requested, or undef if there is an error.
2063
2064 =item glob EXPR
2065
2066 =item glob
2067
2068 In list context, returns a (possibly empty) list of filename expansions on
2069 the value of EXPR such as the standard Unix shell F</bin/csh> would do. In
2070 scalar context, glob iterates through such filename expansions, returning
2071 undef when the list is exhausted. This is the internal function
2072 implementing the C<< <*.c> >> operator, but you can use it directly. If
2073 EXPR is omitted, C<$_> is used.  The C<< <*.c> >> operator is discussed in
2074 more detail in L<perlop/"I/O Operators">.
2075
2076 Beginning with v5.6.0, this operator is implemented using the standard
2077 C<File::Glob> extension.  See L<File::Glob> for details.
2078
2079 =item gmtime EXPR
2080
2081 Converts a time as returned by the time function to an 8-element list
2082 with the time localized for the standard Greenwich time zone.
2083 Typically used as follows:
2084
2085     #  0    1    2     3     4    5     6     7
2086     ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday) =
2087                                             gmtime(time);
2088
2089 All list elements are numeric, and come straight out of the C `struct
2090 tm'.  $sec, $min, and $hour are the seconds, minutes, and hours of the
2091 specified time.  $mday is the day of the month, and $mon is the month
2092 itself, in the range C<0..11> with 0 indicating January and 11
2093 indicating December.  $year is the number of years since 1900.  That
2094 is, $year is C<123> in year 2023.  $wday is the day of the week, with
2095 0 indicating Sunday and 3 indicating Wednesday.  $yday is the day of
2096 the year, in the range C<0..364> (or C<0..365> in leap years.)
2097
2098 Note that the $year element is I<not> simply the last two digits of
2099 the year.  If you assume it is, then you create non-Y2K-compliant
2100 programs--and you wouldn't want to do that, would you?
2101
2102 The proper way to get a complete 4-digit year is simply:
2103
2104         $year += 1900;
2105
2106 And to get the last two digits of the year (e.g., '01' in 2001) do:
2107
2108         $year = sprintf("%02d", $year % 100);
2109
2110 If EXPR is omitted, C<gmtime()> uses the current time (C<gmtime(time)>).
2111
2112 In scalar context, C<gmtime()> returns the ctime(3) value:
2113
2114     $now_string = gmtime;  # e.g., "Thu Oct 13 04:54:34 1994"
2115
2116 Also see the C<timegm> function provided by the C<Time::Local> module,
2117 and the strftime(3) function available via the POSIX module.
2118
2119 This scalar value is B<not> locale dependent (see L<perllocale>), but
2120 is instead a Perl builtin.  Also see the C<Time::Local> module, and the
2121 strftime(3) and mktime(3) functions available via the POSIX module.  To
2122 get somewhat similar but locale dependent date strings, set up your
2123 locale environment variables appropriately (please see L<perllocale>)
2124 and try for example:
2125
2126     use POSIX qw(strftime);
2127     $now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;
2128
2129 Note that the C<%a> and C<%b> escapes, which represent the short forms
2130 of the day of the week and the month of the year, may not necessarily
2131 be three characters wide in all locales.
2132
2133 =item goto LABEL
2134
2135 =item goto EXPR
2136
2137 =item goto &NAME
2138
2139 The C<goto-LABEL> form finds the statement labeled with LABEL and resumes
2140 execution there.  It may not be used to go into any construct that
2141 requires initialization, such as a subroutine or a C<foreach> loop.  It
2142 also can't be used to go into a construct that is optimized away,
2143 or to get out of a block or subroutine given to C<sort>.
2144 It can be used to go almost anywhere else within the dynamic scope,
2145 including out of subroutines, but it's usually better to use some other
2146 construct such as C<last> or C<die>.  The author of Perl has never felt the
2147 need to use this form of C<goto> (in Perl, that is--C is another matter).
2148 (The difference being that C does not offer named loops combined with
2149 loop control.  Perl does, and this replaces most structured uses of C<goto>
2150 in other languages.)
2151
2152 The C<goto-EXPR> form expects a label name, whose scope will be resolved
2153 dynamically.  This allows for computed C<goto>s per FORTRAN, but isn't
2154 necessarily recommended if you're optimizing for maintainability:
2155
2156     goto ("FOO", "BAR", "GLARCH")[$i];
2157
2158 The C<goto-&NAME> form is quite different from the other forms of
2159 C<goto>.  In fact, it isn't a goto in the normal sense at all, and
2160 doesn't have the stigma associated with other gotos.  Instead, it
2161 exits the current subroutine (losing any changes set by local()) and
2162 immediately calls in its place the named subroutine using the current
2163 value of @_.  This is used by C<AUTOLOAD> subroutines that wish to
2164 load another subroutine and then pretend that the other subroutine had
2165 been called in the first place (except that any modifications to C<@_>
2166 in the current subroutine are propagated to the other subroutine.)
2167 After the C<goto>, not even C<caller> will be able to tell that this
2168 routine was called first.
2169
2170 NAME needn't be the name of a subroutine; it can be a scalar variable
2171 containing a code reference, or a block which evaluates to a code
2172 reference.
2173
2174 =item grep BLOCK LIST
2175
2176 =item grep EXPR,LIST
2177
2178 This is similar in spirit to, but not the same as, grep(1) and its
2179 relatives.  In particular, it is not limited to using regular expressions.
2180
2181 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
2182 C<$_> to each element) and returns the list value consisting of those
2183 elements for which the expression evaluated to true.  In scalar
2184 context, returns the number of times the expression was true.
2185
2186     @foo = grep(!/^#/, @bar);    # weed out comments
2187
2188 or equivalently,
2189
2190     @foo = grep {!/^#/} @bar;    # weed out comments
2191
2192 Note that C<$_> is an alias to the list value, so it can be used to
2193 modify the elements of the LIST.  While this is useful and supported,
2194 it can cause bizarre results if the elements of LIST are not variables.
2195 Similarly, grep returns aliases into the original list, much as a for
2196 loop's index variable aliases the list elements.  That is, modifying an
2197 element of a list returned by grep (for example, in a C<foreach>, C<map>
2198 or another C<grep>) actually modifies the element in the original list.
2199 This is usually something to be avoided when writing clear code.
2200
2201 See also L</map> for a list composed of the results of the BLOCK or EXPR.
2202
2203 =item hex EXPR
2204
2205 =item hex
2206
2207 Interprets EXPR as a hex string and returns the corresponding value.
2208 (To convert strings that might start with either 0, 0x, or 0b, see
2209 L</oct>.)  If EXPR is omitted, uses C<$_>.
2210
2211     print hex '0xAf'; # prints '175'
2212     print hex 'aF';   # same
2213
2214 Hex strings may only represent integers.  Strings that would cause
2215 integer overflow trigger a warning.  Leading whitespace is not stripped,
2216 unlike oct().
2217
2218 =item import
2219
2220 There is no builtin C<import> function.  It is just an ordinary
2221 method (subroutine) defined (or inherited) by modules that wish to export
2222 names to another module.  The C<use> function calls the C<import> method
2223 for the package used.  See also L</use>, L<perlmod>, and L<Exporter>.
2224
2225 =item index STR,SUBSTR,POSITION
2226
2227 =item index STR,SUBSTR
2228
2229 The index function searches for one string within another, but without
2230 the wildcard-like behavior of a full regular-expression pattern match.
2231 It returns the position of the first occurrence of SUBSTR in STR at
2232 or after POSITION.  If POSITION is omitted, starts searching from the
2233 beginning of the string.  The return value is based at C<0> (or whatever
2234 you've set the C<$[> variable to--but don't do that).  If the substring
2235 is not found, returns one less than the base, ordinarily C<-1>.
2236
2237 =item int EXPR
2238
2239 =item int
2240
2241 Returns the integer portion of EXPR.  If EXPR is omitted, uses C<$_>.
2242 You should not use this function for rounding: one because it truncates
2243 towards C<0>, and two because machine representations of floating point
2244 numbers can sometimes produce counterintuitive results.  For example,
2245 C<int(-6.725/0.025)> produces -268 rather than the correct -269; that's
2246 because it's really more like -268.99999999999994315658 instead.  Usually,
2247 the C<sprintf>, C<printf>, or the C<POSIX::floor> and C<POSIX::ceil>
2248 functions will serve you better than will int().
2249
2250 =item ioctl FILEHANDLE,FUNCTION,SCALAR
2251
2252 Implements the ioctl(2) function.  You'll probably first have to say
2253
2254     require "ioctl.ph"; # probably in /usr/local/lib/perl/ioctl.ph
2255
2256 to get the correct function definitions.  If F<ioctl.ph> doesn't
2257 exist or doesn't have the correct definitions you'll have to roll your
2258 own, based on your C header files such as F<< <sys/ioctl.h> >>.
2259 (There is a Perl script called B<h2ph> that comes with the Perl kit that
2260 may help you in this, but it's nontrivial.)  SCALAR will be read and/or
2261 written depending on the FUNCTION--a pointer to the string value of SCALAR
2262 will be passed as the third argument of the actual C<ioctl> call.  (If SCALAR
2263 has no string value but does have a numeric value, that value will be
2264 passed rather than a pointer to the string value.  To guarantee this to be
2265 true, add a C<0> to the scalar before using it.)  The C<pack> and C<unpack>
2266 functions may be needed to manipulate the values of structures used by
2267 C<ioctl>.
2268
2269 The return value of C<ioctl> (and C<fcntl>) is as follows:
2270
2271         if OS returns:          then Perl returns:
2272             -1                    undefined value
2273              0                  string "0 but true"
2274         anything else               that number
2275
2276 Thus Perl returns true on success and false on failure, yet you can
2277 still easily determine the actual value returned by the operating
2278 system:
2279
2280     $retval = ioctl(...) || -1;
2281     printf "System returned %d\n", $retval;
2282
2283 The special string "C<0> but true" is exempt from B<-w> complaints
2284 about improper numeric conversions.
2285
2286 Here's an example of setting a filehandle named C<REMOTE> to be
2287 non-blocking at the system level.  You'll have to negotiate C<$|>
2288 on your own, though.
2289
2290     use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);
2291
2292     $flags = fcntl(REMOTE, F_GETFL, 0)
2293                 or die "Can't get flags for the socket: $!\n";
2294
2295     $flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
2296                 or die "Can't set flags for the socket: $!\n";
2297
2298 =item join EXPR,LIST
2299
2300 Joins the separate strings of LIST into a single string with fields
2301 separated by the value of EXPR, and returns that new string.  Example:
2302
2303     $rec = join(':', $login,$passwd,$uid,$gid,$gcos,$home,$shell);
2304
2305 Beware that unlike C<split>, C<join> doesn't take a pattern as its
2306 first argument.  Compare L</split>.
2307
2308 =item keys HASH
2309
2310 Returns a list consisting of all the keys of the named hash.  (In
2311 scalar context, returns the number of keys.)  The keys are returned in
2312 an apparently random order.  The actual random order is subject to
2313 change in future versions of perl, but it is guaranteed to be the same
2314 order as either the C<values> or C<each> function produces (given
2315 that the hash has not been modified).  As a side effect, it resets
2316 HASH's iterator.
2317
2318 Here is yet another way to print your environment:
2319
2320     @keys = keys %ENV;
2321     @values = values %ENV;
2322     while (@keys) {
2323         print pop(@keys), '=', pop(@values), "\n";
2324     }
2325
2326 or how about sorted by key:
2327
2328     foreach $key (sort(keys %ENV)) {
2329         print $key, '=', $ENV{$key}, "\n";
2330     }
2331
2332 The returned values are copies of the original keys in the hash, so
2333 modifying them will not affect the original hash.  Compare L</values>.
2334
2335 To sort a hash by value, you'll need to use a C<sort> function.
2336 Here's a descending numeric sort of a hash by its values:
2337
2338     foreach $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
2339         printf "%4d %s\n", $hash{$key}, $key;
2340     }
2341
2342 As an lvalue C<keys> allows you to increase the number of hash buckets
2343 allocated for the given hash.  This can gain you a measure of efficiency if
2344 you know the hash is going to get big.  (This is similar to pre-extending
2345 an array by assigning a larger number to $#array.)  If you say
2346
2347     keys %hash = 200;
2348
2349 then C<%hash> will have at least 200 buckets allocated for it--256 of them,
2350 in fact, since it rounds up to the next power of two.  These
2351 buckets will be retained even if you do C<%hash = ()>, use C<undef
2352 %hash> if you want to free the storage while C<%hash> is still in scope.
2353 You can't shrink the number of buckets allocated for the hash using
2354 C<keys> in this way (but you needn't worry about doing this by accident,
2355 as trying has no effect).
2356
2357 See also C<each>, C<values> and C<sort>.
2358
2359 =item kill SIGNAL, LIST
2360
2361 Sends a signal to a list of processes.  Returns the number of
2362 processes successfully signaled (which is not necessarily the
2363 same as the number actually killed).
2364
2365     $cnt = kill 1, $child1, $child2;
2366     kill 9, @goners;
2367
2368 If SIGNAL is zero, no signal is sent to the process.  This is a
2369 useful way to check that the process is alive and hasn't changed
2370 its UID.  See L<perlport> for notes on the portability of this
2371 construct.
2372
2373 Unlike in the shell, if SIGNAL is negative, it kills
2374 process groups instead of processes.  (On System V, a negative I<PROCESS>
2375 number will also kill process groups, but that's not portable.)  That
2376 means you usually want to use positive not negative signals.  You may also
2377 use a signal name in quotes.  See L<perlipc/"Signals"> for details.
2378
2379 =item last LABEL
2380
2381 =item last
2382
2383 The C<last> command is like the C<break> statement in C (as used in
2384 loops); it immediately exits the loop in question.  If the LABEL is
2385 omitted, the command refers to the innermost enclosing loop.  The
2386 C<continue> block, if any, is not executed:
2387
2388     LINE: while (<STDIN>) {
2389         last LINE if /^$/;      # exit when done with header
2390         #...
2391     }
2392
2393 C<last> cannot be used to exit a block which returns a value such as
2394 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
2395 a grep() or map() operation.
2396
2397 Note that a block by itself is semantically identical to a loop
2398 that executes once.  Thus C<last> can be used to effect an early
2399 exit out of such a block.
2400
2401 See also L</continue> for an illustration of how C<last>, C<next>, and
2402 C<redo> work.
2403
2404 =item lc EXPR
2405
2406 =item lc
2407
2408 Returns a lowercased version of EXPR.  This is the internal function
2409 implementing the C<\L> escape in double-quoted strings.  Respects
2410 current LC_CTYPE locale if C<use locale> in force.  See L<perllocale>
2411 and L<perlunicode> for more details about locale and Unicode support.
2412
2413 If EXPR is omitted, uses C<$_>.
2414
2415 =item lcfirst EXPR
2416
2417 =item lcfirst
2418
2419 Returns the value of EXPR with the first character lowercased.  This
2420 is the internal function implementing the C<\l> escape in
2421 double-quoted strings.  Respects current LC_CTYPE locale if C<use
2422 locale> in force.  See L<perllocale> and L<perlunicode> for more
2423 details about locale and Unicode support.
2424
2425 If EXPR is omitted, uses C<$_>.
2426
2427 =item length EXPR
2428
2429 =item length
2430
2431 Returns the length in characters of the value of EXPR.  If EXPR is
2432 omitted, returns length of C<$_>.  Note that this cannot be used on
2433 an entire array or hash to find out how many elements these have.
2434 For that, use C<scalar @array> and C<scalar keys %hash> respectively.
2435
2436 =item link OLDFILE,NEWFILE
2437
2438 Creates a new filename linked to the old filename.  Returns true for
2439 success, false otherwise.
2440
2441 =item listen SOCKET,QUEUESIZE
2442
2443 Does the same thing that the listen system call does.  Returns true if
2444 it succeeded, false otherwise.  See the example in
2445 L<perlipc/"Sockets: Client/Server Communication">.
2446
2447 =item local EXPR
2448
2449 You really probably want to be using C<my> instead, because C<local> isn't
2450 what most people think of as "local".  See
2451 L<perlsub/"Private Variables via my()"> for details.
2452
2453 A local modifies the listed variables to be local to the enclosing
2454 block, file, or eval.  If more than one value is listed, the list must
2455 be placed in parentheses.  See L<perlsub/"Temporary Values via local()">
2456 for details, including issues with tied arrays and hashes.
2457
2458 =item localtime EXPR
2459
2460 Converts a time as returned by the time function to a 9-element list
2461 with the time analyzed for the local time zone.  Typically used as
2462 follows:
2463
2464     #  0    1    2     3     4    5     6     7     8
2465     ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
2466                                                 localtime(time);
2467
2468 All list elements are numeric, and come straight out of the C `struct
2469 tm'.  $sec, $min, and $hour are the seconds, minutes, and hours of the
2470 specified time.  $mday is the day of the month, and $mon is the month
2471 itself, in the range C<0..11> with 0 indicating January and 11
2472 indicating December.  $year is the number of years since 1900.  That
2473 is, $year is C<123> in year 2023.  $wday is the day of the week, with
2474 0 indicating Sunday and 3 indicating Wednesday.  $yday is the day of
2475 the year, in the range C<0..364> (or C<0..365> in leap years.)  $isdst
2476 is true if the specified time occurs during daylight savings time,
2477 false otherwise.
2478
2479 Note that the $year element is I<not> simply the last two digits of
2480 the year.  If you assume it is, then you create non-Y2K-compliant
2481 programs--and you wouldn't want to do that, would you?
2482
2483 The proper way to get a complete 4-digit year is simply:
2484
2485         $year += 1900;
2486
2487 And to get the last two digits of the year (e.g., '01' in 2001) do:
2488
2489         $year = sprintf("%02d", $year % 100);
2490
2491 If EXPR is omitted, C<localtime()> uses the current time (C<localtime(time)>).
2492
2493 In scalar context, C<localtime()> returns the ctime(3) value:
2494
2495     $now_string = localtime;  # e.g., "Thu Oct 13 04:54:34 1994"
2496
2497 This scalar value is B<not> locale dependent, see L<perllocale>, but
2498 instead a Perl builtin.  Also see the C<Time::Local> module
2499 (to convert the second, minutes, hours, ... back to seconds since the
2500 stroke of midnight the 1st of January 1970, the value returned by
2501 time()), and the strftime(3) and mktime(3) functions available via the
2502 POSIX module.  To get somewhat similar but locale dependent date
2503 strings, set up your locale environment variables appropriately
2504 (please see L<perllocale>) and try for example:
2505
2506     use POSIX qw(strftime);
2507     $now_string = strftime "%a %b %e %H:%M:%S %Y", localtime;
2508
2509 Note that the C<%a> and C<%b>, the short forms of the day of the week
2510 and the month of the year, may not necessarily be three characters wide.
2511
2512 =item lock THING
2513
2514 This function places an advisory lock on a shared variable, or referenced
2515 object contained in I<THING> until the lock goes out of scope.
2516
2517 lock() is a "weak keyword" : this means that if you've defined a function
2518 by this name (before any calls to it), that function will be called
2519 instead. (However, if you've said C<use threads>, lock() is always a
2520 keyword.) See L<threads>.
2521
2522 =item log EXPR
2523
2524 =item log
2525
2526 Returns the natural logarithm (base I<e>) of EXPR.  If EXPR is omitted,
2527 returns log of C<$_>.  To get the log of another base, use basic algebra:
2528 The base-N log of a number is equal to the natural log of that number
2529 divided by the natural log of N.  For example:
2530
2531     sub log10 {
2532         my $n = shift;
2533         return log($n)/log(10);
2534     }
2535
2536 See also L</exp> for the inverse operation.
2537
2538 =item lstat EXPR
2539
2540 =item lstat
2541
2542 Does the same thing as the C<stat> function (including setting the
2543 special C<_> filehandle) but stats a symbolic link instead of the file
2544 the symbolic link points to.  If symbolic links are unimplemented on
2545 your system, a normal C<stat> is done.  For much more detailed
2546 information, please see the documentation for C<stat>.
2547
2548 If EXPR is omitted, stats C<$_>.
2549
2550 =item m//
2551
2552 The match operator.  See L<perlop>.
2553
2554 =item map BLOCK LIST
2555
2556 =item map EXPR,LIST
2557
2558 Evaluates the BLOCK or EXPR for each element of LIST (locally setting
2559 C<$_> to each element) and returns the list value composed of the
2560 results of each such evaluation.  In scalar context, returns the
2561 total number of elements so generated.  Evaluates BLOCK or EXPR in
2562 list context, so each element of LIST may produce zero, one, or
2563 more elements in the returned value.
2564
2565     @chars = map(chr, @nums);
2566
2567 translates a list of numbers to the corresponding characters.  And
2568
2569     %hash = map { getkey($_) => $_ } @array;
2570
2571 is just a funny way to write
2572
2573     %hash = ();
2574     foreach $_ (@array) {
2575         $hash{getkey($_)} = $_;
2576     }
2577
2578 Note that C<$_> is an alias to the list value, so it can be used to
2579 modify the elements of the LIST.  While this is useful and supported,
2580 it can cause bizarre results if the elements of LIST are not variables.
2581 Using a regular C<foreach> loop for this purpose would be clearer in
2582 most cases.  See also L</grep> for an array composed of those items of
2583 the original list for which the BLOCK or EXPR evaluates to true.
2584
2585 C<{> starts both hash references and blocks, so C<map { ...> could be either
2586 the start of map BLOCK LIST or map EXPR, LIST. Because perl doesn't look
2587 ahead for the closing C<}> it has to take a guess at which its dealing with
2588 based what it finds just after the C<{>. Usually it gets it right, but if it
2589 doesn't it won't realize something is wrong until it gets to the C<}> and
2590 encounters the missing (or unexpected) comma. The syntax error will be
2591 reported close to the C<}> but you'll need to change something near the C<{>
2592 such as using a unary C<+> to give perl some help:
2593
2594     %hash = map {  "\L$_", 1  } @array  # perl guesses EXPR.  wrong
2595     %hash = map { +"\L$_", 1  } @array  # perl guesses BLOCK. right
2596     %hash = map { ("\L$_", 1) } @array  # this also works
2597     %hash = map {  lc($_), 1  } @array  # as does this.
2598     %hash = map +( lc($_), 1 ), @array  # this is EXPR and works!
2599
2600     %hash = map  ( lc($_), 1 ), @array  # evaluates to (1, @array)
2601
2602 or to force an anon hash constructor use C<+{>
2603
2604    @hashes = map +{ lc($_), 1 }, @array # EXPR, so needs , at end
2605
2606 and you get list of anonymous hashes each with only 1 entry.
2607
2608 =item mkdir FILENAME,MASK
2609
2610 =item mkdir FILENAME
2611
2612 Creates the directory specified by FILENAME, with permissions
2613 specified by MASK (as modified by C<umask>).  If it succeeds it
2614 returns true, otherwise it returns false and sets C<$!> (errno).
2615 If omitted, MASK defaults to 0777.
2616
2617 In general, it is better to create directories with permissive MASK,
2618 and let the user modify that with their C<umask>, than it is to supply
2619 a restrictive MASK and give the user no way to be more permissive.
2620 The exceptions to this rule are when the file or directory should be
2621 kept private (mail files, for instance).  The perlfunc(1) entry on
2622 C<umask> discusses the choice of MASK in more detail.
2623
2624 Note that according to the POSIX 1003.1-1996 the FILENAME may have any
2625 number of trailing slashes.  Some operating and filesystems do not get
2626 this right, so Perl automatically removes all trailing slashes to keep
2627 everyone happy.
2628
2629 =item msgctl ID,CMD,ARG
2630
2631 Calls the System V IPC function msgctl(2).  You'll probably have to say
2632
2633     use IPC::SysV;
2634
2635 first to get the correct constant definitions.  If CMD is C<IPC_STAT>,
2636 then ARG must be a variable which will hold the returned C<msqid_ds>
2637 structure.  Returns like C<ioctl>: the undefined value for error,
2638 C<"0 but true"> for zero, or the actual return value otherwise.  See also
2639 L<perlipc/"SysV IPC">, C<IPC::SysV>, and C<IPC::Semaphore> documentation.
2640
2641 =item msgget KEY,FLAGS
2642
2643 Calls the System V IPC function msgget(2).  Returns the message queue
2644 id, or the undefined value if there is an error.  See also
2645 L<perlipc/"SysV IPC"> and C<IPC::SysV> and C<IPC::Msg> documentation.
2646
2647 =item msgrcv ID,VAR,SIZE,TYPE,FLAGS
2648
2649 Calls the System V IPC function msgrcv to receive a message from
2650 message queue ID into variable VAR with a maximum message size of
2651 SIZE.  Note that when a message is received, the message type as a
2652 native long integer will be the first thing in VAR, followed by the
2653 actual message.  This packing may be opened with C<unpack("l! a*")>.
