3 perlebcdic - Considerations for running Perl on EBCDIC platforms
7 An exploration of some of the issues facing Perl programmers
8 on EBCDIC based computers. We do not cover localization,
9 internationalization, or multi byte character set issues other
10 than some discussion of UTF-8 and UTF-EBCDIC.
12 Portions that are still incomplete are marked with XXX.
14 Perl used to work on EBCDIC machines, but there are now areas of the code where
15 it doesn't. If you want to use Perl on an EBCDIC machine, please let us know
16 by sending mail to perlbug@perl.org
18 =head1 COMMON CHARACTER CODE SETS
22 The American Standard Code for Information Interchange (ASCII or US-ASCII) is a
24 integers running from 0 to 127 (decimal) that imply character
25 interpretation by the display and other systems of computers.
26 The range 0..127 can be covered by setting the bits in a 7-bit binary
27 digit, hence the set is sometimes referred to as a "7-bit ASCII".
28 ASCII was described by the American National Standards Institute
29 document ANSI X3.4-1986. It was also described by ISO 646:1991
30 (with localization for currency symbols). The full ASCII set is
31 given in the table below as the first 128 elements. Languages that
32 can be written adequately with the characters in ASCII include
33 English, Hawaiian, Indonesian, Swahili and some Native American
36 There are many character sets that extend the range of integers
37 from 0..2**7-1 up to 2**8-1, or 8 bit bytes (octets if you prefer).
38 One common one is the ISO 8859-1 character set.
42 The ISO 8859-$n are a collection of character code sets from the
43 International Organization for Standardization (ISO) each of which
44 adds characters to the ASCII set that are typically found in European
45 languages many of which are based on the Roman, or Latin, alphabet.
47 =head2 Latin 1 (ISO 8859-1)
49 A particular 8-bit extension to ASCII that includes grave and acute
50 accented Latin characters. Languages that can employ ISO 8859-1
51 include all the languages covered by ASCII as well as Afrikaans,
52 Albanian, Basque, Catalan, Danish, Faroese, Finnish, Norwegian,
53 Portuguese, Spanish, and Swedish. Dutch is covered albeit without
54 the ij ligature. French is covered too but without the oe ligature.
55 German can use ISO 8859-1 but must do so without German-style
56 quotation marks. This set is based on Western European extensions
57 to ASCII and is commonly encountered in world wide web work.
58 In IBM character code set identification terminology ISO 8859-1 is
59 also known as CCSID 819 (or sometimes 0819 or even 00819).
63 The Extended Binary Coded Decimal Interchange Code refers to a
64 large collection of single and multi byte coded character sets that are
65 different from ASCII or ISO 8859-1 and are all slightly different from each
66 other; they typically run on host computers. The EBCDIC encodings derive from
67 8 bit byte extensions of Hollerith punched card encodings. The layout on the
68 cards was such that high bits were set for the upper and lower case alphabet
69 characters [a-z] and [A-Z], but there were gaps within each Latin alphabet
72 Some IBM EBCDIC character sets may be known by character code set
73 identification numbers (CCSID numbers) or code page numbers. Leading
74 zero digits in CCSID numbers within this document are insignificant.
75 E.g. CCSID 0037 may be referred to as 37 in places.
77 Perl can be compiled on platforms that run any of three commonly used EBCDIC
78 character sets, listed below.
80 =head2 The 13 variant characters
82 Among IBM EBCDIC character code sets there are 13 characters that
83 are often mapped to different integer values. Those characters
84 are known as the 13 "variant" characters and are:
86 \ [ ] { } ^ ~ ! # | $ @ `
88 When Perl is compiled for a platform, it looks at some of these characters to
89 guess which EBCDIC character set the platform uses, and adapts itself
90 accordingly to that platform. If the platform uses a character set that is not
91 one of the three Perl knows about, Perl will either fail to compile, or
92 mistakenly and silently choose one of the three.
97 Character code set ID 0037 is a mapping of the ASCII plus Latin-1
98 characters (i.e. ISO 8859-1) to an EBCDIC set. 0037 is used
99 in North American English locales on the OS/400 operating system
100 that runs on AS/400 computers. CCSID 37 differs from ISO 8859-1
101 in 237 places, in other words they agree on only 19 code point values.
105 Character code set ID 1047 is also a mapping of the ASCII plus
106 Latin-1 characters (i.e. ISO 8859-1) to an EBCDIC set. 1047 is
107 used under Unix System Services for OS/390 or z/OS, and OpenEdition
108 for VM/ESA. CCSID 1047 differs from CCSID 0037 in eight places.
112 The EBCDIC code page in use on Siemens' BS2000 system is distinct from
113 1047 and 0037. It is identified below as the POSIX-BC set.
115 =head2 Unicode code points versus EBCDIC code points
117 In Unicode terminology a I<code point> is the number assigned to a
118 character: for example, in EBCDIC the character "A" is usually assigned
119 the number 193. In Unicode the character "A" is assigned the number 65.
120 This causes a problem with the semantics of the pack/unpack "U", which
121 are supposed to pack Unicode code points to characters and back to numbers.
122 The problem is: which code points to use for code points less than 256?
123 (for 256 and over there's no problem: Unicode code points are used)
124 In EBCDIC, for the low 256 the EBCDIC code points are used. This
125 means that the equivalences
127 pack("U", ord($character)) eq $character
128 unpack("U", $character) == ord $character
130 will hold. (If Unicode code points were applied consistently over
131 all the possible code points, pack("U",ord("A")) would in EBCDIC
132 equal I<A with acute> or chr(101), and unpack("U", "A") would equal
133 65, or I<non-breaking space>, not 193, or ord "A".)
135 =head2 Remaining Perl Unicode problems in EBCDIC
141 Many of the remaining problems seem to be related to case-insensitive matching
145 The extensions Unicode::Collate and Unicode::Normalized are not
146 supported under EBCDIC, likewise for the encoding pragma.
150 =head2 Unicode and UTF
152 UTF stands for C<Unicode Transformation Format>.
153 UTF-8 is an encoding of Unicode into a sequence of 8-bit byte chunks, based on
155 The length of a sequence required to represent a Unicode code point
156 depends on the ordinal number of that code point,
157 with larger numbers requiring more bytes.
158 UTF-EBCDIC is like UTF-8, but based on EBCDIC.
160 You may see the term C<invariant> character or code point.
161 This simply means that the character has the same numeric
162 value when encoded as when not.
163 (Note that this is a very different concept from L</The 13 variant characters>
165 For example, the ordinal value of 'A' is 193 in most EBCDIC code pages,
166 and also is 193 when encoded in UTF-EBCDIC.
167 All variant code points occupy at least two bytes when encoded.
168 In UTF-8, the code points corresponding to the lowest 128
169 ordinal numbers (0 - 127: the ASCII characters) are invariant.
170 In UTF-EBCDIC, there are 160 invariant characters.
171 (If you care, the EBCDIC invariants are those characters
172 which have ASCII equivalents, plus those that correspond to
173 the C1 controls (80..9f on ASCII platforms).)
175 A string encoded in UTF-EBCDIC may be longer (but never shorter) than
176 one encoded in UTF-8.
180 Starting from Perl 5.8 you can use the standard new module Encode
181 to translate from EBCDIC to Latin-1 code points.
182 Encode knows about more EBCDIC character sets than Perl can currently
183 be compiled to run on.
185 use Encode 'from_to';
187 my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );
189 # $a is in EBCDIC code points
190 from_to($a, $ebcdic{ord '^'}, 'latin1');
191 # $a is ISO 8859-1 code points
193 and from Latin-1 code points to EBCDIC code points
195 use Encode 'from_to';
197 my %ebcdic = ( 176 => 'cp37', 95 => 'cp1047', 106 => 'posix-bc' );
199 # $a is ISO 8859-1 code points
200 from_to($a, 'latin1', $ebcdic{ord '^'});
201 # $a is in EBCDIC code points
203 For doing I/O it is suggested that you use the autotranslating features
204 of PerlIO, see L<perluniintro>.
