3 perlebcdic - Considerations for running Perl on EBCDIC platforms
7 An exploration of some of the issues facing Perl programmers
8 on EBCDIC based computers. We do not cover localization,
9 internationalization, or multi byte character set issues other
10 than some discussion of UTF-8 and UTF-EBCDIC.
12 Portions that are still incomplete are marked with XXX.
14 =head1 COMMON CHARACTER CODE SETS
18 The American Standard Code for Information Interchange is a set of
19 integers running from 0 to 127 (decimal) that imply character
20 interpretation by the display and other system(s) of computers.
21 The range 0..127 can be covered by setting the bits in a 7-bit binary
22 digit, hence the set is sometimes referred to as a "7-bit ASCII".
23 ASCII was described by the American National Standards Institute
24 document ANSI X3.4-1986. It was also described by ISO 646:1991
25 (with localization for currency symbols). The full ASCII set is
26 given in the table below as the first 128 elements. Languages that
27 can be written adequately with the characters in ASCII include
28 English, Hawaiian, Indonesian, Swahili and some Native American
31 There are many character sets that extend the range of integers
32 from 0..2**7-1 up to 2**8-1, or 8 bit bytes (octets if you prefer).
33 One common one is the ISO 8859-1 character set.
37 The ISO 8859-$n are a collection of character code sets from the
38 International Organization for Standardization (ISO) each of which
39 adds characters to the ASCII set that are typically found in European
40 languages many of which are based on the Roman, or Latin, alphabet.
42 =head2 Latin 1 (ISO 8859-1)
44 A particular 8-bit extension to ASCII that includes grave and acute
45 accented Latin characters. Languages that can employ ISO 8859-1
46 include all the languages covered by ASCII as well as Afrikaans,
47 Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian,
48 Portuguese, Spanish, and Swedish. Dutch is covered albeit without
49 the ij ligature. French is covered too but without the oe ligature.
50 German can use ISO 8859-1 but must do so without German-style
51 quotation marks. This set is based on Western European extensions
52 to ASCII and is commonly encountered in world wide web work.
53 In IBM character code set identification terminology ISO 8859-1 is
54 also known as CCSID 819 (or sometimes 0819 or even 00819).
58 The Extended Binary Coded Decimal Interchange Code refers to a
59 large collection of slightly different single and multi byte
60 coded character sets that are different from ASCII or ISO 8859-1
61 and typically run on host computers. The EBCDIC encodings derive
62 from 8 bit byte extensions of Hollerith punched card encodings.
63 The layout on the cards was such that high bits were set for the
64 upper and lower case alphabet characters [a-z] and [A-Z], but there
65 were gaps within each latin alphabet range.
67 Some IBM EBCDIC character sets may be known by character code set
68 identification numbers (CCSID numbers) or code page numbers. Leading
69 zero digits in CCSID numbers within this document are insignificant.
70 E.g. CCSID 0037 may be referred to as 37 in places.
72 =head2 13 variant characters
74 Among IBM EBCDIC character code sets there are 13 characters that
75 are often mapped to different integer values. Those characters
76 are known as the 13 "variant" characters and are:
78 \ [ ] { } ^ ~ ! # | $ @ `
82 Character code set ID 0037 is a mapping of the ASCII plus Latin-1
83 characters (i.e. ISO 8859-1) to an EBCDIC set. 0037 is used
84 in North American English locales on the OS/400 operating system
85 that runs on AS/400 computers. CCSID 37 differs from ISO 8859-1
86 in 237 places, in other words they agree on only 19 code point values.
90 Character code set ID 1047 is also a mapping of the ASCII plus
91 Latin-1 characters (i.e. ISO 8859-1) to an EBCDIC set. 1047 is
92 used under Unix System Services for OS/390 or z/OS, and OpenEdition
93 for VM/ESA. CCSID 1047 differs from CCSID 0037 in eight places.
97 The EBCDIC code page in use on Siemens' BS2000 system is distinct from
98 1047 and 0037. It is identified below as the POSIX-BC set.
100 =head2 Unicode and UTF
102 UTF is a Unicode Transformation Format. UTF-8 is a Unicode conforming
103 representation of the Unicode standard that looks very much like ASCII.
104 UTF-EBCDIC is an attempt to represent Unicode characters in an EBCDIC
109 Starting from Perl 5.8 you can use the standard new module Encode
110 to translate from EBCDIC to Latin-1 code points
112 use Encode 'from_to';
114 my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );
116 # $a is in EBCDIC code points
117 from_to($a, $ebcdic{ord '^'}, 'latin1');
118 # $a is ISO 8859-1 code points
120 and from Latin-1 code points to EBCDIC code points
122 use Encode 'from_to';
124 my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );
126 # $a is ISO 8859-1 code points
127 from_to($a, 'latin1', $ebcdic{ord '^'});
128 # $a is in EBCDIC code points
130 For doing I/O it is suggested that you use the autotranslating features
131 of PerlIO, see L<perluniintro>.
133 =head1 SINGLE OCTET TABLES
135 The following tables list the ASCII and Latin 1 ordered sets including
136 the subsets: C0 controls (0..31), ASCII graphics (32..7e), delete (7f),
137 C1 controls (80..9f), and Latin-1 (a.k.a. ISO 8859-1) (a0..ff). In the
138 table non-printing control character names as well as the Latin 1
139 extensions to ASCII have been labelled with character names roughly
140 corresponding to I<The Unicode Standard, Version 3.0> albeit with
141 substitutions such as s/LATIN// and s/VULGAR// in all cases,
