Removed extraneous comment
[dbsrgits/DBM-Deep.git] / lib / DBM / Deep.pm
1 package DBM::Deep;
2
3 ##
4 # DBM::Deep
5 #
6 # Description:
7 #    Multi-level database module for storing hash trees, arrays and simple
8 #    key/value pairs into FTP-able, cross-platform binary database files.
9 #
10 #    Type `perldoc DBM::Deep` for complete documentation.
11 #
12 # Usage Examples:
13 #    my %db;
14 #    tie %db, 'DBM::Deep', 'my_database.db'; # standard tie() method
15 #
16 #    my $db = new DBM::Deep( 'my_database.db' ); # preferred OO method
17 #
18 #    $db->{my_scalar} = 'hello world';
19 #    $db->{my_hash} = { larry => 'genius', hashes => 'fast' };
20 #    $db->{my_array} = [ 1, 2, 3, time() ];
21 #    $db->{my_complex} = [ 'hello', { perl => 'rules' }, 42, 99 ];
22 #    push @{$db->{my_array}}, 'another value';
23 #    my @key_list = keys %{$db->{my_hash}};
24 #    print "This module " . $db->{my_complex}->[1]->{perl} . "!\n";
25 #
26 # Copyright:
27 #    (c) 2002-2006 Joseph Huckaby.  All Rights Reserved.
28 #    This program is free software; you can redistribute it and/or
29 #    modify it under the same terms as Perl itself.
30 ##
31
32 use strict;
33
34 use Fcntl qw( :DEFAULT :flock :seek );
35 use Digest::MD5 ();
36 use Scalar::Util ();
37
38 use DBM::Deep::Engine;
39
40 use vars qw( $VERSION );
41 $VERSION = q(0.99_01);
42
43
44 ##
45 # Setup file and tag signatures.  These should never change.
46 ##
47 sub SIG_FILE   () { 'DPDB' }
48 sub SIG_HASH   () { 'H' }
49 sub SIG_ARRAY  () { 'A' }
50 sub SIG_SCALAR () { 'S' }
51 sub SIG_NULL   () { 'N' }
52 sub SIG_DATA   () { 'D' }
53 sub SIG_INDEX  () { 'I' }
54 sub SIG_BLIST  () { 'B' }
55 sub SIG_SIZE   () {  1  }
56
57 ##
58 # Setup constants for users to pass to new()
59 ##
60 sub TYPE_HASH   () { SIG_HASH   }
61 sub TYPE_ARRAY  () { SIG_ARRAY  }
62 sub TYPE_SCALAR () { SIG_SCALAR }
63
64 sub _get_args {
65     my $proto = shift;
66
67     my $args;
68     if (scalar(@_) > 1) {
69         if ( @_ % 2 ) {
70             $proto->_throw_error( "Odd number of parameters to " . (caller(1))[2] );
71         }
72         $args = {@_};
73     }
74     elsif ( ref $_[0] ) {
75         unless ( eval { local $SIG{'__DIE__'}; %{$_[0]} || 1 } ) {
76             $proto->_throw_error( "Not a hashref in args to " . (caller(1))[2] );
77         }
78         $args = $_[0];
79     }
80     else {
81         $args = { file => shift };
82     }
83
84     return $args;
85 }
86
87 sub new {
88     ##
89     # Class constructor method for Perl OO interface.
90     # Calls tie() and returns blessed reference to tied hash or array,
91     # providing a hybrid OO/tie interface.
92     ##
93     my $class = shift;
94     my $args = $class->_get_args( @_ );
95
96     ##
97     # Check if we want a tied hash or array.
98     ##
99     my $self;
100     if (defined($args->{type}) && $args->{type} eq TYPE_ARRAY) {
101         $class = 'DBM::Deep::Array';
102         require DBM::Deep::Array;
103         tie @$self, $class, %$args;
104     }
105     else {
106         $class = 'DBM::Deep::Hash';
107         require DBM::Deep::Hash;
108         tie %$self, $class, %$args;
109     }
110
111     return bless $self, $class;
112 }
113
114 sub _init {
115     ##
116     # Setup $self and bless into this class.
117     ##
118     my $class = shift;
119     my $args = shift;
120
121     # These are the defaults to be optionally overridden below
122     my $self = bless {
123         type        => TYPE_HASH,
124         base_offset => length(SIG_FILE),
125         engine      => DBM::Deep::Engine->new,
126     }, $class;
127
128     foreach my $param ( keys %$self ) {
129         next unless exists $args->{$param};
130         $self->{$param} = delete $args->{$param}
131     }
132
133     # locking implicitly enables autoflush
134     if ($args->{locking}) { $args->{autoflush} = 1; }
135
136     $self->{root} = exists $args->{root}
137         ? $args->{root}
138         : DBM::Deep::_::Root->new( $args );
139
140     $self->{engine}->setup_fh( $self );
141
142     return $self;
143 }
144
145 sub TIEHASH {
146     shift;
147     require DBM::Deep::Hash;
148     return DBM::Deep::Hash->TIEHASH( @_ );
149 }
150
151 sub TIEARRAY {
152     shift;
153     require DBM::Deep::Array;
154     return DBM::Deep::Array->TIEARRAY( @_ );
155 }
156
157 #XXX Unneeded now ...
158 #sub DESTROY {
159 #}
160
161 sub lock {
162     ##
163     # If db locking is set, flock() the db file.  If called multiple
164     # times before unlock(), then the same number of unlocks() must
165     # be called before the lock is released.