2654 Taints the variable.  Returns true if successful, or false if there is
2655 an error.  See also L<perlipc/"SysV IPC">, C<IPC::SysV>, and
2656 C<IPC::SysV::Msg> documentation.
2657
2658 =item msgsnd ID,MSG,FLAGS
2659
2660 Calls the System V IPC function msgsnd to send the message MSG to the
2661 message queue ID.  MSG must begin with the native long integer message
2662 type, and be followed by the length of the actual message, and finally
2663 the message itself.  This kind of packing can be achieved with
2664 C<pack("l! a*", $type, $message)>.  Returns true if successful,
2665 or false if there is an error.  See also C<IPC::SysV>
2666 and C<IPC::SysV::Msg> documentation.
2667
2668 =item my EXPR
2669
2670 =item my TYPE EXPR
2671
2672 =item my EXPR : ATTRS
2673
2674 =item my TYPE EXPR : ATTRS
2675
2676 A C<my> declares the listed variables to be local (lexically) to the
2677 enclosing block, file, or C<eval>.  If more than one value is listed,
2678 the list must be placed in parentheses.
2679
2680 The exact semantics and interface of TYPE and ATTRS are still
2681 evolving.  TYPE is currently bound to the use of C<fields> pragma,
2682 and attributes are handled using the C<attributes> pragma, or starting
2683 from Perl 5.8.0 also via the C<Attribute::Handlers> module.  See
2684 L<perlsub/"Private Variables via my()"> for details, and L<fields>,
2685 L<attributes>, and L<Attribute::Handlers>.
2686
2687 =item next LABEL
2688
2689 =item next
2690
2691 The C<next> command is like the C<continue> statement in C; it starts
2692 the next iteration of the loop:
2693
2694     LINE: while (<STDIN>) {
2695         next LINE if /^#/;      # discard comments
2696         #...
2697     }
2698
2699 Note that if there were a C<continue> block on the above, it would get
2700 executed even on discarded lines.  If the LABEL is omitted, the command
2701 refers to the innermost enclosing loop.
2702
2703 C<next> cannot be used to exit a block which returns a value such as
2704 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
2705 a grep() or map() operation.
2706
2707 Note that a block by itself is semantically identical to a loop
2708 that executes once.  Thus C<next> will exit such a block early.
2709
2710 See also L</continue> for an illustration of how C<last>, C<next>, and
2711 C<redo> work.
2712
2713 =item no Module VERSION LIST
2714
2715 =item no Module VERSION
2716
2717 =item no Module LIST
2718
2719 =item no Module
2720
2721 See the C<use> function, which C<no> is the opposite of.
2722
2723 =item oct EXPR
2724
2725 =item oct
2726
2727 Interprets EXPR as an octal string and returns the corresponding
2728 value.  (If EXPR happens to start off with C<0x>, interprets it as a
2729 hex string.  If EXPR starts off with C<0b>, it is interpreted as a
2730 binary string.  Leading whitespace is ignored in all three cases.)
2731 The following will handle decimal, binary, octal, and hex in the standard
2732 Perl or C notation:
2733
2734     $val = oct($val) if $val =~ /^0/;
2735
2736 If EXPR is omitted, uses C<$_>.   To go the other way (produce a number
2737 in octal), use sprintf() or printf():
2738
2739     $perms = (stat("filename"))[2] & 07777;
2740     $oct_perms = sprintf "%lo", $perms;
2741
2742 The oct() function is commonly used when a string such as C<644> needs
2743 to be converted into a file mode, for example. (Although perl will
2744 automatically convert strings into numbers as needed, this automatic
2745 conversion assumes base 10.)
2746
2747 =item open FILEHANDLE,EXPR
2748
2749 =item open FILEHANDLE,MODE,EXPR
2750
2751 =item open FILEHANDLE,MODE,EXPR,LIST
2752
2753 =item open FILEHANDLE,MODE,REFERENCE
2754
2755 =item open FILEHANDLE
2756
2757 Opens the file whose filename is given by EXPR, and associates it with
2758 FILEHANDLE.
2759
2760 (The following is a comprehensive reference to open(): for a gentler
2761 introduction you may consider L<perlopentut>.)
2762
2763 If FILEHANDLE is an undefined scalar variable (or array or hash element)
2764 the variable is assigned a reference to a new anonymous filehandle,
2765 otherwise if FILEHANDLE is an expression, its value is used as the name of
2766 the real filehandle wanted.  (This is considered a symbolic reference, so
2767 C<use strict 'refs'> should I<not> be in effect.)
2768
2769 If EXPR is omitted, the scalar variable of the same name as the
2770 FILEHANDLE contains the filename.  (Note that lexical variables--those
2771 declared with C<my>--will not work for this purpose; so if you're
2772 using C<my>, specify EXPR in your call to open.)
2773
2774 If three or more arguments are specified then the mode of opening and
2775 the file name are separate. If MODE is C<< '<' >> or nothing, the file
2776 is opened for input.  If MODE is C<< '>' >>, the file is truncated and
2777 opened for output, being created if necessary.  If MODE is C<<< '>>' >>>,
2778 the file is opened for appending, again being created if necessary.
2779
2780 You can put a C<'+'> in front of the C<< '>' >> or C<< '<' >> to
2781 indicate that you want both read and write access to the file; thus
2782 C<< '+<' >> is almost always preferred for read/write updates--the C<<
2783 '+>' >> mode would clobber the file first.  You can't usually use
2784 either read-write mode for updating textfiles, since they have
2785 variable length records.  See the B<-i> switch in L<perlrun> for a
2786 better approach.  The file is created with permissions of C<0666>
2787 modified by the process' C<umask> value.
2788
2789 These various prefixes correspond to the fopen(3) modes of C<'r'>,
2790 C<'r+'>, C<'w'>, C<'w+'>, C<'a'>, and C<'a+'>.
2791
2792 In the 2-arguments (and 1-argument) form of the call the mode and
2793 filename should be concatenated (in this order), possibly separated by
2794 spaces.  It is possible to omit the mode in these forms if the mode is
2795 C<< '<' >>.
2796
2797 If the filename begins with C<'|'>, the filename is interpreted as a
2798 command to which output is to be piped, and if the filename ends with a
2799 C<'|'>, the filename is interpreted as a command which pipes output to
2800 us.  See L<perlipc/"Using open() for IPC">
2801 for more examples of this.  (You are not allowed to C<open> to a command
2802 that pipes both in I<and> out, but see L<IPC::Open2>, L<IPC::Open3>,
2803 and L<perlipc/"Bidirectional Communication with Another Process">
2804 for alternatives.)
2805
2806 For three or more arguments if MODE is C<'|-'>, the filename is
2807 interpreted as a command to which output is to be piped, and if MODE
2808 is C<'-|'>, the filename is interpreted as a command which pipes
2809 output to us.  In the 2-arguments (and 1-argument) form one should
2810 replace dash (C<'-'>) with the command.
2811 See L<perlipc/"Using open() for IPC"> for more examples of this.
2812 (You are not allowed to C<open> to a command that pipes both in I<and>
2813 out, but see L<IPC::Open2>, L<IPC::Open3>, and
2814 L<perlipc/"Bidirectional Communication"> for alternatives.)
2815
2816 In the three-or-more argument form of pipe opens, if LIST is specified
2817 (extra arguments after the command name) then LIST becomes arguments
2818 to the command invoked if the platform supports it.  The meaning of
2819 C<open> with more than three arguments for non-pipe modes is not yet
2820 specified. Experimental "layers" may give extra LIST arguments
2821 meaning.
2822
2823 In the 2-arguments (and 1-argument) form opening C<'-'> opens STDIN
2824 and opening C<< '>-' >> opens STDOUT.
2825
2826 You may use the three-argument form of open to specify IO "layers"
2827 (sometimes also referred to as "disciplines") to be applied to the handle
2828 that affect how the input and output are processed (see L<open> and
2829 L<PerlIO> for more details). For example
2830
2831   open(FH, "<:utf8", "file")
2832
2833 will open the UTF-8 encoded file containing Unicode characters,
2834 see L<perluniintro>. (Note that if layers are specified in the
2835 three-arg form then default layers set by the C<open> pragma are
2836 ignored.)
2837
2838 Open returns nonzero upon success, the undefined value otherwise.  If
2839 the C<open> involved a pipe, the return value happens to be the pid of
2840 the subprocess.
2841
2842 If you're running Perl on a system that distinguishes between text
2843 files and binary files, then you should check out L</binmode> for tips
2844 for dealing with this.  The key distinction between systems that need
2845 C<binmode> and those that don't is their text file formats.  Systems
2846 like Unix, Mac OS, and Plan 9, which delimit lines with a single
2847 character, and which encode that character in C as C<"\n">, do not
2848 need C<binmode>.  The rest need it.
2849
2850 When opening a file, it's usually a bad idea to continue normal execution
2851 if the request failed, so C<open> is frequently used in connection with
2852 C<die>.  Even if C<die> won't do what you want (say, in a CGI script,
2853 where you want to make a nicely formatted error message (but there are
2854 modules that can help with that problem)) you should always check
2855 the return value from opening a file.  The infrequent exception is when
2856 working with an unopened filehandle is actually what you want to do.
2857
2858 As a special case the 3 arg form with a read/write mode and the third
2859 argument being C<undef>:
2860
2861     open(TMP, "+>", undef) or die ...
2862
2863 opens a filehandle to an anonymous temporary file.
2864
2865 File handles can be opened to "in memory" files held in Perl scalars via:
2866
2867     open($fh, '>', \$variable) || ..
2868
2869 Though if you try to re-open C<STDOUT> or C<STDERR> as an "in memory"
2870 file, you have to close it first:
2871
2872     close STDOUT;
2873     open STDOUT, '>', \$variable or die "Can't open STDOUT: $!";
2874
2875 Examples:
2876
2877     $ARTICLE = 100;
2878     open ARTICLE or die "Can't find article $ARTICLE: $!\n";
2879     while (<ARTICLE>) {...
2880
2881     open(LOG, '>>/usr/spool/news/twitlog');     # (log is reserved)
2882     # if the open fails, output is discarded
2883
2884     open(DBASE, '+<', 'dbase.mine')             # open for update
2885         or die "Can't open 'dbase.mine' for update: $!";
2886
2887     open(DBASE, '+<dbase.mine')                 # ditto
2888         or die "Can't open 'dbase.mine' for update: $!";
2889
2890     open(ARTICLE, '-|', "caesar <$article")     # decrypt article
2891         or die "Can't start caesar: $!";
2892
2893     open(ARTICLE, "caesar <$article |")         # ditto
2894         or die "Can't start caesar: $!";
2895
2896     open(EXTRACT, "|sort >/tmp/Tmp$$")          # $$ is our process id
2897         or die "Can't start sort: $!";
2898
2899     # in memory files
2900     open(MEMORY,'>', \$var)
2901         or die "Can't open memory file: $!";
2902     print MEMORY "foo!\n";                      # output will end up in $var
2903
2904     # process argument list of files along with any includes
2905
2906     foreach $file (@ARGV) {
2907         process($file, 'fh00');
2908     }
2909
2910     sub process {
2911         my($filename, $input) = @_;
2912         $input++;               # this is a string increment
2913         unless (open($input, $filename)) {
2914             print STDERR "Can't open $filename: $!\n";
2915             return;
2916         }
2917
2918         local $_;
2919         while (<$input>) {              # note use of indirection
2920             if (/^#include "(.*)"/) {
2921                 process($1, $input);
2922                 next;
2923             }
2924             #...                # whatever
2925         }
2926     }
2927
2928 You may also, in the Bourne shell tradition, specify an EXPR beginning
2929 with C<< '>&' >>, in which case the rest of the string is interpreted as the
2930 name of a filehandle (or file descriptor, if numeric) to be
2931 duped and opened.  You may use C<&> after C<< > >>, C<<< >> >>>,
2932 C<< < >>, C<< +> >>, C<<< +>> >>>, and C<< +< >>.  The
2933 mode you specify should match the mode of the original filehandle.
2934 (Duping a filehandle does not take into account any existing contents of
2935 IO buffers.) If you use the 3 arg form then you can pass either a number,
2936 the name of a filehandle or the normal "reference to a glob".
2937
2938 Here is a script that saves, redirects, and restores C<STDOUT> and
2939 C<STDERR> using various methods:
2940
2941     #!/usr/bin/perl
2942     open my $oldout, ">&STDOUT"     or die "Can't dup STDOUT: $!";
2943     open OLDERR,     ">&", \*STDERR or die "Can't dup STDERR: $!";
2944
2945     open STDOUT, '>', "foo.out" or die "Can't redirect STDOUT: $!";
2946     open STDERR, ">&STDOUT"     or die "Can't dup STDOUT: $!";
2947
2948     select STDERR; $| = 1;      # make unbuffered
2949     select STDOUT; $| = 1;      # make unbuffered
2950
2951     print STDOUT "stdout 1\n";  # this works for
2952     print STDERR "stderr 1\n";  # subprocesses too
2953
2954     close STDOUT;
2955     close STDERR;
2956
2957     open STDOUT, ">&", $oldout or die "Can't dup \$oldout: $!";
2958     open STDERR, ">&OLDERR"    or die "Can't dup OLDERR: $!";
2959
2960     print STDOUT "stdout 2\n";
2961     print STDERR "stderr 2\n";
2962
2963 If you specify C<< '<&=N' >>, where C<N> is a number, then Perl will
2964 do an equivalent of C's C<fdopen> of that file descriptor; this is
2965 more parsimonious of file descriptors.  For example:
2966
2967     open(FILEHANDLE, "<&=$fd")
2968
2969 or
2970
2971     open(FILEHANDLE, "<&=", $fd)
2972
2973 Note that if Perl is using the standard C libraries' fdopen() then on
2974 many UNIX systems, fdopen() is known to fail when file descriptors
2975 exceed a certain value, typically 255. If you need more file
2976 descriptors than that, consider rebuilding Perl to use the C<PerlIO>.
2977
2978 You can see whether Perl has been compiled with PerlIO or not by
2979 running C<perl -V> and looking for C<useperlio=> line.  If C<useperlio>
2980 is C<define>, you have PerlIO, otherwise you don't.
2981
2982 If you open a pipe on the command C<'-'>, i.e., either C<'|-'> or C<'-|'>
2983 with 2-arguments (or 1-argument) form of open(), then
2984 there is an implicit fork done, and the return value of open is the pid
2985 of the child within the parent process, and C<0> within the child
2986 process.  (Use C<defined($pid)> to determine whether the open was successful.)
2987 The filehandle behaves normally for the parent, but i/o to that
2988 filehandle is piped from/to the STDOUT/STDIN of the child process.
2989 In the child process the filehandle isn't opened--i/o happens from/to
2990 the new STDOUT or STDIN.  Typically this is used like the normal
2991 piped open when you want to exercise more control over just how the
2992 pipe command gets executed, such as when you are running setuid, and
2993 don't want to have to scan shell commands for metacharacters.
2994 The following triples are more or less equivalent:
2995
2996     open(FOO, "|tr '[a-z]' '[A-Z]'");
2997     open(FOO, '|-', "tr '[a-z]' '[A-Z]'");
2998     open(FOO, '|-') || exec 'tr', '[a-z]', '[A-Z]';
2999     open(FOO, '|-', "tr", '[a-z]', '[A-Z]');
3000
3001     open(FOO, "cat -n '$file'|");
3002     open(FOO, '-|', "cat -n '$file'");
3003     open(FOO, '-|') || exec 'cat', '-n', $file;
3004     open(FOO, '-|', "cat", '-n', $file);
3005
3006 The last example in each block shows the pipe as "list form", which is
3007 not yet supported on all platforms.  A good rule of thumb is that if
3008 your platform has true C<fork()> (in other words, if your platform is
3009 UNIX) you can use the list form.
3010
3011 See L<perlipc/"Safe Pipe Opens"> for more examples of this.
3012
3013 Beginning with v5.6.0, Perl will attempt to flush all files opened for
3014 output before any operation that may do a fork, but this may not be
3015 supported on some platforms (see L<perlport>).  To be safe, you may need
3016 to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
3017 of C<IO::Handle> on any open handles.
3018
3019 On systems that support a close-on-exec flag on files, the flag will
3020 be set for the newly opened file descriptor as determined by the value
3021 of $^F.  See L<perlvar/$^F>.
3022
3023 Closing any piped filehandle causes the parent process to wait for the
3024 child to finish, and returns the status value in C<$?>.
3025
3026 The filename passed to 2-argument (or 1-argument) form of open() will
3027 have leading and trailing whitespace deleted, and the normal
3028 redirection characters honored.  This property, known as "magic open",
3029 can often be used to good effect.  A user could specify a filename of
3030 F<"rsh cat file |">, or you could change certain filenames as needed:
3031
3032     $filename =~ s/(.*\.gz)\s*$/gzip -dc < $1|/;
3033     open(FH, $filename) or die "Can't open $filename: $!";
3034
3035 Use 3-argument form to open a file with arbitrary weird characters in it,
3036
3037     open(FOO, '<', $file);
3038
3039 otherwise it's necessary to protect any leading and trailing whitespace:
3040
3041     $file =~ s#^(\s)#./$1#;
3042     open(FOO, "< $file\0");
3043
3044 (this may not work on some bizarre filesystems).  One should
3045 conscientiously choose between the I<magic> and 3-arguments form
3046 of open():
3047
3048     open IN, $ARGV[0];
3049
3050 will allow the user to specify an argument of the form C<"rsh cat file |">,
3051 but will not work on a filename which happens to have a trailing space, while
3052
3053     open IN, '<', $ARGV[0];
3054
3055 will have exactly the opposite restrictions.
3056
3057 If you want a "real" C C<open> (see L<open(2)> on your system), then you
3058 should use the C<sysopen> function, which involves no such magic (but
3059 may use subtly different filemodes than Perl open(), which is mapped
3060 to C fopen()).  This is
3061 another way to protect your filenames from interpretation.  For example:
3062
3063     use IO::Handle;
3064     sysopen(HANDLE, $path, O_RDWR|O_CREAT|O_EXCL)
3065         or die "sysopen $path: $!";
3066     $oldfh = select(HANDLE); $| = 1; select($oldfh);
3067     print HANDLE "stuff $$\n";
3068     seek(HANDLE, 0, 0);
3069     print "File contains: ", <HANDLE>;
3070
3071 Using the constructor from the C<IO::Handle> package (or one of its
3072 subclasses, such as C<IO::File> or C<IO::Socket>), you can generate anonymous
3073 filehandles that have the scope of whatever variables hold references to
3074 them, and automatically close whenever and however you leave that scope:
3075
3076     use IO::File;
3077     #...
3078     sub read_myfile_munged {
3079         my $ALL = shift;
3080         my $handle = new IO::File;
3081         open($handle, "myfile") or die "myfile: $!";
3082         $first = <$handle>
3083             or return ();     # Automatically closed here.
3084         mung $first or die "mung failed";       # Or here.
3085         return $first, <$handle> if $ALL;       # Or here.
3086         $first;                                 # Or here.
3087     }
3088
3089 See L</seek> for some details about mixing reading and writing.
3090
3091 =item opendir DIRHANDLE,EXPR
3092
3093 Opens a directory named EXPR for processing by C<readdir>, C<telldir>,
3094 C<seekdir>, C<rewinddir>, and C<closedir>.  Returns true if successful.
3095 DIRHANDLE may be an expression whose value can be used as an indirect
3096 dirhandle, usually the real dirhandle name.  If DIRHANDLE is an undefined
3097 scalar variable (or array or hash element), the variable is assigned a
3098 reference to a new anonymous dirhandle.
3099 DIRHANDLEs have their own namespace separate from FILEHANDLEs.
3100
3101 =item ord EXPR
3102
3103 =item ord
3104
3105 Returns the numeric (the native 8-bit encoding, like ASCII or EBCDIC,
3106 or Unicode) value of the first character of EXPR.  If EXPR is omitted,
3107 uses C<$_>.
3108
3109 For the reverse, see L</chr>.
3110 See L<perlunicode> and L<encoding> for more about Unicode.
3111
3112 =item our EXPR
3113
3114 =item our EXPR TYPE
3115
3116 =item our EXPR : ATTRS
3117
3118 =item our TYPE EXPR : ATTRS
3119
3120 An C<our> declares the listed variables to be valid globals within
3121 the enclosing block, file, or C<eval>.  That is, it has the same
3122 scoping rules as a "my" declaration, but does not create a local
3123 variable.  If more than one value is listed, the list must be placed
3124 in parentheses.  The C<our> declaration has no semantic effect unless
3125 "use strict vars" is in effect, in which case it lets you use the
3126 declared global variable without qualifying it with a package name.
3127 (But only within the lexical scope of the C<our> declaration.  In this
3128 it differs from "use vars", which is package scoped.)
3129
3130 An C<our> declaration declares a global variable that will be visible
3131 across its entire lexical scope, even across package boundaries.  The
3132 package in which the variable is entered is determined at the point
3133 of the declaration, not at the point of use.  This means the following
3134 behavior holds:
3135
3136     package Foo;
3137     our $bar;           # declares $Foo::bar for rest of lexical scope
3138     $bar = 20;
3139
3140     package Bar;
3141     print $bar;         # prints 20
3142
3143 Multiple C<our> declarations in the same lexical scope are allowed
3144 if they are in different packages.  If they happened to be in the same
3145 package, Perl will emit warnings if you have asked for them.
3146
3147     use warnings;
3148     package Foo;
3149     our $bar;           # declares $Foo::bar for rest of lexical scope
3150     $bar = 20;
3151
3152     package Bar;
3153     our $bar = 30;      # declares $Bar::bar for rest of lexical scope
3154     print $bar;         # prints 30
3155
3156     our $bar;           # emits warning
3157
3158 An C<our> declaration may also have a list of attributes associated
3159 with it.
3160
3161 The exact semantics and interface of TYPE and ATTRS are still
3162 evolving.  TYPE is currently bound to the use of C<fields> pragma,
3163 and attributes are handled using the C<attributes> pragma, or starting
3164 from Perl 5.8.0 also via the C<Attribute::Handlers> module.  See
3165 L<perlsub/"Private Variables via my()"> for details, and L<fields>,
3166 L<attributes>, and L<Attribute::Handlers>.
3167
3168 The only currently recognized C<our()> attribute is C<unique> which
3169 indicates that a single copy of the global is to be used by all
3170 interpreters should the program happen to be running in a
3171 multi-interpreter environment. (The default behaviour would be for
3172 each interpreter to have its own copy of the global.)  Examples:
3173
3174     our @EXPORT : unique = qw(foo);
3175     our %EXPORT_TAGS : unique = (bar => [qw(aa bb cc)]);
3176     our $VERSION : unique = "1.00";
3177
3178 Note that this attribute also has the effect of making the global
3179 readonly when the first new interpreter is cloned (for example,
3180 when the first new thread is created).
3181
3182 Multi-interpreter environments can come to being either through the
3183 fork() emulation on Windows platforms, or by embedding perl in a
3184 multi-threaded application.  The C<unique> attribute does nothing in
3185 all other environments.
3186
3187 =item pack TEMPLATE,LIST
3188
3189 Takes a LIST of values and converts it into a string using the rules
3190 given by the TEMPLATE.  The resulting string is the concatenation of
3191 the converted values.  Typically, each converted value looks
3192 like its machine-level representation.  For example, on 32-bit machines
3193 a converted integer may be represented by a sequence of 4 bytes.
3194
3195 The TEMPLATE is a sequence of characters that give the order and type
3196 of values, as follows:
3197
3198     a   A string with arbitrary binary data, will be null padded.
3199     A   A text (ASCII) string, will be space padded.
3200     Z   A null terminated (ASCIZ) string, will be null padded.
3201
3202     b   A bit string (ascending bit order inside each byte, like vec()).
3203     B   A bit string (descending bit order inside each byte).
3204     h   A hex string (low nybble first).
3205     H   A hex string (high nybble first).
3206
3207     c   A signed char value.
3208     C   An unsigned char value.  Only does bytes.  See U for Unicode.
3209
3210     s   A signed short value.
3211     S   An unsigned short value.
3212           (This 'short' is _exactly_ 16 bits, which may differ from
3213            what a local C compiler calls 'short'.  If you want
3214            native-length shorts, use the '!' suffix.)
3215
3216     i   A signed integer value.
3217     I   An unsigned integer value.
3218           (This 'integer' is _at_least_ 32 bits wide.  Its exact
3219            size depends on what a local C compiler calls 'int',
3220            and may even be larger than the 'long' described in
3221            the next item.)
3222
3223     l   A signed long value.