206 Since version 5.8 Perl uses the new PerlIO I/O library. This enables
207 you to use different encodings per IO channel. For example you may use
210 open($f, ">:encoding(ascii)", "test.ascii");
211 print $f "Hello World!\n";
212 open($f, ">:encoding(cp37)", "test.ebcdic");
213 print $f "Hello World!\n";
214 open($f, ">:encoding(latin1)", "test.latin1");
215 print $f "Hello World!\n";
216 open($f, ">:encoding(utf8)", "test.utf8");
217 print $f "Hello World!\n";
219 to get four files containing "Hello World!\n" in ASCII, CP 37 EBCDIC,
220 ISO 8859-1 (Latin-1) (in this example identical to ASCII since only ASCII
221 characters were printed), and
222 UTF-EBCDIC (in this example identical to normal EBCDIC since only characters
223 that don't differ between EBCDIC and UTF-EBCDIC were printed). See the
224 documentation of Encode::PerlIO for details.
226 As the PerlIO layer uses raw IO (bytes) internally, all this totally
227 ignores things like the type of your filesystem (ASCII or EBCDIC).
229 =head1 SINGLE OCTET TABLES
231 The following tables list the ASCII and Latin 1 ordered sets including
232 the subsets: C0 controls (0..31), ASCII graphics (32..7e), delete (7f),
233 C1 controls (80..9f), and Latin-1 (a.k.a. ISO 8859-1) (a0..ff). In the
234 table non-printing control character names as well as the Latin 1
235 extensions to ASCII have been labelled with character names roughly
236 corresponding to I<The Unicode Standard, Version 3.0> albeit with
237 substitutions such as s/LATIN// and s/VULGAR// in all cases,
238 s/CAPITAL LETTER// in some cases, and s/SMALL LETTER ([A-Z])/\l$1/
239 in some other cases (the C<charnames> pragma names unfortunately do
240 not list explicit names for the C0 or C1 control characters). The
241 "names" of the C1 control set (128..159 in ISO 8859-1) listed here are
242 somewhat arbitrary. The differences between the 0037 and 1047 sets are
243 flagged with ***. The differences between the 1047 and POSIX-BC sets
244 are flagged with ###. All ord() numbers listed are decimal. If you
245 would rather see this table listing octal values then run the table
246 (that is, the pod version of this document since this recipe may not
247 work with a pod2_other_format translation) through:
255 perl -ne 'if(/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
256 -e '{printf("%s%-9o%-9o%-9o%o\n",$1,$2,$3,$4,$5)}' perlebcdic.pod
258 If you want to retain the UTF-x code points then in script form you
267 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
269 if (/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/) {
270 if ($7 ne '' && $9 ne '') {
271 printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%-3o.%o\n",$1,$2,$3,$4,$5,$6,$7,$8,$9);
274 printf("%s%-9o%-9o%-9o%-9o%-3o.%-5o%o\n",$1,$2,$3,$4,$5,$6,$7,$8);
277 printf("%s%-9o%-9o%-9o%-9o%-9o%o\n",$1,$2,$3,$4,$5,$6,$8);
282 If you would rather see this table listing hexadecimal values then
283 run the table through:
291 perl -ne 'if(/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)/)' \
292 -e '{printf("%s%-9X%-9X%-9X%X\n",$1,$2,$3,$4,$5)}' perlebcdic.pod
294 Or, in order to retain the UTF-x code points in hexadecimal:
302 open(FH,"<perlebcdic.pod") or die "Could not open perlebcdic.pod: $!";
304 if (/(.{33})(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\s+(\d+)\.?(\d*)\s+(\d+)\.?(\d*)/) {
305 if ($7 ne '' && $9 ne '') {
306 printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%-2X.%X\n",$1,$2,$3,$4,$5,$6,$7,$8,$9);
309 printf("%s%-9X%-9X%-9X%-9X%-2X.%-6X%X\n",$1,$2,$3,$4,$5,$6,$7,$8);
312 printf("%s%-9X%-9X%-9X%-9X%-9X%X\n",$1,$2,$3,$4,$5,$6,$8);
320 chr 0819 0037 1047 POSIX-BC UTF-8 UTF-EBCDIC
321 ------------------------------------------------------------------------------------
323 <START OF HEADING> 1 1 1 1 1 1
324 <START OF TEXT> 2 2 2 2 2 2
325 <END OF TEXT> 3 3 3 3 3 3
326 <END OF TRANSMISSION> 4 55 55 55 4 55
327 <ENQUIRY> 5 45 45 45 5 45
328 <ACKNOWLEDGE> 6 46 46 46 6 46
329 <BELL> 7 47 47 47 7 47
330 <BACKSPACE> 8 22 22 22 8 22
331 <HORIZONTAL TABULATION> 9 5 5 5 9 5
332 <LINE FEED> 10 37 21 21 10 21 ***
333 <VERTICAL TABULATION> 11 11 11 11 11 11
334 <FORM FEED> 12 12 12 12 12 12
335 <CARRIAGE RETURN> 13 13 13 13 13 13
336 <SHIFT OUT> 14 14 14 14 14 14
337 <SHIFT IN> 15 15 15 15 15 15
338 <DATA LINK ESCAPE> 16 16 16 16 16 16
339 <DEVICE CONTROL ONE> 17 17 17 17 17 17
340 <DEVICE CONTROL TWO> 18 18 18 18 18 18
341 <DEVICE CONTROL THREE> 19 19 19 19 19 19
342 <DEVICE CONTROL FOUR> 20 60 60 60 20 60
343 <NEGATIVE ACKNOWLEDGE> 21 61 61 61 21 61
344 <SYNCHRONOUS IDLE> 22 50 50 50 22 50
345 <END OF TRANSMISSION BLOCK> 23 38 38 38 23 38
346 <CANCEL> 24 24 24 24 24 24
347 <END OF MEDIUM> 25 25 25 25 25 25
348 <SUBSTITUTE> 26 63 63 63 26 63
349 <ESCAPE> 27 39 39 39 27 39
350 <FILE SEPARATOR> 28 28 28 28 28 28
351 <GROUP SEPARATOR> 29 29 29 29 29 29
352 <RECORD SEPARATOR> 30 30 30 30 30 30
353 <UNIT SEPARATOR> 31 31 31 31 31 31
354 <SPACE> 32 64 64 64 32 64
356 " 34 127 127 127 34 127
357 # 35 123 123 123 35 123
359 % 37 108 108 108 37 108
361 ' 39 125 125 125 39 125
366 , 44 107 107 107 44 107
370 0 48 240 240 240 48 240
371 1 49 241 241 241 49 241
372 2 50 242 242 242 50 242
373 3 51 243 243 243 51 243
374 4 52 244 244 244 52 244
375 5 53 245 245 245 53 245
376 6 54 246 246 246 54 246
377 7 55 247 247 247 55 247
378 8 56 248 248 248 56 248
379 9 57 249 249 249 57 249
380 : 58 122 122 122 58 122
383 = 61 126 126 126 61 126
384 > 62 110 110 110 62 110
385 ? 63 111 111 111 63 111
386 @ 64 124 124 124 64 124
387 A 65 193 193 193 65 193
388 B 66 194 194 194 66 194
389 C 67 195 195 195 67 195
390 D 68 196 196 196 68 196
391 E 69 197 197 197 69 197
392 F 70 198 198 198 70 198
393 G 71 199 199 199 71 199
394 H 72 200 200 200 72 200
395 I 73 201 201 201 73 201
396 J 74 209 209 209 74 209
397 K 75 210 210 210 75 210