166     ##
167     my $self = $_[0]->_get_self;
168     my $type = $_[1];
169     $type = LOCK_EX unless defined $type;
170
171     if (!defined($self->_fh)) { return; }
172
173     if ($self->_root->{locking}) {
174         if (!$self->_root->{locked}) {
175             flock($self->_fh, $type);
176
177             # refresh end counter in case file has changed size
178             my @stats = stat($self->_root->{file});
179             $self->_root->{end} = $stats[7];
180
181             # double-check file inode, in case another process
182             # has optimize()d our file while we were waiting.
183             if ($stats[1] != $self->_root->{inode}) {
184                 $self->{engine}->close_fh( $self );
185                 $self->{engine}->setup_fh( $self );
186                 flock($self->_fh, $type); # re-lock
187
188                 # This may not be necessary after re-opening
189                 $self->_root->{end} = (stat($self->_fh))[7]; # re-end
190             }
191         }
192         $self->_root->{locked}++;
193
194         return 1;
195     }
196
197     return;
198 }
199
200 sub unlock {
201     ##
202     # If db locking is set, unlock the db file.  See note in lock()
203     # regarding calling lock() multiple times.
204     ##
205     my $self = $_[0]->_get_self;
206
207     if (!defined($self->_fh)) { return; }
208
209     if ($self->_root->{locking} && $self->_root->{locked} > 0) {
210         $self->_root->{locked}--;
211         if (!$self->_root->{locked}) { flock($self->_fh, LOCK_UN); }
212
213         return 1;
214     }
215
216     return;
217 }
218
219 sub _copy_value {
220     my $self = shift->_get_self;
221     my ($spot, $value) = @_;
222
223     if ( !ref $value ) {
224         ${$spot} = $value;
225     }
226     elsif ( eval { local $SIG{__DIE__}; $value->isa( 'DBM::Deep' ) } ) {
227         my $type = $value->_type;
228         ${$spot} = $type eq TYPE_HASH ? {} : [];
229         $value->_copy_node( ${$spot} );
230     }
231     else {
232         my $r = Scalar::Util::reftype( $value );
233         my $c = Scalar::Util::blessed( $value );
234         if ( $r eq 'ARRAY' ) {
235             ${$spot} = [ @{$value} ];
236         }
237         else {
238             ${$spot} = { %{$value} };
239         }
240         ${$spot} = bless ${$spot}, $c
241             if defined $c;
242     }
243
244     return 1;
245 }
246
247 sub _copy_node {
248     ##
249     # Copy single level of keys or elements to new DB handle.
250     # Recurse for nested structures
251     ##
252     my $self = shift->_get_self;
253     my ($db_temp) = @_;
254
255     if ($self->_type eq TYPE_HASH) {
256         my $key = $self->first_key();
257         while ($key) {
258             my $value = $self->get($key);
259             $self->_copy_value( \$db_temp->{$key}, $value );
260             $key = $self->next_key($key);
261         }
262     }
263     else {
264         my $length = $self->length();
265         for (my $index = 0; $index < $length; $index++) {
266             my $value = $self->get($index);
267             $self->_copy_value( \$db_temp->[$index], $value );
268         }
269     }
270
271     return 1;
272 }
273
274 sub export {
275     ##
276     # Recursively export into standard Perl hashes and arrays.
277     ##
278     my $self = $_[0]->_get_self;
279
280     my $temp;
281     if ($self->_type eq TYPE_HASH) { $temp = {}; }
282     elsif ($self->_type eq TYPE_ARRAY) { $temp = []; }
283
284     $self->lock();
285     $self->_copy_node( $temp );
286     $self->unlock();
287
288     return $temp;
289 }
290
291 sub import {
292     ##
293     # Recursively import Perl hash/array structure
294     ##
295     #XXX This use of ref() seems to be ok
296     if (!ref($_[0])) { return; } # Perl calls import() on use -- ignore
297
298     my $self = $_[0]->_get_self;
299     my $struct = $_[1];
300
301     #XXX This use of ref() seems to be ok
302     if (!ref($struct)) {
303         ##
304         # struct is not a reference, so just import based on our type
305         ##
306         shift @_;
307
308         if ($self->_type eq TYPE_HASH) { $struct = {@_}; }
309         elsif ($self->_type eq TYPE_ARRAY) { $struct = [@_]; }
310     }
311
312     my $r = Scalar::Util::reftype($struct) || '';
313     if ($r eq "HASH" && $self->_type eq TYPE_HASH) {
314         foreach my $key (keys %$struct) { $self->put($key, $struct->{$key}); }
315     }
316     elsif ($r eq "ARRAY" && $self->_type eq TYPE_ARRAY) {
317         $self->push( @$struct );
318     }
319     else {
320         return $self->_throw_error("Cannot import: type mismatch");
321     }
322
323     return 1;
324 }
325
326 sub optimize {
327     ##
328     # Rebuild entire database into new file, then move
329     # it back on top of original.
330     ##
331     my $self = $_[0]->_get_self;
332
333 #XXX Need to create a new test for this
334 #    if ($self->_root->{links} > 1) {
335 #        return $self->_throw_error("Cannot optimize: reference count is greater than 1");
336 #    }
337
338     my $db_temp = DBM::Deep->new(
339         file => $self->_root->{file} . '.tmp',
340         type => $self->_type
341     );
342     if (!$db_temp) {
343         return $self->_throw_error("Cannot optimize: failed to open temp file: $!");
344     }
345
346     $self->lock();
347     $self->_copy_node( $db_temp );
348     undef $db_temp;
349
350     ##
351     # Attempt to copy user, group and permissions over to new file
352     ##
353     my @stats = stat($self->_fh);
354     my $perms = $stats[2] & 07777;
355     my $uid = $stats[4];
356     my $gid = $stats[5];
357     chown( $uid, $gid, $self->_root->{file} . '.tmp' );
358     chmod( $perms, $self->_root->{file} . '.tmp' );
359
360     # q.v. perlport for more information on this variable
361     if ( $^O eq 'MSWin32' || $^O eq 'cygwin' ) {
362         ##
363         # Potential race condition when optmizing on Win32 with locking.