3224     L   An unsigned long value.
3225           (This 'long' is _exactly_ 32 bits, which may differ from
3226            what a local C compiler calls 'long'.  If you want
3227            native-length longs, use the '!' suffix.)
3228
3229     n   An unsigned short in "network" (big-endian) order.
3230     N   An unsigned long in "network" (big-endian) order.
3231     v   An unsigned short in "VAX" (little-endian) order.
3232     V   An unsigned long in "VAX" (little-endian) order.
3233           (These 'shorts' and 'longs' are _exactly_ 16 bits and
3234            _exactly_ 32 bits, respectively.)
3235
3236     q   A signed quad (64-bit) value.
3237     Q   An unsigned quad value.
3238           (Quads are available only if your system supports 64-bit
3239            integer values _and_ if Perl has been compiled to support those.
3240            Causes a fatal error otherwise.)
3241
3242     j   A signed integer value (a Perl internal integer, IV).
3243     J   An unsigned integer value (a Perl internal unsigned integer, UV).
3244
3245     f   A single-precision float in the native format.
3246     d   A double-precision float in the native format.
3247
3248     F   A floating point value in the native native format
3249            (a Perl internal floating point value, NV).
3250     D   A long double-precision float in the native format.
3251           (Long doubles are available only if your system supports long
3252            double values _and_ if Perl has been compiled to support those.
3253            Causes a fatal error otherwise.)
3254
3255     p   A pointer to a null-terminated string.
3256     P   A pointer to a structure (fixed-length string).
3257
3258     u   A uuencoded string.
3259     U   A Unicode character number.  Encodes to UTF-8 internally
3260         (or UTF-EBCDIC in EBCDIC platforms).
3261
3262     w   A BER compressed integer.  Its bytes represent an unsigned
3263         integer in base 128, most significant digit first, with as
3264         few digits as possible.  Bit eight (the high bit) is set
3265         on each byte except the last.
3266
3267     x   A null byte.
3268     X   Back up a byte.
3269     @   Null fill to absolute position, counted from the start of
3270         the innermost ()-group.
3271     (   Start of a ()-group.
3272
3273 The following rules apply:
3274
3275 =over 8
3276
3277 =item *
3278
3279 Each letter may optionally be followed by a number giving a repeat
3280 count.  With all types except C<a>, C<A>, C<Z>, C<b>, C<B>, C<h>,
3281 C<H>, C<@>, C<x>, C<X> and C<P> the pack function will gobble up that
3282 many values from the LIST.  A C<*> for the repeat count means to use
3283 however many items are left, except for C<@>, C<x>, C<X>, where it is
3284 equivalent to C<0>, and C<u>, where it is equivalent to 1 (or 45, what
3285 is the same).  A numeric repeat count may optionally be enclosed in
3286 brackets, as in C<pack 'C[80]', @arr>.
3287
3288 One can replace the numeric repeat count by a template enclosed in brackets;
3289 then the packed length of this template in bytes is used as a count.
3290 For example, C<x[L]> skips a long (it skips the number of bytes in a long);
3291 the template C<$t X[$t] $t> unpack()s twice what $t unpacks.
3292 If the template in brackets contains alignment commands (such as C<x![d]>),
3293 its packed length is calculated as if the start of the template has the maximal
3294 possible alignment.
3295
3296 When used with C<Z>, C<*> results in the addition of a trailing null
3297 byte (so the packed result will be one longer than the byte C<length>
3298 of the item).
3299
3300 The repeat count for C<u> is interpreted as the maximal number of bytes
3301 to encode per line of output, with 0 and 1 replaced by 45.
3302
3303 =item *
3304
3305 The C<a>, C<A>, and C<Z> types gobble just one value, but pack it as a
3306 string of length count, padding with nulls or spaces as necessary.  When
3307 unpacking, C<A> strips trailing spaces and nulls, C<Z> strips everything
3308 after the first null, and C<a> returns data verbatim.  When packing,
3309 C<a>, and C<Z> are equivalent.
3310
3311 If the value-to-pack is too long, it is truncated.  If too long and an
3312 explicit count is provided, C<Z> packs only C<$count-1> bytes, followed
3313 by a null byte.  Thus C<Z> always packs a trailing null byte under
3314 all circumstances.
3315
3316 =item *
3317
3318 Likewise, the C<b> and C<B> fields pack a string that many bits long.
3319 Each byte of the input field of pack() generates 1 bit of the result.
3320 Each result bit is based on the least-significant bit of the corresponding
3321 input byte, i.e., on C<ord($byte)%2>.  In particular, bytes C<"0"> and
3322 C<"1"> generate bits 0 and 1, as do bytes C<"\0"> and C<"\1">.
3323
3324 Starting from the beginning of the input string of pack(), each 8-tuple
3325 of bytes is converted to 1 byte of output.  With format C<b>
3326 the first byte of the 8-tuple determines the least-significant bit of a
3327 byte, and with format C<B> it determines the most-significant bit of
3328 a byte.
3329
3330 If the length of the input string is not exactly divisible by 8, the
3331 remainder is packed as if the input string were padded by null bytes
3332 at the end.  Similarly, during unpack()ing the "extra" bits are ignored.
3333
3334 If the input string of pack() is longer than needed, extra bytes are ignored.
3335 A C<*> for the repeat count of pack() means to use all the bytes of
3336 the input field.  On unpack()ing the bits are converted to a string
3337 of C<"0">s and C<"1">s.
3338
3339 =item *
3340
3341 The C<h> and C<H> fields pack a string that many nybbles (4-bit groups,
3342 representable as hexadecimal digits, 0-9a-f) long.
3343
3344 Each byte of the input field of pack() generates 4 bits of the result.
3345 For non-alphabetical bytes the result is based on the 4 least-significant
3346 bits of the input byte, i.e., on C<ord($byte)%16>.  In particular,
3347 bytes C<"0"> and C<"1"> generate nybbles 0 and 1, as do bytes
3348 C<"\0"> and C<"\1">.  For bytes C<"a".."f"> and C<"A".."F"> the result
3349 is compatible with the usual hexadecimal digits, so that C<"a"> and
3350 C<"A"> both generate the nybble C<0xa==10>.  The result for bytes
3351 C<"g".."z"> and C<"G".."Z"> is not well-defined.
3352
3353 Starting from the beginning of the input string of pack(), each pair
3354 of bytes is converted to 1 byte of output.  With format C<h> the
3355 first byte of the pair determines the least-significant nybble of the
3356 output byte, and with format C<H> it determines the most-significant
3357 nybble.
3358
3359 If the length of the input string is not even, it behaves as if padded
3360 by a null byte at the end.  Similarly, during unpack()ing the "extra"
3361 nybbles are ignored.
3362
3363 If the input string of pack() is longer than needed, extra bytes are ignored.
3364 A C<*> for the repeat count of pack() means to use all the bytes of
3365 the input field.  On unpack()ing the bits are converted to a string
3366 of hexadecimal digits.
3367
3368 =item *
3369
3370 The C<p> type packs a pointer to a null-terminated string.  You are
3371 responsible for ensuring the string is not a temporary value (which can
3372 potentially get deallocated before you get around to using the packed result).
3373 The C<P> type packs a pointer to a structure of the size indicated by the
3374 length.  A NULL pointer is created if the corresponding value for C<p> or
3375 C<P> is C<undef>, similarly for unpack().
3376
3377 =item *
3378
3379 The C</> template character allows packing and unpacking of strings where
3380 the packed structure contains a byte count followed by the string itself.
3381 You write I<length-item>C</>I<string-item>.
3382
3383 The I<length-item> can be any C<pack> template letter, and describes
3384 how the length value is packed.  The ones likely to be of most use are
3385 integer-packing ones like C<n> (for Java strings), C<w> (for ASN.1 or
3386 SNMP) and C<N> (for Sun XDR).
3387
3388 For C<pack>, the I<string-item> must, at present, be C<"A*">, C<"a*"> or
3389 C<"Z*">. For C<unpack> the length of the string is obtained from the
3390 I<length-item>, but if you put in the '*' it will be ignored. For all other
3391 codes, C<unpack> applies the length value to the next item, which must not
3392 have a repeat count.
3393
3394     unpack 'C/a', "\04Gurusamy";        gives 'Guru'
3395     unpack 'a3/A* A*', '007 Bond  J ';  gives (' Bond','J')
3396     pack 'n/a* w/a*','hello,','world';  gives "\000\006hello,\005world"
3397
3398 The I<length-item> is not returned explicitly from C<unpack>.
3399
3400 Adding a count to the I<length-item> letter is unlikely to do anything
3401 useful, unless that letter is C<A>, C<a> or C<Z>.  Packing with a
3402 I<length-item> of C<a> or C<Z> may introduce C<"\000"> characters,
3403 which Perl does not regard as legal in numeric strings.
3404
3405 =item *
3406
3407 The integer types C<s>, C<S>, C<l>, and C<L> may be
3408 immediately followed by a C<!> suffix to signify native shorts or
3409 longs--as you can see from above for example a bare C<l> does mean
3410 exactly 32 bits, the native C<long> (as seen by the local C compiler)
3411 may be larger.  This is an issue mainly in 64-bit platforms.  You can
3412 see whether using C<!> makes any difference by
3413
3414         print length(pack("s")), " ", length(pack("s!")), "\n";
3415         print length(pack("l")), " ", length(pack("l!")), "\n";
3416
3417 C<i!> and C<I!> also work but only because of completeness;
3418 they are identical to C<i> and C<I>.
3419
3420 The actual sizes (in bytes) of native shorts, ints, longs, and long
3421 longs on the platform where Perl was built are also available via
3422 L<Config>:
3423
3424        use Config;
3425        print $Config{shortsize},    "\n";
3426        print $Config{intsize},      "\n";
3427        print $Config{longsize},     "\n";
3428        print $Config{longlongsize}, "\n";
3429
3430 (The C<$Config{longlongsize}> will be undefined if your system does
3431 not support long longs.)
3432
3433 =item *
3434
3435 The integer formats C<s>, C<S>, C<i>, C<I>, C<l>, C<L>, C<j>, and C<J>
3436 are inherently non-portable between processors and operating systems
3437 because they obey the native byteorder and endianness.  For example a
3438 4-byte integer 0x12345678 (305419896 decimal) would be ordered natively
3439 (arranged in and handled by the CPU registers) into bytes as
3440
3441         0x12 0x34 0x56 0x78     # big-endian
3442         0x78 0x56 0x34 0x12     # little-endian
3443
3444 Basically, the Intel and VAX CPUs are little-endian, while everybody
3445 else, for example Motorola m68k/88k, PPC, Sparc, HP PA, Power, and
3446 Cray are big-endian.  Alpha and MIPS can be either: Digital/Compaq
3447 used/uses them in little-endian mode; SGI/Cray uses them in big-endian
3448 mode.
3449
3450 The names `big-endian' and `little-endian' are comic references to
3451 the classic "Gulliver's Travels" (via the paper "On Holy Wars and a
3452 Plea for Peace" by Danny Cohen, USC/ISI IEN 137, April 1, 1980) and
3453 the egg-eating habits of the Lilliputians.
3454
3455 Some systems may have even weirder byte orders such as
3456
3457         0x56 0x78 0x12 0x34
3458         0x34 0x12 0x78 0x56
3459
3460 You can see your system's preference with
3461
3462         print join(" ", map { sprintf "%#02x", $_ }
3463                             unpack("C*",pack("L",0x12345678))), "\n";
3464
3465 The byteorder on the platform where Perl was built is also available
3466 via L<Config>:
3467
3468         use Config;
3469         print $Config{byteorder}, "\n";
3470
3471 Byteorders C<'1234'> and C<'12345678'> are little-endian, C<'4321'>
3472 and C<'87654321'> are big-endian.
3473
3474 If you want portable packed integers use the formats C<n>, C<N>,
3475 C<v>, and C<V>, their byte endianness and size are known.
3476 See also L<perlport>.
3477
3478 =item *
3479
3480 Real numbers (floats and doubles) are in the native machine format only;
3481 due to the multiplicity of floating formats around, and the lack of a
3482 standard "network" representation, no facility for interchange has been
3483 made.  This means that packed floating point data written on one machine
3484 may not be readable on another - even if both use IEEE floating point
3485 arithmetic (as the endian-ness of the memory representation is not part
3486 of the IEEE spec).  See also L<perlport>.
3487
3488 Note that Perl uses doubles internally for all numeric calculation, and
3489 converting from double into float and thence back to double again will
3490 lose precision (i.e., C<unpack("f", pack("f", $foo)>) will not in general
3491 equal $foo).
3492
3493 =item *
3494
3495 If the pattern begins with a C<U>, the resulting string will be treated
3496 as Unicode-encoded. You can force UTF8 encoding on in a string with an
3497 initial C<U0>, and the bytes that follow will be interpreted as Unicode
3498 characters. If you don't want this to happen, you can begin your pattern
3499 with C<C0> (or anything else) to force Perl not to UTF8 encode your
3500 string, and then follow this with a C<U*> somewhere in your pattern.
3501
3502 =item *
3503
3504 You must yourself do any alignment or padding by inserting for example
3505 enough C<'x'>es while packing.  There is no way to pack() and unpack()
3506 could know where the bytes are going to or coming from.  Therefore
3507 C<pack> (and C<unpack>) handle their output and input as flat
3508 sequences of bytes.
3509
3510 =item *
3511
3512 A ()-group is a sub-TEMPLATE enclosed in parentheses.  A group may
3513 take a repeat count, both as postfix, and for unpack() also via the C</>
3514 template character. Within each repetition of a group, positioning with
3515 C<@> starts again at 0. Therefore, the result of
3516
3517     pack( '@1A((@2A)@3A)', 'a', 'b', 'c' )
3518
3519 is the string "\0a\0\0bc".
3520
3521
3522 =item *
3523
3524 C<x> and C<X> accept C<!> modifier.  In this case they act as
3525 alignment commands: they jump forward/back to the closest position
3526 aligned at a multiple of C<count> bytes.  For example, to pack() or
3527 unpack() C's C<struct {char c; double d; char cc[2]}> one may need to
3528 use the template C<C x![d] d C[2]>; this assumes that doubles must be
3529 aligned on the double's size.
3530
3531 For alignment commands C<count> of 0 is equivalent to C<count> of 1;
3532 both result in no-ops.
3533
3534 =item *
3535
3536 A comment in a TEMPLATE starts with C<#> and goes to the end of line.
3537 White space may be used to separate pack codes from each other, but
3538 a C<!> modifier and a repeat count must follow immediately.
3539
3540 =item *
3541
3542 If TEMPLATE requires more arguments to pack() than actually given, pack()
3543 assumes additional C<""> arguments.  If TEMPLATE requires less arguments
3544 to pack() than actually given, extra arguments are ignored.
3545
3546 =back
3547
3548 Examples:
3549
3550     $foo = pack("CCCC",65,66,67,68);
3551     # foo eq "ABCD"
3552     $foo = pack("C4",65,66,67,68);
3553     # same thing
3554     $foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);
3555     # same thing with Unicode circled letters
3556
3557     $foo = pack("ccxxcc",65,66,67,68);
3558     # foo eq "AB\0\0CD"
3559
3560     # note: the above examples featuring "C" and "c" are true
3561     # only on ASCII and ASCII-derived systems such as ISO Latin 1
3562     # and UTF-8.  In EBCDIC the first example would be
3563     # $foo = pack("CCCC",193,194,195,196);
3564
3565     $foo = pack("s2",1,2);
3566     # "\1\0\2\0" on little-endian
3567     # "\0\1\0\2" on big-endian
3568
3569     $foo = pack("a4","abcd","x","y","z");
3570     # "abcd"
3571
3572     $foo = pack("aaaa","abcd","x","y","z");
3573     # "axyz"
3574
3575     $foo = pack("a14","abcdefg");
3576     # "abcdefg\0\0\0\0\0\0\0"
3577
3578     $foo = pack("i9pl", gmtime);
3579     # a real struct tm (on my system anyway)
3580
3581     $utmp_template = "Z8 Z8 Z16 L";
3582     $utmp = pack($utmp_template, @utmp1);
3583     # a struct utmp (BSDish)
3584
3585     @utmp2 = unpack($utmp_template, $utmp);
3586     # "@utmp1" eq "@utmp2"
3587
3588     sub bintodec {
3589         unpack("N", pack("B32", substr("0" x 32 . shift, -32)));
3590     }
3591
3592     $foo = pack('sx2l', 12, 34);
3593     # short 12, two zero bytes padding, long 34
3594     $bar = pack('s@4l', 12, 34);
3595     # short 12, zero fill to position 4, long 34
3596     # $foo eq $bar
3597
3598 The same template may generally also be used in unpack().
3599
3600 =item package NAMESPACE
3601
3602 =item package
3603
3604 Declares the compilation unit as being in the given namespace.  The scope
3605 of the package declaration is from the declaration itself through the end
3606 of the enclosing block, file, or eval (the same as the C<my> operator).
3607 All further unqualified dynamic identifiers will be in this namespace.
3608 A package statement affects only dynamic variables--including those
3609 you've used C<local> on--but I<not> lexical variables, which are created
3610 with C<my>.  Typically it would be the first declaration in a file to
3611 be included by the C<require> or C<use> operator.  You can switch into a
3612 package in more than one place; it merely influences which symbol table
3613 is used by the compiler for the rest of that block.  You can refer to
3614 variables and filehandles in other packages by prefixing the identifier
3615 with the package name and a double colon:  C<$Package::Variable>.
3616 If the package name is null, the C<main> package as assumed.  That is,
3617 C<$::sail> is equivalent to C<$main::sail> (as well as to C<$main'sail>,
3618 still seen in older code).
3619
3620 If NAMESPACE is omitted, then there is no current package, and all
3621 identifiers must be fully qualified or lexicals.  However, you are
3622 strongly advised not to make use of this feature. Its use can cause
3623 unexpected behaviour, even crashing some versions of Perl. It is
3624 deprecated, and will be removed from a future release.
3625
3626 See L<perlmod/"Packages"> for more information about packages, modules,
3627 and classes.  See L<perlsub> for other scoping issues.
3628
3629 =item pipe READHANDLE,WRITEHANDLE
3630
3631 Opens a pair of connected pipes like the corresponding system call.
3632 Note that if you set up a loop of piped processes, deadlock can occur
3633 unless you are very careful.  In addition, note that Perl's pipes use
3634 IO buffering, so you may need to set C<$|> to flush your WRITEHANDLE
3635 after each command, depending on the application.
3636
3637 See L<IPC::Open2>, L<IPC::Open3>, and L<perlipc/"Bidirectional Communication">
3638 for examples of such things.
3639
3640 On systems that support a close-on-exec flag on files, the flag will be set
3641 for the newly opened file descriptors as determined by the value of $^F.
3642 See L<perlvar/$^F>.
3643
3644 =item pop ARRAY
3645
3646 =item pop
3647
3648 Pops and returns the last value of the array, shortening the array by
3649 one element.  Has an effect similar to
3650
3651     $ARRAY[$#ARRAY--]
3652
3653 If there are no elements in the array, returns the undefined value
3654 (although this may happen at other times as well).  If ARRAY is
3655 omitted, pops the C<@ARGV> array in the main program, and the C<@_>
3656 array in subroutines, just like C<shift>.
3657
3658 =item pos SCALAR
3659
3660 =item pos
3661
3662 Returns the offset of where the last C<m//g> search left off for the variable
3663 in question (C<$_> is used when the variable is not specified).  May be
3664 modified to change that offset.  Such modification will also influence
3665 the C<\G> zero-width assertion in regular expressions.  See L<perlre> and
3666 L<perlop>.
3667
3668 =item print FILEHANDLE LIST
3669
3670 =item print LIST
3671
3672 =item print
3673
3674 Prints a string or a list of strings.  Returns true if successful.
3675 FILEHANDLE may be a scalar variable name, in which case the variable
3676 contains the name of or a reference to the filehandle, thus introducing
3677 one level of indirection.  (NOTE: If FILEHANDLE is a variable and
3678 the next token is a term, it may be misinterpreted as an operator
3679 unless you interpose a C<+> or put parentheses around the arguments.)
3680 If FILEHANDLE is omitted, prints by default to standard output (or
3681 to the last selected output channel--see L</select>).  If LIST is
3682 also omitted, prints C<$_> to the currently selected output channel.
3683 To set the default output channel to something other than STDOUT
3684 use the select operation.  The current value of C<$,> (if any) is
3685 printed between each LIST item.  The current value of C<$\> (if
3686 any) is printed after the entire LIST has been printed.  Because
3687 print takes a LIST, anything in the LIST is evaluated in list
3688 context, and any subroutine that you call will have one or more of
3689 its expressions evaluated in list context.  Also be careful not to
3690 follow the print keyword with a left parenthesis unless you want
3691 the corresponding right parenthesis to terminate the arguments to
3692 the print--interpose a C<+> or put parentheses around all the
3693 arguments.
3694
3695 Note that if you're storing FILEHANDLES in an array or other expression,
3696 you will have to use a block returning its value instead:
3697
3698     print { $files[$i] } "stuff\n";
3699     print { $OK ? STDOUT : STDERR } "stuff\n";
3700
3701 =item printf FILEHANDLE FORMAT, LIST
3702
3703 =item printf FORMAT, LIST
3704
3705 Equivalent to C<print FILEHANDLE sprintf(FORMAT, LIST)>, except that C<$\>
3706 (the output record separator) is not appended.  The first argument
3707 of the list will be interpreted as the C<printf> format. See C<sprintf>
3708 for an explanation of the format argument. If C<use locale> is in effect,
3709 the character used for the decimal point in formatted real numbers is
3710 affected by the LC_NUMERIC locale.  See L<perllocale>.
3711
3712 Don't fall into the trap of using a C<printf> when a simple
3713 C<print> would do.  The C<print> is more efficient and less
3714 error prone.
3715
3716 =item prototype FUNCTION
3717
3718 Returns the prototype of a function as a string (or C<undef> if the
3719 function has no prototype).  FUNCTION is a reference to, or the name of,
3720 the function whose prototype you want to retrieve.
3721
3722 If FUNCTION is a string starting with C<CORE::>, the rest is taken as a
3723 name for Perl builtin.  If the builtin is not I<overridable> (such as
3724 C<qw//>) or its arguments cannot be expressed by a prototype (such as
3725 C<system>) returns C<undef> because the builtin does not really behave
3726 like a Perl function.  Otherwise, the string describing the equivalent
3727 prototype is returned.
3728
3729 =item push ARRAY,LIST
3730
3731 Treats ARRAY as a stack, and pushes the values of LIST
3732 onto the end of ARRAY.  The length of ARRAY increases by the length of
3733 LIST.  Has the same effect as
3734
3735     for $value (LIST) {
3736         $ARRAY[++$#ARRAY] = $value;
3737     }
3738
3739 but is more efficient.  Returns the new number of elements in the array.
3740
3741 =item q/STRING/
3742
3743 =item qq/STRING/
3744
3745 =item qr/STRING/
3746
3747 =item qx/STRING/
3748
3749 =item qw/STRING/
3750
3751 Generalized quotes.  See L<perlop/"Regexp Quote-Like Operators">.
3752
3753 =item quotemeta EXPR
3754
3755 =item quotemeta
3756
3757 Returns the value of EXPR with all non-"word"
3758 characters backslashed.  (That is, all characters not matching
3759 C</[A-Za-z_0-9]/> will be preceded by a backslash in the
3760 returned string, regardless of any locale settings.)
3761 This is the internal function implementing
3762 the C<\Q> escape in double-quoted strings.
3763
3764 If EXPR is omitted, uses C<$_>.
3765
3766 =item rand EXPR
3767
3768 =item rand
3769
3770 Returns a random fractional number greater than or equal to C<0> and less
3771 than the value of EXPR.  (EXPR should be positive.)  If EXPR is
3772 omitted, the value C<1> is used.  Currently EXPR with the value C<0> is
3773 also special-cased as C<1> - this has not been documented before perl 5.8.0
3774 and is subject to change in future versions of perl.  Automatically calls
3775 C<srand> unless C<srand> has already been called.  See also C<srand>.
3776
3777 Apply C<int()> to the value returned by C<rand()> if you want random
3778 integers instead of random fractional numbers.  For example,
3779
3780     int(rand(10))
3781
3782 returns a random integer between C<0> and C<9>, inclusive.
3783
3784 (Note: If your rand function consistently returns numbers that are too
3785 large or too small, then your version of Perl was probably compiled
3786 with the wrong number of RANDBITS.)
