1 package Math::BigFloat;
4 # Mike grinned. 'Two down, infinity to go' - Mike Nostrus in 'Before and After'
7 # The following hash values are internally used:
8 # _e: exponent (BigInt)
9 # _m: mantissa (absolute BigInt)
10 # sign: +,-,+inf,-inf, or "NaN" if not a number
13 # _f: flags, used to signal MBI not to touch our private parts
18 @ISA = qw(Exporter Math::BigInt);
21 use vars qw/$AUTOLOAD $accuracy $precision $div_scale $round_mode $rnd_mode/;
22 use vars qw/$upgrade $downgrade/;
23 # the following are internal and should never be accessed from the outside
24 use vars qw/$_trap_nan $_trap_inf/;
25 my $class = "Math::BigFloat";
28 '<=>' => sub { $_[2] ?
29 ref($_[0])->bcmp($_[1],$_[0]) :
30 ref($_[0])->bcmp($_[0],$_[1])},
31 'int' => sub { $_[0]->as_number() }, # 'trunc' to bigint
34 ##############################################################################
35 # global constants, flags and assorted stuff
37 # the following are public, but their usage is not recommended. Use the
38 # accessor methods instead.
40 # class constants, use Class->constant_name() to access
41 $round_mode = 'even'; # one of 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'
48 my $MBI = 'Math::BigInt'; # the package we are using for our private parts
49 # changable by use Math::BigFloat with => 'package'
51 # the following are private and not to be used from the outside:
53 use constant MB_NEVER_ROUND => 0x0001;
55 # are NaNs ok? (otherwise it dies when encountering an NaN) set w/ config()
60 # constant for easier life
63 my $IMPORT = 0; # was import() called yet?
64 # used to make require work
66 # some digits of accuracy for blog(undef,10); which we use in blog() for speed
68 '2.3025850929940456840179914546843642076011014886287729760333279009675726097';
69 my $LOG_10_A = length($LOG_10)-1;
72 '0.6931471805599453094172321214581765680755001343602552541206800094933936220';
73 my $LOG_2_A = length($LOG_2)-1;
75 ##############################################################################
76 # the old code had $rnd_mode, so we need to support it, too
78 sub TIESCALAR { my ($class) = @_; bless \$round_mode, $class; }
79 sub FETCH { return $round_mode; }
80 sub STORE { $rnd_mode = $_[0]->round_mode($_[1]); }
84 # when someone set's $rnd_mode, we catch this and check the value to see
85 # whether it is valid or not.
86 $rnd_mode = 'even'; tie $rnd_mode, 'Math::BigFloat';
89 ##############################################################################
91 # in case we call SUPER::->foo() and this wants to call modify()
92 # sub modify () { 0; }
95 # valid method aliases for AUTOLOAD
96 my %methods = map { $_ => 1 }
97 qw / fadd fsub fmul fdiv fround ffround fsqrt fmod fstr fsstr fpow fnorm
98 fint facmp fcmp fzero fnan finf finc fdec flog ffac
99 fceil ffloor frsft flsft fone flog froot
101 # valid method's that can be hand-ed up (for AUTOLOAD)
102 my %hand_ups = map { $_ => 1 }
103 qw / is_nan is_inf is_negative is_positive
104 accuracy precision div_scale round_mode fneg fabs fnot
105 objectify upgrade downgrade
109 sub method_alias { return exists $methods{$_[0]||''}; }
110 sub method_hand_up { return exists $hand_ups{$_[0]||''}; }
113 ##############################################################################
118 # create a new BigFloat object from a string or another bigfloat object.
121 # sign => sign (+/-), or "NaN"
123 my ($class,$wanted,@r) = @_;
125 # avoid numify-calls by not using || on $wanted!
126 return $class->bzero() if !defined $wanted; # default to 0
127 return $wanted->copy() if UNIVERSAL::isa($wanted,'Math::BigFloat');
129 $class->import() if $IMPORT == 0; # make require work
131 my $self = {}; bless $self, $class;
132 # shortcut for bigints and its subclasses
133 if ((ref($wanted)) && (ref($wanted) ne $class))
135 $self->{_m} = $wanted->as_number(); # get us a bigint copy
136 $self->{_e} = $MBI->bzero();
138 $self->{sign} = $wanted->sign();
139 return $self->bnorm();
142 # handle '+inf', '-inf' first
143 if ($wanted =~ /^[+-]?inf$/)
145 return $downgrade->new($wanted) if $downgrade;
147 $self->{_e} = $MBI->bzero();
148 $self->{_m} = $MBI->bzero();
149 $self->{sign} = $wanted;
150 $self->{sign} = '+inf' if $self->{sign} eq 'inf';
151 return $self->bnorm();
153 #print "new string '$wanted'\n";
154 my ($mis,$miv,$mfv,$es,$ev) = Math::BigInt::_split(\$wanted);
160 Carp::croak ("$wanted is not a number initialized to $class");
163 return $downgrade->bnan() if $downgrade;
165 $self->{_e} = $MBI->bzero();
166 $self->{_m} = $MBI->bzero();
167 $self->{sign} = $nan;
171 # make integer from mantissa by adjusting exp, then convert to bigint
172 # undef,undef to signal MBI that we don't need no bloody rounding
173 $self->{_e} = $MBI->new("$$es$$ev",undef,undef); # exponent
174 $self->{_m} = $MBI->new("$$miv$$mfv",undef,undef); # create mant.
175 # 3.123E0 = 3123E-3, and 3.123E-2 => 3123E-5
176 $self->{_e} -= CORE::length($$mfv) if CORE::length($$mfv) != 0;
177 $self->{sign} = $$mis;
179 # if downgrade, inf, NaN or integers go down
181 if ($downgrade && $self->{_e}->{sign} eq '+')
183 #print "downgrading $$miv$$mfv"."E$$es$$ev";
184 if ($self->{_e}->is_zero())
186 $self->{_m}->{sign} = $$mis; # negative if wanted
187 return $downgrade->new($self->{_m});
189 return $downgrade->new("$$mis$$miv$$mfv"."E$$es$$ev");
191 #print "mbf new $self->{sign} $self->{_m} e $self->{_e} ",ref($self),"\n";
192 $self->bnorm()->round(@r); # first normalize, then round
197 # used by parent class bone() to initialize number to NaN
203 my $class = ref($self);
204 Carp::croak ("Tried to set $self to NaN in $class\::_bnan()");
207 $IMPORT=1; # call our import only once
208 $self->{_m} = $MBI->bzero();
209 $self->{_e} = $MBI->bzero();
214 # used by parent class bone() to initialize number to +-inf
220 my $class = ref($self);
221 Carp::croak ("Tried to set $self to +-inf in $class\::_binf()");
224 $IMPORT=1; # call our import only once
225 $self->{_m} = $MBI->bzero();
226 $self->{_e} = $MBI->bzero();
231 # used by parent class bone() to initialize number to 1
233 $IMPORT=1; # call our import only once
234 $self->{_m} = $MBI->bone();
235 $self->{_e} = $MBI->bzero();
240 # used by parent class bone() to initialize number to 0
242 $IMPORT=1; # call our import only once
243 $self->{_m} = $MBI->bzero();
244 $self->{_e} = $MBI->bone();
249 my ($self,$class) = @_;
250 return if $class =~ /^Math::BigInt/; # we aren't one of these
251 UNIVERSAL::isa($self,$class);
256 # return (later set?) configuration data as hash ref
257 my $class = shift || 'Math::BigFloat';
259 my $cfg = $class->SUPER::config(@_);
261 # now we need only to override the ones that are different from our parent
262 $cfg->{class} = $class;
267 ##############################################################################
268 # string conversation
272 # (ref to BFLOAT or num_str ) return num_str
273 # Convert number from internal format to (non-scientific) string format.
274 # internal format is always normalized (no leading zeros, "-0" => "+0")
275 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
276 #my $x = shift; my $class = ref($x) || $x;
277 #$x = $class->new(shift) unless ref($x);
279 if ($x->{sign} !~ /^[+-]$/)
281 return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
285 my $es = '0'; my $len = 1; my $cad = 0; my $dot = '.';
287 my $not_zero = ! $x->is_zero();
290 $es = $x->{_m}->bstr();
291 $len = CORE::length($es);
292 if (!$x->{_e}->is_zero())
294 if ($x->{_e}->sign() eq '-')
297 if ($x->{_e} <= -$len)
299 #print "style: 0.xxxx\n";
300 my $r = $x->{_e}->copy(); $r->babs()->bsub( CORE::length($es) );
301 $es = '0.'. ('0' x $r) . $es; $cad = -($len+$r);
305 #print "insert '.' at $x->{_e} in '$es'\n";
306 substr($es,$x->{_e},0) = '.'; $cad = $x->{_e};
312 $es .= '0' x $x->{_e}; $len += $x->{_e}; $cad = 0;
316 $es = $x->{sign}.$es if $x->{sign} eq '-';
317 # if set accuracy or precision, pad with zeros
318 if ((defined $x->{_a}) && ($not_zero))
320 # 123400 => 6, 0.1234 => 4, 0.001234 => 4
321 my $zeros = $x->{_a} - $cad; # cad == 0 => 12340
322 $zeros = $x->{_a} - $len if $cad != $len;
323 $es .= $dot.'0' x $zeros if $zeros > 0;
325 elsif ($x->{_p} || 0 < 0)
327 # 123400 => 6, 0.1234 => 4, 0.001234 => 6
328 my $zeros = -$x->{_p} + $cad;
329 $es .= $dot.'0' x $zeros if $zeros > 0;
336 # (ref to BFLOAT or num_str ) return num_str
337 # Convert number from internal format to scientific string format.