142 s/CAPITAL LETTER// in some cases, and s/SMALL LETTER ([A-Z])/\l$1/
143 in some other cases (the C<charnames> pragma names unfortunately do
144 not list explicit names for the C0 or C1 control characters). The
145 "names" of the C1 control set (128..159 in ISO 8859-1) listed here are
146 somewhat arbitrary. The differences between the 0037 and 1047 sets are
147 flagged with ***. The differences between the 1047 and POSIX-BC sets
148 are flagged with ###. All ord() numbers listed are decimal. If you
149 would rather see this table listing octal values then run the table
150 (that is, the pod version of this document since this recipe may not
151 work with a pod2_other_format translation) through:
159 perl -ne 'if(/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
160 -e '{printf("%s%-9o%-9o%-9o%o\n",$1,$2,$3,$4,$5)}' perlebcdic.pod
162 If you want to retain the UTF-x code points then in script form you
171 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
173 if (/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/) {
174 if ($7 ne '' && $9 ne '') {
175 printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%-3o.%o\n",$1,$2,$3,$4,$5,$6,$7,$8,$9);
178 printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%o\n",$1,$2,$3,$4,$5,$6,$7,$8);
181 printf("%s%-9o%-9o%-9o%-9o%-9o%o\n",$1,$2,$3,$4,$5,$6,$8);
186 If you would rather see this table listing hexadecimal values then
187 run the table through:
195 perl -ne 'if(/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
196 -e '{printf("%s%-9X%-9X%-9X%X\n",$1,$2,$3,$4,$5)}' perlebcdic.pod
198 Or, in order to retain the UTF-x code points in hexadecimal:
206 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
208 if (/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/) {
209 if ($7 ne '' && $9 ne '') {
210 printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%-2X.%X\n",$1,$2,$3,$4,$5,$6,$7,$8,$9);
213 printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%X\n",$1,$2,$3,$4,$5,$6,$7,$8);
216 printf("%s%-9X%-9X%-9X%-9X%-9X%X\n",$1,$2,$3,$4,$5,$6,$8);
224 chr 0819 0037 1047 POSIX-BC UTF-8 UTF-EBCDIC
225 ------------------------------------------------------------------------------------
227 <START OF HEADING> 1 1 1 1 1 1
228 <START OF TEXT> 2 2 2 2 2 2
229 <END OF TEXT> 3 3 3 3 3 3
230 <END OF TRANSMISSION> 4 55 55 55 4 55
231 <ENQUIRY> 5 45 45 45 5 45
232 <ACKNOWLEDGE> 6 46 46 46 6 46
233 <BELL> 7 47 47 47 7 47
234 <BACKSPACE> 8 22 22 22 8 22
235 <HORIZONTAL TABULATION> 9 5 5 5 9 5
236 <LINE FEED> 10 37 21 21 10 21 ***
237 <VERTICAL TABULATION> 11 11 11 11 11 11
238 <FORM FEED> 12 12 12 12 12 12
239 <CARRIAGE RETURN> 13 13 13 13 13 13
240 <SHIFT OUT> 14 14 14 14 14 14
241 <SHIFT IN> 15 15 15 15 15 15
242 <DATA LINK ESCAPE> 16 16 16 16 16 16
243 <DEVICE CONTROL ONE> 17 17 17 17 17 17
244 <DEVICE CONTROL TWO> 18 18 18 18 18 18
245 <DEVICE CONTROL THREE> 19 19 19 19 19 19
246 <DEVICE CONTROL FOUR> 20 60 60 60 20 60
247 <NEGATIVE ACKNOWLEDGE> 21 61 61 61 21 61
248 <SYNCHRONOUS IDLE> 22 50 50 50 22 50
249 <END OF TRANSMISSION BLOCK> 23 38 38 38 23 38
250 <CANCEL> 24 24 24 24 24 24
251 <END OF MEDIUM> 25 25 25 25 25 25
252 <SUBSTITUTE> 26 63 63 63 26 63
253 <ESCAPE> 27 39 39 39 27 39
254 <FILE SEPARATOR> 28 28 28 28 28 28
255 <GROUP SEPARATOR> 29 29 29 29 29 29
256 <RECORD SEPARATOR> 30 30 30 30 30 30
257 <UNIT SEPARATOR> 31 31 31 31 31 31
258 <SPACE> 32 64 64 64 32 64
260 " 34 127 127 127 34 127
261 # 35 123 123 123 35 123
263 % 37 108 108 108 37 108
265 ' 39 125 125 125 39 125
270 , 44 107 107 107 44 107
274 0 48 240 240 240 48 240
275 1 49 241 241 241 49 241
276 2 50 242 242 242 50 242
277 3 51 243 243 243 51 243
278 4 52 244 244 244 52 244
279 5 53 245 245 245 53 245
280 6 54 246 246 246 54 246
281 7 55 247 247 247 55 247
282 8 56 248 248 248 56 248
283 9 57 249 249 249 57 249
284 : 58 122 122 122 58 122
287 = 61 126 126 126 61 126
288 > 62 110 110 110 62 110
289 ? 63 111 111 111 63 111
290 @ 64 124 124 124 64 124
291 A 65 193 193 193 65 193
292 B 66 194 194 194 66 194
293 C 67 195 195 195 67 195
294 D 68 196 196 196 68 196
295 E 69 197 197 197 69 197
296 F 70 198 198 198 70 198
297 G 71 199 199 199 71 199
298 H 72 200 200 200 72 200
299 I 73 201 201 201 73 201
300 J 74 209 209 209 74 209
301 K 75 210 210 210 75 210
302 L 76 211 211 211 76 211
303 M 77 212 212 212 77 212
304 N 78 213 213 213 78 213
305 O 79 214 214 214 79 214
306 P 80 215 215 215 80 215
307 Q 81 216 216 216 81 216
308 R 82 217 217 217 82 217
309 S 83 226 226 226 83 226
310 T 84 227 227 227 84 227
311 U 85 228 228 228 85 228
312 V 86 229 229 229 86 229
313 W 87 230 230 230 87 230
314 X 88 231 231 231 88 231
315 Y 89 232 232 232 89 232
316 Z 90 233 233 233 90 233
317 [ 91 186 173 187 91 173 *** ###
318 \ 92 224 224 188 92 224 ###
319 ] 93 187 189 189 93 189 ***
320 ^ 94 176 95 106 94 95 *** ###
321 _ 95 109 109 109 95 109
322 ` 96 121 121 74 96 121 ###
323 a 97 129 129 129 97 129
324 b 98 130 130 130 98 130
325 c 99 131 131 131 99 131
326 d 100 132 132 132 100 132
327 e 101 133 133 133 101 133
328 f 102 134 134 134 102 134
329 g 103 135 135 135 103 135
330 h 104 136 136 136 104 136
331 i 105 137 137 137 105 137
332 j 106 145 145 145 106 145
333 k 107 146 146 146 107 146
334 l 108 147 147 147 108 147
335 m 109 148 148 148 109 148
336 n 110 149 149 149 110 149
337 o 111 150 150 150 111 150
338 p 112 151 151 151 112 151
339 q 113 152 152 152 113 152
340 r 114 153 153 153 114 153
341 s 115 162 162 162 115 162
342 t 116 163 163 163 116 163
343 u 117 164 164 164 117 164
344 v 118 165 165 165 118 165
345 w 119 166 166 166 119 166
346 x 120 167 167 167 120 167
347 y 121 168 168 168 121 168
348 z 122 169 169 169 122 169