364         # The Windows filesystem requires that the filehandle be closed
365         # before it is overwritten with rename().  This could be redone
366         # with a soft copy.
367         ##
368         $self->unlock();
369         $self->{engine}->close_fh( $self );
370     }
371
372     if (!rename $self->_root->{file} . '.tmp', $self->_root->{file}) {
373         unlink $self->_root->{file} . '.tmp';
374         $self->unlock();
375         return $self->_throw_error("Optimize failed: Cannot copy temp file over original: $!");
376     }
377
378     $self->unlock();
379     $self->{engine}->close_fh( $self );
380     $self->{engine}->setup_fh( $self );
381
382     return 1;
383 }
384
385 sub clone {
386     ##
387     # Make copy of object and return
388     ##
389     my $self = $_[0]->_get_self;
390
391     return DBM::Deep->new(
392         type => $self->_type,
393         base_offset => $self->_base_offset,
394         root => $self->_root
395     );
396 }
397
398 {
399     my %is_legal_filter = map {
400         $_ => ~~1,
401     } qw(
402         store_key store_value
403         fetch_key fetch_value
404     );
405
406     sub set_filter {
407         ##
408         # Setup filter function for storing or fetching the key or value
409         ##
410         my $self = $_[0]->_get_self;
411         my $type = lc $_[1];
412         my $func = $_[2] ? $_[2] : undef;
413
414         if ( $is_legal_filter{$type} ) {
415             $self->_root->{"filter_$type"} = $func;
416             return 1;
417         }
418
419         return;
420     }
421 }
422
423 ##
424 # Accessor methods
425 ##
426
427 sub _root {
428     ##
429     # Get access to the root structure
430     ##
431     my $self = $_[0]->_get_self;
432     return $self->{root};
433 }
434
435 sub _fh {
436     ##
437     # Get access to the raw fh
438     ##
439     my $self = $_[0]->_get_self;
440     return $self->_root->{fh};
441 }
442
443 sub _type {
444     ##
445     # Get type of current node (TYPE_HASH or TYPE_ARRAY)
446     ##
447     my $self = $_[0]->_get_self;
448     return $self->{type};
449 }
450
451 sub _base_offset {
452     ##
453     # Get base_offset of current node (TYPE_HASH or TYPE_ARRAY)
454     ##
455     my $self = $_[0]->_get_self;
456     return $self->{base_offset};
457 }
458
459 ##
460 # Utility methods
461 ##
462
463 sub _throw_error {
464     die "DBM::Deep: $_[1]\n";
465 }
466
467 sub _is_writable {
468     my $fh = shift;
469     (O_WRONLY | O_RDWR) & fcntl( $fh, F_GETFL, my $slush = 0);
470 }
471
472 #sub _is_readable {
473 #    my $fh = shift;
474 #    (O_RDONLY | O_RDWR) & fcntl( $fh, F_GETFL, my $slush = 0);
475 #}
476
477 sub STORE {
478     ##
479     # Store single hash key/value or array element in database.
480     ##
481     my $self = shift->_get_self;
482     my ($key, $value) = @_;
483
484     unless ( _is_writable( $self->_fh ) ) {
485         $self->_throw_error( 'Cannot write to a readonly filehandle' );
486     }
487
488     ##
489     # Request exclusive lock for writing
490     ##
491     $self->lock( LOCK_EX );
492
493     my $md5 = $self->{engine}{digest}->($key);
494
495     my $tag = $self->{engine}->find_bucket_list( $self, $md5, { create => 1 } );
496
497     # User may be storing a hash, in which case we do not want it run
498     # through the filtering system
499     if ( !ref($value) && $self->_root->{filter_store_value} ) {
500         $value = $self->_root->{filter_store_value}->( $value );
501     }
502
503     ##
504     # Add key/value to bucket list
505     ##
506     my $result = $self->{engine}->add_bucket( $self, $tag, $md5, $key, $value );
507
508     $self->unlock();
509
510     return $result;
511 }
512
513 sub FETCH {
514     ##
515     # Fetch single value or element given plain key or array index
516     ##
517     my $self = shift->_get_self;
518     my $key = shift;
519
520     my $md5 = $self->{engine}{digest}->($key);
521
522     ##
523     # Request shared lock for reading
524     ##
525     $self->lock( LOCK_SH );
526
527     my $tag = $self->{engine}->find_bucket_list( $self, $md5 );
528     if (!$tag) {
529         $self->unlock();
530         return;
531     }
532
533     ##
534     # Get value from bucket list
535     ##
536     my $result = $self->{engine}->get_bucket_value( $self, $tag, $md5 );
537
538     $self->unlock();
539
540     # Filters only apply to scalar values, so the ref check is making
541     # sure the fetched bucket is a scalar, not a child hash or array.
542     return ($result && !ref($result) && $self->_root->{filter_fetch_value})
543         ? $self->_root->{filter_fetch_value}->($result)
544         : $result;
545 }
546
547 sub DELETE {
548     ##
549     # Delete single key/value pair or element given plain key or array index
550     ##
551     my $self = $_[0]->_get_self;
552     my $key = $_[1];
553
554     unless ( _is_writable( $self->_fh ) ) {
555         $self->_throw_error( 'Cannot write to a readonly filehandle' );
556     }
557
558     ##
559     # Request exclusive lock for writing
560     ##
561     $self->lock( LOCK_EX );
562
563     my $md5 = $self->{engine}{digest}->($key);
564
565     my $tag = $self->{engine}->find_bucket_list( $self, $md5 );
566     if (!$tag) {
567         $self->unlock();
568         return;
569     }
570
571     ##
572     # Delete bucket
573     ##
574     my $value = $self->{engine}->get_bucket_value($self,  $tag, $md5 );
575
576     if (defined $value && !ref($value) && $self->_root->{filter_fetch_value}) {
577         $value = $self->_root->{filter_fetch_value}->($value);
578     }
579
580     my $result = $self->{engine}->delete_bucket( $self, $tag, $md5 );
581
582     ##
583     # If this object is an array and the key deleted was on the end of the stack,
584     # decrement the length variable.
