fix factual regression (-e doesn't create temporary files anymore)
[p5sagit/p5-mst-13.2.git] / pod / perlfilter.pod
1 =head1 NAME
2
3 perlfilter - Source Filters
4  
5
6 =head1 DESCRIPTION
7
8 This article is about a little-known feature of Perl called
9 I<source filters>. Source filters alter the program text of a module
10 before Perl sees it, much as a C preprocessor alters the source text of
11 a C program before the compiler sees it. This article tells you more
12 about what source filters are, how they work, and how to write your
13 own.
14
15 The original purpose of source filters was to let you encrypt your
16 program source to prevent casual piracy. This isn't all they can do, as
17 you'll soon learn. But first, the basics.
18
19 =head1 CONCEPTS
20
21 Before the Perl interpreter can execute a Perl script, it must first
22 read it from a file into memory for parsing and compilation. If that
23 script itself includes other scripts with a C<use> or C<require>
24 statement, then each of those scripts will have to be read from their
25 respective files as well.
26
27 Now think of each logical connection between the Perl parser and an
28 individual file as a I<source stream>. A source stream is created when
29 the Perl parser opens a file, it continues to exist as the source code
30 is read into memory, and it is destroyed when Perl is finished parsing
31 the file. If the parser encounters a C<require> or C<use> statement in
32 a source stream, a new and distinct stream is created just for that
33 file.
34
35 The diagram below represents a single source stream, with the flow of
36 source from a Perl script file on the left into the Perl parser on the
37 right. This is how Perl normally operates.
38
39     file -------> parser
40
41 There are two important points to remember:
42
43 =over 5
44
45 =item 1.
46
47 Although there can be any number of source streams in existence at any
48 given time, only one will be active.
49
50 =item 2.
51
52 Every source stream is associated with only one file.
53
54 =back
55
56 A source filter is a special kind of Perl module that intercepts and
57 modifies a source stream before it reaches the parser. A source filter
58 changes our diagram like this:
59
60     file ----> filter ----> parser
61
62 If that doesn't make much sense, consider the analogy of a command
63 pipeline. Say you have a shell script stored in the compressed file
64 I<trial.gz>. The simple pipeline command below runs the script without
65 needing to create a temporary file to hold the uncompressed file.
66
67     gunzip -c trial.gz | sh
68
69 In this case, the data flow from the pipeline can be represented as follows:
70
71     trial.gz ----> gunzip ----> sh
72
73 With source filters, you can store the text of your script compressed and use a source filter to uncompress it for Perl's parser:
74
75      compressed           gunzip
76     Perl program ---> source filter ---> parser
77
78 =head1 USING FILTERS
79
80 So how do you use a source filter in a Perl script? Above, I said that
81 a source filter is just a special kind of module. Like all Perl
82 modules, a source filter is invoked with a use statement.
83
84 Say you want to pass your Perl source through the C preprocessor before
85 execution. You could use the existing C<-P> command line option to do
86 this, but as it happens, the source filters distribution comes with a C
87 preprocessor filter module called Filter::cpp. Let's use that instead.
88
89 Below is an example program, C<cpp_test>, which makes use of this filter.
90 Line numbers have been added to allow specific lines to be referenced
91 easily.
92
93     1: use Filter::cpp ;
94     2: #define TRUE 1
95     3: $a = TRUE ;
96     4: print "a = $a\n" ;
97
98 When you execute this script, Perl creates a source stream for the
99 file. Before the parser processes any of the lines from the file, the
100 source stream looks like this:
101
102     cpp_test ---------> parser
103
104 Line 1, C<use Filter::cpp>, includes and installs the C<cpp> filter
105 module. All source filters work this way. The use statement is compiled
106 and executed at compile time, before any more of the file is read, and
107 it attaches the cpp filter to the source stream behind the scenes. Now
108 the data flow looks like this:
109
110     cpp_test ----> cpp filter ----> parser
111
112 As the parser reads the second and subsequent lines from the source
113 stream, it feeds those lines through the C<cpp> source filter before
114 processing them. The C<cpp> filter simply passes each line through the
115 real C preprocessor. The output from the C preprocessor is then
116 inserted back into the source stream by the filter.
117
118                   .-> cpp --.