398 L 76 211 211 211 76 211
399 M 77 212 212 212 77 212
400 N 78 213 213 213 78 213
401 O 79 214 214 214 79 214
402 P 80 215 215 215 80 215
403 Q 81 216 216 216 81 216
404 R 82 217 217 217 82 217
405 S 83 226 226 226 83 226
406 T 84 227 227 227 84 227
407 U 85 228 228 228 85 228
408 V 86 229 229 229 86 229
409 W 87 230 230 230 87 230
410 X 88 231 231 231 88 231
411 Y 89 232 232 232 89 232
412 Z 90 233 233 233 90 233
413 [ 91 186 173 187 91 173 *** ###
414 \ 92 224 224 188 92 224 ###
415 ] 93 187 189 189 93 189 ***
416 ^ 94 176 95 106 94 95 *** ###
417 _ 95 109 109 109 95 109
418 ` 96 121 121 74 96 121 ###
419 a 97 129 129 129 97 129
420 b 98 130 130 130 98 130
421 c 99 131 131 131 99 131
422 d 100 132 132 132 100 132
423 e 101 133 133 133 101 133
424 f 102 134 134 134 102 134
425 g 103 135 135 135 103 135
426 h 104 136 136 136 104 136
427 i 105 137 137 137 105 137
428 j 106 145 145 145 106 145
429 k 107 146 146 146 107 146
430 l 108 147 147 147 108 147
431 m 109 148 148 148 109 148
432 n 110 149 149 149 110 149
433 o 111 150 150 150 111 150
434 p 112 151 151 151 112 151
435 q 113 152 152 152 113 152
436 r 114 153 153 153 114 153
437 s 115 162 162 162 115 162
438 t 116 163 163 163 116 163
439 u 117 164 164 164 117 164
440 v 118 165 165 165 118 165
441 w 119 166 166 166 119 166
442 x 120 167 167 167 120 167
443 y 121 168 168 168 121 168
444 z 122 169 169 169 122 169
445 { 123 192 192 251 123 192 ###
446 | 124 79 79 79 124 79
447 } 125 208 208 253 125 208 ###
448 ~ 126 161 161 255 126 161 ###
449 <DELETE> 127 7 7 7 127 7
450 <C1 0> 128 32 32 32 194.128 32
451 <C1 1> 129 33 33 33 194.129 33
452 <C1 2> 130 34 34 34 194.130 34
453 <C1 3> 131 35 35 35 194.131 35
454 <C1 4> 132 36 36 36 194.132 36
455 <C1 5> 133 21 37 37 194.133 37 ***
456 <C1 6> 134 6 6 6 194.134 6
457 <C1 7> 135 23 23 23 194.135 23
458 <C1 8> 136 40 40 40 194.136 40
459 <C1 9> 137 41 41 41 194.137 41
460 <C1 10> 138 42 42 42 194.138 42
461 <C1 11> 139 43 43 43 194.139 43
462 <C1 12> 140 44 44 44 194.140 44
463 <C1 13> 141 9 9 9 194.141 9
464 <C1 14> 142 10 10 10 194.142 10
465 <C1 15> 143 27 27 27 194.143 27
466 <C1 16> 144 48 48 48 194.144 48
467 <C1 17> 145 49 49 49 194.145 49
468 <C1 18> 146 26 26 26 194.146 26
469 <C1 19> 147 51 51 51 194.147 51
470 <C1 20> 148 52 52 52 194.148 52
471 <C1 21> 149 53 53 53 194.149 53
472 <C1 22> 150 54 54 54 194.150 54
473 <C1 23> 151 8 8 8 194.151 8
474 <C1 24> 152 56 56 56 194.152 56
475 <C1 25> 153 57 57 57 194.153 57
476 <C1 26> 154 58 58 58 194.154 58
477 <C1 27> 155 59 59 59 194.155 59
478 <C1 28> 156 4 4 4 194.156 4
479 <C1 29> 157 20 20 20 194.157 20
480 <C1 30> 158 62 62 62 194.158 62
481 <C1 31> 159 255 255 95 194.159 255 ###
482 <NON-BREAKING SPACE> 160 65 65 65 194.160 128.65
483 <INVERTED EXCLAMATION MARK> 161 170 170 170 194.161 128.66
484 <CENT SIGN> 162 74 74 176 194.162 128.67 ###
485 <POUND SIGN> 163 177 177 177 194.163 128.68
486 <CURRENCY SIGN> 164 159 159 159 194.164 128.69
487 <YEN SIGN> 165 178 178 178 194.165 128.70
488 <BROKEN BAR> 166 106 106 208 194.166 128.71 ###
489 <SECTION SIGN> 167 181 181 181 194.167 128.72
490 <DIAERESIS> 168 189 187 121 194.168 128.73 *** ###
491 <COPYRIGHT SIGN> 169 180 180 180 194.169 128.74
492 <FEMININE ORDINAL INDICATOR> 170 154 154 154 194.170 128.81
493 <LEFT POINTING GUILLEMET> 171 138 138 138 194.171 128.82
494 <NOT SIGN> 172 95 176 186 194.172 128.83 *** ###
495 <SOFT HYPHEN> 173 202 202 202 194.173 128.84
496 <REGISTERED TRADE MARK SIGN> 174 175 175 175 194.174 128.85
497 <MACRON> 175 188 188 161 194.175 128.86 ###
498 <DEGREE SIGN> 176 144 144 144 194.176 128.87
499 <PLUS-OR-MINUS SIGN> 177 143 143 143 194.177 128.88
500 <SUPERSCRIPT TWO> 178 234 234 234 194.178 128.89
501 <SUPERSCRIPT THREE> 179 250 250 250 194.179 128.98
502 <ACUTE ACCENT> 180 190 190 190 194.180 128.99
503 <MICRO SIGN> 181 160 160 160 194.181 128.100
504 <PARAGRAPH SIGN> 182 182 182 182 194.182 128.101
505 <MIDDLE DOT> 183 179 179 179 194.183 128.102
506 <CEDILLA> 184 157 157 157 194.184 128.103
507 <SUPERSCRIPT ONE> 185 218 218 218 194.185 128.104
508 <MASC. ORDINAL INDICATOR> 186 155 155 155 194.186 128.105
509 <RIGHT POINTING GUILLEMET> 187 139 139 139 194.187 128.106
510 <FRACTION ONE QUARTER> 188 183 183 183 194.188 128.112
511 <FRACTION ONE HALF> 189 184 184 184 194.189 128.113
512 <FRACTION THREE QUARTERS> 190 185 185 185 194.190 128.114
513 <INVERTED QUESTION MARK> 191 171 171 171 194.191 128.115
514 <A WITH GRAVE> 192 100 100 100 195.128 138.65
515 <A WITH ACUTE> 193 101 101 101 195.129 138.66
516 <A WITH CIRCUMFLEX> 194 98 98 98 195.130 138.67
517 <A WITH TILDE> 195 102 102 102 195.131 138.68
518 <A WITH DIAERESIS> 196 99 99 99 195.132 138.69
519 <A WITH RING ABOVE> 197 103 103 103 195.133 138.70
520 <CAPITAL LIGATURE AE> 198 158 158 158 195.134 138.71
521 <C WITH CEDILLA> 199 104 104 104 195.135 138.72
522 <E WITH GRAVE> 200 116 116 116 195.136 138.73
523 <E WITH ACUTE> 201 113 113 113 195.137 138.74
524 <E WITH CIRCUMFLEX> 202 114 114 114 195.138 138.81
525 <E WITH DIAERESIS> 203 115 115 115 195.139 138.82
526 <I WITH GRAVE> 204 120 120 120 195.140 138.83
527 <I WITH ACUTE> 205 117 117 117 195.141 138.84
528 <I WITH CIRCUMFLEX> 206 118 118 118 195.142 138.85
529 <I WITH DIAERESIS> 207 119 119 119 195.143 138.86
530 <CAPITAL LETTER ETH> 208 172 172 172 195.144 138.87
531 <N WITH TILDE> 209 105 105 105 195.145 138.88
532 <O WITH GRAVE> 210 237 237 237 195.146 138.89
533 <O WITH ACUTE> 211 238 238 238 195.147 138.98
534 <O WITH CIRCUMFLEX> 212 235 235 235 195.148 138.99
535 <O WITH TILDE> 213 239 239 239 195.149 138.100
536 <O WITH DIAERESIS> 214 236 236 236 195.150 138.101
537 <MULTIPLICATION SIGN> 215 191 191 191 195.151 138.102
538 <O WITH STROKE> 216 128 128 128 195.152 138.103
539 <U WITH GRAVE> 217 253 253 224 195.153 138.104 ###
540 <U WITH ACUTE> 218 254 254 254 195.154 138.105