585     ##
586
587     $self->unlock();
588
589     return $value;
590 }
591
592 sub EXISTS {
593     ##
594     # Check if a single key or element exists given plain key or array index
595     ##
596     my $self = $_[0]->_get_self;
597     my $key = $_[1];
598
599     my $md5 = $self->{engine}{digest}->($key);
600
601     ##
602     # Request shared lock for reading
603     ##
604     $self->lock( LOCK_SH );
605
606     my $tag = $self->{engine}->find_bucket_list( $self, $md5 );
607     if (!$tag) {
608         $self->unlock();
609
610         ##
611         # For some reason, the built-in exists() function returns '' for false
612         ##
613         return '';
614     }
615
616     ##
617     # Check if bucket exists and return 1 or ''
618     ##
619     my $result = $self->{engine}->bucket_exists( $self, $tag, $md5 ) || '';
620
621     $self->unlock();
622
623     return $result;
624 }
625
626 sub CLEAR {
627     ##
628     # Clear all keys from hash, or all elements from array.
629     ##
630     my $self = $_[0]->_get_self;
631
632     unless ( _is_writable( $self->_fh ) ) {
633         $self->_throw_error( 'Cannot write to a readonly filehandle' );
634     }
635
636     ##
637     # Request exclusive lock for writing
638     ##
639     $self->lock( LOCK_EX );
640
641     my $fh = $self->_fh;
642
643     seek($fh, $self->_base_offset + $self->_root->{file_offset}, SEEK_SET);
644     if (eof $fh) {
645         $self->unlock();
646         return;
647     }
648
649     $self->{engine}->create_tag($self, $self->_base_offset, $self->_type, chr(0) x $self->{engine}{index_size});
650
651     $self->unlock();
652
653     return 1;
654 }
655
656 ##
657 # Public method aliases
658 ##
659 sub put { (shift)->STORE( @_ ) }
660 sub store { (shift)->STORE( @_ ) }
661 sub get { (shift)->FETCH( @_ ) }
662 sub fetch { (shift)->FETCH( @_ ) }
663 sub delete { (shift)->DELETE( @_ ) }
664 sub exists { (shift)->EXISTS( @_ ) }
665 sub clear { (shift)->CLEAR( @_ ) }
666
667 package DBM::Deep::_::Root;
668
669 sub new {
670     my $class = shift;
671     my ($args) = @_;
672
673     my $self = bless {
674         autobless          => undef,
675         autoflush          => undef,
676         end                => 0,
677         fh                 => undef,
678         file               => undef,
679         file_offset        => 0,
680         locking            => undef,
681         locked             => 0,
682         filter_store_key   => undef,
683         filter_store_value => undef,
684         filter_fetch_key   => undef,
685         filter_fetch_value => undef,
686         %$args,
687     }, $class;
688
689     if ( $self->{fh} && !$self->{file_offset} ) {
690         $self->{file_offset} = tell( $self->{fh} );
691     }
692
693     return $self;
694 }
695
696 sub DESTROY {
697     my $self = shift;
698     return unless $self;
699
700     close $self->{fh} if $self->{fh};
701
702     return;
703 }
704
705 1;
706
707 __END__
708
709 =head1 NAME
710
711 DBM::Deep - A pure perl multi-level hash/array DBM
712
713 =head1 SYNOPSIS
714
715   use DBM::Deep;
716   my $db = DBM::Deep->new( "foo.db" );
717
718   $db->{key} = 'value'; # tie() style
719   print $db->{key};
720
721   $db->put('key' => 'value'); # OO style
722   print $db->get('key');
723
724   # true multi-level support
725   $db->{my_complex} = [
726       'hello', { perl => 'rules' },
727       42, 99,
728   ];
729
730 =head1 DESCRIPTION
731
732 A unique flat-file database module, written in pure perl.  True
733 multi-level hash/array support (unlike MLDBM, which is faked), hybrid
734 OO / tie() interface, cross-platform FTPable files, and quite fast.  Can
735 handle millions of keys and unlimited hash levels without significant
736 slow-down.  Written from the ground-up in pure perl -- this is NOT a
737 wrapper around a C-based DBM.  Out-of-the-box compatibility with Unix,
738 Mac OS X and Windows.
739
740 =head1 INSTALLATION
741
742 Hopefully you are using Perl's excellent CPAN module, which will download
743 and install the module for you.  If not, get the tarball, and run these
744 commands:
745
746     tar zxf DBM-Deep-*
747     cd DBM-Deep-*
748     perl Makefile.PL
749     make
750     make test
751     make install
752
753 =head1 SETUP
754
755 Construction can be done OO-style (which is the recommended way), or using
756 Perl's tie() function.  Both are examined here.
757
758 =head2 OO CONSTRUCTION
759
760 The recommended way to construct a DBM::Deep object is to use the new()
761 method, which gets you a blessed, tied hash or array reference.
762
763     my $db = DBM::Deep->new( "foo.db" );
764
765 This opens a new database handle, mapped to the file "foo.db".  If this
766 file does not exist, it will automatically be created.  DB files are
767 opened in "r+" (read/write) mode, and the type of object returned is a
768 hash, unless otherwise specified (see L<OPTIONS> below).