338 # internal format is always normalized (no leading zeros, "-0E0" => "+0E0")
339 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
340 #my $x = shift; my $class = ref($x) || $x;
341 #$x = $class->new(shift) unless ref($x);
343 if ($x->{sign} !~ /^[+-]$/)
345 return $x->{sign} unless $x->{sign} eq '+inf'; # -inf, NaN
348 my $esign = $x->{_e}->{sign}; $esign = '' if $esign eq '-';
349 my $sep = 'e'.$esign;
350 my $sign = $x->{sign}; $sign = '' if $sign eq '+';
351 $sign . $x->{_m}->bstr() . $sep . $x->{_e}->bstr();
356 # Make a number from a BigFloat object
357 # simple return string and let Perl's atoi()/atof() handle the rest
358 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
362 ##############################################################################
363 # public stuff (usually prefixed with "b")
366 # todo: this must be overwritten and return NaN for non-integer values
367 # band(), bior(), bxor(), too
370 # $class->SUPER::bnot($class,@_);
375 # Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
376 # (BFLOAT or num_str, BFLOAT or num_str) return cond_code
379 my ($self,$x,$y) = (ref($_[0]),@_);
380 # objectify is costly, so avoid it
381 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
383 ($self,$x,$y) = objectify(2,@_);
386 return $upgrade->bcmp($x,$y) if defined $upgrade &&
387 ((!$x->isa($self)) || (!$y->isa($self)));
389 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
391 # handle +-inf and NaN
392 return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
393 return 0 if ($x->{sign} eq $y->{sign}) && ($x->{sign} =~ /^[+-]inf$/);
394 return +1 if $x->{sign} eq '+inf';
395 return -1 if $x->{sign} eq '-inf';
396 return -1 if $y->{sign} eq '+inf';
400 # check sign for speed first
401 return 1 if $x->{sign} eq '+' && $y->{sign} eq '-'; # does also 0 <=> -y
402 return -1 if $x->{sign} eq '-' && $y->{sign} eq '+'; # does also -x <=> 0
405 my $xz = $x->is_zero();
406 my $yz = $y->is_zero();
407 return 0 if $xz && $yz; # 0 <=> 0
408 return -1 if $xz && $y->{sign} eq '+'; # 0 <=> +y
409 return 1 if $yz && $x->{sign} eq '+'; # +x <=> 0
411 # adjust so that exponents are equal
412 my $lxm = $x->{_m}->length();
413 my $lym = $y->{_m}->length();
414 # the numify somewhat limits our length, but makes it much faster
415 my $lx = $lxm + $x->{_e}->numify();
416 my $ly = $lym + $y->{_e}->numify();
417 my $l = $lx - $ly; $l = -$l if $x->{sign} eq '-';
418 return $l <=> 0 if $l != 0;
420 # lengths (corrected by exponent) are equal
421 # so make mantissa equal length by padding with zero (shift left)
422 my $diff = $lxm - $lym;
423 my $xm = $x->{_m}; # not yet copy it
427 $ym = $y->{_m}->copy()->blsft($diff,10);
431 $xm = $x->{_m}->copy()->blsft(-$diff,10);
433 my $rc = $xm->bacmp($ym);
434 $rc = -$rc if $x->{sign} eq '-'; # -124 < -123
440 # Compares 2 values, ignoring their signs.
441 # Returns one of undef, <0, =0, >0. (suitable for sort)
442 # (BFLOAT or num_str, BFLOAT or num_str) return cond_code
445 my ($self,$x,$y) = (ref($_[0]),@_);
446 # objectify is costly, so avoid it
447 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
449 ($self,$x,$y) = objectify(2,@_);
452 return $upgrade->bacmp($x,$y) if defined $upgrade &&
453 ((!$x->isa($self)) || (!$y->isa($self)));
455 # handle +-inf and NaN's
456 if ($x->{sign} !~ /^[+-]$/ || $y->{sign} !~ /^[+-]$/)
458 return undef if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
459 return 0 if ($x->is_inf() && $y->is_inf());
460 return 1 if ($x->is_inf() && !$y->is_inf());
465 my $xz = $x->is_zero();
466 my $yz = $y->is_zero();
467 return 0 if $xz && $yz; # 0 <=> 0
468 return -1 if $xz && !$yz; # 0 <=> +y
469 return 1 if $yz && !$xz; # +x <=> 0
471 # adjust so that exponents are equal
472 my $lxm = $x->{_m}->length();
473 my $lym = $y->{_m}->length();
474 # the numify somewhat limits our length, but makes it much faster
475 my $lx = $lxm + $x->{_e}->numify();
476 my $ly = $lym + $y->{_e}->numify();
478 return $l <=> 0 if $l != 0;
480 # lengths (corrected by exponent) are equal
481 # so make mantissa equal-length by padding with zero (shift left)
482 my $diff = $lxm - $lym;
483 my $xm = $x->{_m}; # not yet copy it
487 $ym = $y->{_m}->copy()->blsft($diff,10);
491 $xm = $x->{_m}->copy()->blsft(-$diff,10);
493 $xm->bacmp($ym) <=> 0;
498 # add second arg (BFLOAT or string) to first (BFLOAT) (modifies first)
499 # return result as BFLOAT
502 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
503 # objectify is costly, so avoid it
504 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
506 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
509 # inf and NaN handling
510 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
513 return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
515 if (($x->{sign} =~ /^[+-]inf$/) && ($y->{sign} =~ /^[+-]inf$/))
517 # +inf++inf or -inf+-inf => same, rest is NaN
518 return $x if $x->{sign} eq $y->{sign};
521 # +-inf + something => +inf; something +-inf => +-inf
522 $x->{sign} = $y->{sign}, return $x if $y->{sign} =~ /^[+-]inf$/;
526 return $upgrade->badd($x,$y,$a,$p,$r) if defined $upgrade &&
527 ((!$x->isa($self)) || (!$y->isa($self)));
529 # speed: no add for 0+y or x+0
530 return $x->bround($a,$p,$r) if $y->is_zero(); # x+0
531 if ($x->is_zero()) # 0+y
533 # make copy, clobbering up x (modify in place!)
534 $x->{_e} = $y->{_e}->copy();
535 $x->{_m} = $y->{_m}->copy();
536 $x->{sign} = $y->{sign} || $nan;
537 return $x->round($a,$p,$r,$y);
540 # take lower of the two e's and adapt m1 to it to match m2
542 $e = $MBI->bzero() if !defined $e; # if no BFLOAT ?
543 $e = $e->copy(); # make copy (didn't do it yet)
545 my $add = $y->{_m}->copy();
546 if ($e->{sign} eq '-') # < 0
548 my $e1 = $e->copy()->babs();
549 #$x->{_m} *= (10 ** $e1);
550 $x->{_m}->blsft($e1,10);
551 $x->{_e} += $e; # need the sign of e
553 elsif (!$e->is_zero()) # > 0
558 # else: both e are the same, so just leave them
559 $x->{_m}->{sign} = $x->{sign}; # fiddle with signs
560 $add->{sign} = $y->{sign};
561 $x->{_m} += $add; # finally do add/sub
562 $x->{sign} = $x->{_m}->{sign}; # re-adjust signs
563 $x->{_m}->{sign} = '+'; # mantissa always positiv
564 # delete trailing zeros, then round
565 return $x->bnorm()->round($a,$p,$r,$y);
570 # (BigFloat or num_str, BigFloat or num_str) return BigFloat
571 # subtract second arg from first, modify first
574 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
575 # objectify is costly, so avoid it
576 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
578 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
581 if ($y->is_zero()) # still round for not adding zero
583 return $x->round($a,$p,$r);
586 $y->{sign} =~ tr/+\-/-+/; # does nothing for NaN
587 $x->badd($y,$a,$p,$r); # badd does not leave internal zeros
588 $y->{sign} =~ tr/+\-/-+/; # refix $y (does nothing for NaN)
589 $x; # already rounded by badd()
594 # increment arg by one
595 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
597 if ($x->{_e}->sign() eq '-')
599 return $x->badd($self->bone(),$a,$p,$r); # digits after dot
602 if (!$x->{_e}->is_zero())
604 $x->{_m}->blsft($x->{_e},10); # 1e2 => 100
608 if ($x->{sign} eq '+')
611 return $x->bnorm()->bround($a,$p,$r);
613 elsif ($x->{sign} eq '-')
616 $x->{sign} = '+' if $x->{_m}->is_zero(); # -1 +1 => -0 => +0
617 return $x->bnorm()->bround($a,$p,$r);
619 # inf, nan handling etc
620 $x->badd($self->__one(),$a,$p,$r); # does round
625 # decrement arg by one
626 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
628 if ($x->{_e}->sign() eq '-')
630 return $x->badd($self->bone('-'),$a,$p,$r); # digits after dot
633 if (!$x->{_e}->is_zero())
635 $x->{_m}->blsft($x->{_e},10); # 1e2 => 100
639 my $zero = $x->is_zero();
641 if (($x->{sign} eq '-') || $zero)
644 $x->{sign} = '-' if $zero; # 0 => 1 => -1
645 $x->{sign} = '+' if $x->{_m}->is_zero(); # -1 +1 => -0 => +0
646 return $x->bnorm()->round($a,$p,$r);
649 elsif ($x->{sign} eq '+')
652 return $x->bnorm()->round($a,$p,$r);
654 # inf, nan handling etc
655 $x->badd($self->bone('-'),$a,$p,$r); # does round
662 my ($self,$x,$base,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
664 # $base > 0, $base != 1; if $base == undef default to $base == e
667 # we need to limit the accuracy to protect against overflow
670 ($x,@params) = $x->_find_round_parameters($a,$p,$r);
672 # also takes care of the "error in _find_round_parameters?" case
673 return $x->bnan() if $x->{sign} ne '+' || $x->is_zero();
675 # no rounding at all, so must use fallback
676 if (scalar @params == 0)
678 # simulate old behaviour
679 $params[0] = $self->div_scale(); # and round to it as accuracy
680 $params[1] = undef; # P = undef
681 $scale = $params[0]+4; # at least four more for proper round
682 $params[2] = $r; # round mode by caller or undef
683 $fallback = 1; # to clear a/p afterwards
687 # the 4 below is empirical, and there might be cases where it is not
689 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
692 return $x->bzero(@params) if $x->is_one();
693 # base not defined => base == Euler's constant e
696 # make object, since we don't feed it trough objectify() to still get the
697 # case of $base == undef
698 $base = $self->new($base) unless ref($base);
699 # $base > 0; $base != 1
700 return $x->bnan() if $base->is_zero() || $base->is_one() ||
701 $base->{sign} ne '+';
702 return $x->bone('+',@params) if $x->bcmp($base) == 0;
705 # when user set globals, they would interfere with our calculation, so
706 # disable them and later re-enable them
708 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
709 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
710 # we also need to disable any set A or P on $x (_find_round_parameters took
711 # them already into account), since these would interfere, too
712 delete $x->{_a}; delete $x->{_p};
713 # need to disable $upgrade in BigInt, to avoid deep recursion
714 local $Math::BigInt::upgrade = undef;
715 local $Math::BigFloat::downgrade = undef;
717 # upgrade $x if $x is not a BigFloat (handle BigInt input)
718 if (!$x->isa('Math::BigFloat'))
720 $x = Math::BigFloat->new($x);
723 # first calculate the log to base e (using reduction by 10 (and probably 2))
724 $self->_log_10($x,$scale);
726 # and if a different base was requested, convert it
729 $base = Math::BigFloat->new($base) unless $base->isa('Math::BigFloat');
730 # not ln, but some other base
731 $x->bdiv( $base->copy()->blog(undef,$scale), $scale );
734 # shortcut to not run trough _find_round_parameters again
735 if (defined $params[0])
737 $x->bround($params[0],$params[2]); # then round accordingly
741 $x->bfround($params[1],$params[2]); # then round accordingly
745 # clear a/p after round, since user did not request it
746 $x->{_a} = undef; $x->{_p} = undef;
749 $$abr = $ab; $$pbr = $pb;
756 # internal log function to calculate log based on Taylor.