3787
3788 =item read FILEHANDLE,SCALAR,LENGTH,OFFSET
3789
3790 =item read FILEHANDLE,SCALAR,LENGTH
3791
3792 Attempts to read LENGTH I<characters> of data into variable SCALAR
3793 from the specified FILEHANDLE.  Returns the number of characters
3794 actually read, C<0> at end of file, or undef if there was an error (in
3795 the latter case C<$!> is also set).  SCALAR will be grown or shrunk to
3796 the length actually read.  If SCALAR needs growing, the new bytes will
3797 be zero bytes.  An OFFSET may be specified to place the read data into
3798 some other place in SCALAR than the beginning.  The call is actually
3799 implemented in terms of either Perl's or system's fread() call.  To
3800 get a true read(2) system call, see C<sysread>.
3801
3802 Note the I<characters>: depending on the status of the filehandle,
3803 either (8-bit) bytes or characters are read.  By default all
3804 filehandles operate on bytes, but for example if the filehandle has
3805 been opened with the C<:utf8> I/O layer (see L</open>, and the C<open>
3806 pragma, L<open>), the I/O will operate on characters, not bytes.
3807
3808 =item readdir DIRHANDLE
3809
3810 Returns the next directory entry for a directory opened by C<opendir>.
3811 If used in list context, returns all the rest of the entries in the
3812 directory.  If there are no more entries, returns an undefined value in
3813 scalar context or a null list in list context.
3814
3815 If you're planning to filetest the return values out of a C<readdir>, you'd
3816 better prepend the directory in question.  Otherwise, because we didn't
3817 C<chdir> there, it would have been testing the wrong file.
3818
3819     opendir(DIR, $some_dir) || die "can't opendir $some_dir: $!";
3820     @dots = grep { /^\./ && -f "$some_dir/$_" } readdir(DIR);
3821     closedir DIR;
3822
3823 =item readline EXPR
3824
3825 Reads from the filehandle whose typeglob is contained in EXPR.  In scalar
3826 context, each call reads and returns the next line, until end-of-file is
3827 reached, whereupon the subsequent call returns undef.  In list context,
3828 reads until end-of-file is reached and returns a list of lines.  Note that
3829 the notion of "line" used here is however you may have defined it
3830 with C<$/> or C<$INPUT_RECORD_SEPARATOR>).  See L<perlvar/"$/">.
3831
3832 When C<$/> is set to C<undef>, when readline() is in scalar
3833 context (i.e. file slurp mode), and when an empty file is read, it
3834 returns C<''> the first time, followed by C<undef> subsequently.
3835
3836 This is the internal function implementing the C<< <EXPR> >>
3837 operator, but you can use it directly.  The C<< <EXPR> >>
3838 operator is discussed in more detail in L<perlop/"I/O Operators">.
3839
3840     $line = <STDIN>;
3841     $line = readline(*STDIN);           # same thing
3842
3843 If readline encounters an operating system error, C<$!> will be set with the
3844 corresponding error message.  It can be helpful to check C<$!> when you are
3845 reading from filehandles you don't trust, such as a tty or a socket.  The
3846 following example uses the operator form of C<readline>, and takes the necessary
3847 steps to ensure that C<readline> was successful.
3848
3849     for (;;) {
3850         undef $!;
3851         unless (defined( $line = <> )) {
3852             die $! if $!;
3853             last; # reached EOF
3854         }
3855         # ...
3856     }
3857
3858 =item readlink EXPR
3859
3860 =item readlink
3861
3862 Returns the value of a symbolic link, if symbolic links are
3863 implemented.  If not, gives a fatal error.  If there is some system
3864 error, returns the undefined value and sets C<$!> (errno).  If EXPR is
3865 omitted, uses C<$_>.
3866
3867 =item readpipe EXPR
3868
3869 EXPR is executed as a system command.
3870 The collected standard output of the command is returned.
3871 In scalar context, it comes back as a single (potentially
3872 multi-line) string.  In list context, returns a list of lines
3873 (however you've defined lines with C<$/> or C<$INPUT_RECORD_SEPARATOR>).
3874 This is the internal function implementing the C<qx/EXPR/>
3875 operator, but you can use it directly.  The C<qx/EXPR/>
3876 operator is discussed in more detail in L<perlop/"I/O Operators">.
3877
3878 =item recv SOCKET,SCALAR,LENGTH,FLAGS
3879
3880 Receives a message on a socket.  Attempts to receive LENGTH characters
3881 of data into variable SCALAR from the specified SOCKET filehandle.
3882 SCALAR will be grown or shrunk to the length actually read.  Takes the
3883 same flags as the system call of the same name.  Returns the address
3884 of the sender if SOCKET's protocol supports this; returns an empty
3885 string otherwise.  If there's an error, returns the undefined value.
3886 This call is actually implemented in terms of recvfrom(2) system call.
3887 See L<perlipc/"UDP: Message Passing"> for examples.
3888
3889 Note the I<characters>: depending on the status of the socket, either
3890 (8-bit) bytes or characters are received.  By default all sockets
3891 operate on bytes, but for example if the socket has been changed using
3892 binmode() to operate with the C<:utf8> I/O layer (see the C<open>
3893 pragma, L<open>), the I/O will operate on characters, not bytes.
3894
3895 =item redo LABEL
3896
3897 =item redo
3898
3899 The C<redo> command restarts the loop block without evaluating the
3900 conditional again.  The C<continue> block, if any, is not executed.  If
3901 the LABEL is omitted, the command refers to the innermost enclosing
3902 loop.  This command is normally used by programs that want to lie to
3903 themselves about what was just input:
3904
3905     # a simpleminded Pascal comment stripper
3906     # (warning: assumes no { or } in strings)
3907     LINE: while (<STDIN>) {
3908         while (s|({.*}.*){.*}|$1 |) {}
3909         s|{.*}| |;
3910         if (s|{.*| |) {
3911             $front = $_;
3912             while (<STDIN>) {
3913                 if (/}/) {      # end of comment?
3914                     s|^|$front\{|;
3915                     redo LINE;
3916                 }
3917             }
3918         }
3919         print;
3920     }
3921
3922 C<redo> cannot be used to retry a block which returns a value such as
3923 C<eval {}>, C<sub {}> or C<do {}>, and should not be used to exit
3924 a grep() or map() operation.
3925
3926 Note that a block by itself is semantically identical to a loop
3927 that executes once.  Thus C<redo> inside such a block will effectively
3928 turn it into a looping construct.
3929
3930 See also L</continue> for an illustration of how C<last>, C<next>, and
3931 C<redo> work.
3932
3933 =item ref EXPR
3934
3935 =item ref
3936
3937 Returns a true value if EXPR is a reference, false otherwise.  If EXPR
3938 is not specified, C<$_> will be used.  The value returned depends on the
3939 type of thing the reference is a reference to.
3940 Builtin types include:
3941
3942     SCALAR
3943     ARRAY
3944     HASH
3945     CODE
3946     REF
3947     GLOB
3948     LVALUE
3949
3950 If the referenced object has been blessed into a package, then that package
3951 name is returned instead.  You can think of C<ref> as a C<typeof> operator.
3952
3953     if (ref($r) eq "HASH") {
3954         print "r is a reference to a hash.\n";
3955     }
3956     unless (ref($r)) {
3957         print "r is not a reference at all.\n";
3958     }
3959     if (UNIVERSAL::isa($r, "HASH")) {  # for subclassing
3960         print "r is a reference to something that isa hash.\n";
3961     }
3962
3963 See also L<perlref>.
3964
3965 =item rename OLDNAME,NEWNAME
3966
3967 Changes the name of a file; an existing file NEWNAME will be
3968 clobbered.  Returns true for success, false otherwise.
3969
3970 Behavior of this function varies wildly depending on your system
3971 implementation.  For example, it will usually not work across file system
3972 boundaries, even though the system I<mv> command sometimes compensates
3973 for this.  Other restrictions include whether it works on directories,
3974 open files, or pre-existing files.  Check L<perlport> and either the
3975 rename(2) manpage or equivalent system documentation for details.
3976
3977 =item require VERSION
3978
3979 =item require EXPR
3980
3981 =item require
3982
3983 Demands a version of Perl specified by VERSION, or demands some semantics
3984 specified by EXPR or by C<$_> if EXPR is not supplied.
3985
3986 VERSION may be either a numeric argument such as 5.006, which will be
3987 compared to C<$]>, or a literal of the form v5.6.1, which will be compared
3988 to C<$^V> (aka $PERL_VERSION).  A fatal error is produced at run time if
3989 VERSION is greater than the version of the current Perl interpreter.
3990 Compare with L</use>, which can do a similar check at compile time.
3991
3992 Specifying VERSION as a literal of the form v5.6.1 should generally be
3993 avoided, because it leads to misleading error messages under earlier
3994 versions of Perl which do not support this syntax.  The equivalent numeric
3995 version should be used instead.
3996
3997     require v5.6.1;     # run time version check
3998     require 5.6.1;      # ditto
3999     require 5.006_001;  # ditto; preferred for backwards compatibility
4000
4001 Otherwise, demands that a library file be included if it hasn't already
4002 been included.  The file is included via the do-FILE mechanism, which is
4003 essentially just a variety of C<eval>.  Has semantics similar to the following
4004 subroutine:
4005
4006     sub require {
4007         my($filename) = @_;
4008         return 1 if $INC{$filename};
4009         my($realfilename,$result);
4010         ITER: {
4011             foreach $prefix (@INC) {
4012                 $realfilename = "$prefix/$filename";
4013                 if (-f $realfilename) {
4014                     $INC{$filename} = $realfilename;
4015                     $result = do $realfilename;
4016                     last ITER;
4017                 }
4018             }
4019             die "Can't find $filename in \@INC";
4020         }
4021         delete $INC{$filename} if $@ || !$result;
4022         die $@ if $@;
4023         die "$filename did not return true value" unless $result;
4024         return $result;
4025     }
4026
4027 Note that the file will not be included twice under the same specified
4028 name.  The file must return true as the last statement to indicate
4029 successful execution of any initialization code, so it's customary to
4030 end such a file with C<1;> unless you're sure it'll return true
4031 otherwise.  But it's better just to put the C<1;>, in case you add more
4032 statements.
4033
4034 If EXPR is a bareword, the require assumes a "F<.pm>" extension and
4035 replaces "F<::>" with "F</>" in the filename for you,
4036 to make it easy to load standard modules.  This form of loading of
4037 modules does not risk altering your namespace.
4038
4039 In other words, if you try this:
4040
4041         require Foo::Bar;    # a splendid bareword
4042
4043 The require function will actually look for the "F<Foo/Bar.pm>" file in the
4044 directories specified in the C<@INC> array.
4045
4046 But if you try this:
4047
4048         $class = 'Foo::Bar';
4049         require $class;      # $class is not a bareword
4050     #or
4051         require "Foo::Bar";  # not a bareword because of the ""
4052
4053 The require function will look for the "F<Foo::Bar>" file in the @INC array and
4054 will complain about not finding "F<Foo::Bar>" there.  In this case you can do:
4055
4056         eval "require $class";
4057
4058 Now that you understand how C<require> looks for files in the case of
4059 a bareword argument, there is a little extra functionality going on
4060 behind the scenes.  Before C<require> looks for a "F<.pm>" extension,
4061 it will first look for a filename with a "F<.pmc>" extension.  A file
4062 with this extension is assumed to be Perl bytecode generated by
4063 L<B::Bytecode|B::Bytecode>.  If this file is found, and it's modification
4064 time is newer than a coinciding "F<.pm>" non-compiled file, it will be
4065 loaded in place of that non-compiled file ending in a "F<.pm>" extension.
4066
4067 You can also insert hooks into the import facility, by putting directly
4068 Perl code into the @INC array.  There are three forms of hooks: subroutine
4069 references, array references and blessed objects.
4070
4071 Subroutine references are the simplest case.  When the inclusion system
4072 walks through @INC and encounters a subroutine, this subroutine gets
4073 called with two parameters, the first being a reference to itself, and the
4074 second the name of the file to be included (e.g. "F<Foo/Bar.pm>").  The
4075 subroutine should return C<undef> or a filehandle, from which the file to
4076 include will be read.  If C<undef> is returned, C<require> will look at
4077 the remaining elements of @INC.
4078
4079 If the hook is an array reference, its first element must be a subroutine
4080 reference.  This subroutine is called as above, but the first parameter is
4081 the array reference.  This enables to pass indirectly some arguments to
4082 the subroutine.
4083
4084 In other words, you can write:
4085
4086     push @INC, \&my_sub;
4087     sub my_sub {
4088         my ($coderef, $filename) = @_;  # $coderef is \&my_sub
4089         ...
4090     }
4091
4092 or:
4093
4094     push @INC, [ \&my_sub, $x, $y, ... ];
4095     sub my_sub {
4096         my ($arrayref, $filename) = @_;
4097         # Retrieve $x, $y, ...
4098         my @parameters = @$arrayref[1..$#$arrayref];
4099         ...
4100     }
4101
4102 If the hook is an object, it must provide an INC method, that will be
4103 called as above, the first parameter being the object itself.  (Note that
4104 you must fully qualify the sub's name, as it is always forced into package
4105 C<main>.)  Here is a typical code layout:
4106
4107     # In Foo.pm
4108     package Foo;
4109     sub new { ... }
4110     sub Foo::INC {
4111         my ($self, $filename) = @_;
4112         ...
4113     }
4114
4115     # In the main program
4116     push @INC, new Foo(...);
4117
4118 Note that these hooks are also permitted to set the %INC entry
4119 corresponding to the files they have loaded. See L<perlvar/%INC>.
4120
4121 For a yet-more-powerful import facility, see L</use> and L<perlmod>.
4122
4123 =item reset EXPR
4124
4125 =item reset
4126
4127 Generally used in a C<continue> block at the end of a loop to clear
4128 variables and reset C<??> searches so that they work again.  The
4129 expression is interpreted as a list of single characters (hyphens
4130 allowed for ranges).  All variables and arrays beginning with one of
4131 those letters are reset to their pristine state.  If the expression is
4132 omitted, one-match searches (C<?pattern?>) are reset to match again.  Resets
4133 only variables or searches in the current package.  Always returns
4134 1.  Examples:
4135
4136     reset 'X';          # reset all X variables
4137     reset 'a-z';        # reset lower case variables
4138     reset;              # just reset ?one-time? searches
4139
4140 Resetting C<"A-Z"> is not recommended because you'll wipe out your
4141 C<@ARGV> and C<@INC> arrays and your C<%ENV> hash.  Resets only package
4142 variables--lexical variables are unaffected, but they clean themselves
4143 up on scope exit anyway, so you'll probably want to use them instead.
4144 See L</my>.
4145
4146 =item return EXPR
4147
4148 =item return
4149
4150 Returns from a subroutine, C<eval>, or C<do FILE> with the value
4151 given in EXPR.  Evaluation of EXPR may be in list, scalar, or void
4152 context, depending on how the return value will be used, and the context
4153 may vary from one execution to the next (see C<wantarray>).  If no EXPR
4154 is given, returns an empty list in list context, the undefined value in
4155 scalar context, and (of course) nothing at all in a void context.
4156
4157 (Note that in the absence of an explicit C<return>, a subroutine, eval,
4158 or do FILE will automatically return the value of the last expression
4159 evaluated.)
4160
4161 =item reverse LIST
4162
4163 In list context, returns a list value consisting of the elements
4164 of LIST in the opposite order.  In scalar context, concatenates the
4165 elements of LIST and returns a string value with all characters
4166 in the opposite order.
4167
4168     print reverse <>;           # line tac, last line first
4169
4170     undef $/;                   # for efficiency of <>
4171     print scalar reverse <>;    # character tac, last line tsrif
4172
4173 This operator is also handy for inverting a hash, although there are some
4174 caveats.  If a value is duplicated in the original hash, only one of those
4175 can be represented as a key in the inverted hash.  Also, this has to
4176 unwind one hash and build a whole new one, which may take some time
4177 on a large hash, such as from a DBM file.
4178
4179     %by_name = reverse %by_address;     # Invert the hash
4180
4181 =item rewinddir DIRHANDLE
4182
4183 Sets the current position to the beginning of the directory for the
4184 C<readdir> routine on DIRHANDLE.
4185
4186 =item rindex STR,SUBSTR,POSITION
4187
4188 =item rindex STR,SUBSTR
4189
4190 Works just like index() except that it returns the position of the LAST
4191 occurrence of SUBSTR in STR.  If POSITION is specified, returns the
4192 last occurrence at or before that position.
4193
4194 =item rmdir FILENAME
4195
4196 =item rmdir
4197
4198 Deletes the directory specified by FILENAME if that directory is empty.  If it
4199 succeeds it returns true, otherwise it returns false and sets C<$!> (errno).  If
4200 FILENAME is omitted, uses C<$_>.
4201
4202 =item s///
4203
4204 The substitution operator.  See L<perlop>.
4205
4206 =item scalar EXPR
4207
4208 Forces EXPR to be interpreted in scalar context and returns the value
4209 of EXPR.
4210
4211     @counts = ( scalar @a, scalar @b, scalar @c );
4212
4213 There is no equivalent operator to force an expression to
4214 be interpolated in list context because in practice, this is never
4215 needed.  If you really wanted to do so, however, you could use
4216 the construction C<@{[ (some expression) ]}>, but usually a simple
4217 C<(some expression)> suffices.
4218
4219 Because C<scalar> is unary operator, if you accidentally use for EXPR a
4220 parenthesized list, this behaves as a scalar comma expression, evaluating
4221 all but the last element in void context and returning the final element
4222 evaluated in scalar context.  This is seldom what you want.
4223
4224 The following single statement:
4225
4226         print uc(scalar(&foo,$bar)),$baz;
4227
4228 is the moral equivalent of these two:
4229
4230         &foo;
4231         print(uc($bar),$baz);
4232
4233 See L<perlop> for more details on unary operators and the comma operator.
4234
4235 =item seek FILEHANDLE,POSITION,WHENCE
4236
4237 Sets FILEHANDLE's position, just like the C<fseek> call of C<stdio>.
4238 FILEHANDLE may be an expression whose value gives the name of the
4239 filehandle.  The values for WHENCE are C<0> to set the new position
4240 I<in bytes> to POSITION, C<1> to set it to the current position plus
4241 POSITION, and C<2> to set it to EOF plus POSITION (typically
4242 negative).  For WHENCE you may use the constants C<SEEK_SET>,
4243 C<SEEK_CUR>, and C<SEEK_END> (start of the file, current position, end
4244 of the file) from the Fcntl module.  Returns C<1> upon success, C<0>
4245 otherwise.
4246
4247 Note the I<in bytes>: even if the filehandle has been set to
4248 operate on characters (for example by using the C<:utf8> open
4249 layer), tell() will return byte offsets, not character offsets
4250 (because implementing that would render seek() and tell() rather slow).
4251
4252 If you want to position file for C<sysread> or C<syswrite>, don't use
4253 C<seek>--buffering makes its effect on the file's system position
4254 unpredictable and non-portable.  Use C<sysseek> instead.
4255
4256 Due to the rules and rigors of ANSI C, on some systems you have to do a
4257 seek whenever you switch between reading and writing.  Amongst other
4258 things, this may have the effect of calling stdio's clearerr(3).
4259 A WHENCE of C<1> (C<SEEK_CUR>) is useful for not moving the file position:
4260
4261     seek(TEST,0,1);
4262
4263 This is also useful for applications emulating C<tail -f>.  Once you hit
4264 EOF on your read, and then sleep for a while, you might have to stick in a
4265 seek() to reset things.  The C<seek> doesn't change the current position,
4266 but it I<does> clear the end-of-file condition on the handle, so that the
4267 next C<< <FILE> >> makes Perl try again to read something.  We hope.
4268
4269 If that doesn't work (some IO implementations are particularly
4270 cantankerous), then you may need something more like this:
4271
4272     for (;;) {
4273         for ($curpos = tell(FILE); $_ = <FILE>;
4274              $curpos = tell(FILE)) {
4275             # search for some stuff and put it into files
4276         }
4277         sleep($for_a_while);
4278         seek(FILE, $curpos, 0);
4279     }
4280
4281 =item seekdir DIRHANDLE,POS
4282
4283 Sets the current position for the C<readdir> routine on DIRHANDLE.  POS
4284 must be a value returned by C<telldir>.  Has the same caveats about
4285 possible directory compaction as the corresponding system library
4286 routine.
4287
4288 =item select FILEHANDLE
4289
4290 =item select
4291
4292 Returns the currently selected filehandle.  Sets the current default
4293 filehandle for output, if FILEHANDLE is supplied.  This has two
4294 effects: first, a C<write> or a C<print> without a filehandle will
4295 default to this FILEHANDLE.  Second, references to variables related to
4296 output will refer to this output channel.  For example, if you have to
4297 set the top of form format for more than one output channel, you might
4298 do the following:
4299
4300     select(REPORT1);
4301     $^ = 'report1_top';
4302     select(REPORT2);
4303     $^ = 'report2_top';
4304
4305 FILEHANDLE may be an expression whose value gives the name of the
4306 actual filehandle.  Thus:
4307
4308     $oldfh = select(STDERR); $| = 1; select($oldfh);
4309
4310 Some programmers may prefer to think of filehandles as objects with
4311 methods, preferring to write the last example as:
4312
4313     use IO::Handle;
4314     STDERR->autoflush(1);
4315
4316 =item select RBITS,WBITS,EBITS,TIMEOUT
4317
4318 This calls the select(2) system call with the bit masks specified, which
4319 can be constructed using C<fileno> and C<vec>, along these lines:
4320
4321     $rin = $win = $ein = '';
4322     vec($rin,fileno(STDIN),1) = 1;
4323     vec($win,fileno(STDOUT),1) = 1;
4324     $ein = $rin | $win;
4325
4326 If you want to select on many filehandles you might wish to write a
4327 subroutine:
4328
4329     sub fhbits {
4330         my(@fhlist) = split(' ',$_[0]);
4331         my($bits);
4332         for (@fhlist) {
4333             vec($bits,fileno($_),1) = 1;
4334         }
4335         $bits;
4336     }
4337     $rin = fhbits('STDIN TTY SOCK');
4338
4339 The usual idiom is:
4340
4341     ($nfound,$timeleft) =
4342       select($rout=$rin, $wout=$win, $eout=$ein, $timeout);
4343
4344 or to block until something becomes ready just do this
4345
4346     $nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);
4347
4348 Most systems do not bother to return anything useful in $timeleft, so
4349 calling select() in scalar context just returns $nfound.
4350
4351 Any of the bit masks can also be undef.  The timeout, if specified, is
4352 in seconds, which may be fractional.  Note: not all implementations are
4353 capable of returning the $timeleft.  If not, they always return
4354 $timeleft equal to the supplied $timeout.
4355
4356 You can effect a sleep of 250 milliseconds this way:
4357
4358     select(undef, undef, undef, 0.25);
4359
4360 Note that whether C<select> gets restarted after signals (say, SIGALRM)
4361 is implementation-dependent.
4362
4363 B<WARNING>: One should not attempt to mix buffered I/O (like C<read>
4364 or <FH>) with C<select>, except as permitted by POSIX, and even
4365 then only on POSIX systems.  You have to use C<sysread> instead.
4366
4367 =item semctl ID,SEMNUM,CMD,ARG
4368
4369 Calls the System V IPC function C<semctl>.  You'll probably have to say
4370
4371     use IPC::SysV;
4372
4373 first to get the correct constant definitions.  If CMD is IPC_STAT or
4374 GETALL, then ARG must be a variable which will hold the returned
4375 semid_ds structure or semaphore value array.  Returns like C<ioctl>:
4376 the undefined value for error, "C<0 but true>" for zero, or the actual
4377 return value otherwise.  The ARG must consist of a vector of native
4378 short integers, which may be created with C<pack("s!",(0)x$nsem)>.
4379 See also L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::Semaphore>
4380 documentation.
4381
4382 =item semget KEY,NSEMS,FLAGS
4383
4384 Calls the System V IPC function semget.  Returns the semaphore id, or
4385 the undefined value if there is an error.  See also
4386 L<perlipc/"SysV IPC">, C<IPC::SysV>, C<IPC::SysV::Semaphore>
4387 documentation.
4388
4389 =item semop KEY,OPSTRING
4390
4391 Calls the System V IPC function semop to perform semaphore operations
4392 such as signalling and waiting.  OPSTRING must be a packed array of
4393 semop structures.  Each semop structure can be generated with
4394 C<pack("s!3", $semnum, $semop, $semflag)>.  The number of semaphore
4395 operations is implied by the length of OPSTRING.  Returns true if
4396 successful, or false if there is an error.  As an example, the
4397 following code waits on semaphore $semnum of semaphore id $semid:
4398
4399     $semop = pack("s!3", $semnum, -1, 0);
4400     die "Semaphore trouble: $!\n" unless semop($semid, $semop);
4401
4402 To signal the semaphore, replace C<-1> with C<1>.  See also
4403 L<perlipc/"SysV IPC">, C<IPC::SysV>, and C<IPC::SysV::Semaphore>
4404 documentation.