769
770 You can pass a number of options to the constructor to specify things like
771 locking, autoflush, etc.  This is done by passing an inline hash:
772
773     my $db = DBM::Deep->new(
774         file => "foo.db",
775         locking => 1,
776         autoflush => 1
777     );
778
779 Notice that the filename is now specified I<inside> the hash with
780 the "file" parameter, as opposed to being the sole argument to the
781 constructor.  This is required if any options are specified.
782 See L<OPTIONS> below for the complete list.
783
784
785
786 You can also start with an array instead of a hash.  For this, you must
787 specify the C<type> parameter:
788
789     my $db = DBM::Deep->new(
790         file => "foo.db",
791         type => DBM::Deep->TYPE_ARRAY
792     );
793
794 B<Note:> Specifing the C<type> parameter only takes effect when beginning
795 a new DB file.  If you create a DBM::Deep object with an existing file, the
796 C<type> will be loaded from the file header, and an error will be thrown if
797 the wrong type is passed in.
798
799 =head2 TIE CONSTRUCTION
800
801 Alternately, you can create a DBM::Deep handle by using Perl's built-in
802 tie() function.  The object returned from tie() can be used to call methods,
803 such as lock() and unlock(), but cannot be used to assign to the DBM::Deep
804 file (as expected with most tie'd objects).
805
806     my %hash;
807     my $db = tie %hash, "DBM::Deep", "foo.db";
808
809     my @array;
810     my $db = tie @array, "DBM::Deep", "bar.db";
811
812 As with the OO constructor, you can replace the DB filename parameter with
813 a hash containing one or more options (see L<OPTIONS> just below for the
814 complete list).
815
816     tie %hash, "DBM::Deep", {
817         file => "foo.db",
818         locking => 1,
819         autoflush => 1
820     };
821
822 =head2 OPTIONS
823
824 There are a number of options that can be passed in when constructing your
825 DBM::Deep objects.  These apply to both the OO- and tie- based approaches.
826
827 =over
828
829 =item * file
830
831 Filename of the DB file to link the handle to.  You can pass a full absolute
832 filesystem path, partial path, or a plain filename if the file is in the
833 current working directory.  This is a required parameter (though q.v. fh).
834
835 =item * fh
836
837 If you want, you can pass in the fh instead of the file. This is most useful for doing
838 something like:
839
840   my $db = DBM::Deep->new( { fh => \*DATA } );
841
842 You are responsible for making sure that the fh has been opened appropriately for your
843 needs. If you open it read-only and attempt to write, an exception will be thrown. If you
844 open it write-only or append-only, an exception will be thrown immediately as DBM::Deep
845 needs to read from the fh.
846
847 =item * file_offset
848
849 This is the offset within the file that the DBM::Deep db starts. Most of the time, you will
850 not need to set this. However, it's there if you want it.
851
852 If you pass in fh and do not set this, it will be set appropriately.
853
854 =item * type
855
856 This parameter specifies what type of object to create, a hash or array.  Use
857 one of these two constants: C<DBM::Deep-E<gt>TYPE_HASH> or C<DBM::Deep-E<gt>TYPE_ARRAY>.
858 This only takes effect when beginning a new file.  This is an optional
859 parameter, and defaults to C<DBM::Deep-E<gt>TYPE_HASH>.
860
861 =item * locking
862
863 Specifies whether locking is to be enabled.  DBM::Deep uses Perl's Fnctl flock()
864 function to lock the database in exclusive mode for writes, and shared mode for
865 reads.  Pass any true value to enable.  This affects the base DB handle I<and
866 any child hashes or arrays> that use the same DB file.  This is an optional
867 parameter, and defaults to 0 (disabled).  See L<LOCKING> below for more.
868
869 =item * autoflush
870
871 Specifies whether autoflush is to be enabled on the underlying filehandle.
872 This obviously slows down write operations, but is required if you may have
873 multiple processes accessing the same DB file (also consider enable I<locking>).
874 Pass any true value to enable.  This is an optional parameter, and defaults to 0
875 (disabled).
876
877 =item * autobless
878
879 If I<autobless> mode is enabled, DBM::Deep will preserve blessed hashes, and
880 restore them when fetched.  This is an B<experimental> feature, and does have
881 side-effects.  Basically, when hashes are re-blessed into their original
882 classes, they are no longer blessed into the DBM::Deep class!  So you won't be
883 able to call any DBM::Deep methods on them.  You have been warned.
884 This is an optional parameter, and defaults to 0 (disabled).
885
886 =item * filter_*
887
888 See L<FILTERS> below.
889
890 =back
891
892 =head1 TIE INTERFACE
893
894 With DBM::Deep you can access your databases using Perl's standard hash/array
895 syntax.  Because all DBM::Deep objects are I<tied> to hashes or arrays, you can
896 treat them as such.  DBM::Deep will intercept all reads/writes and direct them
897 to the right place -- the DB file.  This has nothing to do with the
898 L<TIE CONSTRUCTION> section above.  This simply tells you how to use DBM::Deep
899 using regular hashes and arrays, rather than calling functions like C<get()>
900 and C<put()> (although those work too).  It is entirely up to you how to want
901 to access your databases.