757 # Modifies $x in place.
758 my ($self,$x,$scale) = @_;
760 # http://www.efunda.com/math/taylor_series/logarithmic.cfm?search_string=log
764 # Taylor: | u 1 u^3 1 u^5 |
765 # ln (x) = 2 | --- + - * --- + - * --- + ... | x > 0
766 # |_ v 3 v^3 5 v^5 _|
768 # This takes much more steps to calculate the result and is thus not used
771 # Taylor: | u 1 u^2 1 u^3 |
772 # ln (x) = 2 | --- + - * --- + - * --- + ... | x > 1/2
773 # |_ x 2 x^2 3 x^3 _|
775 # "normal" log algorithmn
777 my ($limit,$v,$u,$below,$factor,$two,$next,$over,$f);
779 $v = $x->copy(); $v->binc(); # v = x+1
780 $x->bdec(); $u = $x->copy(); # u = x-1; x = x-1
781 $x->bdiv($v,$scale); # first term: u/v
784 $u *= $u; $v *= $v; # u^2, v^2
785 $below->bmul($v); # u^3, v^3
787 $factor = $self->new(3); $f = $self->new(2);
789 my $steps = 0 if DEBUG;
790 $limit = $self->new("1E-". ($scale-1));
793 # we calculate the next term, and add it to the last
794 # when the next term is below our limit, it won't affect the outcome
795 # anymore, so we stop
797 # calculating the next term simple from over/below will result in quite
798 # a time hog if the input has many digits, since over and below will
799 # accumulate more and more digits, and the result will also have many
800 # digits, but in the end it is rounded to $scale digits anyway. So if we
801 # round $over and $below first, we save a lot of time for the division
802 # (not with log(1.2345), but try log (123**123) to see what I mean. This
803 # can introduce a rounding error if the division result would be f.i.
804 # 0.1234500000001 and we round it to 5 digits it would become 0.12346, but
805 # if we truncated the $over and $below we might get 0.12345. Does this
806 # matter for the end result? So we give over and below 4 more digits to be
807 # on the safe side (unscientific error handling as usual...)
808 # Makes blog(1.23) *slightly* slower, but try blog(123*123) w/o it :o)
810 $next = $over->copy->bround($scale+4)->bdiv(
811 $below->copy->bmul($factor)->bround($scale+4),
815 ## $next = $over->copy()->bdiv($below->copy()->bmul($factor),$scale);
817 last if $next->bacmp($limit) <= 0;
819 delete $next->{_a}; delete $next->{_p};
821 #print "step $x\n ($next - $limit = ",$next - $limit,")\n";
822 # calculate things for the next term
823 $over *= $u; $below *= $v; $factor->badd($f);
826 $steps++; print "step $steps = $x\n" if $steps % 10 == 0;
829 $x->bmul($f); # $x *= 2
830 print "took $steps steps\n" if DEBUG;
835 # internal log function based on reducing input to the range of 0.1 .. 9.99
836 my ($self,$x,$scale) = @_;
838 # taking blog() from numbers greater than 10 takes a *very long* time, so we
839 # break the computation down into parts based on the observation that:
840 # blog(x*y) = blog(x) + blog(y)
841 # We set $y here to multiples of 10 so that $x is below 1 (the smaller $x is
842 # the faster it get's, especially because 2*$x takes about 10 times as long,
843 # so by dividing $x by 10 we make it at least factor 100 faster...)
845 # The same observation is valid for numbers smaller than 0.1 (e.g. computing
846 # log(1) is fastest, and the farther away we get from 1, the longer it takes)
847 # so we also 'break' this down by multiplying $x with 10 and subtract the
848 # log(10) afterwards to get the correct result.
850 # calculate nr of digits before dot
851 my $dbd = $x->{_m}->length() + $x->{_e}->numify();
853 # more than one digit (e.g. at least 10), but *not* exactly 10 to avoid
856 my $calc = 1; # do some calculation?
858 # disable the shortcut for 10, since we need log(10) and this would recurse
860 if ($x->{_e}->is_one() && $x->{_m}->is_one())
862 $dbd = 0; # disable shortcut
863 # we can use the cached value in these cases
864 if ($scale <= $LOG_10_A)
866 $x->bzero(); $x->badd($LOG_10);
867 $calc = 0; # no need to calc, but round
870 # disable the shortcut for 2, since we maybe have it cached
871 my $two = $self->new(2); # also used later on
872 if ($x->{_e}->is_zero() && $x->{_m}->bcmp($two) == 0)
874 $dbd = 0; # disable shortcut
875 # we can use the cached value in these cases
876 if ($scale <= $LOG_2_A)
878 $x->bzero(); $x->badd($LOG_2);
879 $calc = 0; # no need to calc, but round
883 # if $x = 0.1, we know the result must be 0-log(10)
884 if ($x->{_e}->is_one('-') && $x->{_m}->is_one())
886 $dbd = 0; # disable shortcut
887 # we can use the cached value in these cases
888 if ($scale <= $LOG_10_A)
890 $x->bzero(); $x->bsub($LOG_10);
891 $calc = 0; # no need to calc, but round
895 # default: these correction factors are undef and thus not used
896 my $l_10; # value of ln(10) to A of $scale
897 my $l_2; # value of ln(2) to A of $scale
899 # $x == 2 => 1, $x == 13 => 2, $x == 0.1 => 0, $x == 0.01 => -1
900 # so don't do this shortcut for 1 or 0
901 if (($dbd > 1) || ($dbd < 0))
903 # convert our cached value to an object if not already (avoid doing this
904 # at import() time, since not everybody needs this)
905 $LOG_10 = $self->new($LOG_10,undef,undef) unless ref $LOG_10;
907 #print "x = $x, dbd = $dbd, calc = $calc\n";
908 # got more than one digit before the dot, or more than one zero after the
910 # log(123) == log(1.23) + log(10) * 2
911 # log(0.0123) == log(1.23) - log(10) * 2
913 if ($scale <= $LOG_10_A)
916 #print "using cached value for l_10\n";
917 $l_10 = $LOG_10->copy(); # copy for mul
921 # else: slower, compute it (but don't cache it, because it could be big)
922 # also disable downgrade for this code path
923 local $Math::BigFloat::downgrade = undef;
924 #print "l_10 = $l_10 (self = $self',
925 # ", ref(l_10) = ",ref($l_10)," scale $scale)\n";
926 #print "calculating value for l_10, scale $scale\n";
927 $l_10 = $self->new(10)->blog(undef,$scale); # scale+4, actually
929 $dbd-- if ($dbd > 1); # 20 => dbd=2, so make it dbd=1
931 $dbd = $self->new($dbd);
933 $l_10->bmul($dbd); # log(10) * (digits_before_dot-1)
934 #print "l_10 = $l_10\n";
936 $x->{_e}->bsub($dbd); # 123 => 1.23
938 #print "calculating log($x) with scale=$scale\n";
942 # Now: 0.1 <= $x < 10 (and possible correction in l_10)
944 ### Since $x in the range 0.5 .. 1.5 is MUCH faster, we do a repeated div
945 ### or mul by 2 (maximum times 3, since x < 10 and x > 0.1)
949 my $half = $self->new('0.5');
950 my $twos = 0; # default: none (0 times)
951 while ($x->bacmp($half) < 0)
954 $twos--; $x->bmul($two);
956 while ($x->bacmp($two) > 0)
959 $twos++; $x->bdiv($two,$scale+4); # keep all digits
962 # $twos > 0 => did mul 2, < 0 => did div 2 (never both)
963 # calculate correction factor based on ln(2)
966 $LOG_2 = $self->new($LOG_2,undef,undef) unless ref $LOG_2;
967 if ($scale <= $LOG_2_A)
970 #print "using cached value for l_10\n";
971 $l_2 = $LOG_2->copy(); # copy for mul
975 # else: slower, compute it (but don't cache it, because it could be big)
976 # also disable downgrade for this code path
977 local $Math::BigFloat::downgrade = undef;
978 #print "calculating value for l_2, scale $scale\n";
979 $l_2 = $two->blog(undef,$scale); # scale+4, actually
982 $l_2->bmul($twos); # * -2 => subtract, * 2 => add
989 $self->_log($x,$scale); # need to do the "normal" way
990 #print "log(x) = $x\n";
991 $x->badd($l_10) if defined $l_10; # correct it by ln(10)
992 #print "result = $x\n";
993 $x->badd($l_2) if defined $l_2; # and maybe by ln(2)
994 #print "result = $x\n";
996 # all done, $x contains now the result
1001 # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
1002 # does not modify arguments, but returns new object
1003 # Lowest Common Multiplicator
1005 my ($self,@arg) = objectify(0,@_);
1006 my $x = $self->new(shift @arg);
1007 while (@arg) { $x = _lcm($x,shift @arg); }
1013 # (BFLOAT or num_str, BFLOAT or num_str) return BINT
1014 # does not modify arguments, but returns new object
1015 # GCD -- Euclids algorithm Knuth Vol 2 pg 296
1017 my ($self,@arg) = objectify(0,@_);
1018 my $x = $self->new(shift @arg);
1019 while (@arg) { $x = _gcd($x,shift @arg); }
1023 ###############################################################################
1024 # is_foo methods (is_negative, is_positive are inherited from BigInt)
1028 # return true if arg (BFLOAT or num_str) is an integer
1029 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
1031 return 1 if ($x->{sign} =~ /^[+-]$/) && # NaN and +-inf aren't
1032 $x->{_e}->{sign} eq '+'; # 1e-1 => no integer
1038 # return true if arg (BFLOAT or num_str) is zero
1039 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
1041 return 1 if $x->{sign} eq '+' && $x->{_m}->is_zero();
1047 # return true if arg (BFLOAT or num_str) is +1 or -1 if signis given
1048 my ($self,$x,$sign) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
1050 $sign = '+' if !defined $sign || $sign ne '-';
1052 if ($x->{sign} eq $sign && $x->{_e}->is_zero() && $x->{_m}->is_one());
1058 # return true if arg (BFLOAT or num_str) is odd or false if even
1059 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
1061 return 1 if ($x->{sign} =~ /^[+-]$/) && # NaN & +-inf aren't
1062 ($x->{_e}->is_zero() && $x->{_m}->is_odd());
1068 # return true if arg (BINT or num_str) is even or false if odd
1069 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
1071 return 0 if $x->{sign} !~ /^[+-]$/; # NaN & +-inf aren't
1072 return 1 if ($x->{_e}->{sign} eq '+' # 123.45 is never
1073 && $x->{_m}->is_even()); # but 1200 is
1079 # multiply two numbers -- stolen from Knuth Vol 2 pg 233
1080 # (BINT or num_str, BINT or num_str) return BINT
1083 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
1084 # objectify is costly, so avoid it
1085 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1087 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
1090 return $x->bnan() if (($x->{sign} eq $nan) || ($y->{sign} eq $nan));
1093 if (($x->{sign} =~ /^[+-]inf$/) || ($y->{sign} =~ /^[+-]inf$/))
1095 return $x->bnan() if $x->is_zero() || $y->is_zero();
1096 # result will always be +-inf:
1097 # +inf * +/+inf => +inf, -inf * -/-inf => +inf
1098 # +inf * -/-inf => -inf, -inf * +/+inf => -inf
1099 return $x->binf() if ($x->{sign} =~ /^\+/ && $y->{sign} =~ /^\+/);
1100 return $x->binf() if ($x->{sign} =~ /^-/ && $y->{sign} =~ /^-/);
1101 return $x->binf('-');
1104 return $x->bzero() if $x->is_zero() || $y->is_zero();
1106 return $upgrade->bmul($x,$y,$a,$p,$r) if defined $upgrade &&
1107 ((!$x->isa($self)) || (!$y->isa($self)));
1109 # aEb * cEd = (a*c)E(b+d)
1110 $x->{_m}->bmul($y->{_m});
1111 $x->{_e}->badd($y->{_e});
1113 $x->{sign} = $x->{sign} ne $y->{sign} ? '-' : '+';
1114 return $x->bnorm()->round($a,$p,$r,$y);
1119 # (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return
1120 # (BFLOAT,BFLOAT) (quo,rem) or BFLOAT (only rem)
1123 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
1124 # objectify is costly, so avoid it
1125 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1127 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
1130 return $self->_div_inf($x,$y)
1131 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/) || $y->is_zero());
1133 # x== 0 # also: or y == 1 or y == -1
1134 return wantarray ? ($x,$self->bzero()) : $x if $x->is_zero();
1137 return $upgrade->bdiv($upgrade->new($x),$y,$a,$p,$r) if defined $upgrade;
1139 # we need to limit the accuracy to protect against overflow
1141 my (@params,$scale);
1142 ($x,@params) = $x->_find_round_parameters($a,$p,$r,$y);
1144 return $x if $x->is_nan(); # error in _find_round_parameters?