349 { 123 192 192 251 123 192 ###
350 | 124 79 79 79 124 79
351 } 125 208 208 253 125 208 ###
352 ~ 126 161 161 255 126 161 ###
353 <DELETE> 127 7 7 7 127 7
354 <C1 0> 128 32 32 32 194.128 32
355 <C1 1> 129 33 33 33 194.129 33
356 <C1 2> 130 34 34 34 194.130 34
357 <C1 3> 131 35 35 35 194.131 35
358 <C1 4> 132 36 36 36 194.132 36
359 <C1 5> 133 21 37 37 194.133 37 ***
360 <C1 6> 134 6 6 6 194.134 6
361 <C1 7> 135 23 23 23 194.135 23
362 <C1 8> 136 40 40 40 194.136 40
363 <C1 9> 137 41 41 41 194.137 41
364 <C1 10> 138 42 42 42 194.138 42
365 <C1 11> 139 43 43 43 194.139 43
366 <C1 12> 140 44 44 44 194.140 44
367 <C1 13> 141 9 9 9 194.141 9
368 <C1 14> 142 10 10 10 194.142 10
369 <C1 15> 143 27 27 27 194.143 27
370 <C1 16> 144 48 48 48 194.144 48
371 <C1 17> 145 49 49 49 194.145 49
372 <C1 18> 146 26 26 26 194.146 26
373 <C1 19> 147 51 51 51 194.147 51
374 <C1 20> 148 52 52 52 194.148 52
375 <C1 21> 149 53 53 53 194.149 53
376 <C1 22> 150 54 54 54 194.150 54
377 <C1 23> 151 8 8 8 194.151 8
378 <C1 24> 152 56 56 56 194.152 56
379 <C1 25> 153 57 57 57 194.153 57
380 <C1 26> 154 58 58 58 194.154 58
381 <C1 27> 155 59 59 59 194.155 59
382 <C1 28> 156 4 4 4 194.156 4
383 <C1 29> 157 20 20 20 194.157 20
384 <C1 30> 158 62 62 62 194.158 62
385 <C1 31> 159 255 255 95 194.159 255 ###
386 <NON-BREAKING SPACE> 160 65 65 65 194.160 128.65
387 <INVERTED EXCLAMATION MARK> 161 170 170 170 194.161 128.66
388 <CENT SIGN> 162 74 74 176 194.162 128.67 ###
389 <POUND SIGN> 163 177 177 177 194.163 128.68
390 <CURRENCY SIGN> 164 159 159 159 194.164 128.69
391 <YEN SIGN> 165 178 178 178 194.165 128.70
392 <BROKEN BAR> 166 106 106 208 194.166 128.71 ###
393 <SECTION SIGN> 167 181 181 181 194.167 128.72
394 <DIAERESIS> 168 189 187 121 194.168 128.73 *** ###
395 <COPYRIGHT SIGN> 169 180 180 180 194.169 128.74
396 <FEMININE ORDINAL INDICATOR> 170 154 154 154 194.170 128.81
397 <LEFT POINTING GUILLEMET> 171 138 138 138 194.171 128.82
398 <NOT SIGN> 172 95 176 186 194.172 128.83 *** ###
399 <SOFT HYPHEN> 173 202 202 202 194.173 128.84
400 <REGISTERED TRADE MARK SIGN> 174 175 175 175 194.174 128.85
401 <MACRON> 175 188 188 161 194.175 128.86 ###
402 <DEGREE SIGN> 176 144 144 144 194.176 128.87
403 <PLUS-OR-MINUS SIGN> 177 143 143 143 194.177 128.88
404 <SUPERSCRIPT TWO> 178 234 234 234 194.178 128.89
405 <SUPERSCRIPT THREE> 179 250 250 250 194.179 128.98
406 <ACUTE ACCENT> 180 190 190 190 194.180 128.99
407 <MICRO SIGN> 181 160 160 160 194.181 128.100
408 <PARAGRAPH SIGN> 182 182 182 182 194.182 128.101
409 <MIDDLE DOT> 183 179 179 179 194.183 128.102
410 <CEDILLA> 184 157 157 157 194.184 128.103
411 <SUPERSCRIPT ONE> 185 218 218 218 194.185 128.104
412 <MASC. ORDINAL INDICATOR> 186 155 155 155 194.186 128.105
413 <RIGHT POINTING GUILLEMET> 187 139 139 139 194.187 128.106
414 <FRACTION ONE QUARTER> 188 183 183 183 194.188 128.112
415 <FRACTION ONE HALF> 189 184 184 184 194.189 128.113
416 <FRACTION THREE QUARTERS> 190 185 185 185 194.190 128.114
417 <INVERTED QUESTION MARK> 191 171 171 171 194.191 128.115
418 <A WITH GRAVE> 192 100 100 100 195.128 138.65
419 <A WITH ACUTE> 193 101 101 101 195.129 138.66
420 <A WITH CIRCUMFLEX> 194 98 98 98 195.130 138.67
421 <A WITH TILDE> 195 102 102 102 195.131 138.68
422 <A WITH DIAERESIS> 196 99 99 99 195.132 138.69
423 <A WITH RING ABOVE> 197 103 103 103 195.133 138.70
424 <CAPITAL LIGATURE AE> 198 158 158 158 195.134 138.71
425 <C WITH CEDILLA> 199 104 104 104 195.135 138.72
426 <E WITH GRAVE> 200 116 116 116 195.136 138.73
427 <E WITH ACUTE> 201 113 113 113 195.137 138.74
428 <E WITH CIRCUMFLEX> 202 114 114 114 195.138 138.81
429 <E WITH DIAERESIS> 203 115 115 115 195.139 138.82
430 <I WITH GRAVE> 204 120 120 120 195.140 138.83
431 <I WITH ACUTE> 205 117 117 117 195.141 138.84
432 <I WITH CIRCUMFLEX> 206 118 118 118 195.142 138.85
433 <I WITH DIAERESIS> 207 119 119 119 195.143 138.86
434 <CAPITAL LETTER ETH> 208 172 172 172 195.144 138.87
435 <N WITH TILDE> 209 105 105 105 195.145 138.88
436 <O WITH GRAVE> 210 237 237 237 195.146 138.89
437 <O WITH ACUTE> 211 238 238 238 195.147 138.98
438 <O WITH CIRCUMFLEX> 212 235 235 235 195.148 138.99
439 <O WITH TILDE> 213 239 239 239 195.149 138.100
440 <O WITH DIAERESIS> 214 236 236 236 195.150 138.101
441 <MULTIPLICATION SIGN> 215 191 191 191 195.151 138.102
442 <O WITH STROKE> 216 128 128 128 195.152 138.103
443 <U WITH GRAVE> 217 253 253 224 195.153 138.104 ###
444 <U WITH ACUTE> 218 254 254 254 195.154 138.105
445 <U WITH CIRCUMFLEX> 219 251 251 221 195.155 138.106 ###
446 <U WITH DIAERESIS> 220 252 252 252 195.156 138.112
447 <Y WITH ACUTE> 221 173 186 173 195.157 138.113 *** ###
448 <CAPITAL LETTER THORN> 222 174 174 174 195.158 138.114
449 <SMALL LETTER SHARP S> 223 89 89 89 195.159 138.115
450 <a WITH GRAVE> 224 68 68 68 195.160 139.65
451 <a WITH ACUTE> 225 69 69 69 195.161 139.66
452 <a WITH CIRCUMFLEX> 226 66 66 66 195.162 139.67
453 <a WITH TILDE> 227 70 70 70 195.163 139.68
454 <a WITH DIAERESIS> 228 67 67 67 195.164 139.69
455 <a WITH RING ABOVE> 229 71 71 71 195.165 139.70
456 <SMALL LIGATURE ae> 230 156 156 156 195.166 139.71
457 <c WITH CEDILLA> 231 72 72 72 195.167 139.72
458 <e WITH GRAVE> 232 84 84 84 195.168 139.73
459 <e WITH ACUTE> 233 81 81 81 195.169 139.74
460 <e WITH CIRCUMFLEX> 234 82 82 82 195.170 139.81
461 <e WITH DIAERESIS> 235 83 83 83 195.171 139.82
462 <i WITH GRAVE> 236 88 88 88 195.172 139.83
463 <i WITH ACUTE> 237 85 85 85 195.173 139.84
464 <i WITH CIRCUMFLEX> 238 86 86 86 195.174 139.85
465 <i WITH DIAERESIS> 239 87 87 87 195.175 139.86
466 <SMALL LETTER eth> 240 140 140 140 195.176 139.87
467 <n WITH TILDE> 241 73 73 73 195.177 139.88