541 <U WITH CIRCUMFLEX> 219 251 251 221 195.155 138.106 ###
542 <U WITH DIAERESIS> 220 252 252 252 195.156 138.112
543 <Y WITH ACUTE> 221 173 186 173 195.157 138.113 *** ###
544 <CAPITAL LETTER THORN> 222 174 174 174 195.158 138.114
545 <SMALL LETTER SHARP S> 223 89 89 89 195.159 138.115
546 <a WITH GRAVE> 224 68 68 68 195.160 139.65
547 <a WITH ACUTE> 225 69 69 69 195.161 139.66
548 <a WITH CIRCUMFLEX> 226 66 66 66 195.162 139.67
549 <a WITH TILDE> 227 70 70 70 195.163 139.68
550 <a WITH DIAERESIS> 228 67 67 67 195.164 139.69
551 <a WITH RING ABOVE> 229 71 71 71 195.165 139.70
552 <SMALL LIGATURE ae> 230 156 156 156 195.166 139.71
553 <c WITH CEDILLA> 231 72 72 72 195.167 139.72
554 <e WITH GRAVE> 232 84 84 84 195.168 139.73
555 <e WITH ACUTE> 233 81 81 81 195.169 139.74
556 <e WITH CIRCUMFLEX> 234 82 82 82 195.170 139.81
557 <e WITH DIAERESIS> 235 83 83 83 195.171 139.82
558 <i WITH GRAVE> 236 88 88 88 195.172 139.83
559 <i WITH ACUTE> 237 85 85 85 195.173 139.84
560 <i WITH CIRCUMFLEX> 238 86 86 86 195.174 139.85
561 <i WITH DIAERESIS> 239 87 87 87 195.175 139.86
562 <SMALL LETTER eth> 240 140 140 140 195.176 139.87
563 <n WITH TILDE> 241 73 73 73 195.177 139.88
564 <o WITH GRAVE> 242 205 205 205 195.178 139.89
565 <o WITH ACUTE> 243 206 206 206 195.179 139.98
566 <o WITH CIRCUMFLEX> 244 203 203 203 195.180 139.99
567 <o WITH TILDE> 245 207 207 207 195.181 139.100
568 <o WITH DIAERESIS> 246 204 204 204 195.182 139.101
569 <DIVISION SIGN> 247 225 225 225 195.183 139.102
570 <o WITH STROKE> 248 112 112 112 195.184 139.103
571 <u WITH GRAVE> 249 221 221 192 195.185 139.104 ###
572 <u WITH ACUTE> 250 222 222 222 195.186 139.105
573 <u WITH CIRCUMFLEX> 251 219 219 219 195.187 139.106
574 <u WITH DIAERESIS> 252 220 220 220 195.188 139.112
575 <y WITH ACUTE> 253 141 141 141 195.189 139.113
576 <SMALL LETTER thorn> 254 142 142 142 195.190 139.114
577 <y WITH DIAERESIS> 255 223 223 223 195.191 139.115
579 If you would rather see the above table in CCSID 0037 order rather than
580 ASCII + Latin-1 order then run the table through:
588 perl -ne 'if(/.{33}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
590 -e 'END{print map{$_->[0]}' \
591 -e ' sort{$a->[1] <=> $b->[1]}' \
592 -e ' map{[$_,substr($_,42,3)]}@l;}' perlebcdic.pod
594 If you would rather see it in CCSID 1047 order then change the digit
595 42 in the last line to 51, like this:
603 perl -ne 'if(/.{33}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
605 -e 'END{print map{$_->[0]}' \
606 -e ' sort{$a->[1] <=> $b->[1]}' \
607 -e ' map{[$_,substr($_,51,3)]}@l;}' perlebcdic.pod
609 If you would rather see it in POSIX-BC order then change the digit
610 51 in the last line to 60, like this:
618 perl -ne 'if(/.{33}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}\s{6,8}\d{1,3}/)'\
620 -e 'END{print map{$_->[0]}' \
621 -e ' sort{$a->[1] <=> $b->[1]}' \
622 -e ' map{[$_,substr($_,60,3)]}@l;}' perlebcdic.pod
625 =head1 IDENTIFYING CHARACTER CODE SETS
627 To determine the character set you are running under from perl one
628 could use the return value of ord() or chr() to test one or more
629 character values. For example:
631 $is_ascii = "A" eq chr(65);
632 $is_ebcdic = "A" eq chr(193);
634 Also, "\t" is a C<HORIZONTAL TABULATION> character so that:
636 $is_ascii = ord("\t") == 9;
637 $is_ebcdic = ord("\t") == 5;
639 To distinguish EBCDIC code pages try looking at one or more of
640 the characters that differ between them. For example:
642 $is_ebcdic_37 = "\n" eq chr(37);
643 $is_ebcdic_1047 = "\n" eq chr(21);
645 Or better still choose a character that is uniquely encoded in any
646 of the code sets, e.g.:
648 $is_ascii = ord('[') == 91;
649 $is_ebcdic_37 = ord('[') == 186;
650 $is_ebcdic_1047 = ord('[') == 173;
651 $is_ebcdic_POSIX_BC = ord('[') == 187;
653 However, it would be unwise to write tests such as:
655 $is_ascii = "\r" ne chr(13); # WRONG
656 $is_ascii = "\n" ne chr(10); # ILL ADVISED
658 Obviously the first of these will fail to distinguish most ASCII platforms
659 from either a CCSID 0037, a 1047, or a POSIX-BC EBCDIC platform since "\r" eq
660 chr(13) under all of those coded character sets. But note too that
661 because "\n" is chr(13) and "\r" is chr(10) on the MacIntosh (which is an
662 ASCII platform) the second C<$is_ascii> test will lead to trouble there.
664 To determine whether or not perl was built under an EBCDIC
665 code page you can use the Config module like so:
668 $is_ebcdic = $Config{'ebcdic'} eq 'define';
674 In order to convert a string of characters from one character set to
675 another a simple list of numbers, such as in the right columns in the
676 above table, along with perl's tr/// operator is all that is needed.
677 The data in the table are in ASCII order hence the EBCDIC columns
678 provide easy to use ASCII to EBCDIC operations that are also easily
681 For example, to convert ASCII to code page 037 take the output of the second
682 column from the output of recipe 0 (modified to add \\ characters) and use
686 '\000\001\002\003\234\011\206\177\227\215\216\013\014\015\016\017' .
687 '\020\021\022\023\235\205\010\207\030\031\222\217\034\035\036\037' .
688 '\200\201\202\203\204\012\027\033\210\211\212\213\214\005\006\007' .
689 '\220\221\026\223\224\225\226\004\230\231\232\233\024\025\236\032' .
690 '\040\240\342\344\340\341\343\345\347\361\242\056\074\050\053\174' .
691 '\046\351\352\353\350\355\356\357\354\337\041\044\052\051\073\254' .
692 '\055\057\302\304\300\301\303\305\307\321\246\054\045\137\076\077' .
693 '\370\311\312\313\310\315\316\317\314\140\072\043\100\047\075\042' .
694 '\330\141\142\143\144\145\146\147\150\151\253\273\360\375\376\261' .
695 '\260\152\153\154\155\156\157\160\161\162\252\272\346\270\306\244' .
696 '\265\176\163\164\165\166\167\170\171\172\241\277\320\335\336\256' .
