3 # This library is no longer being maintained, and is included for backward
4 # compatibility with Perl 4 programs which may require it.
6 # In particular, this should not be used as an example of modern Perl
7 # programming techniques.
9 # Suggested alternative: Math::BigInt
11 # arbitrary size integer math package
15 # Canonical Big integer value are strings of the form
16 # /^[+-]\d+$/ with leading zeros suppressed
17 # Input values to these routines may be strings of the form
18 # /^\s*[+-]?[\d\s]+$/.
20 # '+0' canonical zero value
21 # ' -123 123 123' canonical value '-123123123'
22 # '1 23 456 7890' canonical value '+1234567890'
23 # Output values always in canonical form
25 # Actual math is done in an internal format consisting of an array
26 # whose first element is the sign (/^[+-]$/) and whose remaining
27 # elements are base 100000 digits with the least significant digit first.
28 # The string 'NaN' is used to represent the result when input arguments
29 # are not numbers, as well as the result of dividing by zero
31 # routines provided are:
33 # bneg(BINT) return BINT negation
34 # babs(BINT) return BINT absolute value
35 # bcmp(BINT,BINT) return CODE compare numbers (undef,<0,=0,>0)
36 # badd(BINT,BINT) return BINT addition
37 # bsub(BINT,BINT) return BINT subtraction
38 # bmul(BINT,BINT) return BINT multiplication
39 # bdiv(BINT,BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
40 # bmod(BINT,BINT) return BINT modulus
41 # bgcd(BINT,BINT) return BINT greatest common divisor
42 # bnorm(BINT) return BINT normalization
45 # overcome a floating point problem on certain osnames (posix-bc, os390)
48 my $use_mult = int($x*1e-5)*1e5 == $x ? 1 : 0;
54 # normalize string form of number. Strip leading zeros. Strip any
55 # white space and add a sign, if missing.
56 # Strings that are not numbers result the value 'NaN'.
58 sub main'bnorm { #(num_str) return num_str
60 s/\s+//g; # strip white space
61 if (s/^([+-]?)0*(\d+)$/$1$2/) { # test if number
62 substr($_,$[,0) = '+' unless $1; # Add missing sign
70 # Convert a number from string format to internal base 100000 format.
71 # Assumes normalized value as input.
72 sub internal { #(num_str) return int_num_array
74 ($is,$il) = (substr($d,$[,1),length($d)-2);
76 ($is, reverse(unpack("a" . ($il%5+1) . ("a5" x ($il/5)), $d)));
79 # Convert a number from internal base 100000 format to string format.
80 # This routine scribbles all over input array.
81 sub external { #(int_num_array) return num_str
83 grep($_ > 9999 || ($_ = substr('0000'.$_,-5)), @_); # zero pad
84 &'bnorm(join('', $es, reverse(@_))); # reverse concat and normalize
88 sub main'bneg { #(num_str) return num_str
89 local($_) = &'bnorm(@_);
90 vec($_,0,8) ^= ord('+') ^ ord('-') unless $_ eq '+0';
91 s/^./N/ unless /^[-+]/; # works both in ASCII and EBCDIC
95 # Returns the absolute value of the input.