468 <o WITH GRAVE> 242 205 205 205 195.178 139.89
469 <o WITH ACUTE> 243 206 206 206 195.179 139.98
470 <o WITH CIRCUMFLEX> 244 203 203 203 195.180 139.99
471 <o WITH TILDE> 245 207 207 207 195.181 139.100
472 <o WITH DIAERESIS> 246 204 204 204 195.182 139.101
473 <DIVISION SIGN> 247 225 225 225 195.183 139.102
474 <o WITH STROKE> 248 112 112 112 195.184 139.103
475 <u WITH GRAVE> 249 221 221 192 195.185 139.104 ###
476 <u WITH ACUTE> 250 222 222 222 195.186 139.105
477 <u WITH CIRCUMFLEX> 251 219 219 219 195.187 139.106
478 <u WITH DIAERESIS> 252 220 220 220 195.188 139.112
479 <y WITH ACUTE> 253 141 141 141 195.189 139.113
480 <SMALL LETTER thorn> 254 142 142 142 195.190 139.114
481 <y WITH DIAERESIS> 255 223 223 223 195.191 139.115
483 If you would rather see the above table in CCSID 0037 order rather than
484 ASCII + Latin-1 order then run the table through:
492 perl -ne 'if(/.{33}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
494 -e 'END{print map{$_->[0]}' \
495 -e ' sort{$a->[1] <=> $b->[1]}' \
496 -e ' map{[$_,substr($_,42,3)]}@l;}' perlebcdic.pod
498 If you would rather see it in CCSID 1047 order then change the digit
499 42 in the last line to 51, like this:
507 perl -ne 'if(/.{33}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
509 -e 'END{print map{$_->[0]}' \
510 -e ' sort{$a->[1] <=> $b->[1]}' \
511 -e ' map{[$_,substr($_,51,3)]}@l;}' perlebcdic.pod
513 If you would rather see it in POSIX-BC order then change the digit
514 51 in the last line to 60, like this:
522 perl -ne 'if(/.{33}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
524 -e 'END{print map{$_->[0]}' \
525 -e ' sort{$a->[1] <=> $b->[1]}' \
526 -e ' map{[$_,substr($_,60,3)]}@l;}' perlebcdic.pod
529 =head1 IDENTIFYING CHARACTER CODE SETS
531 To determine the character set you are running under from perl one
532 could use the return value of ord() or chr() to test one or more
533 character values. For example:
535 $is_ascii = "A" eq chr(65);
536 $is_ebcdic = "A" eq chr(193);
538 Also, "\t" is a C<HORIZONTAL TABULATION> character so that:
540 $is_ascii = ord("\t") == 9;
541 $is_ebcdic = ord("\t") == 5;
543 To distinguish EBCDIC code pages try looking at one or more of
544 the characters that differ between them. For example:
546 $is_ebcdic_37 = "\n" eq chr(37);
547 $is_ebcdic_1047 = "\n" eq chr(21);
549 Or better still choose a character that is uniquely encoded in any
550 of the code sets, e.g.:
552 $is_ascii = ord('[') == 91;
553 $is_ebcdic_37 = ord('[') == 186;
554 $is_ebcdic_1047 = ord('[') == 173;
555 $is_ebcdic_POSIX_BC = ord('[') == 187;
557 However, it would be unwise to write tests such as:
559 $is_ascii = "\r" ne chr(13); # WRONG
560 $is_ascii = "\n" ne chr(10); # ILL ADVISED
562 Obviously the first of these will fail to distinguish most ASCII machines
563 from either a CCSID 0037, a 1047, or a POSIX-BC EBCDIC machine since "\r" eq
564 chr(13) under all of those coded character sets. But note too that
565 because "\n" is chr(13) and "\r" is chr(10) on the MacIntosh (which is an
566 ASCII machine) the second C<$is_ascii> test will lead to trouble there.
568 To determine whether or not perl was built under an EBCDIC
569 code page you can use the Config module like so:
572 $is_ebcdic = $Config{'ebcdic'} eq 'define';
578 In order to convert a string of characters from one character set to
579 another a simple list of numbers, such as in the right columns in the
580 above table, along with perl's tr/// operator is all that is needed.
581 The data in the table are in ASCII order hence the EBCDIC columns
582 provide easy to use ASCII to EBCDIC operations that are also easily
585 For example, to convert ASCII to code page 037 take the output of the second
586 column from the output of recipe 0 (modified to add \\ characters) and use
590 '\000\001\002\003\234\011\206\177\227\215\216\013\014\015\016\017' .
591 '\020\021\022\023\235\205\010\207\030\031\222\217\034\035\036\037' .
592 '\200\201\202\203\204\012\027\033\210\211\212\213\214\005\006\007' .
593 '\220\221\026\223\224\225\226\004\230\231\232\233\024\025\236\032' .
594 '\040\240\342\344\340\341\343\345\347\361\242\056\074\050\053\174' .
595 '\046\351\352\353\350\355\356\357\354\337\041\044\052\051\073\254' .
596 '\055\057\302\304\300\301\303\305\307\321\246\054\045\137\076\077' .
597 '\370\311\312\313\310\315\316\317\314\140\072\043\100\047\075\042' .
598 '\330\141\142\143\144\145\146\147\150\151\253\273\360\375\376\261' .
599 '\260\152\153\154\155\156\157\160\161\162\252\272\346\270\306\244' .
600 '\265\176\163\164\165\166\167\170\171\172\241\277\320\335\336\256' .
601 '\136\243\245\267\251\247\266\274\275\276\133\135\257\250\264\327' .
602 '\173\101\102\103\104\105\106\107\110\111\255\364\366\362\363\365' .
603 '\175\112\113\114\115\116\117\120\121\122\271\373\374\371\372\377' .
604 '\134\367\123\124\125\126\127\130\131\132\262\324\326\322\323\325' .
605 '\060\061\062\063\064\065\066\067\070\071\263\333\334\331\332\237' ;
607 my $ebcdic_string = $ascii_string;
608 eval '$ebcdic_string =~ tr/\000-\377/' . $cp_037 . '/';
610 To convert from EBCDIC 037 to ASCII just reverse the order of the tr///
613 my $ascii_string = $ebcdic_string;
614 eval '$ascii_string = tr/' . $cp_037 . '/\000-\377/';
616 Similarly one could take the output of the third column from recipe 0 to
617 obtain a C<$cp_1047> table. The fourth column of the output from recipe
618 0 could provide a C<$cp_posix_bc> table suitable for transcoding as well.
622 XPG operability often implies the presence of an I<iconv> utility
623 available from the shell or from the C library. Consult your system's
624 documentation for information on iconv.