1146 # no rounding at all, so must use fallback
1147 if (scalar @params == 0)
1149 # simulate old behaviour
1150 $params[0] = $self->div_scale(); # and round to it as accuracy
1151 $scale = $params[0]+4; # at least four more for proper round
1152 $params[2] = $r; # round mode by caller or undef
1153 $fallback = 1; # to clear a/p afterwards
1157 # the 4 below is empirical, and there might be cases where it is not
1159 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
1161 my $lx = $x->{_m}->length(); my $ly = $y->{_m}->length();
1162 $scale = $lx if $lx > $scale;
1163 $scale = $ly if $ly > $scale;
1164 my $diff = $ly - $lx;
1165 $scale += $diff if $diff > 0; # if lx << ly, but not if ly << lx!
1167 # make copy of $x in case of list context for later reminder calculation
1169 if (wantarray && !$y->is_one())
1174 $x->{sign} = $x->{sign} ne $y->sign() ? '-' : '+';
1176 # check for / +-1 ( +/- 1E0)
1179 # promote BigInts and it's subclasses (except when already a BigFloat)
1180 $y = $self->new($y) unless $y->isa('Math::BigFloat');
1182 # need to disable $upgrade in BigInt, to avoid deep recursion
1183 local $Math::BigInt::upgrade = undef; # should be parent class vs MBI
1185 # calculate the result to $scale digits and then round it
1186 # a * 10 ** b / c * 10 ** d => a/c * 10 ** (b-d)
1187 $x->{_m}->blsft($scale,10);
1188 $x->{_m}->bdiv( $y->{_m} ); # a/c
1189 $x->{_e}->bsub( $y->{_e} ); # b-d
1190 $x->{_e}->bsub($scale); # correct for 10**scale
1191 $x->bnorm(); # remove trailing 0's
1194 # shortcut to not run trough _find_round_parameters again
1195 if (defined $params[0])
1197 $x->{_a} = undef; # clear before round
1198 $x->bround($params[0],$params[2]); # then round accordingly
1202 $x->{_p} = undef; # clear before round
1203 $x->bfround($params[1],$params[2]); # then round accordingly
1207 # clear a/p after round, since user did not request it
1208 $x->{_a} = undef; $x->{_p} = undef;
1215 $rem->bmod($y,@params); # copy already done
1219 $rem = $self->bzero();
1223 # clear a/p after round, since user did not request it
1224 $rem->{_a} = undef; $rem->{_p} = undef;
1233 # (dividend: BFLOAT or num_str, divisor: BFLOAT or num_str) return reminder
1236 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
1237 # objectify is costly, so avoid it
1238 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1240 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
1243 if (($x->{sign} !~ /^[+-]$/) || ($y->{sign} !~ /^[+-]$/))
1245 my ($d,$re) = $self->SUPER::_div_inf($x,$y);
1246 $x->{sign} = $re->{sign};
1247 $x->{_e} = $re->{_e};
1248 $x->{_m} = $re->{_m};
1249 return $x->round($a,$p,$r,$y);
1251 return $x->bnan() if $x->is_zero() && $y->is_zero();
1252 return $x if $y->is_zero();
1253 return $x->bnan() if $x->is_nan() || $y->is_nan();
1254 return $x->bzero() if $y->is_one() || $x->is_zero();
1256 # inf handling is missing here
1258 my $cmp = $x->bacmp($y); # equal or $x < $y?
1259 return $x->bzero($a,$p) if $cmp == 0; # $x == $y => result 0
1261 # only $y of the operands negative?
1262 my $neg = 0; $neg = 1 if $x->{sign} ne $y->{sign};
1264 $x->{sign} = $y->{sign}; # calc sign first
1265 return $x->round($a,$p,$r) if $cmp < 0 && $neg == 0; # $x < $y => result $x
1267 my $ym = $y->{_m}->copy();
1270 $ym->blsft($y->{_e},10) if $y->{_e}->{sign} eq '+' && !$y->{_e}->is_zero();
1272 # if $y has digits after dot
1273 my $shifty = 0; # correct _e of $x by this
1274 if ($y->{_e}->{sign} eq '-') # has digits after dot
1276 # 123 % 2.5 => 1230 % 25 => 5 => 0.5
1277 $shifty = $y->{_e}->copy()->babs(); # no more digits after dot
1278 $x->blsft($shifty,10); # 123 => 1230, $y->{_m} is already 25
1280 # $ym is now mantissa of $y based on exponent 0
1282 my $shiftx = 0; # correct _e of $x by this
1283 if ($x->{_e}->{sign} eq '-') # has digits after dot
1285 # 123.4 % 20 => 1234 % 200
1286 $shiftx = $x->{_e}->copy()->babs(); # no more digits after dot
1287 $ym->blsft($shiftx,10);
1289 # 123e1 % 20 => 1230 % 20
1290 if ($x->{_e}->{sign} eq '+' && !$x->{_e}->is_zero())
1292 $x->{_m}->blsft($x->{_e},10);
1294 $x->{_e} = $MBI->bzero() unless $x->{_e}->is_zero();
1296 $x->{_e}->bsub($shiftx) if $shiftx != 0;
1297 $x->{_e}->bsub($shifty) if $shifty != 0;
1299 # now mantissas are equalized, exponent of $x is adjusted, so calc result
1301 $x->{_m}->bmod($ym);
1303 $x->{sign} = '+' if $x->{_m}->is_zero(); # fix sign for -0
1306 if ($neg != 0) # one of them negative => correct in place
1309 $x->{_m} = $r->{_m};
1310 $x->{_e} = $r->{_e};
1311 $x->{sign} = '+' if $x->{_m}->is_zero(); # fix sign for -0
1315 $x->round($a,$p,$r,$y); # round and return
1320 # calculate $y'th root of $x
1321 my ($self,$x,$y,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(2,@_);
1323 # NaN handling: $x ** 1/0, x or y NaN, or y inf/-inf or y == 0
1324 return $x->bnan() if $x->{sign} !~ /^\+/ || $y->is_zero() ||
1325 $y->{sign} !~ /^\+$/;
1327 return $x if $x->is_zero() || $x->is_one() || $x->is_inf() || $y->is_one();
1329 # we need to limit the accuracy to protect against overflow
1331 my (@params,$scale);
1332 ($x,@params) = $x->_find_round_parameters($a,$p,$r);
1334 return $x if $x->is_nan(); # error in _find_round_parameters?
1336 # no rounding at all, so must use fallback
1337 if (scalar @params == 0)
1339 # simulate old behaviour
1340 $params[0] = $self->div_scale(); # and round to it as accuracy
1341 $scale = $params[0]+4; # at least four more for proper round
1342 $params[2] = $r; # round mode by caller or undef
1343 $fallback = 1; # to clear a/p afterwards
1347 # the 4 below is empirical, and there might be cases where it is not
1349 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
1352 # when user set globals, they would interfere with our calculation, so
1353 # disable them and later re-enable them
1355 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
1356 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
1357 # we also need to disable any set A or P on $x (_find_round_parameters took
1358 # them already into account), since these would interfere, too
1359 delete $x->{_a}; delete $x->{_p};
1360 # need to disable $upgrade in BigInt, to avoid deep recursion
1361 local $Math::BigInt::upgrade = undef; # should be really parent class vs MBI
1363 # remember sign and make $x positive, since -4 ** (1/2) => -2
1364 my $sign = 0; $sign = 1 if $x->is_negative(); $x->babs();
1366 if ($y->bcmp(2) == 0) # normal square root
1368 $x->bsqrt($scale+4);
1370 elsif ($y->is_one('-'))
1373 my $u = $self->bone()->bdiv($x,$scale);
1374 # copy private parts over
1375 $x->{_m} = $u->{_m};
1376 $x->{_e} = $u->{_e};
1380 my $u = $self->bone()->bdiv($y,$scale+4);
1381 delete $u->{_a}; delete $u->{_p}; # otherwise it conflicts
1382 $x->bpow($u,$scale+4); # el cheapo
1384 $x->bneg() if $sign == 1;
1386 # shortcut to not run trough _find_round_parameters again
1387 if (defined $params[0])
1389 $x->bround($params[0],$params[2]); # then round accordingly
1393 $x->bfround($params[1],$params[2]); # then round accordingly
1397 # clear a/p after round, since user did not request it
1398 $x->{_a} = undef; $x->{_p} = undef;
1401 $$abr = $ab; $$pbr = $pb;
1407 # calculate square root
1408 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
1410 return $x->bnan() if $x->{sign} !~ /^[+]/; # NaN, -inf or < 0
1411 return $x if $x->{sign} eq '+inf'; # sqrt(inf) == inf
1412 return $x->round($a,$p,$r) if $x->is_zero() || $x->is_one();
1414 # we need to limit the accuracy to protect against overflow
1416 my (@params,$scale);
1417 ($x,@params) = $x->_find_round_parameters($a,$p,$r);
1419 return $x if $x->is_nan(); # error in _find_round_parameters?