119                   |         |
120                   |         |
121                   |       <-'
122    cpp_test ----> cpp filter ----> parser
123
124 The parser then sees the following code:
125
126     use Filter::cpp ;
127     $a = 1 ;
128     print "a = $a\n" ;
129
130 Let's consider what happens when the filtered code includes another
131 module with use:
132
133     1: use Filter::cpp ;
134     2: #define TRUE 1
135     3: use Fred ;
136     4: $a = TRUE ;
137     5: print "a = $a\n" ;
138
139 The C<cpp> filter does not apply to the text of the Fred module, only
140 to the text of the file that used it (C<cpp_test>). Although the use
141 statement on line 3 will pass through the cpp filter, the module that
142 gets included (C<Fred>) will not. The source streams look like this
143 after line 3 has been parsed and before line 4 is parsed:
144
145     cpp_test ---> cpp filter ---> parser (INACTIVE)
146
147     Fred.pm ----> parser
148
149 As you can see, a new stream has been created for reading the source
150 from C<Fred.pm>. This stream will remain active until all of C<Fred.pm>
151 has been parsed. The source stream for C<cpp_test> will still exist,
152 but is inactive. Once the parser has finished reading Fred.pm, the
153 source stream associated with it will be destroyed. The source stream
154 for C<cpp_test> then becomes active again and the parser reads line 4
155 and subsequent lines from C<cpp_test>.
156
157 You can use more than one source filter on a single file. Similarly,
158 you can reuse the same filter in as many files as you like.
159
160 For example, if you have a uuencoded and compressed source file, it is
161 possible to stack a uudecode filter and an uncompression filter like
162 this:
163
164     use Filter::uudecode ; use Filter::uncompress ;
165     M'XL(".H<US4''V9I;F%L')Q;>7/;1I;_>_I3=&E=%:F*I"T?22Q/
166     M6]9*<IQCO*XFT"0[PL%%'Y+IG?WN^ZYN-$'J.[.JE$,20/?K=_[>
167     ...
168
169 Once the first line has been processed, the flow will look like this:
170
171     file ---> uudecode ---> uncompress ---> parser
172                filter         filter
173
174 Data flows through filters in the same order they appear in the source
175 file. The uudecode filter appeared before the uncompress filter, so the
176 source file will be uudecoded before it's uncompressed.
177
178 =head1 WRITING A SOURCE FILTER
179
180 There are three ways to write your own source filter. You can write it
181 in C, use an external program as a filter, or write the filter in Perl.
182 I won't cover the first two in any great detail, so I'll get them out
183 of the way first. Writing the filter in Perl is most convenient, so
184 I'll devote the most space to it.
185
186 =head1 WRITING A SOURCE FILTER IN C
187
188 The first of the three available techniques is to write the filter
189 completely in C. The external module you create interfaces directly
190 with the source filter hooks provided by Perl.
191
192 The advantage of this technique is that you have complete control over
193 the implementation of your filter. The big disadvantage is the
194 increased complexity required to write the filter - not only do you
195 need to understand the source filter hooks, but you also need a
196 reasonable knowledge of Perl guts. One of the few times it is worth
197 going to this trouble is when writing a source scrambler. The
198 C<decrypt> filter (which unscrambles the source before Perl parses it)
199 included with the source filter distribution is an example of a C
200 source filter (see Decryption Filters, below).
201  
202
203 =over 5
204
205 =item B<Decryption Filters>
206
207 All decryption filters work on the principle of "security through
208 obscurity." Regardless of how well you write a decryption filter and
209 how strong your encryption algorithm, anyone determined enough can
210 retrieve the original source code. The reason is quite simple - once
211 the decryption filter has decrypted the source back to its original
212 form, fragments of it will be stored in the computer's memory as Perl
213 parses it. The source might only be in memory for a short period of
214 time, but anyone possessing a debugger, skill, and lots of patience can
215 eventually reconstruct your program.
216
217 That said, there are a number of steps that can be taken to make life
218 difficult for the potential cracker. The most important: Write your
219 decryption filter in C and statically link the decryption module into
220 the Perl binary. For further tips to make life difficult for the
221 potential cracker, see the file I<decrypt.pm> in the source filters
222 module.