626 On OS/390 or z/OS see the iconv(1) manpage. One way to invoke the iconv
627 shell utility from within perl would be to:
629 # OS/390 or z/OS example
630 $ascii_data = `echo '$ebcdic_data'| iconv -f IBM-1047 -t ISO8859-1`
634 # OS/390 or z/OS example
635 $ebcdic_data = `echo '$ascii_data'| iconv -f ISO8859-1 -t IBM-1047`
637 For other perl based conversion options see the Convert::* modules on CPAN.
641 The OS/390 and z/OS C run time libraries provide _atoe() and _etoa() functions.
643 =head1 OPERATOR DIFFERENCES
645 The C<..> range operator treats certain character ranges with
646 care on EBCDIC machines. For example the following array
647 will have twenty six elements on either an EBCDIC machine
650 @alphabet = ('A'..'Z'); # $#alphabet == 25
652 The bitwise operators such as & ^ | may return different results
653 when operating on string or character data in a perl program running
654 on an EBCDIC machine than when run on an ASCII machine. Here is
655 an example adapted from the one in L<perlop>:
657 # EBCDIC-based examples
658 print "j p \n" ^ " a h"; # prints "JAPH\n"
659 print "JA" | " ph\n"; # prints "japh\n"
660 print "JAPH\nJunk" & "\277\277\277\277\277"; # prints "japh\n";
661 print 'p N$' ^ " E<H\n"; # prints "Perl\n";
663 An interesting property of the 32 C0 control characters
664 in the ASCII table is that they can "literally" be constructed
665 as control characters in perl, e.g. C<(chr(0) eq "\c@")>
666 C<(chr(1) eq "\cA")>, and so on. Perl on EBCDIC machines has been
667 ported to take "\c@" to chr(0) and "\cA" to chr(1) as well, but the
668 thirty three characters that result depend on which code page you are
669 using. The table below uses the character names from the previous table
670 but with substitutions such as s/START OF/S.O./; s/END OF /E.O./;
671 s/TRANSMISSION/TRANS./; s/TABULATION/TAB./; s/VERTICAL/VERT./;
672 s/HORIZONTAL/HORIZ./; s/DEVICE CONTROL/D.C./; s/SEPARATOR/SEP./;
673 s/NEGATIVE ACKNOWLEDGE/NEG. ACK./;. The POSIX-BC and 1047 sets are
674 identical throughout this range and differ from the 0037 set at only
675 one spot (21 decimal). Note that the C<LINE FEED> character
676 may be generated by "\cJ" on ASCII machines but by "\cU" on 1047 or POSIX-BC
677 machines and cannot be generated as a C<"\c.letter."> control character on
678 0037 machines. Note also that "\c\\" maps to two characters
681 chr ord 8859-1 0037 1047 && POSIX-BC
682 ------------------------------------------------------------------------
683 "\c?" 127 <DELETE> " " ***><
684 "\c@" 0 <NULL> <NULL> <NULL> ***><
685 "\cA" 1 <S.O. HEADING> <S.O. HEADING> <S.O. HEADING>
686 "\cB" 2 <S.O. TEXT> <S.O. TEXT> <S.O. TEXT>
687 "\cC" 3 <E.O. TEXT> <E.O. TEXT> <E.O. TEXT>
688 "\cD" 4 <E.O. TRANS.> <C1 28> <C1 28>
689 "\cE" 5 <ENQUIRY> <HORIZ. TAB.> <HORIZ. TAB.>
690 "\cF" 6 <ACKNOWLEDGE> <C1 6> <C1 6>
691 "\cG" 7 <BELL> <DELETE> <DELETE>
692 "\cH" 8 <BACKSPACE> <C1 23> <C1 23>
693 "\cI" 9 <HORIZ. TAB.> <C1 13> <C1 13>
694 "\cJ" 10 <LINE FEED> <C1 14> <C1 14>
695 "\cK" 11 <VERT. TAB.> <VERT. TAB.> <VERT. TAB.>
696 "\cL" 12 <FORM FEED> <FORM FEED> <FORM FEED>
697 "\cM" 13 <CARRIAGE RETURN> <CARRIAGE RETURN> <CARRIAGE RETURN>
698 "\cN" 14 <SHIFT OUT> <SHIFT OUT> <SHIFT OUT>
699 "\cO" 15 <SHIFT IN> <SHIFT IN> <SHIFT IN>
700 "\cP" 16 <DATA LINK ESCAPE> <DATA LINK ESCAPE> <DATA LINK ESCAPE>
701 "\cQ" 17 <D.C. ONE> <D.C. ONE> <D.C. ONE>
702 "\cR" 18 <D.C. TWO> <D.C. TWO> <D.C. TWO>
703 "\cS" 19 <D.C. THREE> <D.C. THREE> <D.C. THREE>
704 "\cT" 20 <D.C. FOUR> <C1 29> <C1 29>
705 "\cU" 21 <NEG. ACK.> <C1 5> <LINE FEED> ***
706 "\cV" 22 <SYNCHRONOUS IDLE> <BACKSPACE> <BACKSPACE>
707 "\cW" 23 <E.O. TRANS. BLOCK> <C1 7> <C1 7>
708 "\cX" 24 <CANCEL> <CANCEL> <CANCEL>
709 "\cY" 25 <E.O. MEDIUM> <E.O. MEDIUM> <E.O. MEDIUM>
710 "\cZ" 26 <SUBSTITUTE> <C1 18> <C1 18>
711 "\c[" 27 <ESCAPE> <C1 15> <C1 15>
712 "\c\\" 28 <FILE SEP.>\ <FILE SEP.>\ <FILE SEP.>\
713 "\c]" 29 <GROUP SEP.> <GROUP SEP.> <GROUP SEP.>
714 "\c^" 30 <RECORD SEP.> <RECORD SEP.> <RECORD SEP.> ***><
715 "\c_" 31 <UNIT SEP.> <UNIT SEP.> <UNIT SEP.> ***><
718 =head1 FUNCTION DIFFERENCES
724 chr() must be given an EBCDIC code number argument to yield a desired
725 character return value on an EBCDIC machine. For example:
727 $CAPITAL_LETTER_A = chr(193);
731 ord() will return EBCDIC code number values on an EBCDIC machine.
734 $the_number_193 = ord("A");
738 The c and C templates for pack() are dependent upon character set
739 encoding. Examples of usage on EBCDIC include:
741 $foo = pack("CCCC",193,194,195,196);
743 $foo = pack("C4",193,194,195,196);
746 $foo = pack("ccxxcc",193,194,195,196);
751 One must be careful with scalars and strings that are passed to
752 print that contain ASCII encodings. One common place
753 for this to occur is in the output of the MIME type header for
754 CGI script writing. For example, many perl programming guides
755 recommend something similar to:
757 print "Content-type:\ttext/html\015\012\015\012";
758 # this may be wrong on EBCDIC
760 Under the IBM OS/390 USS Web Server or WebSphere on z/OS for example
761 you should instead write that as:
763 print "Content-type:\ttext/html\r\n\r\n"; # OK for DGW et alia
765 That is because the translation from EBCDIC to ASCII is done
766 by the web server in this case (such code will not be appropriate for
767 the Macintosh however). Consult your web server's documentation for
772 The formats that can convert characters to numbers and vice versa
773 will be different from their ASCII counterparts when executed
774 on an EBCDIC machine. Examples include:
776 printf("%c%c%c",193,194,195); # prints ABC
780 EBCDIC sort results may differ from ASCII sort results especially for
781 mixed case strings. This is discussed in more detail below.