902
903 =head2 HASHES
904
905 You can treat any DBM::Deep object like a normal Perl hash reference.  Add keys,
906 or even nested hashes (or arrays) using standard Perl syntax:
907
908     my $db = DBM::Deep->new( "foo.db" );
909
910     $db->{mykey} = "myvalue";
911     $db->{myhash} = {};
912     $db->{myhash}->{subkey} = "subvalue";
913
914     print $db->{myhash}->{subkey} . "\n";
915
916 You can even step through hash keys using the normal Perl C<keys()> function:
917
918     foreach my $key (keys %$db) {
919         print "$key: " . $db->{$key} . "\n";
920     }
921
922 Remember that Perl's C<keys()> function extracts I<every> key from the hash and
923 pushes them onto an array, all before the loop even begins.  If you have an
924 extra large hash, this may exhaust Perl's memory.  Instead, consider using
925 Perl's C<each()> function, which pulls keys/values one at a time, using very
926 little memory:
927
928     while (my ($key, $value) = each %$db) {
929         print "$key: $value\n";
930     }
931
932 Please note that when using C<each()>, you should always pass a direct
933 hash reference, not a lookup.  Meaning, you should B<never> do this:
934
935     # NEVER DO THIS
936     while (my ($key, $value) = each %{$db->{foo}}) { # BAD
937
938 This causes an infinite loop, because for each iteration, Perl is calling
939 FETCH() on the $db handle, resulting in a "new" hash for foo every time, so
940 it effectively keeps returning the first key over and over again. Instead,
941 assign a temporary variable to C<$db->{foo}>, then pass that to each().
942
943 =head2 ARRAYS
944
945 As with hashes, you can treat any DBM::Deep object like a normal Perl array
946 reference.  This includes inserting, removing and manipulating elements,
947 and the C<push()>, C<pop()>, C<shift()>, C<unshift()> and C<splice()> functions.
948 The object must have first been created using type C<DBM::Deep-E<gt>TYPE_ARRAY>,
949 or simply be a nested array reference inside a hash.  Example:
950
951     my $db = DBM::Deep->new(
952         file => "foo-array.db",
953         type => DBM::Deep->TYPE_ARRAY
954     );
955
956     $db->[0] = "foo";
957     push @$db, "bar", "baz";
958     unshift @$db, "bah";
959
960     my $last_elem = pop @$db; # baz
961     my $first_elem = shift @$db; # bah
962     my $second_elem = $db->[1]; # bar
963
964     my $num_elements = scalar @$db;
965
966 =head1 OO INTERFACE
967
968 In addition to the I<tie()> interface, you can also use a standard OO interface
969 to manipulate all aspects of DBM::Deep databases.  Each type of object (hash or
970 array) has its own methods, but both types share the following common methods:
971 C<put()>, C<get()>, C<exists()>, C<delete()> and C<clear()>.
972
973 =over
974
975 =item * new() / clone()
976
977 These are the constructor and copy-functions.
978
979 =item * put() / store()
980
981 Stores a new hash key/value pair, or sets an array element value.  Takes two
982 arguments, the hash key or array index, and the new value.  The value can be
983 a scalar, hash ref or array ref.  Returns true on success, false on failure.
984
985     $db->put("foo", "bar"); # for hashes
986     $db->put(1, "bar"); # for arrays
987
988 =item * get() / fetch()
989
990 Fetches the value of a hash key or array element.  Takes one argument: the hash
991 key or array index.  Returns a scalar, hash ref or array ref, depending on the
992 data type stored.
993
994     my $value = $db->get("foo"); # for hashes
995     my $value = $db->get(1); # for arrays
996
997 =item * exists()
998
999 Checks if a hash key or array index exists.  Takes one argument: the hash key
1000 or array index.  Returns true if it exists, false if not.
1001
1002     if ($db->exists("foo")) { print "yay!\n"; } # for hashes
1003     if ($db->exists(1)) { print "yay!\n"; } # for arrays
1004
1005 =item * delete()
1006
1007 Deletes one hash key/value pair or array element.  Takes one argument: the hash
1008 key or array index.  Returns true on success, false if not found.  For arrays,
1009 the remaining elements located after the deleted element are NOT moved over.
1010 The deleted element is essentially just undefined, which is exactly how Perl's
1011 internal arrays work.  Please note that the space occupied by the deleted
1012 key/value or element is B<not> reused again -- see L<UNUSED SPACE RECOVERY>
1013 below for details and workarounds.
1014
1015     $db->delete("foo"); # for hashes
1016     $db->delete(1); # for arrays
1017
1018 =item * clear()
1019
1020 Deletes B<all> hash keys or array elements.  Takes no arguments.  No return
1021 value.  Please note that the space occupied by the deleted keys/values or
1022 elements is B<not> reused again -- see L<UNUSED SPACE RECOVERY> below for
1023 details and workarounds.
1024
1025     $db->clear(); # hashes or arrays
1026
1027 =item * lock() / unlock()
1028
1029 q.v. Locking.
1030
1031 =item * optimize()
1032
1033 Recover lost disk space.
1034
1035 =item * import() / export()
1036
1037 Data going in and out.
1038
1039 =item * set_digest() / set_pack() / set_filter()
1040
1041 q.v. adjusting the interal parameters.
1042
1043 =back
1044
1045 =head2 HASHES
1046
1047 For hashes, DBM::Deep supports all the common methods described above, and the
1048 following additional methods: C<first_key()> and C<next_key()>.
1049
1050 =over
1051
1052 =item * first_key()
1053
1054 Returns the "first" key in the hash.  As with built-in Perl hashes, keys are
1055 fetched in an undefined order (which appears random).  Takes no arguments,
1056 returns the key as a scalar value.