223
224 =back
225
226 =head1 CREATING A SOURCE FILTER AS A SEPARATE EXECUTABLE
227
228 An alternative to writing the filter in C is to create a separate
229 executable in the language of your choice. The separate executable
230 reads from standard input, does whatever processing is necessary, and
231 writes the filtered data to standard output. C<Filter:cpp> is an
232 example of a source filter implemented as a separate executable - the
233 executable is the C preprocessor bundled with your C compiler.
234
235 The source filter distribution includes two modules that simplify this
236 task: C<Filter::exec> and C<Filter::sh>. Both allow you to run any
237 external executable. Both use a coprocess to control the flow of data
238 into and out of the external executable. (For details on coprocesses,
239 see Stephens, W.R. "Advanced Programming in the UNIX Environment."
240 Addison-Wesley, ISBN 0-210-56317-7, pages 441-445.) The difference
241 between them is that C<Filter::exec> spawns the external command
242 directly, while C<Filter::sh> spawns a shell to execute the external
243 command. (Unix uses the Bourne shell; NT uses the cmd shell.) Spawning
244 a shell allows you to make use of the shell metacharacters and
245 redirection facilities.
246
247 Here is an example script that uses C<Filter::sh>:
248
249     use Filter::sh 'tr XYZ PQR' ;
250     $a = 1 ;
251     print "XYZ a = $a\n" ;
252
253 The output you'll get when the script is executed:
254
255     PQR a = 1
256
257 Writing a source filter as a separate executable works fine, but a
258 small performance penalty is incurred. For example, if you execute the
259 small example above, a separate subprocess will be created to run the
260 Unix C<tr> command. Each use of the filter requires its own subprocess.
261 If creating subprocesses is expensive on your system, you might want to
262 consider one of the other options for creating source filters.
263
264 =head1 WRITING A SOURCE FILTER IN PERL
265
266 The easiest and most portable option available for creating your own
267 source filter is to write it completely in Perl. To distinguish this
268 from the previous two techniques, I'll call it a Perl source filter.
269
270 To help understand how to write a Perl source filter we need an example
271 to study. Here is a complete source filter that performs rot13
272 decoding. (Rot13 is a very simple encryption scheme used in Usenet
273 postings to hide the contents of offensive posts. It moves every letter
274 forward thirteen places, so that A becomes N, B becomes O, and Z
275 becomes M.)
276
277
278    package Rot13 ;
279
280    use Filter::Util::Call ;
281
282    sub import {
283       my ($type) = @_ ;
284       my ($ref) = [] ;
285       filter_add(bless $ref) ;
286    }
287
288    sub filter {
289       my ($self) = @_ ;
290       my ($status) ;
291
292       tr/n-za-mN-ZA-M/a-zA-Z/
293          if ($status = filter_read()) > 0 ;
294       $status ;
295    }
296
297    1;
298
299 All Perl source filters are implemented as Perl classes and have the
300 same basic structure as the example above.
301
302 First, we include the C<Filter::Util::Call> module, which exports a
303 number of functions into your filter's namespace. The filter shown
304 above uses two of these functions, C<filter_add()> and
305 C<filter_read()>.
306
307 Next, we create the filter object and associate it with the source
308 stream by defining the C<import> function. If you know Perl well
309 enough, you know that C<import> is called automatically every time a
310 module is included with a use statement. This makes C<import> the ideal
311 place to both create and install a filter object.
312
313 In the example filter, the object (C<$ref>) is blessed just like any
314 other Perl object. Our example uses an anonymous array, but this isn't
315 a requirement. Because this example doesn't need to store any context
316 information, we could have used a scalar or hash reference just as
317 well. The next section demonstrates context data.
318
319 The association between the filter object and the source stream is made
320 with the C<filter_add()> function. This takes a filter object as a
321 parameter (C<$ref> in this case) and installs it in the source stream.
322
323 Finally, there is the code that actually does the filtering. For this
324 type of Perl source filter, all the filtering is done in a method
325 called C<filter()>. (It is also possible to write a Perl source filter
326 using a closure. See the C<Filter::Util::Call> manual page for more
327 details.) It's called every time the Perl parser needs another line of
328 source to process. The C<filter()> method, in turn, reads lines from
329 the source stream using the C<filter_read()> function.
330
331 If a line was available from the source stream, C<filter_read()>
332 returns a status value greater than zero and appends the line to C<$_>.