785 See the discussion of printf() above. An example of the use
788 $CAPITAL_LETTER_A = sprintf("%c",193);
792 See the discussion of pack() above.
796 =head1 REGULAR EXPRESSION DIFFERENCES
798 As of perl 5.005_03 the letter range regular expression such as
799 [A-Z] and [a-z] have been especially coded to not pick up gap
800 characters. For example, characters such as E<ocirc> C<o WITH CIRCUMFLEX>
801 that lie between I and J would not be matched by the
802 regular expression range C</[H-K]/>.
804 If you do want to match the alphabet gap characters in a single octet
805 regular expression try matching the hex or octal code such
806 as C</\313/> on EBCDIC or C</\364/> on ASCII machines to
807 have your regular expression match C<o WITH CIRCUMFLEX>.
809 Another construct to be wary of is the inappropriate use of hex or
810 octal constants in regular expressions. Consider the following
814 my $char = substr(shift,0,1);
815 $char =~ /[\000-\037]/;
819 my $char = substr(shift,0,1);
820 $char =~ /[\040-\176]/;
824 my $char = substr(shift,0,1);
829 my $char = substr(shift,0,1);
830 $char =~ /[\200-\237]/;
834 my $char = substr(shift,0,1);
835 $char =~ /[\240-\377]/;
838 The above would be adequate if the concern was only with numeric code points.
839 However, the concern may be with characters rather than code points
840 and on an EBCDIC machine it may be desirable for constructs such as
841 C<if (is_print_ascii("A")) {print "A is a printable character\n";}> to print
842 out the expected message. One way to represent the above collection
843 of character classification subs that is capable of working across the
844 four coded character sets discussed in this document is as follows:
847 my $char = substr(shift,0,1);
848 if (ord('^')==94) { # ascii
849 return $char =~ /[\000-\037]/;
851 if (ord('^')==176) { # 37
852 return $char =~ /[\000-\003\067\055-\057\026\005\045\013-\023\074\075\062\046\030\031\077\047\034-\037]/;
854 if (ord('^')==95 || ord('^')==106) { # 1047 || posix-bc
855 return $char =~ /[\000-\003\067\055-\057\026\005\025\013-\023\074\075\062\046\030\031\077\047\034-\037]/;
860 my $char = substr(shift,0,1);
861 $char =~ /[ !"\#\$%&'()*+,\-.\/0-9:;<=>?\@A-Z[\\\]^_`a-z{|}~]/;
865 my $char = substr(shift,0,1);
866 if (ord('^')==94) { # ascii
867 return $char eq "\177";
870 return $char eq "\007";
875 my $char = substr(shift,0,1);
876 if (ord('^')==94) { # ascii
877 return $char =~ /[\200-\237]/;
879 if (ord('^')==176) { # 37
880 return $char =~ /[\040-\044\025\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\377]/;
882 if (ord('^')==95) { # 1047
883 return $char =~ /[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\377]/;
885 if (ord('^')==106) { # posix-bc
887 /[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\137]/;
892 my $char = substr(shift,0,1);
893 if (ord('^')==94) { # ascii
894 return $char =~ /[\240-\377]/;
896 if (ord('^')==176) { # 37
898 /[\101\252\112\261\237\262\152\265\275\264\232\212\137\312\257\274\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\375\376\373\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]/;
900 if (ord('^')==95) { # 1047
902 /[\101\252\112\261\237\262\152\265\273\264\232\212\260\312\257\274\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\375\376\373\374\272\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]/;
904 if (ord('^')==106) { # posix-bc
906 /[\101\252\260\261\237\262\320\265\171\264\232\212\272\312\257\241\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\340\376\335\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\300\336\333\334\215\216\337]/;
910 Note however that only the C<Is_ascii_print()> sub is really independent
911 of coded character set. Another way to write C<Is_latin_1()> would be
912 to use the characters in the range explicitly:
915 my $char = substr(shift,0,1);
916 $char =~ /[ ¡¢£¤¥¦§¨©ª«¬®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ]/;
919 Although that form may run into trouble in network transit (due to the
920 presence of 8 bit characters) or on non ISO-Latin character sets.
924 Most socket programming assumes ASCII character encodings in network
925 byte order. Exceptions can include CGI script writing under a
926 host web server where the server may take care of translation for you.
927 Most host web servers convert EBCDIC data to ISO-8859-1 or Unicode on
932 One big difference between ASCII based character sets and EBCDIC ones
933 are the relative positions of upper and lower case letters and the
934 letters compared to the digits. If sorted on an ASCII based machine the
935 two letter abbreviation for a physician comes before the two letter
938 @sorted = sort(qw(Dr. dr.)); # @sorted holds ('Dr.','dr.') on ASCII,
939 # but ('dr.','Dr.') on EBCDIC
941 The property of lower case before uppercase letters in EBCDIC is
942 even carried to the Latin 1 EBCDIC pages such as 0037 and 1047.
943 An example would be that E<Euml> C<E WITH DIAERESIS> (203) comes
944 before E<euml> C<e WITH DIAERESIS> (235) on an ASCII machine, but
945 the latter (83) comes before the former (115) on an EBCDIC machine.
946 (Astute readers will note that the upper case version of E<szlig>
947 C<SMALL LETTER SHARP S> is simply "SS" and that the upper case version of
948 E<yuml> C<y WITH DIAERESIS> is not in the 0..255 range but it is
949 at U+x0178 in Unicode, or C<"\x{178}"> in a Unicode enabled Perl).
951 The sort order will cause differences between results obtained on
952 ASCII machines versus EBCDIC machines. What follows are some suggestions
953 on how to deal with these differences.
955 =head2 Ignore ASCII vs. EBCDIC sort differences.
957 This is the least computationally expensive strategy. It may require
960 =head2 MONO CASE then sort data.
962 In order to minimize the expense of mono casing mixed test try to
963 C<tr///> towards the character set case most employed within the data.
964 If the data are primarily UPPERCASE non Latin 1 then apply tr/[a-z]/[A-Z]/
965 then sort(). If the data are primarily lowercase non Latin 1 then
966 apply tr/[A-Z]/[a-z]/ before sorting. If the data are primarily UPPERCASE
967 and include Latin-1 characters then apply:
970 tr/[àáâãäåæçèéêëìíîïðñòóôõöøùúûüýþ]/[ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞ]/;
973 then sort(). Do note however that such Latin-1 manipulation does not
974 address the E<yuml> C<y WITH DIAERESIS> character that will remain at
975 code point 255 on ASCII machines, but 223 on most EBCDIC machines
976 where it will sort to a place less than the EBCDIC numerals. With a
977 Unicode enabled Perl you might try:
981 The strategy of mono casing data before sorting does not preserve the case
982 of the data and may not be acceptable for that reason.
984 =head2 Convert, sort data, then re convert.