1057
1058     my $key = $db->first_key();
1059
1060 =item * next_key()
1061
1062 Returns the "next" key in the hash, given the previous one as the sole argument.
1063 Returns undef if there are no more keys to be fetched.
1064
1065     $key = $db->next_key($key);
1066
1067 =back
1068
1069 Here are some examples of using hashes:
1070
1071     my $db = DBM::Deep->new( "foo.db" );
1072
1073     $db->put("foo", "bar");
1074     print "foo: " . $db->get("foo") . "\n";
1075
1076     $db->put("baz", {}); # new child hash ref
1077     $db->get("baz")->put("buz", "biz");
1078     print "buz: " . $db->get("baz")->get("buz") . "\n";
1079
1080     my $key = $db->first_key();
1081     while ($key) {
1082         print "$key: " . $db->get($key) . "\n";
1083         $key = $db->next_key($key);
1084     }
1085
1086     if ($db->exists("foo")) { $db->delete("foo"); }
1087
1088 =head2 ARRAYS
1089
1090 For arrays, DBM::Deep supports all the common methods described above, and the
1091 following additional methods: C<length()>, C<push()>, C<pop()>, C<shift()>,
1092 C<unshift()> and C<splice()>.
1093
1094 =over
1095
1096 =item * length()
1097
1098 Returns the number of elements in the array.  Takes no arguments.
1099
1100     my $len = $db->length();
1101
1102 =item * push()
1103
1104 Adds one or more elements onto the end of the array.  Accepts scalars, hash
1105 refs or array refs.  No return value.
1106
1107     $db->push("foo", "bar", {});
1108
1109 =item * pop()
1110
1111 Fetches the last element in the array, and deletes it.  Takes no arguments.
1112 Returns undef if array is empty.  Returns the element value.
1113
1114     my $elem = $db->pop();
1115
1116 =item * shift()
1117
1118 Fetches the first element in the array, deletes it, then shifts all the
1119 remaining elements over to take up the space.  Returns the element value.  This
1120 method is not recommended with large arrays -- see L<LARGE ARRAYS> below for
1121 details.
1122
1123     my $elem = $db->shift();
1124
1125 =item * unshift()
1126
1127 Inserts one or more elements onto the beginning of the array, shifting all
1128 existing elements over to make room.  Accepts scalars, hash refs or array refs.
1129 No return value.  This method is not recommended with large arrays -- see
1130 <LARGE ARRAYS> below for details.
1131
1132     $db->unshift("foo", "bar", {});
1133
1134 =item * splice()
1135
1136 Performs exactly like Perl's built-in function of the same name.  See L<perldoc
1137 -f splice> for usage -- it is too complicated to document here.  This method is
1138 not recommended with large arrays -- see L<LARGE ARRAYS> below for details.
1139
1140 =back
1141
1142 Here are some examples of using arrays:
1143
1144     my $db = DBM::Deep->new(
1145         file => "foo.db",
1146         type => DBM::Deep->TYPE_ARRAY
1147     );
1148
1149     $db->push("bar", "baz");
1150     $db->unshift("foo");
1151     $db->put(3, "buz");
1152
1153     my $len = $db->length();
1154     print "length: $len\n"; # 4
1155
1156     for (my $k=0; $k<$len; $k++) {
1157         print "$k: " . $db->get($k) . "\n";
1158     }
1159
1160     $db->splice(1, 2, "biz", "baf");
1161
1162     while (my $elem = shift @$db) {
1163         print "shifted: $elem\n";
1164     }
1165
1166 =head1 LOCKING
1167
1168 Enable automatic file locking by passing a true value to the C<locking>
1169 parameter when constructing your DBM::Deep object (see L<SETUP> above).
1170
1171     my $db = DBM::Deep->new(
1172         file => "foo.db",
1173         locking => 1
1174     );
1175
1176 This causes DBM::Deep to C<flock()> the underlying filehandle with exclusive
1177 mode for writes, and shared mode for reads.  This is required if you have
1178 multiple processes accessing the same database file, to avoid file corruption.
1179 Please note that C<flock()> does NOT work for files over NFS.  See L<DB OVER
1180 NFS> below for more.
1181
1182 =head2 EXPLICIT LOCKING
1183
1184 You can explicitly lock a database, so it remains locked for multiple
1185 transactions.  This is done by calling the C<lock()> method, and passing an
1186 optional lock mode argument (defaults to exclusive mode).  This is particularly
1187 useful for things like counters, where the current value needs to be fetched,
1188 then incremented, then stored again.
1189
1190     $db->lock();
1191     my $counter = $db->get("counter");
1192     $counter++;
1193     $db->put("counter", $counter);
1194     $db->unlock();
1195
1196     # or...
1197
1198     $db->lock();
1199     $db->{counter}++;
1200     $db->unlock();
1201
1202 You can pass C<lock()> an optional argument, which specifies which mode to use
1203 (exclusive or shared).  Use one of these two constants: C<DBM::Deep-E<gt>LOCK_EX>
1204 or C<DBM::Deep-E<gt>LOCK_SH>.  These are passed directly to C<flock()>, and are the
1205 same as the constants defined in Perl's C<Fcntl> module.
1206
1207     $db->lock( DBM::Deep->LOCK_SH );
1208     # something here
1209     $db->unlock();
1210
1211 =head1 IMPORTING/EXPORTING
1212
1213 You can import existing complex structures by calling the C<import()> method,
1214 and export an entire database into an in-memory structure using the C<export()>
1215 method.  Both are examined here.
1216
1217 =head2 IMPORTING
1218
1219 Say you have an existing hash with nested hashes/arrays inside it.  Instead of
1220 walking the structure and adding keys/elements to the database as you go,
1221 simply pass a reference to the C<import()> method.  This recursively adds
1222 everything to an existing DBM::Deep object for you.  Here is an example:
1223
1224     my $struct = {
1225         key1 => "value1",
1226         key2 => "value2",
1227         array1 => [ "elem0", "elem1", "elem2" ],
1228         hash1 => {
1229             subkey1 => "subvalue1",
1230             subkey2 => "subvalue2"
1231         }
1232     };
1233
1234     my $db = DBM::Deep->new( "foo.db" );
1235     $db->import( $struct );
1236
1237     print $db->{key1} . "\n"; # prints "value1"
1238
1239 This recursively imports the entire C<$struct> object into C<$db>, including
1240 all nested hashes and arrays.  If the DBM::Deep object contains exsiting data,
1241 keys are merged with the existing ones, replacing if they already exist.