1421 # no rounding at all, so must use fallback
1422 if (scalar @params == 0)
1424 # simulate old behaviour
1425 $params[0] = $self->div_scale(); # and round to it as accuracy
1426 $scale = $params[0]+4; # at least four more for proper round
1427 $params[2] = $r; # round mode by caller or undef
1428 $fallback = 1; # to clear a/p afterwards
1432 # the 4 below is empirical, and there might be cases where it is not
1434 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
1437 # when user set globals, they would interfere with our calculation, so
1438 # disable them and later re-enable them
1440 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
1441 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
1442 # we also need to disable any set A or P on $x (_find_round_parameters took
1443 # them already into account), since these would interfere, too
1444 delete $x->{_a}; delete $x->{_p};
1445 # need to disable $upgrade in BigInt, to avoid deep recursion
1446 local $Math::BigInt::upgrade = undef; # should be really parent class vs MBI
1448 my $xas = $x->as_number();
1449 my $gs = $xas->copy()->bsqrt(); # some guess
1451 if (($x->{_e}->{sign} ne '-') # guess can't be accurate if there are
1452 # digits after the dot
1453 && ($xas->bacmp($gs * $gs) == 0)) # guess hit the nail on the head?
1456 $x->{_m} = $gs; $x->{_e} = $MBI->bzero(); $x->bnorm();
1457 # shortcut to not run trough _find_round_parameters again
1458 if (defined $params[0])
1460 $x->bround($params[0],$params[2]); # then round accordingly
1464 $x->bfround($params[1],$params[2]); # then round accordingly
1468 # clear a/p after round, since user did not request it
1469 $x->{_a} = undef; $x->{_p} = undef;
1471 # re-enable A and P, upgrade is taken care of by "local"
1472 ${"$self\::accuracy"} = $ab; ${"$self\::precision"} = $pb;
1476 # sqrt(2) = 1.4 because sqrt(2*100) = 1.4*10; so we can increase the accuracy
1477 # of the result by multipyling the input by 100 and then divide the integer
1478 # result of sqrt(input) by 10. Rounding afterwards returns the real result.
1479 # this will transform 123.456 (in $x) into 123456 (in $y1)
1480 my $y1 = $x->{_m}->copy();
1481 # We now make sure that $y1 has the same odd or even number of digits than
1482 # $x had. So when _e of $x is odd, we must shift $y1 by one digit left,
1483 # because we always must multiply by steps of 100 (sqrt(100) is 10) and not
1484 # steps of 10. The length of $x does not count, since an even or odd number
1485 # of digits before the dot is not changed by adding an even number of digits
1486 # after the dot (the result is still odd or even digits long).
1487 my $length = $y1->length();
1488 $y1->bmul(10) if $x->{_e}->is_odd();
1489 # now calculate how many digits the result of sqrt(y1) would have
1490 my $digits = int($length / 2);
1491 # but we need at least $scale digits, so calculate how many are missing
1492 my $shift = $scale - $digits;
1493 # that should never happen (we take care of integer guesses above)
1494 # $shift = 0 if $shift < 0;
1495 # multiply in steps of 100, by shifting left two times the "missing" digits
1496 $y1->blsft($shift*2,10);
1497 # now take the square root and truncate to integer
1499 # By "shifting" $y1 right (by creating a negative _e) we calculate the final
1500 # result, which is than later rounded to the desired scale.
1502 # calculate how many zeros $x had after the '.' (or before it, depending
1503 # on sign of $dat, the result should have half as many:
1504 my $dat = $length + $x->{_e}->numify();
1508 # no zeros after the dot (e.g. 1.23, 0.49 etc)
1509 # preserve half as many digits before the dot than the input had
1510 # (but round this "up")
1511 $dat = int(($dat+1)/2);
1515 $dat = int(($dat)/2);
1517 $x->{_e}= $MBI->new( $dat - $y1->length() );
1521 # shortcut to not run trough _find_round_parameters again
1522 if (defined $params[0])
1524 $x->bround($params[0],$params[2]); # then round accordingly
1528 $x->bfround($params[1],$params[2]); # then round accordingly
1532 # clear a/p after round, since user did not request it
1533 $x->{_a} = undef; $x->{_p} = undef;
1536 $$abr = $ab; $$pbr = $pb;
1542 # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
1543 # compute factorial numbers
1544 # modifies first argument
1545 my ($self,$x,@r) = objectify(1,@_);
1548 if (($x->{sign} ne '+') || # inf, NaN, <0 etc => NaN
1549 ($x->{_e}->{sign} ne '+')); # digits after dot?
1551 return $x->bone('+',@r) if $x->is_zero() || $x->is_one(); # 0 or 1 => 1
1553 # use BigInt's bfac() for faster calc
1554 $x->{_m}->blsft($x->{_e},10); # un-norm m
1555 $x->{_e}->bzero(); # norm $x again
1556 $x->{_m}->bfac(); # factorial
1557 $x->bnorm()->round(@r);
1562 # Calculate a power where $y is a non-integer, like 2 ** 0.5
1563 my ($x,$y,$a,$p,$r) = @_;
1566 # if $y == 0.5, it is sqrt($x)
1567 return $x->bsqrt($a,$p,$r,$y) if $y->bcmp('0.5') == 0;
1570 # a ** x == e ** (x * ln a)
1574 # Taylor: | u u^2 u^3 |
1575 # x ** y = 1 + | --- + --- + ----- + ... |
1578 # we need to limit the accuracy to protect against overflow
1580 my ($scale,@params);
1581 ($x,@params) = $x->_find_round_parameters($a,$p,$r);
1583 return $x if $x->is_nan(); # error in _find_round_parameters?
1585 # no rounding at all, so must use fallback
1586 if (scalar @params == 0)
1588 # simulate old behaviour
1589 $params[0] = $self->div_scale(); # and round to it as accuracy
1590 $params[1] = undef; # disable P
1591 $scale = $params[0]+4; # at least four more for proper round
1592 $params[2] = $r; # round mode by caller or undef
1593 $fallback = 1; # to clear a/p afterwards
1597 # the 4 below is empirical, and there might be cases where it is not
1599 $scale = abs($params[0] || $params[1]) + 4; # take whatever is defined
1602 # when user set globals, they would interfere with our calculation, so
1603 # disable them and later re-enable them
1605 my $abr = "$self\::accuracy"; my $ab = $$abr; $$abr = undef;
1606 my $pbr = "$self\::precision"; my $pb = $$pbr; $$pbr = undef;
1607 # we also need to disable any set A or P on $x (_find_round_parameters took
1608 # them already into account), since these would interfere, too
1609 delete $x->{_a}; delete $x->{_p};
1610 # need to disable $upgrade in BigInt, to avoid deep recursion
1611 local $Math::BigInt::upgrade = undef;
1613 my ($limit,$v,$u,$below,$factor,$next,$over);
1615 $u = $x->copy()->blog(undef,$scale)->bmul($y);
1616 $v = $self->bone(); # 1
1617 $factor = $self->new(2); # 2
1618 $x->bone(); # first term: 1
1620 $below = $v->copy();
1623 $limit = $self->new("1E-". ($scale-1));
1627 # we calculate the next term, and add it to the last
1628 # when the next term is below our limit, it won't affect the outcome
1629 # anymore, so we stop
1630 $next = $over->copy()->bdiv($below,$scale);
1631 last if $next->bacmp($limit) <= 0;
1633 # calculate things for the next term
1634 $over *= $u; $below *= $factor; $factor->binc();
1638 # shortcut to not run trough _find_round_parameters again
1639 if (defined $params[0])
1641 $x->bround($params[0],$params[2]); # then round accordingly
1645 $x->bfround($params[1],$params[2]); # then round accordingly
1649 # clear a/p after round, since user did not request it
1650 $x->{_a} = undef; $x->{_p} = undef;
1653 $$abr = $ab; $$pbr = $pb;
1659 # (BFLOAT or num_str, BFLOAT or num_str) return BFLOAT
1660 # compute power of two numbers, second arg is used as integer
1661 # modifies first argument
1664 my ($self,$x,$y,$a,$p,$r) = (ref($_[0]),@_);
1665 # objectify is costly, so avoid it
1666 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1668 ($self,$x,$y,$a,$p,$r) = objectify(2,@_);
1671 return $x if $x->{sign} =~ /^[+-]inf$/;
1672 return $x->bnan() if $x->{sign} eq $nan || $y->{sign} eq $nan;
1673 return $x->bone() if $y->is_zero();
1674 return $x if $x->is_one() || $y->is_one();
1676 return $x->_pow($y,$a,$p,$r) if !$y->is_int(); # non-integer power
1678 my $y1 = $y->as_number(); # make bigint
1680 if ($x->{sign} eq '-' && $x->{_m}->is_one() && $x->{_e}->is_zero())
1682 # if $x == -1 and odd/even y => +1/-1 because +-1 ^ (+-1) => +-1
1683 return $y1->is_odd() ? $x : $x->babs(1);
1687 return $x if $y->{sign} eq '+'; # 0**y => 0 (if not y <= 0)
1688 # 0 ** -y => 1 / (0 ** y) => / 0! (1 / 0 => +inf)
1692 # calculate $x->{_m} ** $y and $x->{_e} * $y separately (faster)
1694 $x->{_m}->bpow($y1);
1695 $x->{_e}->bmul($y1);
1696 $x->{sign} = $nan if $x->{_m}->{sign} eq $nan || $x->{_e}->{sign} eq $nan;
1698 if ($y->{sign} eq '-')
1700 # modify $x in place!
1701 my $z = $x->copy(); $x->bzero()->binc();
1702 return $x->bdiv($z,$a,$p,$r); # round in one go (might ignore y's A!)
1704 $x->round($a,$p,$r,$y);
1707 ###############################################################################
1708 # rounding functions
1712 # precision: round to the $Nth digit left (+$n) or right (-$n) from the '.'
1713 # $n == 0 means round to integer
1714 # expects and returns normalized numbers!
1715 my $x = shift; my $self = ref($x) || $x; $x = $self->new(shift) if !ref($x);
1717 return $x if $x->modify('bfround');
1719 my ($scale,$mode) = $x->_scale_p($self->precision(),$self->round_mode(),@_);
1720 return $x if !defined $scale; # no-op
1722 # never round a 0, +-inf, NaN
1725 $x->{_p} = $scale if !defined $x->{_p} || $x->{_p} < $scale; # -3 < -2
1728 return $x if $x->{sign} !~ /^[+-]$/;
1730 # don't round if x already has lower precision
1731 return $x if (defined $x->{_p} && $x->{_p} < 0 && $scale < $x->{_p});
1733 $x->{_p} = $scale; # remember round in any case
1734 $x->{_a} = undef; # and clear A
1737 # round right from the '.'