4405
4406 =item send SOCKET,MSG,FLAGS,TO
4407
4408 =item send SOCKET,MSG,FLAGS
4409
4410 Sends a message on a socket.  Attempts to send the scalar MSG to the
4411 SOCKET filehandle.  Takes the same flags as the system call of the
4412 same name.  On unconnected sockets you must specify a destination to
4413 send TO, in which case it does a C C<sendto>.  Returns the number of
4414 characters sent, or the undefined value if there is an error.  The C
4415 system call sendmsg(2) is currently unimplemented.  See
4416 L<perlipc/"UDP: Message Passing"> for examples.
4417
4418 Note the I<characters>: depending on the status of the socket, either
4419 (8-bit) bytes or characters are sent.  By default all sockets operate
4420 on bytes, but for example if the socket has been changed using
4421 binmode() to operate with the C<:utf8> I/O layer (see L</open>, or
4422 the C<open> pragma, L<open>), the I/O will operate on characters, not
4423 bytes.
4424
4425 =item setpgrp PID,PGRP
4426
4427 Sets the current process group for the specified PID, C<0> for the current
4428 process.  Will produce a fatal error if used on a machine that doesn't
4429 implement POSIX setpgid(2) or BSD setpgrp(2).  If the arguments are omitted,
4430 it defaults to C<0,0>.  Note that the BSD 4.2 version of C<setpgrp> does not
4431 accept any arguments, so only C<setpgrp(0,0)> is portable.  See also
4432 C<POSIX::setsid()>.
4433
4434 =item setpriority WHICH,WHO,PRIORITY
4435
4436 Sets the current priority for a process, a process group, or a user.
4437 (See setpriority(2).)  Will produce a fatal error if used on a machine
4438 that doesn't implement setpriority(2).
4439
4440 =item setsockopt SOCKET,LEVEL,OPTNAME,OPTVAL
4441
4442 Sets the socket option requested.  Returns undefined if there is an
4443 error.  OPTVAL may be specified as C<undef> if you don't want to pass an
4444 argument.
4445
4446 =item shift ARRAY
4447
4448 =item shift
4449
4450 Shifts the first value of the array off and returns it, shortening the
4451 array by 1 and moving everything down.  If there are no elements in the
4452 array, returns the undefined value.  If ARRAY is omitted, shifts the
4453 C<@_> array within the lexical scope of subroutines and formats, and the
4454 C<@ARGV> array at file scopes or within the lexical scopes established by
4455 the C<eval ''>, C<BEGIN {}>, C<INIT {}>, C<CHECK {}>, and C<END {}>
4456 constructs.
4457
4458 See also C<unshift>, C<push>, and C<pop>.  C<shift> and C<unshift> do the
4459 same thing to the left end of an array that C<pop> and C<push> do to the
4460 right end.
4461
4462 =item shmctl ID,CMD,ARG
4463
4464 Calls the System V IPC function shmctl.  You'll probably have to say
4465
4466     use IPC::SysV;
4467
4468 first to get the correct constant definitions.  If CMD is C<IPC_STAT>,
4469 then ARG must be a variable which will hold the returned C<shmid_ds>
4470 structure.  Returns like ioctl: the undefined value for error, "C<0> but
4471 true" for zero, or the actual return value otherwise.
4472 See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
4473
4474 =item shmget KEY,SIZE,FLAGS
4475
4476 Calls the System V IPC function shmget.  Returns the shared memory
4477 segment id, or the undefined value if there is an error.
4478 See also L<perlipc/"SysV IPC"> and C<IPC::SysV> documentation.
4479
4480 =item shmread ID,VAR,POS,SIZE
4481
4482 =item shmwrite ID,STRING,POS,SIZE
4483
4484 Reads or writes the System V shared memory segment ID starting at
4485 position POS for size SIZE by attaching to it, copying in/out, and
4486 detaching from it.  When reading, VAR must be a variable that will
4487 hold the data read.  When writing, if STRING is too long, only SIZE
4488 bytes are used; if STRING is too short, nulls are written to fill out
4489 SIZE bytes.  Return true if successful, or false if there is an error.
4490 shmread() taints the variable. See also L<perlipc/"SysV IPC">,
4491 C<IPC::SysV> documentation, and the C<IPC::Shareable> module from CPAN.
4492
4493 =item shutdown SOCKET,HOW
4494
4495 Shuts down a socket connection in the manner indicated by HOW, which
4496 has the same interpretation as in the system call of the same name.
4497
4498     shutdown(SOCKET, 0);    # I/we have stopped reading data
4499     shutdown(SOCKET, 1);    # I/we have stopped writing data
4500     shutdown(SOCKET, 2);    # I/we have stopped using this socket
4501
4502 This is useful with sockets when you want to tell the other
4503 side you're done writing but not done reading, or vice versa.
4504 It's also a more insistent form of close because it also
4505 disables the file descriptor in any forked copies in other
4506 processes.
4507
4508 =item sin EXPR
4509
4510 =item sin
4511
4512 Returns the sine of EXPR (expressed in radians).  If EXPR is omitted,
4513 returns sine of C<$_>.
4514
4515 For the inverse sine operation, you may use the C<Math::Trig::asin>
4516 function, or use this relation:
4517
4518     sub asin { atan2($_[0], sqrt(1 - $_[0] * $_[0])) }
4519
4520 =item sleep EXPR
4521
4522 =item sleep
4523
4524 Causes the script to sleep for EXPR seconds, or forever if no EXPR.
4525 May be interrupted if the process receives a signal such as C<SIGALRM>.
4526 Returns the number of seconds actually slept.  You probably cannot
4527 mix C<alarm> and C<sleep> calls, because C<sleep> is often implemented
4528 using C<alarm>.
4529
4530 On some older systems, it may sleep up to a full second less than what
4531 you requested, depending on how it counts seconds.  Most modern systems
4532 always sleep the full amount.  They may appear to sleep longer than that,
4533 however, because your process might not be scheduled right away in a
4534 busy multitasking system.
4535
4536 For delays of finer granularity than one second, you may use Perl's
4537 C<syscall> interface to access setitimer(2) if your system supports
4538 it, or else see L</select> above.  The Time::HiRes module (from CPAN,
4539 and starting from Perl 5.8 part of the standard distribution) may also
4540 help.
4541
4542 See also the POSIX module's C<pause> function.
4543
4544 =item socket SOCKET,DOMAIN,TYPE,PROTOCOL
4545
4546 Opens a socket of the specified kind and attaches it to filehandle
4547 SOCKET.  DOMAIN, TYPE, and PROTOCOL are specified the same as for
4548 the system call of the same name.  You should C<use Socket> first
4549 to get the proper definitions imported.  See the examples in
4550 L<perlipc/"Sockets: Client/Server Communication">.
4551
4552 On systems that support a close-on-exec flag on files, the flag will
4553 be set for the newly opened file descriptor, as determined by the
4554 value of $^F.  See L<perlvar/$^F>.
4555
4556 =item socketpair SOCKET1,SOCKET2,DOMAIN,TYPE,PROTOCOL
4557
4558 Creates an unnamed pair of sockets in the specified domain, of the
4559 specified type.  DOMAIN, TYPE, and PROTOCOL are specified the same as
4560 for the system call of the same name.  If unimplemented, yields a fatal
4561 error.  Returns true if successful.
4562
4563 On systems that support a close-on-exec flag on files, the flag will
4564 be set for the newly opened file descriptors, as determined by the value
4565 of $^F.  See L<perlvar/$^F>.
4566
4567 Some systems defined C<pipe> in terms of C<socketpair>, in which a call
4568 to C<pipe(Rdr, Wtr)> is essentially:
4569
4570     use Socket;
4571     socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
4572     shutdown(Rdr, 1);        # no more writing for reader
4573     shutdown(Wtr, 0);        # no more reading for writer
4574
4575 See L<perlipc> for an example of socketpair use.  Perl 5.8 and later will
4576 emulate socketpair using IP sockets to localhost if your system implements
4577 sockets but not socketpair.
4578
4579 =item sort SUBNAME LIST
4580
4581 =item sort BLOCK LIST
4582
4583 =item sort LIST
4584
4585 In list context, this sorts the LIST and returns the sorted list value.
4586 In scalar context, the behaviour of C<sort()> is undefined.
4587
4588 If SUBNAME or BLOCK is omitted, C<sort>s in standard string comparison
4589 order.  If SUBNAME is specified, it gives the name of a subroutine
4590 that returns an integer less than, equal to, or greater than C<0>,
4591 depending on how the elements of the list are to be ordered.  (The C<<
4592 <=> >> and C<cmp> operators are extremely useful in such routines.)
4593 SUBNAME may be a scalar variable name (unsubscripted), in which case
4594 the value provides the name of (or a reference to) the actual
4595 subroutine to use.  In place of a SUBNAME, you can provide a BLOCK as
4596 an anonymous, in-line sort subroutine.
4597
4598 If the subroutine's prototype is C<($$)>, the elements to be compared
4599 are passed by reference in C<@_>, as for a normal subroutine.  This is
4600 slower than unprototyped subroutines, where the elements to be
4601 compared are passed into the subroutine
4602 as the package global variables $a and $b (see example below).  Note that
4603 in the latter case, it is usually counter-productive to declare $a and
4604 $b as lexicals.
4605
4606 In either case, the subroutine may not be recursive.  The values to be
4607 compared are always passed by reference, so don't modify them.
4608
4609 You also cannot exit out of the sort block or subroutine using any of the
4610 loop control operators described in L<perlsyn> or with C<goto>.
4611
4612 When C<use locale> is in effect, C<sort LIST> sorts LIST according to the
4613 current collation locale.  See L<perllocale>.
4614
4615 Perl 5.6 and earlier used a quicksort algorithm to implement sort.
4616 That algorithm was not stable, and I<could> go quadratic.  (A I<stable> sort
4617 preserves the input order of elements that compare equal.  Although
4618 quicksort's run time is O(NlogN) when averaged over all arrays of
4619 length N, the time can be O(N**2), I<quadratic> behavior, for some
4620 inputs.)  In 5.7, the quicksort implementation was replaced with
4621 a stable mergesort algorithm whose worst case behavior is O(NlogN).
4622 But benchmarks indicated that for some inputs, on some platforms,
4623 the original quicksort was faster.  5.8 has a sort pragma for
4624 limited control of the sort.  Its rather blunt control of the
4625 underlying algorithm may not persist into future perls, but the
4626 ability to characterize the input or output in implementation
4627 independent ways quite probably will.  See L<sort>.
4628
4629 Examples:
4630
4631     # sort lexically
4632     @articles = sort @files;
4633
4634     # same thing, but with explicit sort routine
4635     @articles = sort {$a cmp $b} @files;
4636
4637     # now case-insensitively
4638     @articles = sort {uc($a) cmp uc($b)} @files;
4639
4640     # same thing in reversed order
4641     @articles = sort {$b cmp $a} @files;
4642
4643     # sort numerically ascending
4644     @articles = sort {$a <=> $b} @files;
4645
4646     # sort numerically descending
4647     @articles = sort {$b <=> $a} @files;
4648
4649     # this sorts the %age hash by value instead of key
4650     # using an in-line function
4651     @eldest = sort { $age{$b} <=> $age{$a} } keys %age;
4652
4653     # sort using explicit subroutine name
4654     sub byage {
4655         $age{$a} <=> $age{$b};  # presuming numeric
4656     }
4657     @sortedclass = sort byage @class;
4658
4659     sub backwards { $b cmp $a }
4660     @harry  = qw(dog cat x Cain Abel);
4661     @george = qw(gone chased yz Punished Axed);
4662     print sort @harry;
4663             # prints AbelCaincatdogx
4664     print sort backwards @harry;
4665             # prints xdogcatCainAbel
4666     print sort @george, 'to', @harry;
4667             # prints AbelAxedCainPunishedcatchaseddoggonetoxyz
4668
4669     # inefficiently sort by descending numeric compare using
4670     # the first integer after the first = sign, or the
4671     # whole record case-insensitively otherwise
4672
4673     @new = sort {
4674         ($b =~ /=(\d+)/)[0] <=> ($a =~ /=(\d+)/)[0]
4675                             ||
4676                     uc($a)  cmp  uc($b)
4677     } @old;
4678
4679     # same thing, but much more efficiently;
4680     # we'll build auxiliary indices instead
4681     # for speed
4682     @nums = @caps = ();
4683     for (@old) {
4684         push @nums, /=(\d+)/;
4685         push @caps, uc($_);
4686     }
4687
4688     @new = @old[ sort {
4689                         $nums[$b] <=> $nums[$a]
4690                                  ||
4691                         $caps[$a] cmp $caps[$b]
4692                        } 0..$#old
4693                ];
4694
4695     # same thing, but without any temps
4696     @new = map { $_->[0] }
4697            sort { $b->[1] <=> $a->[1]
4698                            ||
4699                   $a->[2] cmp $b->[2]
4700            } map { [$_, /=(\d+)/, uc($_)] } @old;
4701
4702     # using a prototype allows you to use any comparison subroutine
4703     # as a sort subroutine (including other package's subroutines)
4704     package other;
4705     sub backwards ($$) { $_[1] cmp $_[0]; }     # $a and $b are not set here
4706
4707     package main;
4708     @new = sort other::backwards @old;
4709
4710     # guarantee stability, regardless of algorithm
4711     use sort 'stable';
4712     @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;
4713
4714     # force use of mergesort (not portable outside Perl 5.8)
4715     use sort '_mergesort';  # note discouraging _
4716     @new = sort { substr($a, 3, 5) cmp substr($b, 3, 5) } @old;
4717
4718 If you're using strict, you I<must not> declare $a
4719 and $b as lexicals.  They are package globals.  That means
4720 if you're in the C<main> package and type
4721
4722     @articles = sort {$b <=> $a} @files;
4723
4724 then C<$a> and C<$b> are C<$main::a> and C<$main::b> (or C<$::a> and C<$::b>),
4725 but if you're in the C<FooPack> package, it's the same as typing
4726
4727     @articles = sort {$FooPack::b <=> $FooPack::a} @files;
4728
4729 The comparison function is required to behave.  If it returns
4730 inconsistent results (sometimes saying C<$x[1]> is less than C<$x[2]> and
4731 sometimes saying the opposite, for example) the results are not
4732 well-defined.
4733
4734 =item splice ARRAY,OFFSET,LENGTH,LIST
4735
4736 =item splice ARRAY,OFFSET,LENGTH
4737
4738 =item splice ARRAY,OFFSET
4739
4740 =item splice ARRAY
4741
4742 Removes the elements designated by OFFSET and LENGTH from an array, and
4743 replaces them with the elements of LIST, if any.  In list context,
4744 returns the elements removed from the array.  In scalar context,
4745 returns the last element removed, or C<undef> if no elements are
4746 removed.  The array grows or shrinks as necessary.
4747 If OFFSET is negative then it starts that far from the end of the array.
4748 If LENGTH is omitted, removes everything from OFFSET onward.
4749 If LENGTH is negative, removes the elements from OFFSET onward
4750 except for -LENGTH elements at the end of the array.
4751 If both OFFSET and LENGTH are omitted, removes everything. If OFFSET is
4752 past the end of the array, perl issues a warning, and splices at the
4753 end of the array.
4754
4755 The following equivalences hold (assuming C<< $[ == 0 and $#a >= $i >> )
4756
4757     push(@a,$x,$y)      splice(@a,@a,0,$x,$y)
4758     pop(@a)             splice(@a,-1)
4759     shift(@a)           splice(@a,0,1)
4760     unshift(@a,$x,$y)   splice(@a,0,0,$x,$y)
4761     $a[$i] = $y         splice(@a,$i,1,$y)
4762
4763 Example, assuming array lengths are passed before arrays:
4764
4765     sub aeq {   # compare two list values
4766         my(@a) = splice(@_,0,shift);
4767         my(@b) = splice(@_,0,shift);
4768         return 0 unless @a == @b;       # same len?
4769         while (@a) {
4770             return 0 if pop(@a) ne pop(@b);
4771         }
4772         return 1;
4773     }
4774     if (&aeq($len,@foo[1..$len],0+@bar,@bar)) { ... }
4775
4776 =item split /PATTERN/,EXPR,LIMIT
4777
4778 =item split /PATTERN/,EXPR
4779
4780 =item split /PATTERN/
4781
4782 =item split
4783
4784 Splits a string into a list of strings and returns that list.  By default,
4785 empty leading fields are preserved, and empty trailing ones are deleted.
4786
4787 In scalar context, returns the number of fields found and splits into
4788 the C<@_> array.  Use of split in scalar context is deprecated, however,
4789 because it clobbers your subroutine arguments.
4790
4791 If EXPR is omitted, splits the C<$_> string.  If PATTERN is also omitted,
4792 splits on whitespace (after skipping any leading whitespace).  Anything
4793 matching PATTERN is taken to be a delimiter separating the fields.  (Note
4794 that the delimiter may be longer than one character.)
4795
4796 If LIMIT is specified and positive, it represents the maximum number
4797 of fields the EXPR will be split into, though the actual number of
4798 fields returned depends on the number of times PATTERN matches within
4799 EXPR.  If LIMIT is unspecified or zero, trailing null fields are
4800 stripped (which potential users of C<pop> would do well to remember).
4801 If LIMIT is negative, it is treated as if an arbitrarily large LIMIT
4802 had been specified.  Note that splitting an EXPR that evaluates to the
4803 empty string always returns the empty list, regardless of the LIMIT
4804 specified.
4805
4806 A pattern matching the null string (not to be confused with
4807 a null pattern C<//>, which is just one member of the set of patterns
4808 matching a null string) will split the value of EXPR into separate
4809 characters at each point it matches that way.  For example:
4810
4811     print join(':', split(/ */, 'hi there'));
4812
4813 produces the output 'h:i:t:h:e:r:e'.
4814
4815 Using the empty pattern C<//> specifically matches the null string, and is
4816 not be confused with the use of C<//> to mean "the last successful pattern
4817 match".
4818
4819 Empty leading (or trailing) fields are produced when there are positive width
4820 matches at the beginning (or end) of the string; a zero-width match at the
4821 beginning (or end) of the string does not produce an empty field.  For
4822 example:
4823
4824    print join(':', split(/(?=\w)/, 'hi there!'));
4825
4826 produces the output 'h:i :t:h:e:r:e!'.
4827
4828 The LIMIT parameter can be used to split a line partially
4829
4830     ($login, $passwd, $remainder) = split(/:/, $_, 3);
4831
4832 When assigning to a list, if LIMIT is omitted, Perl supplies a LIMIT
4833 one larger than the number of variables in the list, to avoid
4834 unnecessary work.  For the list above LIMIT would have been 4 by
4835 default.  In time critical applications it behooves you not to split
4836 into more fields than you really need.
4837
4838 If the PATTERN contains parentheses, additional list elements are
4839 created from each matching substring in the delimiter.
4840
4841     split(/([,-])/, "1-10,20", 3);
4842
4843 produces the list value
4844
4845     (1, '-', 10, ',', 20)
4846
4847 If you had the entire header of a normal Unix email message in $header,
4848 you could split it up into fields and their values this way:
4849
4850     $header =~ s/\n\s+/ /g;  # fix continuation lines
4851     %hdrs   =  (UNIX_FROM => split /^(\S*?):\s*/m, $header);
4852
4853 The pattern C</PATTERN/> may be replaced with an expression to specify
4854 patterns that vary at runtime.  (To do runtime compilation only once,
4855 use C</$variable/o>.)
4856
4857 As a special case, specifying a PATTERN of space (S<C<' '>>) will split on
4858 white space just as C<split> with no arguments does.  Thus, S<C<split(' ')>> can
4859 be used to emulate B<awk>'s default behavior, whereas S<C<split(/ /)>>
4860 will give you as many null initial fields as there are leading spaces.
4861 A C<split> on C</\s+/> is like a S<C<split(' ')>> except that any leading
4862 whitespace produces a null first field.  A C<split> with no arguments
4863 really does a S<C<split(' ', $_)>> internally.
4864
4865 A PATTERN of C</^/> is treated as if it were C</^/m>, since it isn't
4866 much use otherwise.
4867
4868 Example:
4869
4870     open(PASSWD, '/etc/passwd');
4871     while (<PASSWD>) {
4872         chomp;
4873         ($login, $passwd, $uid, $gid,
4874          $gcos, $home, $shell) = split(/:/);
4875         #...
4876     }
4877
4878 As with regular pattern matching, any capturing parentheses that are not
4879 matched in a C<split()> will be set to C<undef> when returned:
4880
4881     @fields = split /(A)|B/, "1A2B3";
4882     # @fields is (1, 'A', 2, undef, 3)
4883
4884 =item sprintf FORMAT, LIST
4885
4886 Returns a string formatted by the usual C<printf> conventions of the C
4887 library function C<sprintf>.  See below for more details
4888 and see L<sprintf(3)> or L<printf(3)> on your system for an explanation of
4889 the general principles.
4890
4891 For example:
4892
4893         # Format number with up to 8 leading zeroes
4894         $result = sprintf("%08d", $number);
4895
4896         # Round number to 3 digits after decimal point
4897         $rounded = sprintf("%.3f", $number);
4898
4899 Perl does its own C<sprintf> formatting--it emulates the C
4900 function C<sprintf>, but it doesn't use it (except for floating-point
4901 numbers, and even then only the standard modifiers are allowed).  As a
4902 result, any non-standard extensions in your local C<sprintf> are not
4903 available from Perl.
4904
4905 Unlike C<printf>, C<sprintf> does not do what you probably mean when you
4906 pass it an array as your first argument. The array is given scalar context,
4907 and instead of using the 0th element of the array as the format, Perl will
4908 use the count of elements in the array as the format, which is almost never
4909 useful.
4910
4911 Perl's C<sprintf> permits the following universally-known conversions:
4912
4913    %%   a percent sign
4914    %c   a character with the given number
4915    %s   a string
4916    %d   a signed integer, in decimal
4917    %u   an unsigned integer, in decimal
4918    %o   an unsigned integer, in octal
4919    %x   an unsigned integer, in hexadecimal
4920    %e   a floating-point number, in scientific notation
4921    %f   a floating-point number, in fixed decimal notation
4922    %g   a floating-point number, in %e or %f notation
4923
4924 In addition, Perl permits the following widely-supported conversions:
4925
4926    %X   like %x, but using upper-case letters
4927    %E   like %e, but using an upper-case "E"
4928    %G   like %g, but with an upper-case "E" (if applicable)
4929    %b   an unsigned integer, in binary
4930    %p   a pointer (outputs the Perl value's address in hexadecimal)
4931    %n   special: *stores* the number of characters output so far
4932         into the next variable in the parameter list
4933
4934 Finally, for backward (and we do mean "backward") compatibility, Perl
4935 permits these unnecessary but widely-supported conversions:
4936
4937    %i   a synonym for %d
4938    %D   a synonym for %ld
4939    %U   a synonym for %lu
4940    %O   a synonym for %lo
4941    %F   a synonym for %f
4942
4943 Note that the number of exponent digits in the scientific notation produced
4944 by C<%e>, C<%E>, C<%g> and C<%G> for numbers with the modulus of the
4945 exponent less than 100 is system-dependent: it may be three or less
4946 (zero-padded as necessary).  In other words, 1.23 times ten to the
4947 99th may be either "1.23e99" or "1.23e099".
4948
4949 Between the C<%> and the format letter, you may specify a number of
4950 additional attributes controlling the interpretation of the format.