986 This is the most expensive proposition that does not employ a network
989 =head2 Perform sorting on one type of machine only.
991 This strategy can employ a network connection. As such
992 it would be computationally expensive.
994 =head1 TRANSFORMATION FORMATS
996 There are a variety of ways of transforming data with an intra character set
997 mapping that serve a variety of purposes. Sorting was discussed in the
998 previous section and a few of the other more popular mapping techniques are
1001 =head2 URL decoding and encoding
1003 Note that some URLs have hexadecimal ASCII code points in them in an
1004 attempt to overcome character or protocol limitation issues. For example
1005 the tilde character is not on every keyboard hence a URL of the form:
1007 http://www.pvhp.com/~pvhp/
1009 may also be expressed as either of:
1011 http://www.pvhp.com/%7Epvhp/
1013 http://www.pvhp.com/%7epvhp/
1015 where 7E is the hexadecimal ASCII code point for '~'. Here is an example
1016 of decoding such a URL under CCSID 1047:
1018 $url = 'http://www.pvhp.com/%7Epvhp/';
1019 # this array assumes code page 1047
1021 0, 1, 2, 3, 55, 45, 46, 47, 22, 5, 21, 11, 12, 13, 14, 15,
1022 16, 17, 18, 19, 60, 61, 50, 38, 24, 25, 63, 39, 28, 29, 30, 31,
1023 64, 90,127,123, 91,108, 80,125, 77, 93, 92, 78,107, 96, 75, 97,
1024 240,241,242,243,244,245,246,247,248,249,122, 94, 76,126,110,111,
1025 124,193,194,195,196,197,198,199,200,201,209,210,211,212,213,214,
1026 215,216,217,226,227,228,229,230,231,232,233,173,224,189, 95,109,
1027 121,129,130,131,132,133,134,135,136,137,145,146,147,148,149,150,
1028 151,152,153,162,163,164,165,166,167,168,169,192, 79,208,161, 7,
1029 32, 33, 34, 35, 36, 37, 6, 23, 40, 41, 42, 43, 44, 9, 10, 27,
1030 48, 49, 26, 51, 52, 53, 54, 8, 56, 57, 58, 59, 4, 20, 62,255,
1031 65,170, 74,177,159,178,106,181,187,180,154,138,176,202,175,188,
1032 144,143,234,250,190,160,182,179,157,218,155,139,183,184,185,171,
1033 100,101, 98,102, 99,103,158,104,116,113,114,115,120,117,118,119,
1034 172,105,237,238,235,239,236,191,128,253,254,251,252,186,174, 89,
1035 68, 69, 66, 70, 67, 71,156, 72, 84, 81, 82, 83, 88, 85, 86, 87,
1036 140, 73,205,206,203,207,204,225,112,221,222,219,220,141,142,223
1038 $url =~ s/%([0-9a-fA-F]{2})/pack("c",$a2e_1047[hex($1)])/ge;
1040 Conversely, here is a partial solution for the task of encoding such
1041 a URL under the 1047 code page:
1043 $url = 'http://www.pvhp.com/~pvhp/';
1044 # this array assumes code page 1047
1046 0, 1, 2, 3,156, 9,134,127,151,141,142, 11, 12, 13, 14, 15,
1047 16, 17, 18, 19,157, 10, 8,135, 24, 25,146,143, 28, 29, 30, 31,
1048 128,129,130,131,132,133, 23, 27,136,137,138,139,140, 5, 6, 7,
1049 144,145, 22,147,148,149,150, 4,152,153,154,155, 20, 21,158, 26,
1050 32,160,226,228,224,225,227,229,231,241,162, 46, 60, 40, 43,124,
1051 38,233,234,235,232,237,238,239,236,223, 33, 36, 42, 41, 59, 94,
1052 45, 47,194,196,192,193,195,197,199,209,166, 44, 37, 95, 62, 63,
1053 248,201,202,203,200,205,206,207,204, 96, 58, 35, 64, 39, 61, 34,
1054 216, 97, 98, 99,100,101,102,103,104,105,171,187,240,253,254,177,
1055 176,106,107,108,109,110,111,112,113,114,170,186,230,184,198,164,
1056 181,126,115,116,117,118,119,120,121,122,161,191,208, 91,222,174,
1057 172,163,165,183,169,167,182,188,189,190,221,168,175, 93,180,215,
1058 123, 65, 66, 67, 68, 69, 70, 71, 72, 73,173,244,246,242,243,245,
1059 125, 74, 75, 76, 77, 78, 79, 80, 81, 82,185,251,252,249,250,255,
1060 92,247, 83, 84, 85, 86, 87, 88, 89, 90,178,212,214,210,211,213,
1061 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,179,219,220,217,218,159
1063 # The following regular expression does not address the
1064 # mappings for: ('.' => '%2E', '/' => '%2F', ':' => '%3A')
1065 $url =~ s/([\t "#%&\(\),;<=>\?\@\[\\\]^`{|}~])/sprintf("%%%02X",$e2a_1047[ord($1)])/ge;
1067 where a more complete solution would split the URL into components
1068 and apply a full s/// substitution only to the appropriate parts.
1070 In the remaining examples a @e2a or @a2e array may be employed
1071 but the assignment will not be shown explicitly. For code page 1047
1072 you could use the @a2e_1047 or @e2a_1047 arrays just shown.
1074 =head2 uu encoding and decoding
1076 The C<u> template to pack() or unpack() will render EBCDIC data in EBCDIC
1077 characters equivalent to their ASCII counterparts. For example, the
1078 following will print "Yes indeed\n" on either an ASCII or EBCDIC computer:
1080 $all_byte_chrs = '';
1081 for (0..255) { $all_byte_chrs .= chr($_); }
1082 $uuencode_byte_chrs = pack('u', $all_byte_chrs);
1083 ($uu = <<'ENDOFHEREDOC') =~ s/^\s*//gm;
1084 M``$"`P0%!@<("0H+#`T.#Q`1$A,4%187&!D:&QP='A\@(2(C)"4F)R@I*BLL
1085 M+2XO,#$R,S0U-C<X.3H[/#T^/T!!0D-$149'2$E*2TQ-3D]045)35%565UA9
1086 M6EM<75Y?8&%B8V1E9F=H:6IK;&UN;W!Q<G-T=79W>'EZ>WQ]?G^`@8*#A(6&
1087 MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S
1088 MM+6VM[BYNKN\O;Z_P,'"P\3%QL?(R<K+S,W.S]#1TM/4U=;7V-G:V]S=WM_@
1089 ?X>+CY.7FY^CIZNOL[>[O\/'R\_3U]O?X^?K[_/W^_P``
1091 if ($uuencode_byte_chrs eq $uu) {
1094 $uudecode_byte_chrs = unpack('u', $uuencode_byte_chrs);
1095 if ($uudecode_byte_chrs eq $all_byte_chrs) {
1099 Here is a very spartan uudecoder that will work on EBCDIC provided
1100 that the @e2a array is filled in appropriately:
1102 #!/usr/local/bin/perl
1103 @e2a = ( # this must be filled in
1105 $_ = <> until ($mode,$file) = /^begin\s*(\d*)\s*(\S*)/;
1106 open(OUT, "> $file") if $file ne "";
1110 next unless int(((($e2a[ord()] - 32 ) & 077) + 2) / 3) ==
1112 print OUT unpack("u", $_);
1115 chmod oct($mode), $file;
1118 =head2 Quoted-Printable encoding and decoding
1120 On ASCII encoded machines it is possible to strip characters outside of
1121 the printable set using:
1123 # This QP encoder works on ASCII only
1124 $qp_string =~ s/([=\x00-\x1F\x80-\xFF])/sprintf("=%02X",ord($1))/ge;
1126 Whereas a QP encoder that works on both ASCII and EBCDIC machines
1127 would look somewhat like the following (where the EBCDIC branch @e2a
1128 array is omitted for brevity):
1130 if (ord('A') == 65) { # ASCII
1131 $delete = "\x7F"; # ASCII
1132 @e2a = (0 .. 255) # ASCII to ASCII identity map
1135 $delete = "\x07"; # EBCDIC
1136 @e2a = # EBCDIC to ASCII map (as shown above)
1139 s/([^ !"\#\$%&'()*+,\-.\/0-9:;<>?\@A-Z[\\\]^_`a-z{|}~$delete])/sprintf("=%02X",$e2a[ord($1)])/ge;