1739 return $x if $x->{_e}->{sign} eq '+'; # e >= 0 => nothing to round
1741 $scale = -$scale; # positive for simplicity
1742 my $len = $x->{_m}->length(); # length of mantissa
1744 # the following poses a restriction on _e, but if _e is bigger than a
1745 # scalar, you got other problems (memory etc) anyway
1746 my $dad = -($x->{_e}->numify()); # digits after dot
1747 my $zad = 0; # zeros after dot
1748 $zad = $dad - $len if (-$dad < -$len); # for 0.00..00xxx style
1750 #print "scale $scale dad $dad zad $zad len $len\n";
1751 # number bsstr len zad dad
1752 # 0.123 123e-3 3 0 3
1753 # 0.0123 123e-4 3 1 4
1756 # 1.2345 12345e-4 5 0 4
1758 # do not round after/right of the $dad
1759 return $x if $scale > $dad; # 0.123, scale >= 3 => exit
1761 # round to zero if rounding inside the $zad, but not for last zero like:
1762 # 0.0065, scale -2, round last '0' with following '65' (scale == zad case)
1763 return $x->bzero() if $scale < $zad;
1764 if ($scale == $zad) # for 0.006, scale -3 and trunc
1770 # adjust round-point to be inside mantissa
1773 $scale = $scale-$zad;
1777 my $dbd = $len - $dad; $dbd = 0 if $dbd < 0; # digits before dot
1778 $scale = $dbd+$scale;
1784 # round left from the '.'
1786 # 123 => 100 means length(123) = 3 - $scale (2) => 1
1788 my $dbt = $x->{_m}->length();
1790 my $dbd = $dbt + $x->{_e}->numify();
1791 # should be the same, so treat it as this
1792 $scale = 1 if $scale == 0;
1793 # shortcut if already integer
1794 return $x if $scale == 1 && $dbt <= $dbd;
1795 # maximum digits before dot
1800 # not enough digits before dot, so round to zero
1803 elsif ( $scale == $dbd )
1810 $scale = $dbd - $scale;
1813 # pass sign to bround for rounding modes '+inf' and '-inf'
1814 $x->{_m}->{sign} = $x->{sign};
1815 $x->{_m}->bround($scale,$mode);
1816 $x->{_m}->{sign} = '+'; # fix sign back
1822 # accuracy: preserve $N digits, and overwrite the rest with 0's
1823 my $x = shift; my $self = ref($x) || $x; $x = $self->new(shift) if !ref($x);
1825 if (($_[0] || 0) < 0)
1827 require Carp; Carp::croak ('bround() needs positive accuracy');
1830 my ($scale,$mode) = $x->_scale_a($self->accuracy(),$self->round_mode(),@_);
1831 return $x if !defined $scale; # no-op
1833 return $x if $x->modify('bround');
1835 # scale is now either $x->{_a}, $accuracy, or the user parameter
1836 # test whether $x already has lower accuracy, do nothing in this case
1837 # but do round if the accuracy is the same, since a math operation might
1838 # want to round a number with A=5 to 5 digits afterwards again
1839 return $x if defined $_[0] && defined $x->{_a} && $x->{_a} < $_[0];
1841 # scale < 0 makes no sense
1842 # never round a +-inf, NaN
1843 return $x if ($scale < 0) || $x->{sign} !~ /^[+-]$/;
1845 # 1: $scale == 0 => keep all digits
1846 # 2: never round a 0
1847 # 3: if we should keep more digits than the mantissa has, do nothing
1848 if ($scale == 0 || $x->is_zero() || $x->{_m}->length() <= $scale)
1850 $x->{_a} = $scale if !defined $x->{_a} || $x->{_a} > $scale;
1854 # pass sign to bround for '+inf' and '-inf' rounding modes
1855 $x->{_m}->{sign} = $x->{sign};
1856 $x->{_m}->bround($scale,$mode); # round mantissa
1857 $x->{_m}->{sign} = '+'; # fix sign back
1858 # $x->{_m}->{_a} = undef; $x->{_m}->{_p} = undef;
1859 $x->{_a} = $scale; # remember rounding
1860 $x->{_p} = undef; # and clear P
1861 $x->bnorm(); # del trailing zeros gen. by bround()
1866 # return integer less or equal then $x
1867 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
1869 return $x if $x->modify('bfloor');
1871 return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
1873 # if $x has digits after dot
1874 if ($x->{_e}->{sign} eq '-')
1876 $x->{_e}->{sign} = '+'; # negate e
1877 $x->{_m}->brsft($x->{_e},10); # cut off digits after dot
1878 $x->{_e}->bzero(); # trunc/norm
1879 $x->{_m}->binc() if $x->{sign} eq '-'; # decrement if negative
1881 $x->round($a,$p,$r);
1886 # return integer greater or equal then $x
1887 my ($self,$x,$a,$p,$r) = ref($_[0]) ? (ref($_[0]),@_) : objectify(1,@_);
1889 return $x if $x->modify('bceil');
1890 return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
1892 # if $x has digits after dot
1893 if ($x->{_e}->{sign} eq '-')
1895 #$x->{_m}->brsft(-$x->{_e},10);
1897 #$x++ if $x->{sign} eq '+';
1899 $x->{_e}->{sign} = '+'; # negate e
1900 $x->{_m}->brsft($x->{_e},10); # cut off digits after dot
1901 $x->{_e}->bzero(); # trunc/norm
1902 $x->{_m}->binc() if $x->{sign} eq '+'; # decrement if negative
1904 $x->round($a,$p,$r);
1909 # shift right by $y (divide by power of $n)
1912 my ($self,$x,$y,$n,$a,$p,$r) = (ref($_[0]),@_);
1913 # objectify is costly, so avoid it
1914 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1916 ($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_);
1919 return $x if $x->modify('brsft');
1920 return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
1922 $n = 2 if !defined $n; $n = $self->new($n);
1923 $x->bdiv($n->bpow($y),$a,$p,$r,$y);
1928 # shift left by $y (multiply by power of $n)
1931 my ($self,$x,$y,$n,$a,$p,$r) = (ref($_[0]),@_);
1932 # objectify is costly, so avoid it
1933 if ((!ref($_[0])) || (ref($_[0]) ne ref($_[1])))
1935 ($self,$x,$y,$n,$a,$p,$r) = objectify(2,@_);
1938 return $x if $x->modify('blsft');
1939 return $x if $x->{sign} !~ /^[+-]$/; # nan, +inf, -inf
1941 $n = 2 if !defined $n; $n = $self->new($n);
1942 $x->bmul($n->bpow($y),$a,$p,$r,$y);
1945 ###############################################################################
1949 # going through AUTOLOAD for every DESTROY is costly, so avoid it by empty sub
1954 # make fxxx and bxxx both work by selectively mapping fxxx() to MBF::bxxx()
1955 # or falling back to MBI::bxxx()
1956 my $name = $AUTOLOAD;
1958 $name =~ s/.*:://; # split package
1960 $class->import() if $IMPORT == 0;
1961 if (!method_alias($name))
1965 # delayed load of Carp and avoid recursion
1967 Carp::croak ("Can't call a method without name");
1969 if (!method_hand_up($name))
1971 # delayed load of Carp and avoid recursion
1973 Carp::croak ("Can't call $class\-\>$name, not a valid method");
1975 # try one level up, but subst. bxxx() for fxxx() since MBI only got bxxx()
1977 return &{"$MBI"."::$name"}(@_);
1979 my $bname = $name; $bname =~ s/^f/b/;
1980 *{$class."::$name"} = \&$bname;
1986 # return a copy of the exponent
1987 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
1989 if ($x->{sign} !~ /^[+-]$/)
1991 my $s = $x->{sign}; $s =~ s/^[+-]//;
1992 return $self->new($s); # -inf, +inf => +inf
1994 return $x->{_e}->copy();
1999 # return a copy of the mantissa
2000 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
2002 if ($x->{sign} !~ /^[+-]$/)
2004 my $s = $x->{sign}; $s =~ s/^[+]//;
2005 return $self->new($s); # -inf, +inf => +inf
2007 my $m = $x->{_m}->copy(); # faster than going via bstr()
2008 $m->bneg() if $x->{sign} eq '-';
2015 # return a copy of both the exponent and the mantissa
2016 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
2018 if ($x->{sign} !~ /^[+-]$/)
2020 my $s = $x->{sign}; $s =~ s/^[+]//; my $se = $s; $se =~ s/^[-]//;
2021 return ($self->new($s),$self->new($se)); # +inf => inf and -inf,+inf => inf
2023 my $m = $x->{_m}->copy(); # faster than going via bstr()
2024 $m->bneg() if $x->{sign} eq '-';
2025 return ($m,$x->{_e}->copy());
2028 ##############################################################################
2029 # private stuff (internal use only)
2035 my $lib = ''; my @a;
2037 for ( my $i = 0; $i < $l ; $i++)
2039 if ( $_[$i] eq ':constant' )
2041 # this rest causes overlord er load to step in
2042 overload::constant float => sub { $self->new(shift); };
2044 elsif ($_[$i] eq 'upgrade')
2046 # this causes upgrading
2047 $upgrade = $_[$i+1]; # or undef to disable
2050 elsif ($_[$i] eq 'downgrade')
2052 # this causes downgrading
2053 $downgrade = $_[$i+1]; # or undef to disable
2056 elsif ($_[$i] eq 'lib')
2058 # alternative library
2059 $lib = $_[$i+1] || ''; # default Calc
2062 elsif ($_[$i] eq 'with')
2064 # alternative class for our private parts()
2065 $MBI = $_[$i+1] || 'Math::BigInt'; # default Math::BigInt
2074 # let use Math::BigInt lib => 'GMP'; use Math::BigFloat; still work
2075 my $mbilib = eval { Math::BigInt->config()->{lib} };
2076 if ((defined $mbilib) && ($MBI eq 'Math::BigInt'))
2078 # MBI already loaded
2079 $MBI->import('lib',"$lib,$mbilib", 'objectify');
2083 # MBI not loaded, or with ne "Math::BigInt"
2084 $lib .= ",$mbilib" if defined $mbilib;
2085 $lib =~ s/^,//; # don't leave empty
2086 # replacement library can handle lib statement, but also could ignore it
2089 # Perl < 5.6.0 dies with "out of memory!" when eval() and ':constant' is
2090 # used in the same script, or eval inside import().