4951 In order, these are:
4952
4953 =over 4
4954
4955 =item format parameter index
4956
4957 An explicit format parameter index, such as C<2$>. By default sprintf
4958 will format the next unused argument in the list, but this allows you
4959 to take the arguments out of order. Eg:
4960
4961   printf '%2$d %1$d', 12, 34;      # prints "34 12"
4962   printf '%3$d %d %1$d', 1, 2, 3;  # prints "3 1 1"
4963
4964 =item flags
4965
4966 one or more of:
4967    space   prefix positive number with a space
4968    +       prefix positive number with a plus sign
4969    -       left-justify within the field
4970    0       use zeros, not spaces, to right-justify
4971    #       prefix non-zero octal with "0", non-zero hex with "0x",
4972            non-zero binary with "0b"
4973
4974 For example:
4975
4976   printf '<% d>', 12;   # prints "< 12>"
4977   printf '<%+d>', 12;   # prints "<+12>"
4978   printf '<%6s>', 12;   # prints "<    12>"
4979   printf '<%-6s>', 12;  # prints "<12    >"
4980   printf '<%06s>', 12;  # prints "<000012>"
4981   printf '<%#x>', 12;   # prints "<0xc>"
4982
4983 =item vector flag
4984
4985 The vector flag C<v>, optionally specifying the join string to use.
4986 This flag tells perl to interpret the supplied string as a vector
4987 of integers, one for each character in the string, separated by
4988 a given string (a dot C<.> by default). This can be useful for
4989 displaying ordinal values of characters in arbitrary strings:
4990
4991   printf "version is v%vd\n", $^V;     # Perl's version
4992
4993 Put an asterisk C<*> before the C<v> to override the string to
4994 use to separate the numbers:
4995
4996   printf "address is %*vX\n", ":", $addr;   # IPv6 address
4997   printf "bits are %0*v8b\n", " ", $bits;   # random bitstring
4998
4999 You can also explicitly specify the argument number to use for
5000 the join string using eg C<*2$v>:
5001
5002   printf '%*4$vX %*4$vX %*4$vX', @addr[1..3], ":";   # 3 IPv6 addresses
5003
5004 =item (minimum) width
5005
5006 Arguments are usually formatted to be only as wide as required to
5007 display the given value. You can override the width by putting
5008 a number here, or get the width from the next argument (with C<*>)
5009 or from a specified argument (with eg C<*2$>):
5010
5011   printf '<%s>', "a";       # prints "<a>"
5012   printf '<%6s>', "a";      # prints "<     a>"
5013   printf '<%*s>', 6, "a";   # prints "<     a>"
5014   printf '<%*2$s>', "a", 6; # prints "<     a>"
5015   printf '<%2s>', "long";   # prints "<long>" (does not truncate)
5016
5017 If a field width obtained through C<*> is negative, it has the same
5018 effect as the C<-> flag: left-justification.
5019
5020 =item precision, or maximum width
5021
5022 You can specify a precision (for numeric conversions) or a maximum
5023 width (for string conversions) by specifying a C<.> followed by a number.
5024 For floating point formats, with the exception of 'g' and 'G', this specifies
5025 the number of decimal places to show (the default being 6), eg:
5026
5027   # these examples are subject to system-specific variation
5028   printf '<%f>', 1;    # prints "<1.000000>"
5029   printf '<%.1f>', 1;  # prints "<1.0>"
5030   printf '<%.0f>', 1;  # prints "<1>"
5031   printf '<%e>', 10;   # prints "<1.000000e+01>"
5032   printf '<%.1e>', 10; # prints "<1.0e+01>"
5033
5034 For 'g' and 'G', this specifies the maximum number of digits to show,
5035 including prior to the decimal point as well as after it, eg:
5036
5037   # these examples are subject to system-specific variation
5038   printf '<%g>', 1;        # prints "<1>"
5039   printf '<%.10g>', 1;     # prints "<1>"
5040   printf '<%g>', 100;      # prints "<100>"
5041   printf '<%.1g>', 100;    # prints "<1e+02>"
5042   printf '<%.2g>', 100.01; # prints "<1e+02>"
5043   printf '<%.5g>', 100.01; # prints "<100.01>"
5044   printf '<%.4g>', 100.01; # prints "<100>"
5045
5046 For integer conversions, specifying a precision implies that the
5047 output of the number itself should be zero-padded to this width:
5048
5049   printf '<%.6x>', 1;      # prints "<000001>"
5050   printf '<%#.6x>', 1;     # prints "<0x000001>"
5051   printf '<%-10.6x>', 1;   # prints "<000001    >"
5052
5053 For string conversions, specifying a precision truncates the string
5054 to fit in the specified width:
5055
5056   printf '<%.5s>', "truncated";   # prints "<trunc>"
5057   printf '<%10.5s>', "truncated"; # prints "<     trunc>"
5058
5059 You can also get the precision from the next argument using C<.*>:
5060
5061   printf '<%.6x>', 1;       # prints "<000001>"
5062   printf '<%.*x>', 6, 1;    # prints "<000001>"
5063
5064 You cannot currently get the precision from a specified number,
5065 but it is intended that this will be possible in the future using
5066 eg C<.*2$>:
5067
5068   printf '<%.*2$x>', 1, 6;   # INVALID, but in future will print "<000001>"
5069
5070 =item size
5071
5072 For numeric conversions, you can specify the size to interpret the
5073 number as using C<l>, C<h>, C<V>, C<q>, C<L>, or C<ll>. For integer
5074 conversions (C<d u o x X b i D U O>), numbers are usually assumed to be
5075 whatever the default integer size is on your platform (usually 32 or 64
5076 bits), but you can override this to use instead one of the standard C types,
5077 as supported by the compiler used to build Perl:
5078
5079    l           interpret integer as C type "long" or "unsigned long"
5080    h           interpret integer as C type "short" or "unsigned short"
5081    q, L or ll  interpret integer as C type "long long", "unsigned long long".
5082                or "quads" (typically 64-bit integers)
5083
5084 The last will produce errors if Perl does not understand "quads" in your
5085 installation. (This requires that either the platform natively supports quads
5086 or Perl was specifically compiled to support quads.) You can find out
5087 whether your Perl supports quads via L<Config>:
5088
5089         use Config;
5090         ($Config{use64bitint} eq 'define' || $Config{longsize} >= 8) &&
5091                 print "quads\n";
5092
5093 For floating point conversions (C<e f g E F G>), numbers are usually assumed
5094 to be the default floating point size on your platform (double or long double),
5095 but you can force 'long double' with C<q>, C<L>, or C<ll> if your
5096 platform supports them. You can find out whether your Perl supports long
5097 doubles via L<Config>:
5098
5099         use Config;
5100         $Config{d_longdbl} eq 'define' && print "long doubles\n";
5101
5102 You can find out whether Perl considers 'long double' to be the default
5103 floating point size to use on your platform via L<Config>:
5104
5105         use Config;
5106         ($Config{uselongdouble} eq 'define') &&
5107                 print "long doubles by default\n";
5108
5109 It can also be the case that long doubles and doubles are the same thing:
5110
5111         use Config;
5112         ($Config{doublesize} == $Config{longdblsize}) &&
5113                 print "doubles are long doubles\n";
5114
5115 The size specifier C<V> has no effect for Perl code, but it is supported
5116 for compatibility with XS code; it means 'use the standard size for
5117 a Perl integer (or floating-point number)', which is already the
5118 default for Perl code.
5119
5120 =item order of arguments
5121
5122 Normally, sprintf takes the next unused argument as the value to
5123 format for each format specification. If the format specification
5124 uses C<*> to require additional arguments, these are consumed from
5125 the argument list in the order in which they appear in the format
5126 specification I<before> the value to format. Where an argument is
5127 specified using an explicit index, this does not affect the normal
5128 order for the arguments (even when the explicitly specified index
5129 would have been the next argument in any case).
5130
5131 So:
5132
5133   printf '<%*.*s>', $a, $b, $c;
5134
5135 would use C<$a> for the width, C<$b> for the precision and C<$c>
5136 as the value to format, while:
5137
5138   print '<%*1$.*s>', $a, $b;
5139
5140 would use C<$a> for the width and the precision, and C<$b> as the
5141 value to format.
5142
5143 Here are some more examples - beware that when using an explicit
5144 index, the C<$> may need to be escaped:
5145
5146   printf "%2\$d %d\n",    12, 34;               # will print "34 12\n"
5147   printf "%2\$d %d %d\n", 12, 34;               # will print "34 12 34\n"
5148   printf "%3\$d %d %d\n", 12, 34, 56;           # will print "56 12 34\n"
5149   printf "%2\$*3\$d %d\n", 12, 34, 3;           # will print " 34 12\n"
5150
5151 =back
5152
5153 If C<use locale> is in effect, the character used for the decimal
5154 point in formatted real numbers is affected by the LC_NUMERIC locale.
5155 See L<perllocale>.
5156
5157 =item sqrt EXPR
5158
5159 =item sqrt
5160
5161 Return the square root of EXPR.  If EXPR is omitted, returns square
5162 root of C<$_>.  Only works on non-negative operands, unless you've
5163 loaded the standard Math::Complex module.
5164
5165     use Math::Complex;
5166     print sqrt(-2);    # prints 1.4142135623731i
5167
5168 =item srand EXPR
5169
5170 =item srand
5171
5172 Sets the random number seed for the C<rand> operator.
5173
5174 The point of the function is to "seed" the C<rand> function so that
5175 C<rand> can produce a different sequence each time you run your
5176 program.
5177
5178 If srand() is not called explicitly, it is called implicitly at the
5179 first use of the C<rand> operator.  However, this was not the case in
5180 versions of Perl before 5.004, so if your script will run under older
5181 Perl versions, it should call C<srand>.
5182
5183 Most programs won't even call srand() at all, except those that
5184 need a cryptographically-strong starting point rather than the
5185 generally acceptable default, which is based on time of day,
5186 process ID, and memory allocation, or the F</dev/urandom> device,
5187 if available.
5188
5189 You can call srand($seed) with the same $seed to reproduce the
5190 I<same> sequence from rand(), but this is usually reserved for
5191 generating predictable results for testing or debugging.
5192 Otherwise, don't call srand() more than once in your program.
5193
5194 Do B<not> call srand() (i.e. without an argument) more than once in
5195 a script.  The internal state of the random number generator should
5196 contain more entropy than can be provided by any seed, so calling
5197 srand() again actually I<loses> randomness.
5198
5199 Most implementations of C<srand> take an integer and will silently
5200 truncate decimal numbers.  This means C<srand(42)> will usually
5201 produce the same results as C<srand(42.1)>.  To be safe, always pass
5202 C<srand> an integer.
5203
5204 In versions of Perl prior to 5.004 the default seed was just the
5205 current C<time>.  This isn't a particularly good seed, so many old
5206 programs supply their own seed value (often C<time ^ $$> or C<time ^
5207 ($$ + ($$ << 15))>), but that isn't necessary any more.
5208
5209 Note that you need something much more random than the default seed for
5210 cryptographic purposes.  Checksumming the compressed output of one or more
5211 rapidly changing operating system status programs is the usual method.  For
5212 example:
5213
5214     srand (time ^ $$ ^ unpack "%L*", `ps axww | gzip`);
5215
5216 If you're particularly concerned with this, see the C<Math::TrulyRandom>
5217 module in CPAN.
5218
5219 Frequently called programs (like CGI scripts) that simply use
5220
5221     time ^ $$
5222
5223 for a seed can fall prey to the mathematical property that
5224
5225     a^b == (a+1)^(b+1)
5226
5227 one-third of the time.  So don't do that.
5228
5229 =item stat FILEHANDLE
5230
5231 =item stat EXPR
5232
5233 =item stat
5234
5235 Returns a 13-element list giving the status info for a file, either
5236 the file opened via FILEHANDLE, or named by EXPR.  If EXPR is omitted,
5237 it stats C<$_>.  Returns a null list if the stat fails.  Typically used
5238 as follows:
5239
5240     ($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
5241        $atime,$mtime,$ctime,$blksize,$blocks)
5242            = stat($filename);
5243
5244 Not all fields are supported on all filesystem types.  Here are the
5245 meaning of the fields:
5246
5247   0 dev      device number of filesystem
5248   1 ino      inode number
5249   2 mode     file mode  (type and permissions)
5250   3 nlink    number of (hard) links to the file
5251   4 uid      numeric user ID of file's owner
5252   5 gid      numeric group ID of file's owner
5253   6 rdev     the device identifier (special files only)
5254   7 size     total size of file, in bytes
5255   8 atime    last access time in seconds since the epoch
5256   9 mtime    last modify time in seconds since the epoch
5257  10 ctime    inode change time in seconds since the epoch (*)
5258  11 blksize  preferred block size for file system I/O
5259  12 blocks   actual number of blocks allocated
5260
5261 (The epoch was at 00:00 January 1, 1970 GMT.)
5262
5263 (*) The ctime field is non-portable, in particular you cannot expect
5264 it to be a "creation time", see L<perlport/"Files and Filesystems">
5265 for details.
5266
5267 If stat is passed the special filehandle consisting of an underline, no
5268 stat is done, but the current contents of the stat structure from the
5269 last stat or filetest are returned.  Example:
5270
5271     if (-x $file && (($d) = stat(_)) && $d < 0) {
5272         print "$file is executable NFS file\n";
5273     }
5274
5275 (This works on machines only for which the device number is negative
5276 under NFS.)
5277
5278 Because the mode contains both the file type and its permissions, you
5279 should mask off the file type portion and (s)printf using a C<"%o">
5280 if you want to see the real permissions.
5281
5282     $mode = (stat($filename))[2];
5283     printf "Permissions are %04o\n", $mode & 07777;
5284
5285 In scalar context, C<stat> returns a boolean value indicating success
5286 or failure, and, if successful, sets the information associated with
5287 the special filehandle C<_>.
5288
5289 The File::stat module provides a convenient, by-name access mechanism:
5290
5291     use File::stat;
5292     $sb = stat($filename);
5293     printf "File is %s, size is %s, perm %04o, mtime %s\n",
5294         $filename, $sb->size, $sb->mode & 07777,
5295         scalar localtime $sb->mtime;
5296
5297 You can import symbolic mode constants (C<S_IF*>) and functions
5298 (C<S_IS*>) from the Fcntl module:
5299
5300     use Fcntl ':mode';
5301
5302     $mode = (stat($filename))[2];
5303
5304     $user_rwx      = ($mode & S_IRWXU) >> 6;
5305     $group_read    = ($mode & S_IRGRP) >> 3;
5306     $other_execute =  $mode & S_IXOTH;
5307
5308     printf "Permissions are %04o\n", S_IMODE($mode), "\n";
5309
5310     $is_setuid     =  $mode & S_ISUID;
5311     $is_setgid     =  S_ISDIR($mode);
5312
5313 You could write the last two using the C<-u> and C<-d> operators.
5314 The commonly available S_IF* constants are
5315
5316     # Permissions: read, write, execute, for user, group, others.
5317
5318     S_IRWXU S_IRUSR S_IWUSR S_IXUSR
5319     S_IRWXG S_IRGRP S_IWGRP S_IXGRP
5320     S_IRWXO S_IROTH S_IWOTH S_IXOTH
5321
5322     # Setuid/Setgid/Stickiness/SaveText.
5323     # Note that the exact meaning of these is system dependent.
5324
5325     S_ISUID S_ISGID S_ISVTX S_ISTXT
5326
5327     # File types.  Not necessarily all are available on your system.
5328
5329     S_IFREG S_IFDIR S_IFLNK S_IFBLK S_ISCHR S_IFIFO S_IFSOCK S_IFWHT S_ENFMT
5330
5331     # The following are compatibility aliases for S_IRUSR, S_IWUSR, S_IXUSR.
5332
5333     S_IREAD S_IWRITE S_IEXEC
5334
5335 and the S_IF* functions are
5336
5337     S_IMODE($mode)      the part of $mode containing the permission bits
5338                         and the setuid/setgid/sticky bits
5339
5340     S_IFMT($mode)       the part of $mode containing the file type
5341                         which can be bit-anded with e.g. S_IFREG
5342                         or with the following functions
5343
5344     # The operators -f, -d, -l, -b, -c, -p, and -s.
5345
5346     S_ISREG($mode) S_ISDIR($mode) S_ISLNK($mode)
5347     S_ISBLK($mode) S_ISCHR($mode) S_ISFIFO($mode) S_ISSOCK($mode)
5348
5349     # No direct -X operator counterpart, but for the first one
5350     # the -g operator is often equivalent.  The ENFMT stands for
5351     # record flocking enforcement, a platform-dependent feature.
5352
5353     S_ISENFMT($mode) S_ISWHT($mode)
5354
5355 See your native chmod(2) and stat(2) documentation for more details
5356 about the S_* constants.  To get status info for a symbolic link
5357 instead of the target file behind the link, use the C<lstat> function.
5358
5359 =item study SCALAR
5360
5361 =item study
5362
5363 Takes extra time to study SCALAR (C<$_> if unspecified) in anticipation of
5364 doing many pattern matches on the string before it is next modified.
5365 This may or may not save time, depending on the nature and number of
5366 patterns you are searching on, and on the distribution of character
5367 frequencies in the string to be searched--you probably want to compare
5368 run times with and without it to see which runs faster.  Those loops
5369 which scan for many short constant strings (including the constant
5370 parts of more complex patterns) will benefit most.  You may have only
5371 one C<study> active at a time--if you study a different scalar the first
5372 is "unstudied".  (The way C<study> works is this: a linked list of every
5373 character in the string to be searched is made, so we know, for
5374 example, where all the C<'k'> characters are.  From each search string,
5375 the rarest character is selected, based on some static frequency tables
5376 constructed from some C programs and English text.  Only those places
5377 that contain this "rarest" character are examined.)
5378
5379 For example, here is a loop that inserts index producing entries
5380 before any line containing a certain pattern:
5381
5382     while (<>) {
5383         study;
5384         print ".IX foo\n"       if /\bfoo\b/;
5385         print ".IX bar\n"       if /\bbar\b/;
5386         print ".IX blurfl\n"    if /\bblurfl\b/;
5387         # ...
5388         print;
5389     }
5390
5391 In searching for C</\bfoo\b/>, only those locations in C<$_> that contain C<f>
5392 will be looked at, because C<f> is rarer than C<o>.  In general, this is
5393 a big win except in pathological cases.  The only question is whether
5394 it saves you more time than it took to build the linked list in the
5395 first place.
5396
5397 Note that if you have to look for strings that you don't know till
5398 runtime, you can build an entire loop as a string and C<eval> that to
5399 avoid recompiling all your patterns all the time.  Together with
5400 undefining C<$/> to input entire files as one record, this can be very
5401 fast, often faster than specialized programs like fgrep(1).  The following
5402 scans a list of files (C<@files>) for a list of words (C<@words>), and prints
5403 out the names of those files that contain a match:
5404
5405     $search = 'while (<>) { study;';
5406     foreach $word (@words) {
5407         $search .= "++\$seen{\$ARGV} if /\\b$word\\b/;\n";
5408     }
5409     $search .= "}";
5410     @ARGV = @files;
5411     undef $/;
5412     eval $search;               # this screams
5413     $/ = "\n";          # put back to normal input delimiter
5414     foreach $file (sort keys(%seen)) {
5415         print $file, "\n";
5416     }
5417
5418 =item sub NAME BLOCK
5419
5420 =item sub NAME (PROTO) BLOCK
5421
5422 =item sub NAME : ATTRS BLOCK
5423
5424 =item sub NAME (PROTO) : ATTRS BLOCK
5425
5426 This is subroutine definition, not a real function I<per se>.
5427 Without a BLOCK it's just a forward declaration.  Without a NAME,
5428 it's an anonymous function declaration, and does actually return
5429 a value: the CODE ref of the closure you just created.
5430
5431 See L<perlsub> and L<perlref> for details about subroutines and
5432 references, and L<attributes> and L<Attribute::Handlers> for more
5433 information about attributes.
5434
5435 =item substr EXPR,OFFSET,LENGTH,REPLACEMENT
5436
5437 =item substr EXPR,OFFSET,LENGTH
5438
5439 =item substr EXPR,OFFSET
5440
5441 Extracts a substring out of EXPR and returns it.  First character is at
5442 offset C<0>, or whatever you've set C<$[> to (but don't do that).
5443 If OFFSET is negative (or more precisely, less than C<$[>), starts
5444 that far from the end of the string.  If LENGTH is omitted, returns
5445 everything to the end of the string.  If LENGTH is negative, leaves that
5446 many characters off the end of the string.
5447
5448 You can use the substr() function as an lvalue, in which case EXPR
5449 must itself be an lvalue.  If you assign something shorter than LENGTH,
5450 the string will shrink, and if you assign something longer than LENGTH,
5451 the string will grow to accommodate it.  To keep the string the same
5452 length you may need to pad or chop your value using C<sprintf>.
5453
5454 If OFFSET and LENGTH specify a substring that is partly outside the
5455 string, only the part within the string is returned.  If the substring
5456 is beyond either end of the string, substr() returns the undefined
5457 value and produces a warning.  When used as an lvalue, specifying a
5458 substring that is entirely outside the string is a fatal error.
5459 Here's an example showing the behavior for boundary cases:
5460
5461     my $name = 'fred';
5462     substr($name, 4) = 'dy';            # $name is now 'freddy'
5463     my $null = substr $name, 6, 2;      # returns '' (no warning)
5464     my $oops = substr $name, 7;         # returns undef, with warning
5465     substr($name, 7) = 'gap';           # fatal error
5466
5467 An alternative to using substr() as an lvalue is to specify the
5468 replacement string as the 4th argument.  This allows you to replace
5469 parts of the EXPR and return what was there before in one operation,
5470 just as you can with splice().
5471
5472 If the lvalue returned by substr is used after the EXPR is changed in
5473 any way, the behaviour may not be as expected and is subject to change.
5474 This caveat includes code such as C<print(substr($foo,$a,$b)=$bar)> or
5475 C<(substr($foo,$a,$b)=$bar)=$fud> (where $foo is changed via the
5476 substring assignment, and then the substr is used again), or where a
5477 substr() is aliased via a C<foreach> loop or passed as a parameter or
5478 a reference to it is taken and then the alias, parameter, or deref'd
5479 reference either is used after the original EXPR has been changed or
5480 is assigned to and then used a second time.
5481
5482 =item symlink OLDFILE,NEWFILE
5483
5484 Creates a new filename symbolically linked to the old filename.
5485 Returns C<1> for success, C<0> otherwise.  On systems that don't support
5486 symbolic links, produces a fatal error at run time.  To check for that,
5487 use eval:
5488
5489     $symlink_exists = eval { symlink("",""); 1 };
5490
5491 =item syscall LIST
5492
5493 Calls the system call specified as the first element of the list,
5494 passing the remaining elements as arguments to the system call.  If
5495 unimplemented, produces a fatal error.  The arguments are interpreted
5496 as follows: if a given argument is numeric, the argument is passed as
5497 an int.  If not, the pointer to the string value is passed.  You are
5498 responsible to make sure a string is pre-extended long enough to
5499 receive any result that might be written into a string.  You can't use a
5500 string literal (or other read-only string) as an argument to C<syscall>
5501 because Perl has to assume that any string pointer might be written
5502 through.  If your
5503 integer arguments are not literals and have never been interpreted in a
5504 numeric context, you may need to add C<0> to them to force them to look
5505 like numbers.  This emulates the C<syswrite> function (or vice versa):
5506
5507     require 'syscall.ph';               # may need to run h2ph
5508     $s = "hi there\n";
5509     syscall(&SYS_write, fileno(STDOUT), $s, length $s);
5510
5511 Note that Perl supports passing of up to only 14 arguments to your system call,
5512 which in practice should usually suffice.
5513
5514 Syscall returns whatever value returned by the system call it calls.
5515 If the system call fails, C<syscall> returns C<-1> and sets C<$!> (errno).
5516 Note that some system calls can legitimately return C<-1>.  The proper
5517 way to handle such calls is to assign C<$!=0;> before the call and
5518 check the value of C<$!> if syscall returns C<-1>.
5519
5520 There's a problem with C<syscall(&SYS_pipe)>: it returns the file
5521 number of the read end of the pipe it creates.  There is no way
5522 to retrieve the file number of the other end.  You can avoid this
5523 problem by using C<pipe> instead.
5524
5525 =item sysopen FILEHANDLE,FILENAME,MODE
5526
5527 =item sysopen FILEHANDLE,FILENAME,MODE,PERMS
5528
5529 Opens the file whose filename is given by FILENAME, and associates it
5530 with FILEHANDLE.  If FILEHANDLE is an expression, its value is used as
5531 the name of the real filehandle wanted.  This function calls the
5532 underlying operating system's C<open> function with the parameters
5533 FILENAME, MODE, PERMS.
5534
5535 The possible values and flag bits of the MODE parameter are
5536 system-dependent; they are available via the standard module C<Fcntl>.
5537 See the documentation of your operating system's C<open> to see which
5538 values and flag bits are available.  You may combine several flags
5539 using the C<|>-operator.
5540
5541 Some of the most common values are C<O_RDONLY> for opening the file in
5542 read-only mode, C<O_WRONLY> for opening the file in write-only mode,
5543 and C<O_RDWR> for opening the file in read-write mode, and.
5544
5545 For historical reasons, some values work on almost every system
5546 supported by perl: zero means read-only, one means write-only, and two
5547 means read/write.  We know that these values do I<not> work under
5548 OS/390 & VM/ESA Unix and on the Macintosh; you probably don't want to
5549 use them in new code.
5550
5551 If the file named by FILENAME does not exist and the C<open> call creates
5552 it (typically because MODE includes the C<O_CREAT> flag), then the value of
5553 PERMS specifies the permissions of the newly created file.  If you omit
5554 the PERMS argument to C<sysopen>, Perl uses the octal value C<0666>.
5555 These permission values need to be in octal, and are modified by your
5556 process's current C<umask>.