697 '\136\243\245\267\251\247\266\274\275\276\133\135\257\250\264\327' .
698 '\173\101\102\103\104\105\106\107\110\111\255\364\366\362\363\365' .
699 '\175\112\113\114\115\116\117\120\121\122\271\373\374\371\372\377' .
700 '\134\367\123\124\125\126\127\130\131\132\262\324\326\322\323\325' .
701 '\060\061\062\063\064\065\066\067\070\071\263\333\334\331\332\237' ;
703 my $ebcdic_string = $ascii_string;
704 eval '$ebcdic_string =~ tr/' . $cp_037 . '/\000-\377/';
706 To convert from EBCDIC 037 to ASCII just reverse the order of the tr///
709 my $ascii_string = $ebcdic_string;
710 eval '$ascii_string =~ tr/\000-\377/' . $cp_037 . '/';
712 Similarly one could take the output of the third column from recipe 0 to
713 obtain a C<$cp_1047> table. The fourth column of the output from recipe
714 0 could provide a C<$cp_posix_bc> table suitable for transcoding as well.
718 XPG operability often implies the presence of an I<iconv> utility
719 available from the shell or from the C library. Consult your system's
720 documentation for information on iconv.
722 On OS/390 or z/OS see the iconv(1) manpage. One way to invoke the iconv
723 shell utility from within perl would be to:
725 # OS/390 or z/OS example
726 $ascii_data = `echo '$ebcdic_data'| iconv -f IBM-1047 -t ISO8859-1`
730 # OS/390 or z/OS example
731 $ebcdic_data = `echo '$ascii_data'| iconv -f ISO8859-1 -t IBM-1047`
733 For other perl based conversion options see the Convert::* modules on CPAN.
737 The OS/390 and z/OS C run time libraries provide _atoe() and _etoa() functions.
739 =head1 OPERATOR DIFFERENCES
741 The C<..> range operator treats certain character ranges with
742 care on EBCDIC platforms. For example the following array
743 will have twenty six elements on either an EBCDIC platform
744 or an ASCII platform:
746 @alphabet = ('A'..'Z'); # $#alphabet == 25
748 The bitwise operators such as & ^ | may return different results
749 when operating on string or character data in a perl program running
750 on an EBCDIC platform than when run on an ASCII platform. Here is
751 an example adapted from the one in L<perlop>:
753 # EBCDIC-based examples
754 print "j p \n" ^ " a h"; # prints "JAPH\n"
755 print "JA" | " ph\n"; # prints "japh\n"
756 print "JAPH\nJunk" & "\277\277\277\277\277"; # prints "japh\n";
757 print 'p N$' ^ " E<H\n"; # prints "Perl\n";
759 An interesting property of the 32 C0 control characters
760 in the ASCII table is that they can "literally" be constructed
761 as control characters in perl, e.g. C<(chr(0) eq "\c@")>
762 C<(chr(1) eq "\cA")>, and so on. Perl on EBCDIC platforms has been
763 ported to take "\c@" to chr(0) and "\cA" to chr(1) as well, but the
764 thirty three characters that result depend on which code page you are
765 using. The table below uses the character names from the previous table
766 but with substitutions such as s/START OF/S.O./; s/END OF /E.O./;
767 s/TRANSMISSION/TRANS./; s/TABULATION/TAB./; s/VERTICAL/VERT./;
768 s/HORIZONTAL/HORIZ./; s/DEVICE CONTROL/D.C./; s/SEPARATOR/SEP./;
769 s/NEGATIVE ACKNOWLEDGE/NEG. ACK./;. The POSIX-BC and 1047 sets are
770 identical throughout this range and differ from the 0037 set at only
771 one spot (21 decimal). Note that the C<LINE FEED> character
772 may be generated by "\cJ" on ASCII platforms but by "\cU" on 1047 or POSIX-BC
773 platforms and cannot be generated as a C<"\c.letter."> control character on
774 0037 platforms. Note also that "\c\\" maps to two characters
777 chr ord 8859-1 0037 1047 && POSIX-BC
778 ------------------------------------------------------------------------
779 "\c?" 127 <DELETE> " " ***><
780 "\c@" 0 <NULL> <NULL> <NULL> ***><
781 "\cA" 1 <S.O. HEADING> <S.O. HEADING> <S.O. HEADING>
782 "\cB" 2 <S.O. TEXT> <S.O. TEXT> <S.O. TEXT>
783 "\cC" 3 <E.O. TEXT> <E.O. TEXT> <E.O. TEXT>
784 "\cD" 4 <E.O. TRANS.> <C1 28> <C1 28>
785 "\cE" 5 <ENQUIRY> <HORIZ. TAB.> <HORIZ. TAB.>
786 "\cF" 6 <ACKNOWLEDGE> <C1 6> <C1 6>
787 "\cG" 7 <BELL> <DELETE> <DELETE>
788 "\cH" 8 <BACKSPACE> <C1 23> <C1 23>
789 "\cI" 9 <HORIZ. TAB.> <C1 13> <C1 13>
790 "\cJ" 10 <LINE FEED> <C1 14> <C1 14>
791 "\cK" 11 <VERT. TAB.> <VERT. TAB.> <VERT. TAB.>
792 "\cL" 12 <FORM FEED> <FORM FEED> <FORM FEED>
793 "\cM" 13 <CARRIAGE RETURN> <CARRIAGE RETURN> <CARRIAGE RETURN>
794 "\cN" 14 <SHIFT OUT> <SHIFT OUT> <SHIFT OUT>
795 "\cO" 15 <SHIFT IN> <SHIFT IN> <SHIFT IN>
796 "\cP" 16 <DATA LINK ESCAPE> <DATA LINK ESCAPE> <DATA LINK ESCAPE>
797 "\cQ" 17 <D.C. ONE> <D.C. ONE> <D.C. ONE>
798 "\cR" 18 <D.C. TWO> <D.C. TWO> <D.C. TWO>
799 "\cS" 19 <D.C. THREE> <D.C. THREE> <D.C. THREE>
800 "\cT" 20 <D.C. FOUR> <C1 29> <C1 29>
801 "\cU" 21 <NEG. ACK.> <C1 5> <LINE FEED> ***
802 "\cV" 22 <SYNCHRONOUS IDLE> <BACKSPACE> <BACKSPACE>
803 "\cW" 23 <E.O. TRANS. BLOCK> <C1 7> <C1 7>
804 "\cX" 24 <CANCEL> <CANCEL> <CANCEL>
805 "\cY" 25 <E.O. MEDIUM> <E.O. MEDIUM> <E.O. MEDIUM>
806 "\cZ" 26 <SUBSTITUTE> <C1 18> <C1 18>
807 "\c[" 27 <ESCAPE> <C1 15> <C1 15>
808 "\c\\" 28 <FILE SEP.>\ <FILE SEP.>\ <FILE SEP.>\
809 "\c]" 29 <GROUP SEP.> <GROUP SEP.> <GROUP SEP.>
810 "\c^" 30 <RECORD SEP.> <RECORD SEP.> <RECORD SEP.> ***><
811 "\c_" 31 <UNIT SEP.> <UNIT SEP.> <UNIT SEP.> ***><
814 =head1 FUNCTION DIFFERENCES
820 chr() must be given an EBCDIC code number argument to yield a desired
821 character return value on an EBCDIC platform. For example:
823 $CAPITAL_LETTER_A = chr(193);
827 ord() will return EBCDIC code number values on an EBCDIC platform.