2091 my @parts = split /::/, $MBI; # Math::BigInt => Math BigInt
2092 my $file = pop @parts; $file .= '.pm'; # BigInt => BigInt.pm
2094 $file = File::Spec->catfile (@parts, $file);
2095 eval { require "$file"; };
2096 $MBI->import( lib => $lib, 'objectify' );
2100 my $rc = "use $MBI lib => '$lib', 'objectify';";
2106 require Carp; Carp::croak ("Couldn't load $MBI: $! $@");
2109 # any non :constant stuff is handled by our parent, Exporter
2110 # even if @_ is empty, to give it a chance
2111 $self->SUPER::import(@a); # for subclasses
2112 $self->export_to_level(1,$self,@a); # need this, too
2117 # adjust m and e so that m is smallest possible
2118 # round number according to accuracy and precision settings
2119 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
2121 return $x if $x->{sign} !~ /^[+-]$/; # inf, nan etc
2123 # if (!$x->{_m}->is_odd())
2125 my $zeros = $x->{_m}->_trailing_zeros(); # correct for trailing zeros
2128 $x->{_m}->brsft($zeros,10); $x->{_e}->badd($zeros);
2130 # for something like 0Ey, set y to 1, and -0 => +0
2131 $x->{sign} = '+', $x->{_e}->bone() if $x->{_m}->is_zero();
2133 # this is to prevent automatically rounding when MBI's globals are set
2134 $x->{_m}->{_f} = MB_NEVER_ROUND;
2135 $x->{_e}->{_f} = MB_NEVER_ROUND;
2136 # 'forget' that mantissa was rounded via MBI::bround() in MBF's bfround()
2137 $x->{_m}->{_a} = undef; $x->{_e}->{_a} = undef;
2138 $x->{_m}->{_p} = undef; $x->{_e}->{_p} = undef;
2139 $x; # MBI bnorm is no-op, so dont call it
2142 ##############################################################################
2146 # return number as hexadecimal string (only for integers defined)
2147 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
2149 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
2150 return '0x0' if $x->is_zero();
2152 return $nan if $x->{_e}->{sign} ne '+'; # how to do 1e-1 in hex!?
2154 my $z = $x->{_m}->copy();
2155 if (!$x->{_e}->is_zero()) # > 0
2157 $z->blsft($x->{_e},10);
2159 $z->{sign} = $x->{sign};
2165 # return number as binary digit string (only for integers defined)
2166 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
2168 return $x->bstr() if $x->{sign} !~ /^[+-]$/; # inf, nan etc
2169 return '0b0' if $x->is_zero();
2171 return $nan if $x->{_e}->{sign} ne '+'; # how to do 1e-1 in hex!?
2173 my $z = $x->{_m}->copy();
2174 if (!$x->{_e}->is_zero()) # > 0
2176 $z->blsft($x->{_e},10);
2178 $z->{sign} = $x->{sign};
2184 # return copy as a bigint representation of this BigFloat number
2185 my ($self,$x) = ref($_[0]) ? (ref($_[0]),$_[0]) : objectify(1,@_);
2187 my $z = $x->{_m}->copy();
2188 if ($x->{_e}->{sign} eq '-') # < 0
2190 $x->{_e}->{sign} = '+'; # flip
2191 $z->brsft($x->{_e},10);
2192 $x->{_e}->{sign} = '-'; # flip back
2194 elsif (!$x->{_e}->is_zero()) # > 0
2196 $z->blsft($x->{_e},10);
2198 $z->{sign} = $x->{sign};
2205 my $class = ref($x) || $x;
2206 $x = $class->new(shift) unless ref($x);
2208 return 1 if $x->{_m}->is_zero();
2209 my $len = $x->{_m}->length();
2210 $len += $x->{_e} if $x->{_e}->sign() eq '+';
2213 my $t = $MBI->bzero();
2214 $t = $x->{_e}->copy()->babs() if $x->{_e}->sign() eq '-';
2225 Math::BigFloat - Arbitrary size floating point math package
2232 $x = Math::BigFloat->new($str); # defaults to 0
2233 $nan = Math::BigFloat->bnan(); # create a NotANumber
2234 $zero = Math::BigFloat->bzero(); # create a +0
2235 $inf = Math::BigFloat->binf(); # create a +inf
2236 $inf = Math::BigFloat->binf('-'); # create a -inf
2237 $one = Math::BigFloat->bone(); # create a +1
2238 $one = Math::BigFloat->bone('-'); # create a -1
2241 $x->is_zero(); # true if arg is +0
2242 $x->is_nan(); # true if arg is NaN
2243 $x->is_one(); # true if arg is +1
2244 $x->is_one('-'); # true if arg is -1
2245 $x->is_odd(); # true if odd, false for even
2246 $x->is_even(); # true if even, false for odd
2247 $x->is_positive(); # true if >= 0
2248 $x->is_negative(); # true if < 0
2249 $x->is_inf(sign); # true if +inf, or -inf (default is '+')
2251 $x->bcmp($y); # compare numbers (undef,<0,=0,>0)
2252 $x->bacmp($y); # compare absolutely (undef,<0,=0,>0)
2253 $x->sign(); # return the sign, either +,- or NaN
2254 $x->digit($n); # return the nth digit, counting from right
2255 $x->digit(-$n); # return the nth digit, counting from left
2257 # The following all modify their first argument. If you want to preserve
2258 # $x, use $z = $x->copy()->bXXX($y); See under L<CAVEATS> for why this is
2259 # neccessary when mixing $a = $b assigments with non-overloaded math.
2262 $x->bzero(); # set $i to 0
2263 $x->bnan(); # set $i to NaN
2264 $x->bone(); # set $x to +1
2265 $x->bone('-'); # set $x to -1
2266 $x->binf(); # set $x to inf
2267 $x->binf('-'); # set $x to -inf
2269 $x->bneg(); # negation
2270 $x->babs(); # absolute value
2271 $x->bnorm(); # normalize (no-op)
2272 $x->bnot(); # two's complement (bit wise not)
2273 $x->binc(); # increment x by 1
2274 $x->bdec(); # decrement x by 1
2276 $x->badd($y); # addition (add $y to $x)
2277 $x->bsub($y); # subtraction (subtract $y from $x)
2278 $x->bmul($y); # multiplication (multiply $x by $y)
2279 $x->bdiv($y); # divide, set $x to quotient
2280 # return (quo,rem) or quo if scalar
2282 $x->bmod($y); # modulus ($x % $y)
2283 $x->bpow($y); # power of arguments ($x ** $y)
2284 $x->blsft($y); # left shift
2285 $x->brsft($y); # right shift
2286 # return (quo,rem) or quo if scalar
2288 $x->blog(); # logarithm of $x to base e (Euler's number)
2289 $x->blog($base); # logarithm of $x to base $base (f.i. 2)
2291 $x->band($y); # bit-wise and
2292 $x->bior($y); # bit-wise inclusive or
2293 $x->bxor($y); # bit-wise exclusive or
2294 $x->bnot(); # bit-wise not (two's complement)
2296 $x->bsqrt(); # calculate square-root
2297 $x->broot($y); # $y'th root of $x (e.g. $y == 3 => cubic root)
2298 $x->bfac(); # factorial of $x (1*2*3*4*..$x)
2300 $x->bround($N); # accuracy: preserve $N digits
2301 $x->bfround($N); # precision: round to the $Nth digit
2303 $x->bfloor(); # return integer less or equal than $x
2304 $x->bceil(); # return integer greater or equal than $x
2306 # The following do not modify their arguments:
2308 bgcd(@values); # greatest common divisor
2309 blcm(@values); # lowest common multiplicator
2311 $x->bstr(); # return string
2312 $x->bsstr(); # return string in scientific notation
2314 $x->exponent(); # return exponent as BigInt
2315 $x->mantissa(); # return mantissa as BigInt
2316 $x->parts(); # return (mantissa,exponent) as BigInt
2318 $x->length(); # number of digits (w/o sign and '.')
2319 ($l,$f) = $x->length(); # number of digits, and length of fraction
2321 $x->precision(); # return P of $x (or global, if P of $x undef)
2322 $x->precision($n); # set P of $x to $n
2323 $x->accuracy(); # return A of $x (or global, if A of $x undef)
2324 $x->accuracy($n); # set A $x to $n
2326 # these get/set the appropriate global value for all BigFloat objects
2327 Math::BigFloat->precision(); # Precision
2328 Math::BigFloat->accuracy(); # Accuracy
2329 Math::BigFloat->round_mode(); # rounding mode
2333 All operators (inlcuding basic math operations) are overloaded if you
2334 declare your big floating point numbers as
2336 $i = new Math::BigFloat '12_3.456_789_123_456_789E-2';
2338 Operations with overloaded operators preserve the arguments, which is
2339 exactly what you expect.
2341 =head2 Canonical notation
2343 Input to these routines are either BigFloat objects, or strings of the
2344 following four forms:
2358 C</^[+-]\d+E[+-]?\d+$/>
2362 C</^[+-]\d*\.\d+E[+-]?\d+$/>
2366 all with optional leading and trailing zeros and/or spaces. Additonally,
2367 numbers are allowed to have an underscore between any two digits.
2369 Empty strings as well as other illegal numbers results in 'NaN'.
2371 bnorm() on a BigFloat object is now effectively a no-op, since the numbers
2372 are always stored in normalized form. On a string, it creates a BigFloat
2377 Output values are BigFloat objects (normalized), except for bstr() and bsstr().
2379 The string output will always have leading and trailing zeros stripped and drop
2380 a plus sign. C<bstr()> will give you always the form with a decimal point,
2381 while C<bsstr()> (s for scientific) gives you the scientific notation.
2383 Input bstr() bsstr()
2385 ' -123 123 123' '-123123123' '-123123123E0'
2386 '00.0123' '0.0123' '123E-4'
2387 '123.45E-2' '1.2345' '12345E-4'
2388 '10E+3' '10000' '1E4'
2390 Some routines (C<is_odd()>, C<is_even()>, C<is_zero()>, C<is_one()>,
2391 C<is_nan()>) return true or false, while others (C<bcmp()>, C<bacmp()>)
2392 return either undef, <0, 0 or >0 and are suited for sort.
2394 Actual math is done by using the class defined with C<with => Class;> (which
2395 defaults to BigInts) to represent the mantissa and exponent.
2397 The sign C</^[+-]$/> is stored separately. The string 'NaN' is used to
2398 represent the result when input arguments are not numbers, as well as
2399 the result of dividing by zero.
2401 =head2 C<mantissa()>, C<exponent()> and C<parts()>
2403 C<mantissa()> and C<exponent()> return the said parts of the BigFloat
2404 as BigInts such that:
2406 $m = $x->mantissa();
2407 $e = $x->exponent();
2408 $y = $m * ( 10 ** $e );
2409 print "ok\n" if $x == $y;
2411 C<< ($m,$e) = $x->parts(); >> is just a shortcut giving you both of them.
2413 A zero is represented and returned as C<0E1>, B<not> C<0E0> (after Knuth).
2415 Currently the mantissa is reduced as much as possible, favouring higher
2416 exponents over lower ones (e.g. returning 1e7 instead of 10e6 or 10000000e0).