5557
5558 In many systems the C<O_EXCL> flag is available for opening files in
5559 exclusive mode.  This is B<not> locking: exclusiveness means here that
5560 if the file already exists, sysopen() fails.  The C<O_EXCL> wins
5561 C<O_TRUNC>.
5562
5563 Sometimes you may want to truncate an already-existing file: C<O_TRUNC>.
5564
5565 You should seldom if ever use C<0644> as argument to C<sysopen>, because
5566 that takes away the user's option to have a more permissive umask.
5567 Better to omit it.  See the perlfunc(1) entry on C<umask> for more
5568 on this.
5569
5570 Note that C<sysopen> depends on the fdopen() C library function.
5571 On many UNIX systems, fdopen() is known to fail when file descriptors
5572 exceed a certain value, typically 255. If you need more file
5573 descriptors than that, consider rebuilding Perl to use the C<sfio>
5574 library, or perhaps using the POSIX::open() function.
5575
5576 See L<perlopentut> for a kinder, gentler explanation of opening files.
5577
5578 =item sysread FILEHANDLE,SCALAR,LENGTH,OFFSET
5579
5580 =item sysread FILEHANDLE,SCALAR,LENGTH
5581
5582 Attempts to read LENGTH bytes of data into variable SCALAR from the
5583 specified FILEHANDLE, using the system call read(2).  It bypasses
5584 buffered IO, so mixing this with other kinds of reads, C<print>,
5585 C<write>, C<seek>, C<tell>, or C<eof> can cause confusion because the
5586 perlio or stdio layers usually buffers data.  Returns the number of
5587 bytes actually read, C<0> at end of file, or undef if there was an
5588 error (in the latter case C<$!> is also set).  SCALAR will be grown or
5589 shrunk so that the last byte actually read is the last byte of the
5590 scalar after the read.
5591
5592 An OFFSET may be specified to place the read data at some place in the
5593 string other than the beginning.  A negative OFFSET specifies
5594 placement at that many characters counting backwards from the end of
5595 the string.  A positive OFFSET greater than the length of SCALAR
5596 results in the string being padded to the required size with C<"\0">
5597 bytes before the result of the read is appended.
5598
5599 There is no syseof() function, which is ok, since eof() doesn't work
5600 very well on device files (like ttys) anyway.  Use sysread() and check
5601 for a return value for 0 to decide whether you're done.
5602
5603 Note that if the filehandle has been marked as C<:utf8> Unicode
5604 characters are read instead of bytes (the LENGTH, OFFSET, and the
5605 return value of sysread() are in Unicode characters).
5606 The C<:encoding(...)> layer implicitly introduces the C<:utf8> layer.
5607 See L</binmode>, L</open>, and the C<open> pragma, L<open>.
5608
5609 =item sysseek FILEHANDLE,POSITION,WHENCE
5610
5611 Sets FILEHANDLE's system position in bytes using the system call
5612 lseek(2).  FILEHANDLE may be an expression whose value gives the name
5613 of the filehandle.  The values for WHENCE are C<0> to set the new
5614 position to POSITION, C<1> to set the it to the current position plus
5615 POSITION, and C<2> to set it to EOF plus POSITION (typically
5616 negative).
5617
5618 Note the I<in bytes>: even if the filehandle has been set to operate
5619 on characters (for example by using the C<:utf8> I/O layer), tell()
5620 will return byte offsets, not character offsets (because implementing
5621 that would render sysseek() very slow).
5622
5623 sysseek() bypasses normal buffered IO, so mixing this with reads (other
5624 than C<sysread>, for example &gt;&lt or read()) C<print>, C<write>,
5625 C<seek>, C<tell>, or C<eof> may cause confusion.
5626
5627 For WHENCE, you may also use the constants C<SEEK_SET>, C<SEEK_CUR>,
5628 and C<SEEK_END> (start of the file, current position, end of the file)
5629 from the Fcntl module.  Use of the constants is also more portable
5630 than relying on 0, 1, and 2.  For example to define a "systell" function:
5631
5632         use Fnctl 'SEEK_CUR';
5633         sub systell { sysseek($_[0], 0, SEEK_CUR) }
5634
5635 Returns the new position, or the undefined value on failure.  A position
5636 of zero is returned as the string C<"0 but true">; thus C<sysseek> returns
5637 true on success and false on failure, yet you can still easily determine
5638 the new position.
5639
5640 =item system LIST
5641
5642 =item system PROGRAM LIST
5643
5644 Does exactly the same thing as C<exec LIST>, except that a fork is
5645 done first, and the parent process waits for the child process to
5646 complete.  Note that argument processing varies depending on the
5647 number of arguments.  If there is more than one argument in LIST,
5648 or if LIST is an array with more than one value, starts the program
5649 given by the first element of the list with arguments given by the
5650 rest of the list.  If there is only one scalar argument, the argument
5651 is checked for shell metacharacters, and if there are any, the
5652 entire argument is passed to the system's command shell for parsing
5653 (this is C</bin/sh -c> on Unix platforms, but varies on other
5654 platforms).  If there are no shell metacharacters in the argument,
5655 it is split into words and passed directly to C<execvp>, which is
5656 more efficient.
5657
5658 Beginning with v5.6.0, Perl will attempt to flush all files opened for
5659 output before any operation that may do a fork, but this may not be
5660 supported on some platforms (see L<perlport>).  To be safe, you may need
5661 to set C<$|> ($AUTOFLUSH in English) or call the C<autoflush()> method
5662 of C<IO::Handle> on any open handles.
5663
5664 The return value is the exit status of the program as returned by the
5665 C<wait> call.  To get the actual exit value shift right by eight (see below).
5666 See also L</exec>.  This is I<not> what you want to use to capture
5667 the output from a command, for that you should use merely backticks or
5668 C<qx//>, as described in L<perlop/"`STRING`">.  Return value of -1
5669 indicates a failure to start the program (inspect $! for the reason).
5670
5671 Like C<exec>, C<system> allows you to lie to a program about its name if
5672 you use the C<system PROGRAM LIST> syntax.  Again, see L</exec>.
5673
5674 Because C<system> and backticks block C<SIGINT> and C<SIGQUIT>,
5675 killing the program they're running doesn't actually interrupt
5676 your program.
5677
5678     @args = ("command", "arg1", "arg2");
5679     system(@args) == 0
5680          or die "system @args failed: $?"
5681
5682 You can check all the failure possibilities by inspecting
5683 C<$?> like this:
5684
5685     $exit_value  = $? >> 8;
5686     $signal_num  = $? & 127;
5687     $dumped_core = $? & 128;
5688
5689 or more portably by using the W*() calls of the POSIX extension;
5690 see L<perlport> for more information.
5691
5692 When the arguments get executed via the system shell, results
5693 and return codes will be subject to its quirks and capabilities.
5694 See L<perlop/"`STRING`"> and L</exec> for details.
5695
5696 =item syswrite FILEHANDLE,SCALAR,LENGTH,OFFSET
5697
5698 =item syswrite FILEHANDLE,SCALAR,LENGTH
5699
5700 =item syswrite FILEHANDLE,SCALAR
5701
5702 Attempts to write LENGTH bytes of data from variable SCALAR to the
5703 specified FILEHANDLE, using the system call write(2).  If LENGTH is
5704 not specified, writes whole SCALAR.  It bypasses buffered IO, so
5705 mixing this with reads (other than C<sysread())>, C<print>, C<write>,
5706 C<seek>, C<tell>, or C<eof> may cause confusion because the perlio and
5707 stdio layers usually buffers data.  Returns the number of bytes
5708 actually written, or C<undef> if there was an error (in this case the
5709 errno variable C<$!> is also set).  If the LENGTH is greater than the
5710 available data in the SCALAR after the OFFSET, only as much data as is
5711 available will be written.
5712
5713 An OFFSET may be specified to write the data from some part of the
5714 string other than the beginning.  A negative OFFSET specifies writing
5715 that many characters counting backwards from the end of the string.
5716 In the case the SCALAR is empty you can use OFFSET but only zero offset.
5717
5718 Note that if the filehandle has been marked as C<:utf8>,
5719 Unicode characters are written instead of bytes (the LENGTH, OFFSET,
5720 and the return value of syswrite() are in Unicode characters).
5721 The C<:encoding(...)> layer implicitly introduces the C<:utf8> layer.
5722 See L</binmode>, L</open>, and the C<open> pragma, L<open>.
5723
5724 =item tell FILEHANDLE
5725
5726 =item tell
5727
5728 Returns the current position I<in bytes> for FILEHANDLE, or -1 on
5729 error.  FILEHANDLE may be an expression whose value gives the name of
5730 the actual filehandle.  If FILEHANDLE is omitted, assumes the file
5731 last read.
5732
5733 Note the I<in bytes>: even if the filehandle has been set to
5734 operate on characters (for example by using the C<:utf8> open
5735 layer), tell() will return byte offsets, not character offsets
5736 (because that would render seek() and tell() rather slow).
5737
5738 The return value of tell() for the standard streams like the STDIN
5739 depends on the operating system: it may return -1 or something else.
5740 tell() on pipes, fifos, and sockets usually returns -1.
5741
5742 There is no C<systell> function.  Use C<sysseek(FH, 0, 1)> for that.
5743
5744 Do not use tell() on a filehandle that has been opened using
5745 sysopen(), use sysseek() for that as described above.  Why?  Because
5746 sysopen() creates unbuffered, "raw", filehandles, while open() creates
5747 buffered filehandles.  sysseek() make sense only on the first kind,
5748 tell() only makes sense on the second kind.
5749
5750 =item telldir DIRHANDLE
5751
5752 Returns the current position of the C<readdir> routines on DIRHANDLE.
5753 Value may be given to C<seekdir> to access a particular location in a
5754 directory.  Has the same caveats about possible directory compaction as
5755 the corresponding system library routine.
5756
5757 =item tie VARIABLE,CLASSNAME,LIST
5758
5759 This function binds a variable to a package class that will provide the
5760 implementation for the variable.  VARIABLE is the name of the variable
5761 to be enchanted.  CLASSNAME is the name of a class implementing objects
5762 of correct type.  Any additional arguments are passed to the C<new>
5763 method of the class (meaning C<TIESCALAR>, C<TIEHANDLE>, C<TIEARRAY>,
5764 or C<TIEHASH>).  Typically these are arguments such as might be passed
5765 to the C<dbm_open()> function of C.  The object returned by the C<new>
5766 method is also returned by the C<tie> function, which would be useful
5767 if you want to access other methods in CLASSNAME.
5768
5769 Note that functions such as C<keys> and C<values> may return huge lists
5770 when used on large objects, like DBM files.  You may prefer to use the
5771 C<each> function to iterate over such.  Example:
5772
5773     # print out history file offsets
5774     use NDBM_File;
5775     tie(%HIST, 'NDBM_File', '/usr/lib/news/history', 1, 0);
5776     while (($key,$val) = each %HIST) {
5777         print $key, ' = ', unpack('L',$val), "\n";
5778     }
5779     untie(%HIST);
5780
5781 A class implementing a hash should have the following methods:
5782
5783     TIEHASH classname, LIST
5784     FETCH this, key
5785     STORE this, key, value
5786     DELETE this, key
5787     CLEAR this
5788     EXISTS this, key
5789     FIRSTKEY this
5790     NEXTKEY this, lastkey
5791     DESTROY this
5792     UNTIE this
5793
5794 A class implementing an ordinary array should have the following methods:
5795
5796     TIEARRAY classname, LIST
5797     FETCH this, key
5798     STORE this, key, value
5799     FETCHSIZE this
5800     STORESIZE this, count
5801     CLEAR this
5802     PUSH this, LIST
5803     POP this
5804     SHIFT this
5805     UNSHIFT this, LIST
5806     SPLICE this, offset, length, LIST
5807     EXTEND this, count
5808     DESTROY this
5809     UNTIE this
5810
5811 A class implementing a file handle should have the following methods:
5812
5813     TIEHANDLE classname, LIST
5814     READ this, scalar, length, offset
5815     READLINE this
5816     GETC this
5817     WRITE this, scalar, length, offset
5818     PRINT this, LIST
5819     PRINTF this, format, LIST
5820     BINMODE this
5821     EOF this
5822     FILENO this
5823     SEEK this, position, whence
5824     TELL this
5825     OPEN this, mode, LIST
5826     CLOSE this
5827     DESTROY this
5828     UNTIE this
5829
5830 A class implementing a scalar should have the following methods:
5831
5832     TIESCALAR classname, LIST
5833     FETCH this,
5834     STORE this, value
5835     DESTROY this
5836     UNTIE this
5837
5838 Not all methods indicated above need be implemented.  See L<perltie>,
5839 L<Tie::Hash>, L<Tie::Array>, L<Tie::Scalar>, and L<Tie::Handle>.
5840
5841 Unlike C<dbmopen>, the C<tie> function will not use or require a module
5842 for you--you need to do that explicitly yourself.  See L<DB_File>
5843 or the F<Config> module for interesting C<tie> implementations.
5844
5845 For further details see L<perltie>, L<"tied VARIABLE">.
5846
5847 =item tied VARIABLE
5848
5849 Returns a reference to the object underlying VARIABLE (the same value
5850 that was originally returned by the C<tie> call that bound the variable
5851 to a package.)  Returns the undefined value if VARIABLE isn't tied to a
5852 package.
5853
5854 =item time
5855
5856 Returns the number of non-leap seconds since whatever time the system
5857 considers to be the epoch (that's 00:00:00, January 1, 1904 for Mac OS,
5858 and 00:00:00 UTC, January 1, 1970 for most other systems).
5859 Suitable for feeding to C<gmtime> and C<localtime>.
5860
5861 For measuring time in better granularity than one second,
5862 you may use either the Time::HiRes module (from CPAN, and starting from
5863 Perl 5.8 part of the standard distribution), or if you have
5864 gettimeofday(2), you may be able to use the C<syscall> interface of Perl.
5865 See L<perlfaq8> for details.
5866
5867 =item times
5868
5869 Returns a four-element list giving the user and system times, in
5870 seconds, for this process and the children of this process.
5871
5872     ($user,$system,$cuser,$csystem) = times;
5873
5874 In scalar context, C<times> returns C<$user>.
5875
5876 =item tr///
5877
5878 The transliteration operator.  Same as C<y///>.  See L<perlop>.
5879
5880 =item truncate FILEHANDLE,LENGTH
5881
5882 =item truncate EXPR,LENGTH
5883
5884 Truncates the file opened on FILEHANDLE, or named by EXPR, to the
5885 specified length.  Produces a fatal error if truncate isn't implemented
5886 on your system.  Returns true if successful, the undefined value
5887 otherwise.
5888
5889 The behavior is undefined if LENGTH is greater than the length of the
5890 file.
5891
5892 =item uc EXPR
5893
5894 =item uc
5895
5896 Returns an uppercased version of EXPR.  This is the internal function
5897 implementing the C<\U> escape in double-quoted strings.  Respects
5898 current LC_CTYPE locale if C<use locale> in force.  See L<perllocale>
5899 and L<perlunicode> for more details about locale and Unicode support.
5900 It does not attempt to do titlecase mapping on initial letters.  See
5901 C<ucfirst> for that.
5902
5903 If EXPR is omitted, uses C<$_>.
5904
5905 =item ucfirst EXPR
5906
5907 =item ucfirst
5908
5909 Returns the value of EXPR with the first character in uppercase
5910 (titlecase in Unicode).  This is the internal function implementing
5911 the C<\u> escape in double-quoted strings.  Respects current LC_CTYPE
5912 locale if C<use locale> in force.  See L<perllocale> and L<perlunicode>
5913 for more details about locale and Unicode support.
5914
5915 If EXPR is omitted, uses C<$_>.
5916
5917 =item umask EXPR
5918
5919 =item umask
5920
5921 Sets the umask for the process to EXPR and returns the previous value.
5922 If EXPR is omitted, merely returns the current umask.
5923
5924 The Unix permission C<rwxr-x---> is represented as three sets of three
5925 bits, or three octal digits: C<0750> (the leading 0 indicates octal
5926 and isn't one of the digits).  The C<umask> value is such a number
5927 representing disabled permissions bits.  The permission (or "mode")
5928 values you pass C<mkdir> or C<sysopen> are modified by your umask, so
5929 even if you tell C<sysopen> to create a file with permissions C<0777>,
5930 if your umask is C<0022> then the file will actually be created with
5931 permissions C<0755>.  If your C<umask> were C<0027> (group can't
5932 write; others can't read, write, or execute), then passing
5933 C<sysopen> C<0666> would create a file with mode C<0640> (C<0666 &~
5934 027> is C<0640>).
5935
5936 Here's some advice: supply a creation mode of C<0666> for regular
5937 files (in C<sysopen>) and one of C<0777> for directories (in
5938 C<mkdir>) and executable files.  This gives users the freedom of
5939 choice: if they want protected files, they might choose process umasks
5940 of C<022>, C<027>, or even the particularly antisocial mask of C<077>.
5941 Programs should rarely if ever make policy decisions better left to
5942 the user.  The exception to this is when writing files that should be
5943 kept private: mail files, web browser cookies, I<.rhosts> files, and
5944 so on.
5945
5946 If umask(2) is not implemented on your system and you are trying to
5947 restrict access for I<yourself> (i.e., (EXPR & 0700) > 0), produces a
5948 fatal error at run time.  If umask(2) is not implemented and you are
5949 not trying to restrict access for yourself, returns C<undef>.
5950
5951 Remember that a umask is a number, usually given in octal; it is I<not> a
5952 string of octal digits.  See also L</oct>, if all you have is a string.
5953
5954 =item undef EXPR
5955
5956 =item undef
5957
5958 Undefines the value of EXPR, which must be an lvalue.  Use only on a
5959 scalar value, an array (using C<@>), a hash (using C<%>), a subroutine
5960 (using C<&>), or a typeglob (using <*>).  (Saying C<undef $hash{$key}>
5961 will probably not do what you expect on most predefined variables or
5962 DBM list values, so don't do that; see L<delete>.)  Always returns the
5963 undefined value.  You can omit the EXPR, in which case nothing is
5964 undefined, but you still get an undefined value that you could, for
5965 instance, return from a subroutine, assign to a variable or pass as a
5966 parameter.  Examples:
5967
5968     undef $foo;
5969     undef $bar{'blurfl'};      # Compare to: delete $bar{'blurfl'};
5970     undef @ary;
5971     undef %hash;
5972     undef &mysub;
5973     undef *xyz;       # destroys $xyz, @xyz, %xyz, &xyz, etc.
5974     return (wantarray ? (undef, $errmsg) : undef) if $they_blew_it;
5975     select undef, undef, undef, 0.25;
5976     ($a, $b, undef, $c) = &foo;       # Ignore third value returned
5977
5978 Note that this is a unary operator, not a list operator.
5979
5980 =item unlink LIST
5981
5982 =item unlink
5983
5984 Deletes a list of files.  Returns the number of files successfully
5985 deleted.
5986
5987     $cnt = unlink 'a', 'b', 'c';
5988     unlink @goners;
5989     unlink <*.bak>;
5990
5991 Note: C<unlink> will not delete directories unless you are superuser and
5992 the B<-U> flag is supplied to Perl.  Even if these conditions are
5993 met, be warned that unlinking a directory can inflict damage on your
5994 filesystem.  Use C<rmdir> instead.
5995
5996 If LIST is omitted, uses C<$_>.
5997
5998 =item unpack TEMPLATE,EXPR
5999
6000 =item unpack TEMPLATE
6001
6002 C<unpack> does the reverse of C<pack>: it takes a string
6003 and expands it out into a list of values.
6004 (In scalar context, it returns merely the first value produced.)
6005
6006 If EXPR is omitted, unpacks the C<$_> string.
6007
6008 The string is broken into chunks described by the TEMPLATE.  Each chunk
6009 is converted separately to a value.  Typically, either the string is a result
6010 of C<pack>, or the bytes of the string represent a C structure of some
6011 kind.
6012
6013 The TEMPLATE has the same format as in the C<pack> function.
6014 Here's a subroutine that does substring:
6015
6016     sub substr {
6017         my($what,$where,$howmuch) = @_;
6018         unpack("x$where a$howmuch", $what);
6019     }
6020
6021 and then there's
6022
6023     sub ordinal { unpack("c",$_[0]); } # same as ord()
6024
6025 In addition to fields allowed in pack(), you may prefix a field with
6026 a %<number> to indicate that
6027 you want a <number>-bit checksum of the items instead of the items
6028 themselves.  Default is a 16-bit checksum.  Checksum is calculated by
6029 summing numeric values of expanded values (for string fields the sum of
6030 C<ord($char)> is taken, for bit fields the sum of zeroes and ones).
6031
6032 For example, the following
6033 computes the same number as the System V sum program:
6034
6035     $checksum = do {
6036         local $/;  # slurp!
6037         unpack("%32C*",<>) % 65535;
6038     };
6039
6040 The following efficiently counts the number of set bits in a bit vector:
6041
6042     $setbits = unpack("%32b*", $selectmask);
6043
6044 The C<p> and C<P> formats should be used with care.  Since Perl
6045 has no way of checking whether the value passed to C<unpack()>
6046 corresponds to a valid memory location, passing a pointer value that's
6047 not known to be valid is likely to have disastrous consequences.
6048
6049 If there are more pack codes or if the repeat count of a field or a group
6050 is larger than what the remainder of the input string allows, the result
6051 is not well defined: in some cases, the repeat count is decreased, or
6052 C<unpack()> will produce null strings or zeroes, or terminate with an
6053 error. If the input string is longer than one described by the TEMPLATE,
6054 the rest is ignored.
6055
6056 See L</pack> for more examples and notes.
6057
6058 =item untie VARIABLE
6059
6060 Breaks the binding between a variable and a package.  (See C<tie>.)
6061 Has no effect if the variable is not tied.
6062
6063 =item unshift ARRAY,LIST
6064
6065 Does the opposite of a C<shift>.  Or the opposite of a C<push>,
6066 depending on how you look at it.  Prepends list to the front of the
6067 array, and returns the new number of elements in the array.
6068
6069     unshift(@ARGV, '-e') unless $ARGV[0] =~ /^-/;
6070
6071 Note the LIST is prepended whole, not one element at a time, so the
6072 prepended elements stay in the same order.  Use C<reverse> to do the
6073 reverse.
6074
6075 =item use Module VERSION LIST
6076
6077 =item use Module VERSION
6078
6079 =item use Module LIST
6080
6081 =item use Module
6082
6083 =item use VERSION
6084
6085 Imports some semantics into the current package from the named module,
6086 generally by aliasing certain subroutine or variable names into your
6087 package.  It is exactly equivalent to
6088
6089     BEGIN { require Module; import Module LIST; }
6090
6091 except that Module I<must> be a bareword.
6092
6093 VERSION may be either a numeric argument such as 5.006, which will be
6094 compared to C<$]>, or a literal of the form v5.6.1, which will be compared
6095 to C<$^V> (aka $PERL_VERSION.  A fatal error is produced if VERSION is
6096 greater than the version of the current Perl interpreter; Perl will not
6097 attempt to parse the rest of the file.  Compare with L</require>, which can
6098 do a similar check at run time.
6099
6100 Specifying VERSION as a literal of the form v5.6.1 should generally be
6101 avoided, because it leads to misleading error messages under earlier
6102 versions of Perl which do not support this syntax.  The equivalent numeric
6103 version should be used instead.
6104
6105     use v5.6.1;         # compile time version check
6106     use 5.6.1;          # ditto
6107     use 5.006_001;      # ditto; preferred for backwards compatibility
6108
6109 This is often useful if you need to check the current Perl version before
6110 C<use>ing library modules that have changed in incompatible ways from
6111 older versions of Perl.  (We try not to do this more than we have to.)
6112
6113 The C<BEGIN> forces the C<require> and C<import> to happen at compile time.  The
6114 C<require> makes sure the module is loaded into memory if it hasn't been
6115 yet.  The C<import> is not a builtin--it's just an ordinary static method
6116 call into the C<Module> package to tell the module to import the list of
6117 features back into the current package.  The module can implement its
6118 C<import> method any way it likes, though most modules just choose to
6119 derive their C<import> method via inheritance from the C<Exporter> class that
6120 is defined in the C<Exporter> module.  See L<Exporter>.  If no C<import>
6121 method can be found then the call is skipped.
6122
6123 If you do not want to call the package's C<import> method (for instance,
6124 to stop your namespace from being altered), explicitly supply the empty list:
6125
6126     use Module ();
6127
6128 That is exactly equivalent to
6129
6130     BEGIN { require Module }
6131
6132 If the VERSION argument is present between Module and LIST, then the
6133 C<use> will call the VERSION method in class Module with the given
6134 version as an argument.  The default VERSION method, inherited from
6135 the UNIVERSAL class, croaks if the given version is larger than the
6136 value of the variable C<$Module::VERSION>.