830 $the_number_193 = ord("A");
834 The c and C templates for pack() are dependent upon character set
835 encoding. Examples of usage on EBCDIC include:
837 $foo = pack("CCCC",193,194,195,196);
839 $foo = pack("C4",193,194,195,196);
842 $foo = pack("ccxxcc",193,194,195,196);
847 One must be careful with scalars and strings that are passed to
848 print that contain ASCII encodings. One common place
849 for this to occur is in the output of the MIME type header for
850 CGI script writing. For example, many perl programming guides
851 recommend something similar to:
853 print "Content-type:\ttext/html\015\012\015\012";
854 # this may be wrong on EBCDIC
856 Under the IBM OS/390 USS Web Server or WebSphere on z/OS for example
857 you should instead write that as:
859 print "Content-type:\ttext/html\r\n\r\n"; # OK for DGW et alia
861 That is because the translation from EBCDIC to ASCII is done
862 by the web server in this case (such code will not be appropriate for
863 the Macintosh however). Consult your web server's documentation for
868 The formats that can convert characters to numbers and vice versa
869 will be different from their ASCII counterparts when executed
870 on an EBCDIC platform. Examples include:
872 printf("%c%c%c",193,194,195); # prints ABC
876 EBCDIC sort results may differ from ASCII sort results especially for
877 mixed case strings. This is discussed in more detail below.
881 See the discussion of printf() above. An example of the use
884 $CAPITAL_LETTER_A = sprintf("%c",193);
888 See the discussion of pack() above.
892 =head1 REGULAR EXPRESSION DIFFERENCES
894 As of perl 5.005_03 the letter range regular expression such as
895 [A-Z] and [a-z] have been especially coded to not pick up gap
896 characters. For example, characters such as E<ocirc> C<o WITH CIRCUMFLEX>
897 that lie between I and J would not be matched by the
898 regular expression range C</[H-K]/>. This works in
899 the other direction, too, if either of the range end points is
900 explicitly numeric: C<[\x89-\x91]> will match C<\x8e>, even
901 though C<\x89> is C<i> and C<\x91 > is C<j>, and C<\x8e>
902 is a gap character from the alphabetic viewpoint.
904 If you do want to match the alphabet gap characters in a single octet
905 regular expression try matching the hex or octal code such
906 as C</\313/> on EBCDIC or C</\364/> on ASCII platforms to
907 have your regular expression match C<o WITH CIRCUMFLEX>.
909 Another construct to be wary of is the inappropriate use of hex or
910 octal constants in regular expressions. Consider the following
914 my $char = substr(shift,0,1);
915 $char =~ /[\000-\037]/;
919 my $char = substr(shift,0,1);
920 $char =~ /[\040-\176]/;
924 my $char = substr(shift,0,1);
929 my $char = substr(shift,0,1);
930 $char =~ /[\200-\237]/;
934 my $char = substr(shift,0,1);
935 $char =~ /[\240-\377]/;
938 The above would be adequate if the concern was only with numeric code points.
939 However, the concern may be with characters rather than code points
940 and on an EBCDIC platform it may be desirable for constructs such as
941 C<if (is_print_ascii("A")) {print "A is a printable character\n";}> to print
942 out the expected message. One way to represent the above collection
943 of character classification subs that is capable of working across the
944 four coded character sets discussed in this document is as follows:
947 my $char = substr(shift,0,1);
948 if (ord('^')==94) { # ascii
949 return $char =~ /[\000-\037]/;
951 if (ord('^')==176) { # 37
952 return $char =~ /[\000-\003\067\055-\057\026\005\045\013-\023\074\075\062\046\030\031\077\047\034-\037]/;
954 if (ord('^')==95 || ord('^')==106) { # 1047 || posix-bc
955 return $char =~ /[\000-\003\067\055-\057\026\005\025\013-\023\074\075\062\046\030\031\077\047\034-\037]/;
960 my $char = substr(shift,0,1);
961 $char =~ /[ !"\#\$%&'()*+,\-.\/0-9:;<=>?\@A-Z[\\\]^_`a-z{|}~]/;
965 my $char = substr(shift,0,1);
966 if (ord('^')==94) { # ascii
967 return $char eq "\177";
970 return $char eq "\007";
975 my $char = substr(shift,0,1);
976 if (ord('^')==94) { # ascii
977 return $char =~ /[\200-\237]/;
979 if (ord('^')==176) { # 37
980 return $char =~ /[\040-\044\025\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\377]/;
982 if (ord('^')==95) { # 1047
983 return $char =~ /[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\377]/;
985 if (ord('^')==106) { # posix-bc
987 /[\040-\045\006\027\050-\054\011\012\033\060\061\032\063-\066\010\070-\073\040\024\076\137]/;
992 my $char = substr(shift,0,1);
993 if (ord('^')==94) { # ascii
994 return $char =~ /[\240-\377]/;
996 if (ord('^')==176) { # 37
998 /[\101\252\112\261\237\262\152\265\275\264\232\212\137\312\257\274\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\375\376\373\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]/;
1000 if (ord('^')==95) { # 1047
1002 /[\101\252\112\261\237\262\152\265\273\264\232\212\260\312\257\274\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\375\376\373\374\272\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\335\336\333\334\215\216\337]/;
1004 if (ord('^')==106) { # posix-bc
1006 /[\101\252\260\261\237\262\320\265\171\264\232\212\272\312\257\241\220\217\352\372\276\240\266\263\235\332\233\213\267\270\271\253\144\145\142\146\143\147\236\150\164\161-\163\170\165-\167\254\151\355\356\353\357\354\277\200\340\376\335\374\255\256\131\104\105\102\106\103\107\234\110\124\121-\123\130\125-\127\214\111\315\316\313\317\314\341\160\300\336\333\334\215\216\337]/;
1010 Note however that only the C<Is_ascii_print()> sub is really independent
1011 of coded character set. Another way to write C<Is_latin_1()> would be
1012 to use the characters in the range explicitly:
1015 my $char = substr(shift,0,1);
1016 $char =~ /[ ¡¢£¤¥¦§¨©ª«¬
\ad®¯°±²³´µ¶·¸¹º»¼½¾¿ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖ×ØÙÚÛÜÝÞßàáâãäåæçèéêëìíîïðñòóôõö÷øùúûüýþÿ]/;
1019 Although that form may run into trouble in network transit (due to the
1020 presence of 8 bit characters) or on non ISO-Latin character sets.
1024 Most socket programming assumes ASCII character encodings in network
1025 byte order. Exceptions can include CGI script writing under a
1026 host web server where the server may take care of translation for you.
1027 Most host web servers convert EBCDIC data to ISO-8859-1 or Unicode on
1032 One big difference between ASCII based character sets and EBCDIC ones
1033 are the relative positions of upper and lower case letters and the
1034 letters compared to the digits. If sorted on an ASCII based platform the
1035 two letter abbreviation for a physician comes before the two letter
1038 @sorted = sort(qw(Dr. dr.)); # @sorted holds ('Dr.','dr.') on ASCII,
1039 # but ('dr.','Dr.') on EBCDIC
1041 The property of lower case before uppercase letters in EBCDIC is
1042 even carried to the Latin 1 EBCDIC pages such as 0037 and 1047.
1043 An example would be that E<Euml> C<E WITH DIAERESIS> (203) comes
1044 before E<euml> C<e WITH DIAERESIS> (235) on an ASCII platform, but
1045 the latter (83) comes before the former (115) on an EBCDIC platform.
1046 (Astute readers will note that the upper case version of E<szlig>
1047 C<SMALL LETTER SHARP S> is simply "SS" and that the upper case version of
1048 E<yuml> C<y WITH DIAERESIS> is not in the 0..255 range but it is
1049 at U+x0178 in Unicode, or C<"\x{178}"> in a Unicode enabled Perl).
1051 The sort order will cause differences between results obtained on
1052 ASCII platforms versus EBCDIC platforms. What follows are some suggestions
1053 on how to deal with these differences.
1055 =head2 Ignore ASCII vs. EBCDIC sort differences.
1057 This is the least computationally expensive strategy. It may require
1058 some user education.
1060 =head2 MONO CASE then sort data.