2417 This might change in the future, so do not depend on it.
2419 =head2 Accuracy vs. Precision
2421 See also: L<Rounding|Rounding>.
2423 Math::BigFloat supports both precision and accuracy. For a full documentation,
2424 examples and tips on these topics please see the large section in
2427 Since things like sqrt(2) or 1/3 must presented with a limited precision lest
2428 a operation consumes all resources, each operation produces no more than
2429 the requested number of digits.
2431 Please refer to BigInt's documentation for the precedence rules of which
2432 accuracy/precision setting will be used.
2434 If there is no gloabl precision set, B<and> the operation inquestion was not
2435 called with a requested precision or accuracy, B<and> the input $x has no
2436 accuracy or precision set, then a fallback parameter will be used. For
2437 historical reasons, it is called C<div_scale> and can be accessed via:
2439 $d = Math::BigFloat->div_scale(); # query
2440 Math::BigFloat->div_scale($n); # set to $n digits
2442 The default value is 40 digits.
2444 In case the result of one operation has more precision than specified,
2445 it is rounded. The rounding mode taken is either the default mode, or the one
2446 supplied to the operation after the I<scale>:
2448 $x = Math::BigFloat->new(2);
2449 Math::BigFloat->precision(5); # 5 digits max
2450 $y = $x->copy()->bdiv(3); # will give 0.66666
2451 $y = $x->copy()->bdiv(3,6); # will give 0.666666
2452 $y = $x->copy()->bdiv(3,6,'odd'); # will give 0.666667
2453 Math::BigFloat->round_mode('zero');
2454 $y = $x->copy()->bdiv(3,6); # will give 0.666666
2460 =item ffround ( +$scale )
2462 Rounds to the $scale'th place left from the '.', counting from the dot.
2463 The first digit is numbered 1.
2465 =item ffround ( -$scale )
2467 Rounds to the $scale'th place right from the '.', counting from the dot.
2471 Rounds to an integer.
2473 =item fround ( +$scale )
2475 Preserves accuracy to $scale digits from the left (aka significant digits)
2476 and pads the rest with zeros. If the number is between 1 and -1, the
2477 significant digits count from the first non-zero after the '.'
2479 =item fround ( -$scale ) and fround ( 0 )
2481 These are effectively no-ops.
2485 All rounding functions take as a second parameter a rounding mode from one of
2486 the following: 'even', 'odd', '+inf', '-inf', 'zero' or 'trunc'.
2488 The default rounding mode is 'even'. By using
2489 C<< Math::BigFloat->round_mode($round_mode); >> you can get and set the default
2490 mode for subsequent rounding. The usage of C<$Math::BigFloat::$round_mode> is
2491 no longer supported.
2492 The second parameter to the round functions then overrides the default
2495 The C<as_number()> function returns a BigInt from a Math::BigFloat. It uses
2496 'trunc' as rounding mode to make it equivalent to:
2501 You can override this by passing the desired rounding mode as parameter to
2504 $x = Math::BigFloat->new(2.5);
2505 $y = $x->as_number('odd'); # $y = 3
2511 =head1 Autocreating constants
2513 After C<use Math::BigFloat ':constant'> all the floating point constants
2514 in the given scope are converted to C<Math::BigFloat>. This conversion
2515 happens at compile time.
2519 perl -MMath::BigFloat=:constant -e 'print 2E-100,"\n"'
2521 prints the value of C<2E-100>. Note that without conversion of
2522 constants the expression 2E-100 will be calculated as normal floating point
2525 Please note that ':constant' does not affect integer constants, nor binary
2526 nor hexadecimal constants. Use L<bignum> or L<Math::BigInt> to get this to
2531 Math with the numbers is done (by default) by a module called
2532 Math::BigInt::Calc. This is equivalent to saying:
2534 use Math::BigFloat lib => 'Calc';
2536 You can change this by using:
2538 use Math::BigFloat lib => 'BitVect';
2540 The following would first try to find Math::BigInt::Foo, then
2541 Math::BigInt::Bar, and when this also fails, revert to Math::BigInt::Calc:
2543 use Math::BigFloat lib => 'Foo,Math::BigInt::Bar';
2545 Calc.pm uses as internal format an array of elements of some decimal base
2546 (usually 1e7, but this might be differen for some systems) with the least
2547 significant digit first, while BitVect.pm uses a bit vector of base 2, most
2548 significant bit first. Other modules might use even different means of
2549 representing the numbers. See the respective module documentation for further
2552 Please note that Math::BigFloat does B<not> use the denoted library itself,
2553 but it merely passes the lib argument to Math::BigInt. So, instead of the need
2556 use Math::BigInt lib => 'GMP';
2559 you can roll it all into one line:
2561 use Math::BigFloat lib => 'GMP';
2563 It is also possible to just require Math::BigFloat:
2565 require Math::BigFloat;
2567 This will load the neccessary things (like BigInt) when they are needed, and
2570 Use the lib, Luke! And see L<Using Math::BigInt::Lite> for more details than
2571 you ever wanted to know about loading a different library.
2573 =head2 Using Math::BigInt::Lite
2575 It is possible to use L<Math::BigInt::Lite> with Math::BigFloat:
2578 use Math::BigFloat with => 'Math::BigInt::Lite';
2580 There is no need to "use Math::BigInt" or "use Math::BigInt::Lite", but you
2581 can combine these if you want. For instance, you may want to use
2582 Math::BigInt objects in your main script, too.
2586 use Math::BigFloat with => 'Math::BigInt::Lite';
2588 Of course, you can combine this with the C<lib> parameter.
2591 use Math::BigFloat with => 'Math::BigInt::Lite', lib => 'GMP,Pari';
2593 There is no need for a "use Math::BigInt;" statement, even if you want to
2594 use Math::BigInt's, since Math::BigFloat will needs Math::BigInt and thus
2595 always loads it. But if you add it, add it B<before>:
2599 use Math::BigFloat with => 'Math::BigInt::Lite', lib => 'GMP,Pari';
2601 Notice that the module with the last C<lib> will "win" and thus
2602 it's lib will be used if the lib is available:
2605 use Math::BigInt lib => 'Bar,Baz';
2606 use Math::BigFloat with => 'Math::BigInt::Lite', lib => 'Foo';
2608 That would try to load Foo, Bar, Baz and Calc (in that order). Or in other
2609 words, Math::BigFloat will try to retain previously loaded libs when you
2610 don't specify it onem but if you specify one, it will try to load them.
2612 Actually, the lib loading order would be "Bar,Baz,Calc", and then
2613 "Foo,Bar,Baz,Calc", but independend of which lib exists, the result is the
2614 same as trying the latter load alone, except for the fact that one of Bar or
2615 Baz might be loaded needlessly in an intermidiate step (and thus hang around
2616 and waste memory). If neither Bar nor Baz exist (or don't work/compile), they
2617 will still be tried to be loaded, but this is not as time/memory consuming as
2618 actually loading one of them. Still, this type of usage is not recommended due
2621 The old way (loading the lib only in BigInt) still works though:
2624 use Math::BigInt lib => 'Bar,Baz';
2627 You can even load Math::BigInt afterwards:
2631 use Math::BigInt lib => 'Bar,Baz';
2633 But this has the same problems like #5, it will first load Calc
2634 (Math::BigFloat needs Math::BigInt and thus loads it) and then later Bar or
2635 Baz, depending on which of them works and is usable/loadable. Since this
2636 loads Calc unnecc., it is not recommended.
2638 Since it also possible to just require Math::BigFloat, this poses the question
2639 about what libary this will use:
2641 require Math::BigFloat;
2642 my $x = Math::BigFloat->new(123); $x += 123;
2644 It will use Calc. Please note that the call to import() is still done, but
2645 only when you use for the first time some Math::BigFloat math (it is triggered
2646 via any constructor, so the first time you create a Math::BigFloat, the load
2647 will happen in the background). This means:
2649 require Math::BigFloat;
2650 Math::BigFloat->import ( lib => 'Foo,Bar' );
2652 would be the same as:
2654 use Math::BigFloat lib => 'Foo, Bar';
2656 But don't try to be clever to insert some operations in between:
2658 require Math::BigFloat;
2659 my $x = Math::BigFloat->bone() + 4; # load BigInt and Calc
2660 Math::BigFloat->import( lib => 'Pari' ); # load Pari, too
2661 $x = Math::BigFloat->bone()+4; # now use Pari
2663 While this works, it loads Calc needlessly. But maybe you just wanted that?
2665 B<Examples #3 is highly recommended> for daily usage.
2669 Please see the file BUGS in the CPAN distribution Math::BigInt for known bugs.
2675 =item stringify, bstr()
2677 Both stringify and bstr() now drop the leading '+'. The old code would return
2678 '+1.23', the new returns '1.23'. See the documentation in L<Math::BigInt> for
2679 reasoning and details.
2683 The following will probably not do what you expect:
2685 print $c->bdiv(123.456),"\n";
2687 It prints both quotient and reminder since print works in list context. Also,
2688 bdiv() will modify $c, so be carefull. You probably want to use
2690 print $c / 123.456,"\n";
2691 print scalar $c->bdiv(123.456),"\n"; # or if you want to modify $c
2695 =item Modifying and =
2699 $x = Math::BigFloat->new(5);
2702 It will not do what you think, e.g. making a copy of $x. Instead it just makes
2703 a second reference to the B<same> object and stores it in $y. Thus anything
2704 that modifies $x will modify $y (except overloaded math operators), and vice
2705 versa. See L<Math::BigInt> for details and how to avoid that.
2709 C<bpow()> now modifies the first argument, unlike the old code which left
2710 it alone and only returned the result. This is to be consistent with
2711 C<badd()> etc. The first will modify $x, the second one won't:
2713 print bpow($x,$i),"\n"; # modify $x
2714 print $x->bpow($i),"\n"; # ditto
2715 print $x ** $i,"\n"; # leave $x alone
2721 L<Math::BigInt>, L<Math::BigRat> and L<Math::Big> as well as
2722 L<Math::BigInt::BitVect>, L<Math::BigInt::Pari> and L<Math::BigInt::GMP>.
2724 The pragmas L<bignum>, L<bigint> and L<bigrat> might also be of interest
2725 because they solve the autoupgrading/downgrading issue, at least partly.
2728 L<http://search.cpan.org/search?mode=module&query=Math%3A%3ABigInt> contains
2729 more documentation including a full version history, testcases, empty
2730 subclass files and benchmarks.
2734 This program is free software; you may redistribute it and/or modify it under
2735 the same terms as Perl itself.
2739 Mark Biggar, overloaded interface by Ilya Zakharevich.
2740 Completely rewritten by Tels http://bloodgate.com in 2001, 2002, and still