96 sub main'babs { #(num_str) return num_str
100 sub abs { # post-normalized abs for internal use
106 # Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
107 sub main'bcmp { #(num_str, num_str) return cond_code
108 local($x,$y) = (&'bnorm($_[$[]),&'bnorm($_[$[+1]));
111 } elsif ($y eq 'NaN') {
118 sub cmp { # post-normalized compare for internal use
119 local($cx, $cy) = @_;
120 return 0 if ($cx eq $cy);
122 local($sx, $sy) = (substr($cx, 0, 1), substr($cy, 0, 1));
126 return 1 if ($sy eq '-' || $cy eq '+0');
127 $ld = length($cx) - length($cy);
130 } else { # $sx eq '-'
131 return -1 if ($sy eq '+');
132 $ld = length($cy) - length($cx);
139 sub main'badd { #(num_str, num_str) return num_str
140 local(*x, *y); ($x, $y) = (&'bnorm($_[$[]),&'bnorm($_[$[+1]));
143 } elsif ($y eq 'NaN') {
146 @x = &internal($x); # convert to internal form
148 local($sx, $sy) = (shift @x, shift @y); # get signs
150 &external($sx, &add(*x, *y)); # if same sign add
152 ($x, $y) = (&abs($x),&abs($y)); # make abs
153 if (&cmp($y,$x) > 0) {
154 &external($sy, &sub(*y, *x));
156 &external($sx, &sub(*x, *y));
162 sub main'bsub { #(num_str, num_str) return num_str
163 &'badd($_[$[],&'bneg($_[$[+1]));
166 # GCD -- Euclids algorithm Knuth Vol 2 pg 296
167 sub main'bgcd { #(num_str, num_str) return num_str
168 local($x,$y) = (&'bnorm($_[$[]),&'bnorm($_[$[+1]));
169 if ($x eq 'NaN' || $y eq 'NaN') {
172 ($x, $y) = ($y,&'bmod($x,$y)) while $y ne '+0';
177 # routine to add two base 1e5 numbers
178 # stolen from Knuth Vol 2 Algorithm A pg 231
179 # there are separate routines to add and sub as per Kunth pg 233
180 sub add { #(int_num_array, int_num_array) return int_num_array
184 last unless @y || $car;
185 $x -= 1e5 if $car = (($x += shift(@y) + $car) >= 1e5) ? 1 : 0;
189 $y -= 1e5 if $car = (($y += $car) >= 1e5) ? 1 : 0;
194 # subtract base 1e5 numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
195 sub sub { #(int_num_array, int_num_array) return int_num_array
196 local(*sx, *sy) = @_;
199 last unless @y || $bar;
200 $sx += 1e5 if $bar = (($sx -= shift(@sy) + $bar) < 0);
205 # multiply two numbers -- stolen from Knuth Vol 2 pg 233
206 sub main'bmul { #(num_str, num_str) return num_str
207 local(*x, *y); ($x, $y) = (&'bnorm($_[$[]), &'bnorm($_[$[+1]));
210 } elsif ($y eq 'NaN') {
215 local($signr) = (shift @x ne shift @y) ? '-' : '+';
218 ($car, $cty) = (0, $[);
220 $prod = $x * $y + $prod[$cty] + $car;
223 $prod - ($car = int($prod * 1e-5)) * 1e5;
227 $prod - ($car = int($prod / 1e5)) * 1e5;
230 $prod[$cty] += $car if $car;
233 &external($signr, @x, @prod);
238 sub main'bmod { #(num_str, num_str) return num_str
242 sub main'bdiv { #(dividend: num_str, divisor: num_str) return num_str
243 local (*x, *y); ($x, $y) = (&'bnorm($_[$[]), &'bnorm($_[$[+1]));
244 return wantarray ? ('NaN','NaN') : 'NaN'
245 if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0');
246 return wantarray ? ('+0',$x) : '+0' if (&cmp(&abs($x),&abs($y)) < 0);
247 @x = &internal($x); @y = &internal($y);
249 $sr = (shift @x ne shift @y) ? '-' : '+';
250 $car = $bar = $prd = 0;
251 if (($dd = int(1e5/($y[$#y]+1))) != 1) {
253 $x = $x * $dd + $car;
255 $x -= ($car = int($x * 1e-5)) * 1e5;
258 $x -= ($car = int($x / 1e5)) * 1e5;
261 push(@x, $car); $car = 0;
263 $y = $y * $dd + $car;
265 $y -= ($car = int($y * 1e-5)) * 1e5;
268 $y -= ($car = int($y / 1e5)) * 1e5;
275 @q = (); ($v2,$v1) = @y[-2,-1];
277 ($u2,$u1,$u0) = @x[-3..-1];
278 $q = (($u0 == $v1) ? 99999 : int(($u0*1e5+$u1)/$v1));
279 --$q while ($v2*$q > ($u0*1e5+$u1-$q*$v1)*1e5+$u2);
281 ($car, $bar) = (0,0);
282 for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
283 $prd = $q * $y[$y] + $car;
285 $prd -= ($car = int($prd * 1e-5)) * 1e5;
288 $prd -= ($car = int($prd / 1e5)) * 1e5;
290 $x[$x] += 1e5 if ($bar = (($x[$x] -= $prd + $bar) < 0));
292 if ($x[$#x] < $car + $bar) {
294 for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
296 if ($car = (($x[$x] += $y[$y] + $car) > 1e5));
300 pop(@x); unshift(@q, $q);
306 for $x (reverse @x) {
307 $prd = $car * 1e5 + $x;
308 $car = $prd - ($tmp = int($prd / $dd)) * $dd;
315 (&external($sr, @q), &external($srem, @d, $zero));