1141 (although in production code the substitutions might be done
1142 in the EBCDIC branch with the @e2a array and separately in the
1143 ASCII branch without the expense of the identity map).
1145 Such QP strings can be decoded with:
1147 # This QP decoder is limited to ASCII only
1148 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/ge;
1149 $string =~ s/=[\n\r]+$//;
1151 Whereas a QP decoder that works on both ASCII and EBCDIC machines
1152 would look somewhat like the following (where the @a2e array is
1153 omitted for brevity):
1155 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr $a2e[hex $1]/ge;
1156 $string =~ s/=[\n\r]+$//;
1158 =head2 Caesarian ciphers
1160 The practice of shifting an alphabet one or more characters for encipherment
1161 dates back thousands of years and was explicitly detailed by Gaius Julius
1162 Caesar in his B<Gallic Wars> text. A single alphabet shift is sometimes
1163 referred to as a rotation and the shift amount is given as a number $n after
1164 the string 'rot' or "rot$n". Rot0 and rot26 would designate identity maps
1165 on the 26 letter English version of the Latin alphabet. Rot13 has the
1166 interesting property that alternate subsequent invocations are identity maps
1167 (thus rot13 is its own non-trivial inverse in the group of 26 alphabet
1168 rotations). Hence the following is a rot13 encoder and decoder that will
1169 work on ASCII and EBCDIC machines:
1171 #!/usr/local/bin/perl
1174 tr/n-za-mN-ZA-M/a-zA-Z/;
1180 perl -ne 'tr/n-za-mN-ZA-M/a-zA-Z/;print'
1183 =head1 Hashing order and checksums
1185 To the extent that it is possible to write code that depends on
1186 hashing order there may be differences between hashes as stored
1187 on an ASCII based machine and hashes stored on an EBCDIC based machine.
1190 =head1 I18N AND L10N
1192 Internationalization(I18N) and localization(L10N) are supported at least
1193 in principle even on EBCDIC machines. The details are system dependent
1194 and discussed under the L<perlebcdic/OS ISSUES> section below.
1196 =head1 MULTI OCTET CHARACTER SETS
1198 Perl may work with an internal UTF-EBCDIC encoding form for wide characters
1199 on EBCDIC platforms in a manner analogous to the way that it works with
1200 the UTF-8 internal encoding form on ASCII based platforms.
1202 Legacy multi byte EBCDIC code pages XXX.
1206 There may be a few system dependent issues
1207 of concern to EBCDIC Perl programmers.
1211 The PASE environment.
1223 Perl runs under Unix Systems Services or USS.
1229 B<chcp> is supported as a shell utility for displaying and changing
1230 one's code page. See also L<chcp>.
1232 =item dataset access
1234 For sequential data set access try:
1236 my @ds_records = `cat //DSNAME`;
1240 my @ds_records = `cat //'HLQ.DSNAME'`;
1242 See also the OS390::Stdio module on CPAN.
1244 =item OS/390, z/OS iconv
1246 B<iconv> is supported as both a shell utility and a C RTL routine.
1247 See also the iconv(1) and iconv(3) manual pages.
1251 On OS/390 or z/OS see L<locale> for information on locales. The L10N files
1252 are in F</usr/nls/locale>. $Config{d_setlocale} is 'define' on OS/390
1267 This pod document contains literal Latin 1 characters and may encounter
1268 translation difficulties. In particular one popular nroff implementation
1269 was known to strip accented characters to their unaccented counterparts
1270 while attempting to view this document through the B<pod2man> program
1271 (for example, you may see a plain C<y> rather than one with a diaeresis
1272 as in E<yuml>). Another nroff truncated the resultant manpage at
1273 the first occurrence of 8 bit characters.
1275 Not all shells will allow multiple C<-e> string arguments to perl to
1276 be concatenated together properly as recipes 0, 2, 4, 5, and 6 might
1281 L<perllocale>, L<perlfunc>, L<perlunicode>, L<utf8>.
1285 http://anubis.dkuug.dk/i18n/charmaps
1287 http://www.unicode.org/
1289 http://www.unicode.org/unicode/reports/tr16/
1291 http://www.wps.com/texts/codes/
1292 B<ASCII: American Standard Code for Information Infiltration> Tom Jennings,
1295 B<The Unicode Standard, Version 3.0> The Unicode Consortium, Lisa Moore ed.,
1296 ISBN 0-201-61633-5, Addison Wesley Developers Press, February 2000.
1298 B<CDRA: IBM - Character Data Representation Architecture -
1299 Reference and Registry>, IBM SC09-2190-00, December 1996.
1301 "Demystifying Character Sets", Andrea Vine, Multilingual Computing
1302 & Technology, B<#26 Vol. 10 Issue 4>, August/September 1999;
1303 ISSN 1523-0309; Multilingual Computing Inc. Sandpoint ID, USA.
1305 B<Codes, Ciphers, and Other Cryptic and Clandestine Communication>
1306 Fred B. Wrixon, ISBN 1-57912-040-7, Black Dog & Leventhal Publishers,
1309 http://www.bobbemer.com/P-BIT.HTM
1310 B<IBM - EBCDIC and the P-bit; The biggest Computer Goof Ever> Robert Bemer.
1314 15 April 2001: added UTF-8 and UTF-EBCDIC to main table, pvhp.
1318 Peter Prymmer pvhp@best.com wrote this in 1999 and 2000
1319 with CCSID 0819 and 0037 help from Chris Leach and
1320 AndrE<eacute> Pirard A.Pirard@ulg.ac.be as well as POSIX-BC
1321 help from Thomas Dorner Thomas.Dorner@start.de.
1322 Thanks also to Vickie Cooper, Philip Newton, William Raffloer, and
1323 Joe Smith. Trademarks, registered trademarks, service marks and
1324 registered service marks used in this document are the property of
1325 their respective owners.