6137
6138 Again, there is a distinction between omitting LIST (C<import> called
6139 with no arguments) and an explicit empty LIST C<()> (C<import> not
6140 called).  Note that there is no comma after VERSION!
6141
6142 Because this is a wide-open interface, pragmas (compiler directives)
6143 are also implemented this way.  Currently implemented pragmas are:
6144
6145     use constant;
6146     use diagnostics;
6147     use integer;
6148     use sigtrap  qw(SEGV BUS);
6149     use strict   qw(subs vars refs);
6150     use subs     qw(afunc blurfl);
6151     use warnings qw(all);
6152     use sort     qw(stable _quicksort _mergesort);
6153
6154 Some of these pseudo-modules import semantics into the current
6155 block scope (like C<strict> or C<integer>, unlike ordinary modules,
6156 which import symbols into the current package (which are effective
6157 through the end of the file).
6158
6159 There's a corresponding C<no> command that unimports meanings imported
6160 by C<use>, i.e., it calls C<unimport Module LIST> instead of C<import>.
6161
6162     no integer;
6163     no strict 'refs';
6164     no warnings;
6165
6166 See L<perlmodlib> for a list of standard modules and pragmas.  See L<perlrun>
6167 for the C<-M> and C<-m> command-line options to perl that give C<use>
6168 functionality from the command-line.
6169
6170 =item utime LIST
6171
6172 Changes the access and modification times on each file of a list of
6173 files.  The first two elements of the list must be the NUMERICAL access
6174 and modification times, in that order.  Returns the number of files
6175 successfully changed.  The inode change time of each file is set
6176 to the current time.  For example, this code has the same effect as the
6177 Unix touch(1) command when the files I<already exist>.
6178
6179     #!/usr/bin/perl
6180     $now = time;
6181     utime $now, $now, @ARGV;
6182
6183 B<Note:>  Under NFS, touch(1) uses the time of the NFS server, not
6184 the time of the local machine.  If there is a time synchronization
6185 problem, the NFS server and local machine will have different times.
6186
6187 Since perl 5.7.2, if the first two elements of the list are C<undef>, then
6188 the utime(2) function in the C library will be called with a null second
6189 argument. On most systems, this will set the file's access and
6190 modification times to the current time (i.e. equivalent to the example
6191 above.)
6192
6193     utime undef, undef, @ARGV;
6194
6195 =item values HASH
6196
6197 Returns a list consisting of all the values of the named hash.  (In a
6198 scalar context, returns the number of values.)  The values are
6199 returned in an apparently random order.  The actual random order is
6200 subject to change in future versions of perl, but it is guaranteed to
6201 be the same order as either the C<keys> or C<each> function would
6202 produce on the same (unmodified) hash.
6203
6204 Note that the values are not copied, which means modifying them will
6205 modify the contents of the hash:
6206
6207     for (values %hash)      { s/foo/bar/g }   # modifies %hash values
6208     for (@hash{keys %hash}) { s/foo/bar/g }   # same
6209
6210 As a side effect, calling values() resets the HASH's internal iterator.
6211 See also C<keys>, C<each>, and C<sort>.
6212
6213 =item vec EXPR,OFFSET,BITS
6214
6215 Treats the string in EXPR as a bit vector made up of elements of
6216 width BITS, and returns the value of the element specified by OFFSET
6217 as an unsigned integer.  BITS therefore specifies the number of bits
6218 that are reserved for each element in the bit vector.  This must
6219 be a power of two from 1 to 32 (or 64, if your platform supports
6220 that).
6221
6222 If BITS is 8, "elements" coincide with bytes of the input string.
6223
6224 If BITS is 16 or more, bytes of the input string are grouped into chunks
6225 of size BITS/8, and each group is converted to a number as with
6226 pack()/unpack() with big-endian formats C<n>/C<N> (and analogously
6227 for BITS==64).  See L<"pack"> for details.
6228
6229 If bits is 4 or less, the string is broken into bytes, then the bits
6230 of each byte are broken into 8/BITS groups.  Bits of a byte are
6231 numbered in a little-endian-ish way, as in C<0x01>, C<0x02>,
6232 C<0x04>, C<0x08>, C<0x10>, C<0x20>, C<0x40>, C<0x80>.  For example,
6233 breaking the single input byte C<chr(0x36)> into two groups gives a list
6234 C<(0x6, 0x3)>; breaking it into 4 groups gives C<(0x2, 0x1, 0x3, 0x0)>.
6235
6236 C<vec> may also be assigned to, in which case parentheses are needed
6237 to give the expression the correct precedence as in
6238
6239     vec($image, $max_x * $x + $y, 8) = 3;
6240
6241 If the selected element is outside the string, the value 0 is returned.
6242 If an element off the end of the string is written to, Perl will first
6243 extend the string with sufficiently many zero bytes.   It is an error
6244 to try to write off the beginning of the string (i.e. negative OFFSET).
6245
6246 The string should not contain any character with the value > 255 (which
6247 can only happen if you're using UTF8 encoding).  If it does, it will be
6248 treated as something which is not UTF8 encoded.  When the C<vec> was
6249 assigned to, other parts of your program will also no longer consider the
6250 string to be UTF8 encoded.  In other words, if you do have such characters
6251 in your string, vec() will operate on the actual byte string, and not the
6252 conceptual character string.
6253
6254 Strings created with C<vec> can also be manipulated with the logical
6255 operators C<|>, C<&>, C<^>, and C<~>.  These operators will assume a bit
6256 vector operation is desired when both operands are strings.
6257 See L<perlop/"Bitwise String Operators">.
6258
6259 The following code will build up an ASCII string saying C<'PerlPerlPerl'>.
6260 The comments show the string after each step.  Note that this code works
6261 in the same way on big-endian or little-endian machines.
6262
6263     my $foo = '';
6264     vec($foo,  0, 32) = 0x5065726C;     # 'Perl'
6265
6266     # $foo eq "Perl" eq "\x50\x65\x72\x6C", 32 bits
6267     print vec($foo, 0, 8);              # prints 80 == 0x50 == ord('P')
6268
6269     vec($foo,  2, 16) = 0x5065;         # 'PerlPe'
6270     vec($foo,  3, 16) = 0x726C;         # 'PerlPerl'
6271     vec($foo,  8,  8) = 0x50;           # 'PerlPerlP'
6272     vec($foo,  9,  8) = 0x65;           # 'PerlPerlPe'
6273     vec($foo, 20,  4) = 2;              # 'PerlPerlPe'   . "\x02"
6274     vec($foo, 21,  4) = 7;              # 'PerlPerlPer'
6275                                         # 'r' is "\x72"
6276     vec($foo, 45,  2) = 3;              # 'PerlPerlPer'  . "\x0c"
6277     vec($foo, 93,  1) = 1;              # 'PerlPerlPer'  . "\x2c"
6278     vec($foo, 94,  1) = 1;              # 'PerlPerlPerl'
6279                                         # 'l' is "\x6c"
6280
6281 To transform a bit vector into a string or list of 0's and 1's, use these:
6282
6283     $bits = unpack("b*", $vector);
6284     @bits = split(//, unpack("b*", $vector));
6285
6286 If you know the exact length in bits, it can be used in place of the C<*>.
6287
6288 Here is an example to illustrate how the bits actually fall in place:
6289
6290     #!/usr/bin/perl -wl
6291
6292     print <<'EOT';
6293                                       0         1         2         3
6294                        unpack("V",$_) 01234567890123456789012345678901
6295     ------------------------------------------------------------------
6296     EOT
6297
6298     for $w (0..3) {
6299         $width = 2**$w;
6300         for ($shift=0; $shift < $width; ++$shift) {
6301             for ($off=0; $off < 32/$width; ++$off) {
6302                 $str = pack("B*", "0"x32);
6303                 $bits = (1<<$shift);
6304                 vec($str, $off, $width) = $bits;
6305                 $res = unpack("b*",$str);
6306                 $val = unpack("V", $str);
6307                 write;
6308             }
6309         }
6310     }
6311
6312     format STDOUT =
6313     vec($_,@#,@#) = @<< == @######### @>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
6314     $off, $width, $bits, $val, $res
6315     .
6316     __END__
6317
6318 Regardless of the machine architecture on which it is run, the above
6319 example should print the following table:
6320
6321                                       0         1         2         3
6322                        unpack("V",$_) 01234567890123456789012345678901
6323     ------------------------------------------------------------------
6324     vec($_, 0, 1) = 1   ==          1 10000000000000000000000000000000
6325     vec($_, 1, 1) = 1   ==          2 01000000000000000000000000000000
6326     vec($_, 2, 1) = 1   ==          4 00100000000000000000000000000000
6327     vec($_, 3, 1) = 1   ==          8 00010000000000000000000000000000
6328     vec($_, 4, 1) = 1   ==         16 00001000000000000000000000000000
6329     vec($_, 5, 1) = 1   ==         32 00000100000000000000000000000000
6330     vec($_, 6, 1) = 1   ==         64 00000010000000000000000000000000
6331     vec($_, 7, 1) = 1   ==        128 00000001000000000000000000000000
6332     vec($_, 8, 1) = 1   ==        256 00000000100000000000000000000000
6333     vec($_, 9, 1) = 1   ==        512 00000000010000000000000000000000
6334     vec($_,10, 1) = 1   ==       1024 00000000001000000000000000000000
6335     vec($_,11, 1) = 1   ==       2048 00000000000100000000000000000000
6336     vec($_,12, 1) = 1   ==       4096 00000000000010000000000000000000
6337     vec($_,13, 1) = 1   ==       8192 00000000000001000000000000000000
6338     vec($_,14, 1) = 1   ==      16384 00000000000000100000000000000000
6339     vec($_,15, 1) = 1   ==      32768 00000000000000010000000000000000
6340     vec($_,16, 1) = 1   ==      65536 00000000000000001000000000000000
6341     vec($_,17, 1) = 1   ==     131072 00000000000000000100000000000000
6342     vec($_,18, 1) = 1   ==     262144 00000000000000000010000000000000
6343     vec($_,19, 1) = 1   ==     524288 00000000000000000001000000000000
6344     vec($_,20, 1) = 1   ==    1048576 00000000000000000000100000000000
6345     vec($_,21, 1) = 1   ==    2097152 00000000000000000000010000000000
6346     vec($_,22, 1) = 1   ==    4194304 00000000000000000000001000000000
6347     vec($_,23, 1) = 1   ==    8388608 00000000000000000000000100000000
6348     vec($_,24, 1) = 1   ==   16777216 00000000000000000000000010000000
6349     vec($_,25, 1) = 1   ==   33554432 00000000000000000000000001000000
6350     vec($_,26, 1) = 1   ==   67108864 00000000000000000000000000100000
6351     vec($_,27, 1) = 1   ==  134217728 00000000000000000000000000010000
6352     vec($_,28, 1) = 1   ==  268435456 00000000000000000000000000001000
6353     vec($_,29, 1) = 1   ==  536870912 00000000000000000000000000000100
6354     vec($_,30, 1) = 1   == 1073741824 00000000000000000000000000000010
6355     vec($_,31, 1) = 1   == 2147483648 00000000000000000000000000000001
6356     vec($_, 0, 2) = 1   ==          1 10000000000000000000000000000000
6357     vec($_, 1, 2) = 1   ==          4 00100000000000000000000000000000
6358     vec($_, 2, 2) = 1   ==         16 00001000000000000000000000000000
6359     vec($_, 3, 2) = 1   ==         64 00000010000000000000000000000000
6360     vec($_, 4, 2) = 1   ==        256 00000000100000000000000000000000
6361     vec($_, 5, 2) = 1   ==       1024 00000000001000000000000000000000
6362     vec($_, 6, 2) = 1   ==       4096 00000000000010000000000000000000
6363     vec($_, 7, 2) = 1   ==      16384 00000000000000100000000000000000
6364     vec($_, 8, 2) = 1   ==      65536 00000000000000001000000000000000
6365     vec($_, 9, 2) = 1   ==     262144 00000000000000000010000000000000
6366     vec($_,10, 2) = 1   ==    1048576 00000000000000000000100000000000
6367     vec($_,11, 2) = 1   ==    4194304 00000000000000000000001000000000
6368     vec($_,12, 2) = 1   ==   16777216 00000000000000000000000010000000
6369     vec($_,13, 2) = 1   ==   67108864 00000000000000000000000000100000
6370     vec($_,14, 2) = 1   ==  268435456 00000000000000000000000000001000
6371     vec($_,15, 2) = 1   == 1073741824 00000000000000000000000000000010
6372     vec($_, 0, 2) = 2   ==          2 01000000000000000000000000000000
6373     vec($_, 1, 2) = 2   ==          8 00010000000000000000000000000000
6374     vec($_, 2, 2) = 2   ==         32 00000100000000000000000000000000
6375     vec($_, 3, 2) = 2   ==        128 00000001000000000000000000000000
6376     vec($_, 4, 2) = 2   ==        512 00000000010000000000000000000000
6377     vec($_, 5, 2) = 2   ==       2048 00000000000100000000000000000000
6378     vec($_, 6, 2) = 2   ==       8192 00000000000001000000000000000000
6379     vec($_, 7, 2) = 2   ==      32768 00000000000000010000000000000000
6380     vec($_, 8, 2) = 2   ==     131072 00000000000000000100000000000000
6381     vec($_, 9, 2) = 2   ==     524288 00000000000000000001000000000000
6382     vec($_,10, 2) = 2   ==    2097152 00000000000000000000010000000000
6383     vec($_,11, 2) = 2   ==    8388608 00000000000000000000000100000000
6384     vec($_,12, 2) = 2   ==   33554432 00000000000000000000000001000000
6385     vec($_,13, 2) = 2   ==  134217728 00000000000000000000000000010000
6386     vec($_,14, 2) = 2   ==  536870912 00000000000000000000000000000100
6387     vec($_,15, 2) = 2   == 2147483648 00000000000000000000000000000001
6388     vec($_, 0, 4) = 1   ==          1 10000000000000000000000000000000
6389     vec($_, 1, 4) = 1   ==         16 00001000000000000000000000000000
6390     vec($_, 2, 4) = 1   ==        256 00000000100000000000000000000000
6391     vec($_, 3, 4) = 1   ==       4096 00000000000010000000000000000000
6392     vec($_, 4, 4) = 1   ==      65536 00000000000000001000000000000000
6393     vec($_, 5, 4) = 1   ==    1048576 00000000000000000000100000000000
6394     vec($_, 6, 4) = 1   ==   16777216 00000000000000000000000010000000
6395     vec($_, 7, 4) = 1   ==  268435456 00000000000000000000000000001000
6396     vec($_, 0, 4) = 2   ==          2 01000000000000000000000000000000
6397     vec($_, 1, 4) = 2   ==         32 00000100000000000000000000000000
6398     vec($_, 2, 4) = 2   ==        512 00000000010000000000000000000000
6399     vec($_, 3, 4) = 2   ==       8192 00000000000001000000000000000000
6400     vec($_, 4, 4) = 2   ==     131072 00000000000000000100000000000000
6401     vec($_, 5, 4) = 2   ==    2097152 00000000000000000000010000000000
6402     vec($_, 6, 4) = 2   ==   33554432 00000000000000000000000001000000
6403     vec($_, 7, 4) = 2   ==  536870912 00000000000000000000000000000100
6404     vec($_, 0, 4) = 4   ==          4 00100000000000000000000000000000
6405     vec($_, 1, 4) = 4   ==         64 00000010000000000000000000000000
6406     vec($_, 2, 4) = 4   ==       1024 00000000001000000000000000000000
6407     vec($_, 3, 4) = 4   ==      16384 00000000000000100000000000000000
6408     vec($_, 4, 4) = 4   ==     262144 00000000000000000010000000000000
6409     vec($_, 5, 4) = 4   ==    4194304 00000000000000000000001000000000
6410     vec($_, 6, 4) = 4   ==   67108864 00000000000000000000000000100000
6411     vec($_, 7, 4) = 4   == 1073741824 00000000000000000000000000000010
6412     vec($_, 0, 4) = 8   ==          8 00010000000000000000000000000000
6413     vec($_, 1, 4) = 8   ==        128 00000001000000000000000000000000
6414     vec($_, 2, 4) = 8   ==       2048 00000000000100000000000000000000
6415     vec($_, 3, 4) = 8   ==      32768 00000000000000010000000000000000
6416     vec($_, 4, 4) = 8   ==     524288 00000000000000000001000000000000
6417     vec($_, 5, 4) = 8   ==    8388608 00000000000000000000000100000000
6418     vec($_, 6, 4) = 8   ==  134217728 00000000000000000000000000010000
6419     vec($_, 7, 4) = 8   == 2147483648 00000000000000000000000000000001
6420     vec($_, 0, 8) = 1   ==          1 10000000000000000000000000000000
6421     vec($_, 1, 8) = 1   ==        256 00000000100000000000000000000000
6422     vec($_, 2, 8) = 1   ==      65536 00000000000000001000000000000000
6423     vec($_, 3, 8) = 1   ==   16777216 00000000000000000000000010000000
6424     vec($_, 0, 8) = 2   ==          2 01000000000000000000000000000000
6425     vec($_, 1, 8) = 2   ==        512 00000000010000000000000000000000
6426     vec($_, 2, 8) = 2   ==     131072 00000000000000000100000000000000
6427     vec($_, 3, 8) = 2   ==   33554432 00000000000000000000000001000000
6428     vec($_, 0, 8) = 4   ==          4 00100000000000000000000000000000
6429     vec($_, 1, 8) = 4   ==       1024 00000000001000000000000000000000
6430     vec($_, 2, 8) = 4   ==     262144 00000000000000000010000000000000
6431     vec($_, 3, 8) = 4   ==   67108864 00000000000000000000000000100000
6432     vec($_, 0, 8) = 8   ==          8 00010000000000000000000000000000
6433     vec($_, 1, 8) = 8   ==       2048 00000000000100000000000000000000
6434     vec($_, 2, 8) = 8   ==     524288 00000000000000000001000000000000
6435     vec($_, 3, 8) = 8   ==  134217728 00000000000000000000000000010000
6436     vec($_, 0, 8) = 16  ==         16 00001000000000000000000000000000
6437     vec($_, 1, 8) = 16  ==       4096 00000000000010000000000000000000
6438     vec($_, 2, 8) = 16  ==    1048576 00000000000000000000100000000000
6439     vec($_, 3, 8) = 16  ==  268435456 00000000000000000000000000001000
6440     vec($_, 0, 8) = 32  ==         32 00000100000000000000000000000000
6441     vec($_, 1, 8) = 32  ==       8192 00000000000001000000000000000000
6442     vec($_, 2, 8) = 32  ==    2097152 00000000000000000000010000000000
6443     vec($_, 3, 8) = 32  ==  536870912 00000000000000000000000000000100
6444     vec($_, 0, 8) = 64  ==         64 00000010000000000000000000000000
6445     vec($_, 1, 8) = 64  ==      16384 00000000000000100000000000000000
6446     vec($_, 2, 8) = 64  ==    4194304 00000000000000000000001000000000
6447     vec($_, 3, 8) = 64  == 1073741824 00000000000000000000000000000010
6448     vec($_, 0, 8) = 128 ==        128 00000001000000000000000000000000
6449     vec($_, 1, 8) = 128 ==      32768 00000000000000010000000000000000
6450     vec($_, 2, 8) = 128 ==    8388608 00000000000000000000000100000000
6451     vec($_, 3, 8) = 128 == 2147483648 00000000000000000000000000000001
6452
6453 =item wait
6454
6455 Behaves like the wait(2) system call on your system: it waits for a child
6456 process to terminate and returns the pid of the deceased process, or
6457 C<-1> if there are no child processes.  The status is returned in C<$?>.
6458 Note that a return value of C<-1> could mean that child processes are
6459 being automatically reaped, as described in L<perlipc>.
6460
6461 =item waitpid PID,FLAGS
6462
6463 Waits for a particular child process to terminate and returns the pid of
6464 the deceased process, or C<-1> if there is no such child process.  On some
6465 systems, a value of 0 indicates that there are processes still running.
6466 The status is returned in C<$?>.  If you say
6467
6468     use POSIX ":sys_wait_h";
6469     #...
6470     do {
6471         $kid = waitpid(-1, WNOHANG);
6472     } until $kid > 0;
6473
6474 then you can do a non-blocking wait for all pending zombie processes.
6475 Non-blocking wait is available on machines supporting either the
6476 waitpid(2) or wait4(2) system calls.  However, waiting for a particular
6477 pid with FLAGS of C<0> is implemented everywhere.  (Perl emulates the
6478 system call by remembering the status values of processes that have
6479 exited but have not been harvested by the Perl script yet.)
6480
6481 Note that on some systems, a return value of C<-1> could mean that child
6482 processes are being automatically reaped.  See L<perlipc> for details,
6483 and for other examples.
6484
6485 =item wantarray
6486
6487 Returns true if the context of the currently executing subroutine is
6488 looking for a list value.  Returns false if the context is looking
6489 for a scalar.  Returns the undefined value if the context is looking
6490 for no value (void context).
6491
6492     return unless defined wantarray;    # don't bother doing more
6493     my @a = complex_calculation();
6494     return wantarray ? @a : "@a";
6495
6496 This function should have been named wantlist() instead.
6497
6498 =item warn LIST
6499
6500 Produces a message on STDERR just like C<die>, but doesn't exit or throw
6501 an exception.
6502
6503 If LIST is empty and C<$@> already contains a value (typically from a
6504 previous eval) that value is used after appending C<"\t...caught">
6505 to C<$@>.  This is useful for staying almost, but not entirely similar to
6506 C<die>.
6507
6508 If C<$@> is empty then the string C<"Warning: Something's wrong"> is used.
6509
6510 No message is printed if there is a C<$SIG{__WARN__}> handler
6511 installed.  It is the handler's responsibility to deal with the message
6512 as it sees fit (like, for instance, converting it into a C<die>).  Most
6513 handlers must therefore make arrangements to actually display the
6514 warnings that they are not prepared to deal with, by calling C<warn>
6515 again in the handler.  Note that this is quite safe and will not
6516 produce an endless loop, since C<__WARN__> hooks are not called from
6517 inside one.
6518
6519 You will find this behavior is slightly different from that of
6520 C<$SIG{__DIE__}> handlers (which don't suppress the error text, but can
6521 instead call C<die> again to change it).
6522
6523 Using a C<__WARN__> handler provides a powerful way to silence all
6524 warnings (even the so-called mandatory ones).  An example:
6525
6526     # wipe out *all* compile-time warnings
6527     BEGIN { $SIG{'__WARN__'} = sub { warn $_[0] if $DOWARN } }
6528     my $foo = 10;
6529     my $foo = 20;          # no warning about duplicate my $foo,
6530                            # but hey, you asked for it!
6531     # no compile-time or run-time warnings before here
6532     $DOWARN = 1;
6533
6534     # run-time warnings enabled after here
6535     warn "\$foo is alive and $foo!";     # does show up
6536
6537 See L<perlvar> for details on setting C<%SIG> entries, and for more
6538 examples.  See the Carp module for other kinds of warnings using its
6539 carp() and cluck() functions.
6540
6541 =item write FILEHANDLE
6542
6543 =item write EXPR
6544
6545 =item write
6546
6547 Writes a formatted record (possibly multi-line) to the specified FILEHANDLE,
6548 using the format associated with that file.  By default the format for
6549 a file is the one having the same name as the filehandle, but the
6550 format for the current output channel (see the C<select> function) may be set
6551 explicitly by assigning the name of the format to the C<$~> variable.
6552
6553 Top of form processing is handled automatically:  if there is
6554 insufficient room on the current page for the formatted record, the
6555 page is advanced by writing a form feed, a special top-of-page format
6556 is used to format the new page header, and then the record is written.
6557 By default the top-of-page format is the name of the filehandle with
6558 "_TOP" appended, but it may be dynamically set to the format of your
6559 choice by assigning the name to the C<$^> variable while the filehandle is
6560 selected.  The number of lines remaining on the current page is in
6561 variable C<$->, which can be set to C<0> to force a new page.
6562
6563 If FILEHANDLE is unspecified, output goes to the current default output
6564 channel, which starts out as STDOUT but may be changed by the
6565 C<select> operator.  If the FILEHANDLE is an EXPR, then the expression
6566 is evaluated and the resulting string is used to look up the name of
6567 the FILEHANDLE at run time.  For more on formats, see L<perlform>.
6568
6569 Note that write is I<not> the opposite of C<read>.  Unfortunately.
6570
6571 =item y///
6572
6573 The transliteration operator.  Same as C<tr///>.  See L<perlop>.
6574
6575 =back