1062 In order to minimize the expense of mono casing mixed test try to
1063 C<tr///> towards the character set case most employed within the data.
1064 If the data are primarily UPPERCASE non Latin 1 then apply tr/[a-z]/[A-Z]/
1065 then sort(). If the data are primarily lowercase non Latin 1 then
1066 apply tr/[A-Z]/[a-z]/ before sorting. If the data are primarily UPPERCASE
1067 and include Latin-1 characters then apply:
1070 tr/[àáâãäåæçèéêëìíîïðñòóôõöøùúûüýþ]/[ÀÁÂÃÄÅÆÇÈÉÊËÌÍÎÏÐÑÒÓÔÕÖØÙÚÛÜÝÞ/;
1073 then sort(). Do note however that such Latin-1 manipulation does not
1074 address the E<yuml> C<y WITH DIAERESIS> character that will remain at
1075 code point 255 on ASCII platforms, but 223 on most EBCDIC platforms
1076 where it will sort to a place less than the EBCDIC numerals. With a
1077 Unicode enabled Perl you might try:
1081 The strategy of mono casing data before sorting does not preserve the case
1082 of the data and may not be acceptable for that reason.
1084 =head2 Convert, sort data, then re convert.
1086 This is the most expensive proposition that does not employ a network
1089 =head2 Perform sorting on one type of platform only.
1091 This strategy can employ a network connection. As such
1092 it would be computationally expensive.
1094 =head1 TRANSFORMATION FORMATS
1096 There are a variety of ways of transforming data with an intra character set
1097 mapping that serve a variety of purposes. Sorting was discussed in the
1098 previous section and a few of the other more popular mapping techniques are
1101 =head2 URL decoding and encoding
1103 Note that some URLs have hexadecimal ASCII code points in them in an
1104 attempt to overcome character or protocol limitation issues. For example
1105 the tilde character is not on every keyboard hence a URL of the form:
1107 http://www.pvhp.com/~pvhp/
1109 may also be expressed as either of:
1111 http://www.pvhp.com/%7Epvhp/
1113 http://www.pvhp.com/%7epvhp/
1115 where 7E is the hexadecimal ASCII code point for '~'. Here is an example
1116 of decoding such a URL under CCSID 1047:
1118 $url = 'http://www.pvhp.com/%7Epvhp/';
1119 # this array assumes code page 1047
1121 0, 1, 2, 3, 55, 45, 46, 47, 22, 5, 21, 11, 12, 13, 14, 15,
1122 16, 17, 18, 19, 60, 61, 50, 38, 24, 25, 63, 39, 28, 29, 30, 31,
1123 64, 90,127,123, 91,108, 80,125, 77, 93, 92, 78,107, 96, 75, 97,
1124 240,241,242,243,244,245,246,247,248,249,122, 94, 76,126,110,111,
1125 124,193,194,195,196,197,198,199,200,201,209,210,211,212,213,214,
1126 215,216,217,226,227,228,229,230,231,232,233,173,224,189, 95,109,
1127 121,129,130,131,132,133,134,135,136,137,145,146,147,148,149,150,
1128 151,152,153,162,163,164,165,166,167,168,169,192, 79,208,161, 7,
1129 32, 33, 34, 35, 36, 37, 6, 23, 40, 41, 42, 43, 44, 9, 10, 27,
1130 48, 49, 26, 51, 52, 53, 54, 8, 56, 57, 58, 59, 4, 20, 62,255,
1131 65,170, 74,177,159,178,106,181,187,180,154,138,176,202,175,188,
1132 144,143,234,250,190,160,182,179,157,218,155,139,183,184,185,171,
1133 100,101, 98,102, 99,103,158,104,116,113,114,115,120,117,118,119,
1134 172,105,237,238,235,239,236,191,128,253,254,251,252,186,174, 89,
1135 68, 69, 66, 70, 67, 71,156, 72, 84, 81, 82, 83, 88, 85, 86, 87,
1136 140, 73,205,206,203,207,204,225,112,221,222,219,220,141,142,223
1138 $url =~ s/%([0-9a-fA-F]{2})/pack("c",$a2e_1047[hex($1)])/ge;
1140 Conversely, here is a partial solution for the task of encoding such
1141 a URL under the 1047 code page:
1143 $url = 'http://www.pvhp.com/~pvhp/';
1144 # this array assumes code page 1047
1146 0, 1, 2, 3,156, 9,134,127,151,141,142, 11, 12, 13, 14, 15,
1147 16, 17, 18, 19,157, 10, 8,135, 24, 25,146,143, 28, 29, 30, 31,
1148 128,129,130,131,132,133, 23, 27,136,137,138,139,140, 5, 6, 7,
1149 144,145, 22,147,148,149,150, 4,152,153,154,155, 20, 21,158, 26,
1150 32,160,226,228,224,225,227,229,231,241,162, 46, 60, 40, 43,124,
1151 38,233,234,235,232,237,238,239,236,223, 33, 36, 42, 41, 59, 94,
1152 45, 47,194,196,192,193,195,197,199,209,166, 44, 37, 95, 62, 63,
1153 248,201,202,203,200,205,206,207,204, 96, 58, 35, 64, 39, 61, 34,
1154 216, 97, 98, 99,100,101,102,103,104,105,171,187,240,253,254,177,
1155 176,106,107,108,109,110,111,112,113,114,170,186,230,184,198,164,
1156 181,126,115,116,117,118,119,120,121,122,161,191,208, 91,222,174,
1157 172,163,165,183,169,167,182,188,189,190,221,168,175, 93,180,215,
1158 123, 65, 66, 67, 68, 69, 70, 71, 72, 73,173,244,246,242,243,245,
1159 125, 74, 75, 76, 77, 78, 79, 80, 81, 82,185,251,252,249,250,255,
1160 92,247, 83, 84, 85, 86, 87, 88, 89, 90,178,212,214,210,211,213,
1161 48, 49, 50, 51, 52, 53, 54, 55, 56, 57,179,219,220,217,218,159
1163 # The following regular expression does not address the
1164 # mappings for: ('.' => '%2E', '/' => '%2F', ':' => '%3A')
1165 $url =~ s/([\t "#%&\(\),;<=>\?\@\[\\\]^`{|}~])/sprintf("%%%02X",$e2a_1047[ord($1)])/ge;
1167 where a more complete solution would split the URL into components
1168 and apply a full s/// substitution only to the appropriate parts.
1170 In the remaining examples a @e2a or @a2e array may be employed
1171 but the assignment will not be shown explicitly. For code page 1047
1172 you could use the @a2e_1047 or @e2a_1047 arrays just shown.