333 A status value of zero indicates end-of-file, less than zero means an
334 error. The filter function itself is expected to return its status in
335 the same way, and put the filtered line it wants written to the source
336 stream in C<$_>. The use of C<$_> accounts for the brevity of most Perl
337 source filters.
338
339 In order to make use of the rot13 filter we need some way of encoding
340 the source file in rot13 format. The script below, C<mkrot13>, does
341 just that.
342
343     die "usage mkrot13 filename\n" unless @ARGV ;
344     my $in = $ARGV[0] ;
345     my $out = "$in.tmp" ;
346     open(IN, "<$in") or die "Cannot open file $in: $!\n";
347     open(OUT, ">$out") or die "Cannot open file $out: $!\n";
348
349     print OUT "use Rot13;\n" ;
350     while (<IN>) {
351        tr/a-zA-Z/n-za-mN-ZA-M/ ;
352        print OUT ;
353     }
354
355     close IN;
356     close OUT;
357     unlink $in;
358     rename $out, $in;
359
360 If we encrypt this with C<mkrot13>:
361
362     print " hello fred \n" ;
363
364 the result will be this:
365
366     use Rot13;
367     cevag "uryyb serq\a" ;
368
369 Running it produces this output:
370
371     hello fred
372
373 =head1 USING CONTEXT: THE DEBUG FILTER
374
375 The rot13 example was a trivial example. Here's another demonstration
376 that shows off a few more features.
377
378 Say you wanted to include a lot of debugging code in your Perl script
379 during development, but you didn't want it available in the released
380 product. Source filters offer a solution. In order to keep the example
381 simple, let's say you wanted the debugging output to be controlled by
382 an environment variable, C<DEBUG>. Debugging code is enabled if the
383 variable exists, otherwise it is disabled.
384
385 Two special marker lines will bracket debugging code, like this:
386
387     ## DEBUG_BEGIN
388     if ($year > 1999) {
389        warn "Debug: millennium bug in year $year\n" ;
390     }
391     ## DEBUG_END
392
393 When the C<DEBUG> environment variable exists, the filter ensures that
394 Perl parses only the code between the C<DEBUG_BEGIN> and C<DEBUG_END>
395 markers. That means that when C<DEBUG> does exist, the code above
396 should be passed through the filter unchanged. The marker lines can
397 also be passed through as-is, because the Perl parser will see them as
398 comment lines. When C<DEBUG> isn't set, we need a way to disable the
399 debug code. A simple way to achieve that is to convert the lines
400 between the two markers into comments:
401
402     ## DEBUG_BEGIN
403     #if ($year > 1999) {
404     #     warn "Debug: millennium bug in year $year\n" ;
405     #}
406     ## DEBUG_END
407
408 Here is the complete Debug filter:
409
410     package Debug;
411
412     use strict;
413     use Filter::Util::Call ;
414
415     use constant TRUE => 1 ;
416     use constant FALSE => 0 ;
417
418     sub import {
419        my ($type) = @_ ;
420        my (%context) = (
421          Enabled => defined $ENV{DEBUG},
422          InTraceBlock => FALSE,
423          Filename => (caller)[1],
424          LineNo => 0,
425          LastBegin => 0,
426        ) ;
427        filter_add(bless \%context) ;
428     }
429
430     sub Die {
431        my ($self) = shift ;
432        my ($message) = shift ;
433        my ($line_no) = shift || $self->{LastBegin} ;
434        die "$message at $self->{Filename} line $line_no.\n"
435     }
436
437     sub filter {
438        my ($self) = @_ ;
439        my ($status) ;
440        $status = filter_read() ;
441        ++ $self->{LineNo} ;
442
443        # deal with EOF/error first
444        if ($status <= 0) {
445            $self->Die("DEBUG_BEGIN has no DEBUG_END")
446                if $self->{InTraceBlock} ;
447            return $status ;
448        }
449
450        if ($self->{InTraceBlock}) {
451           if (/^\s*##\s*DEBUG_BEGIN/ ) {
452               $self->Die("Nested DEBUG_BEGIN", $self->{LineNo})
453           } elsif (/^\s*##\s*DEBUG_END/) {
454               $self->{InTraceBlock} = FALSE ;
455           }
456
457           # comment out the debug lines when the filter is disabled
458           s/^/#/ if ! $self->{Enabled} ;
459        } elsif ( /^\s*##\s*DEBUG_BEGIN/ ) {
460           $self->{InTraceBlock} = TRUE ;
461           $self->{LastBegin} = $self->{LineNo} ;
462        } elsif ( /^\s*##\s*DEBUG_END/ ) {
463           $self->Die("DEBUG_END has no DEBUG_BEGIN", $self->{LineNo});
464        }
465        return $status ;
466     }
467
468     1 ;
469
470 The big difference between this filter and the previous example is the
471 use of context data in the filter object. The filter object is based on
472 a hash reference, and is used to keep various pieces of context
473 information between calls to the filter function. All but two of the
474 hash fields are used for error reporting. The first of those two,
475 Enabled, is used by the filter to determine whether the debugging code
476 should be given to the Perl parser. The second, InTraceBlock, is true
477 when the filter has encountered a C<DEBUG_BEGIN> line, but has not yet
478 encountered the following C<DEBUG_END> line.