1174 =head2 uu encoding and decoding
1176 The C<u> template to pack() or unpack() will render EBCDIC data in EBCDIC
1177 characters equivalent to their ASCII counterparts. For example, the
1178 following will print "Yes indeed\n" on either an ASCII or EBCDIC computer:
1180 $all_byte_chrs = '';
1181 for (0..255) { $all_byte_chrs .= chr($_); }
1182 $uuencode_byte_chrs = pack('u', $all_byte_chrs);
1183 ($uu = <<'ENDOFHEREDOC') =~ s/^\s*//gm;
1184 M``$"`P0%!@<("0H+#`T.#Q`1$A,4%187&!D:&QP='A\@(2(C)"4F)R@I*BLL
1185 M+2XO,#$R,S0U-C<X.3H[/#T^/T!!0D-$149'2$E*2TQ-3D]045)35%565UA9
1186 M6EM<75Y?8&%B8V1E9F=H:6IK;&UN;W!Q<G-T=79W>'EZ>WQ]?G^`@8*#A(6&
1187 MAXB)BHN,C8Z/D)&2DY25EI>8F9J;G)V>GZ"AHJ.DI::GJ*FJJZRMKJ^PL;*S
1188 MM+6VM[BYNKN\O;Z_P,'"P\3%QL?(R<K+S,W.S]#1TM/4U=;7V-G:V]S=WM_@
1189 ?X>+CY.7FY^CIZNOL[>[O\/'R\_3U]O?X^?K[_/W^_P``
1191 if ($uuencode_byte_chrs eq $uu) {
1194 $uudecode_byte_chrs = unpack('u', $uuencode_byte_chrs);
1195 if ($uudecode_byte_chrs eq $all_byte_chrs) {
1199 Here is a very spartan uudecoder that will work on EBCDIC provided
1200 that the @e2a array is filled in appropriately:
1202 #!/usr/local/bin/perl
1203 @e2a = ( # this must be filled in
1205 $_ = <> until ($mode,$file) = /^begin\s*(\d*)\s*(\S*)/;
1206 open(OUT, "> $file") if $file ne "";
1210 next unless int(((($e2a[ord()] - 32 ) & 077) + 2) / 3) ==
1212 print OUT unpack("u", $_);
1215 chmod oct($mode), $file;
1218 =head2 Quoted-Printable encoding and decoding
1220 On ASCII encoded platforms it is possible to strip characters outside of
1221 the printable set using:
1223 # This QP encoder works on ASCII only
1224 $qp_string =~ s/([=\x00-\x1F\x80-\xFF])/sprintf("=%02X",ord($1))/ge;
1226 Whereas a QP encoder that works on both ASCII and EBCDIC platforms
1227 would look somewhat like the following (where the EBCDIC branch @e2a
1228 array is omitted for brevity):
1230 if (ord('A') == 65) { # ASCII
1231 $delete = "\x7F"; # ASCII
1232 @e2a = (0 .. 255) # ASCII to ASCII identity map
1235 $delete = "\x07"; # EBCDIC
1236 @e2a = # EBCDIC to ASCII map (as shown above)
1239 s/([^ !"\#\$%&'()*+,\-.\/0-9:;<>?\@A-Z[\\\]^_`a-z{|}~$delete])/sprintf("=%02X",$e2a[ord($1)])/ge;
1241 (although in production code the substitutions might be done
1242 in the EBCDIC branch with the @e2a array and separately in the
1243 ASCII branch without the expense of the identity map).
1245 Such QP strings can be decoded with:
1247 # This QP decoder is limited to ASCII only
1248 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr hex $1/ge;
1249 $string =~ s/=[\n\r]+$//;
1251 Whereas a QP decoder that works on both ASCII and EBCDIC platforms
1252 would look somewhat like the following (where the @a2e array is
1253 omitted for brevity):
1255 $string =~ s/=([0-9A-Fa-f][0-9A-Fa-f])/chr $a2e[hex $1]/ge;
1256 $string =~ s/=[\n\r]+$//;
1258 =head2 Caesarian ciphers
1260 The practice of shifting an alphabet one or more characters for encipherment
1261 dates back thousands of years and was explicitly detailed by Gaius Julius
1262 Caesar in his B<Gallic Wars> text. A single alphabet shift is sometimes
1263 referred to as a rotation and the shift amount is given as a number $n after
1264 the string 'rot' or "rot$n". Rot0 and rot26 would designate identity maps
1265 on the 26 letter English version of the Latin alphabet. Rot13 has the
1266 interesting property that alternate subsequent invocations are identity maps
1267 (thus rot13 is its own non-trivial inverse in the group of 26 alphabet
1268 rotations). Hence the following is a rot13 encoder and decoder that will
1269 work on ASCII and EBCDIC platforms:
1271 #!/usr/local/bin/perl
1274 tr/n-za-mN-ZA-M/a-zA-Z/;
1280 perl -ne 'tr/n-za-mN-ZA-M/a-zA-Z/;print'
1283 =head1 Hashing order and checksums
1285 To the extent that it is possible to write code that depends on
1286 hashing order there may be differences between hashes as stored
1287 on an ASCII based platform and hashes stored on an EBCDIC based platform.
1290 =head1 I18N AND L10N
1292 Internationalization(I18N) and localization(L10N) are supported at least
1293 in principle even on EBCDIC platforms. The details are system dependent
1294 and discussed under the L<perlebcdic/OS ISSUES> section below.
1296 =head1 MULTI OCTET CHARACTER SETS
1298 Perl may work with an internal UTF-EBCDIC encoding form for wide characters
1299 on EBCDIC platforms in a manner analogous to the way that it works with
1300 the UTF-8 internal encoding form on ASCII based platforms.
1302 Legacy multi byte EBCDIC code pages XXX.
1306 There may be a few system dependent issues
1307 of concern to EBCDIC Perl programmers.
1315 The PASE environment is runtime environment for OS/400 that can run
1316 executables built for PowerPC AIX in OS/400, see L<perlos400>. PASE
1317 is ASCII-based, not EBCDIC-based as the ILE.
1327 Perl runs under Unix Systems Services or USS.
1333 B<chcp> is supported as a shell utility for displaying and changing
1334 one's code page. See also L<chcp>.
1336 =item dataset access
1338 For sequential data set access try:
1340 my @ds_records = `cat //DSNAME`;
1344 my @ds_records = `cat //'HLQ.DSNAME'`;
1346 See also the OS390::Stdio module on CPAN.
1348 =item OS/390, z/OS iconv
1350 B<iconv> is supported as both a shell utility and a C RTL routine.
1351 See also the iconv(1) and iconv(3) manual pages.
1355 On OS/390 or z/OS see L<locale> for information on locales. The L10N files
1356 are in F</usr/nls/locale>. $Config{d_setlocale} is 'define' on OS/390
1371 This pod document contains literal Latin 1 characters and may encounter
1372 translation difficulties. In particular one popular nroff implementation
1373 was known to strip accented characters to their unaccented counterparts
1374 while attempting to view this document through the B<pod2man> program
1375 (for example, you may see a plain C<y> rather than one with a diaeresis
1376 as in E<yuml>). Another nroff truncated the resultant manpage at
1377 the first occurrence of 8 bit characters.
1379 Not all shells will allow multiple C<-e> string arguments to perl to
1380 be concatenated together properly as recipes 0, 2, 4, 5, and 6 might
1385 L<perllocale>, L<perlfunc>, L<perlunicode>, L<utf8>.
1389 L<http://anubis.dkuug.dk/i18n/charmaps>
1391 L<http://www.unicode.org/>
1393 L<http://www.unicode.org/unicode/reports/tr16/>
1395 L<http://www.wps.com/projects/codes/>
1396 B<ASCII: American Standard Code for Information Infiltration> Tom Jennings,
1399 B<The Unicode Standard, Version 3.0> The Unicode Consortium, Lisa Moore ed.,
1400 ISBN 0-201-61633-5, Addison Wesley Developers Press, February 2000.
1402 B<CDRA: IBM - Character Data Representation Architecture -
1403 Reference and Registry>, IBM SC09-2190-00, December 1996.
1405 "Demystifying Character Sets", Andrea Vine, Multilingual Computing
1406 & Technology, B<#26 Vol. 10 Issue 4>, August/September 1999;
1407 ISSN 1523-0309; Multilingual Computing Inc. Sandpoint ID, USA.
1409 B<Codes, Ciphers, and Other Cryptic and Clandestine Communication>
1410 Fred B. Wrixon, ISBN 1-57912-040-7, Black Dog & Leventhal Publishers,
1413 L<http://www.bobbemer.com/P-BIT.HTM>
1414 B<IBM - EBCDIC and the P-bit; The biggest Computer Goof Ever> Robert Bemer.
1418 15 April 2001: added UTF-8 and UTF-EBCDIC to main table, pvhp.
1422 Peter Prymmer pvhp@best.com wrote this in 1999 and 2000
1423 with CCSID 0819 and 0037 help from Chris Leach and
1424 AndrE<eacute> Pirard A.Pirard@ulg.ac.be as well as POSIX-BC
1425 help from Thomas Dorner Thomas.Dorner@start.de.
1426 Thanks also to Vickie Cooper, Philip Newton, William Raffloer, and
1427 Joe Smith. Trademarks, registered trademarks, service marks and
1428 registered service marks used in this document are the property of
1429 their respective owners.