479
480 If you ignore all the error checking that most of the code does, the
481 essence of the filter is as follows:
482
483     sub filter {
484        my ($self) = @_ ;
485        my ($status) ;
486        $status = filter_read() ;
487
488        # deal with EOF/error first
489        return $status if $status <= 0 ;
490        if ($self->{InTraceBlock}) {
491           if (/^\s*##\s*DEBUG_END/) {
492              $self->{InTraceBlock} = FALSE
493           }
494
495           # comment out debug lines when the filter is disabled
496           s/^/#/ if ! $self->{Enabled} ;
497        } elsif ( /^\s*##\s*DEBUG_BEGIN/ ) {
498           $self->{InTraceBlock} = TRUE ;
499        }
500        return $status ;
501     }
502
503 Be warned: just as the C-preprocessor doesn't know C, the Debug filter
504 doesn't know Perl. It can be fooled quite easily:
505
506     print <<EOM;
507     ##DEBUG_BEGIN
508     EOM
509
510 Such things aside, you can see that a lot can be achieved with a modest
511 amount of code.
512
513 =head1 CONCLUSION
514
515 You now have better understanding of what a source filter is, and you
516 might even have a possible use for them. If you feel like playing with
517 source filters but need a bit of inspiration, here are some extra
518 features you could add to the Debug filter.
519
520 First, an easy one. Rather than having debugging code that is
521 all-or-nothing, it would be much more useful to be able to control
522 which specific blocks of debugging code get included. Try extending the
523 syntax for debug blocks to allow each to be identified. The contents of
524 the C<DEBUG> environment variable can then be used to control which
525 blocks get included.
526
527 Once you can identify individual blocks, try allowing them to be
528 nested. That isn't difficult either.
529
530 Here is a interesting idea that doesn't involve the Debug filter.
531 Currently Perl subroutines have fairly limited support for formal
532 parameter lists. You can specify the number of parameters and their
533 type, but you still have to manually take them out of the C<@_> array
534 yourself. Write a source filter that allows you to have a named
535 parameter list. Such a filter would turn this:
536
537     sub MySub ($first, $second, @rest) { ... }
538
539 into this:
540
541     sub MySub($$@) {
542        my ($first) = shift ;
543        my ($second) = shift ;
544        my (@rest) = @_ ;
545        ...
546     }
547
548 Finally, if you feel like a real challenge, have a go at writing a
549 full-blown Perl macro preprocessor as a source filter. Borrow the
550 useful features from the C preprocessor and any other macro processors
551 you know. The tricky bit will be choosing how much knowledge of Perl's
552 syntax you want your filter to have.
553
554 =head1 REQUIREMENTS
555
556 The Source Filters distribution is available on CPAN, in 
557
558     CPAN/modules/by-module/Filter
559
560 =head1 AUTHOR
561
562 Paul Marquess E<lt>Paul.Marquess@btinternet.comE<gt>
563
564 =head1 Copyrights
565
566 This article originally appeared in The Perl Journal #11, and is
567 copyright 1998 The Perl Journal. It appears courtesy of Jon Orwant and
568 The Perl Journal.  This document may be distributed under the same terms
569 as Perl itself.