1242 The C<import()> method can be called on any database level (not just the base
1243 level), and works with both hash and array DB types.
1244
1245 B<Note:> Make sure your existing structure has no circular references in it.
1246 These will cause an infinite loop when importing.
1247
1248 =head2 EXPORTING
1249
1250 Calling the C<export()> method on an existing DBM::Deep object will return
1251 a reference to a new in-memory copy of the database.  The export is done
1252 recursively, so all nested hashes/arrays are all exported to standard Perl
1253 objects.  Here is an example:
1254
1255     my $db = DBM::Deep->new( "foo.db" );
1256
1257     $db->{key1} = "value1";
1258     $db->{key2} = "value2";
1259     $db->{hash1} = {};
1260     $db->{hash1}->{subkey1} = "subvalue1";
1261     $db->{hash1}->{subkey2} = "subvalue2";
1262
1263     my $struct = $db->export();
1264
1265     print $struct->{key1} . "\n"; # prints "value1"
1266
1267 This makes a complete copy of the database in memory, and returns a reference
1268 to it.  The C<export()> method can be called on any database level (not just
1269 the base level), and works with both hash and array DB types.  Be careful of
1270 large databases -- you can store a lot more data in a DBM::Deep object than an
1271 in-memory Perl structure.
1272
1273 B<Note:> Make sure your database has no circular references in it.
1274 These will cause an infinite loop when exporting.
1275
1276 =head1 FILTERS
1277
1278 DBM::Deep has a number of hooks where you can specify your own Perl function
1279 to perform filtering on incoming or outgoing data.  This is a perfect
1280 way to extend the engine, and implement things like real-time compression or
1281 encryption.  Filtering applies to the base DB level, and all child hashes /
1282 arrays.  Filter hooks can be specified when your DBM::Deep object is first
1283 constructed, or by calling the C<set_filter()> method at any time.  There are
1284 four available filter hooks, described below:
1285
1286 =over
1287
1288 =item * filter_store_key
1289
1290 This filter is called whenever a hash key is stored.  It
1291 is passed the incoming key, and expected to return a transformed key.
1292
1293 =item * filter_store_value
1294
1295 This filter is called whenever a hash key or array element is stored.  It
1296 is passed the incoming value, and expected to return a transformed value.
1297
1298 =item * filter_fetch_key
1299
1300 This filter is called whenever a hash key is fetched (i.e. via
1301 C<first_key()> or C<next_key()>).  It is passed the transformed key,
1302 and expected to return the plain key.
1303
1304 =item * filter_fetch_value
1305
1306 This filter is called whenever a hash key or array element is fetched.
1307 It is passed the transformed value, and expected to return the plain value.
1308
1309 =back
1310
1311 Here are the two ways to setup a filter hook:
1312
1313     my $db = DBM::Deep->new(
1314         file => "foo.db",
1315         filter_store_value => \&my_filter_store,
1316         filter_fetch_value => \&my_filter_fetch
1317     );
1318
1319     # or...
1320
1321     $db->set_filter( "filter_store_value", \&my_filter_store );
1322     $db->set_filter( "filter_fetch_value", \&my_filter_fetch );
1323
1324 Your filter function will be called only when dealing with SCALAR keys or
1325 values.  When nested hashes and arrays are being stored/fetched, filtering
1326 is bypassed.  Filters are called as static functions, passed a single SCALAR
1327 argument, and expected to return a single SCALAR value.  If you want to
1328 remove a filter, set the function reference to C<undef>:
1329
1330     $db->set_filter( "filter_store_value", undef );
1331
1332 =head2 REAL-TIME ENCRYPTION EXAMPLE
1333
1334 Here is a working example that uses the I<Crypt::Blowfish> module to
1335 do real-time encryption / decryption of keys & values with DBM::Deep Filters.
1336 Please visit L<http://search.cpan.org/search?module=Crypt::Blowfish> for more
1337 on I<Crypt::Blowfish>.  You'll also need the I<Crypt::CBC> module.
1338
1339     use DBM::Deep;
1340     use Crypt::Blowfish;
1341     use Crypt::CBC;
1342
1343     my $cipher = Crypt::CBC->new({
1344         'key'             => 'my secret key',
1345         'cipher'          => 'Blowfish',
1346         'iv'              => '$KJh#(}q',
1347         'regenerate_key'  => 0,
1348         'padding'         => 'space',
1349         'prepend_iv'      => 0
1350     });
1351
1352     my $db = DBM::Deep->new(
1353         file => "foo-encrypt.db",
1354         filter_store_key => \&my_encrypt,
1355         filter_store_value => \&my_encrypt,
1356         filter_fetch_key => \&my_decrypt,
1357         filter_fetch_value => \&my_decrypt,
1358     );
1359
1360     $db->{key1} = "value1";
1361     $db->{key2} = "value2";
1362     print "key1: " . $db->{key1} . "\n";
1363     print "key2: " . $db->{key2} . "\n";
1364
1365     undef $db;
1366     exit;
1367
1368     sub my_encrypt {
1369         return $cipher->encrypt( $_[0] );
1370     }
1371     sub my_decrypt {
1372         return $cipher->decrypt( $_[0] );
1373     }
1374
1375 =head2 REAL-TIME COMPRESSION EXAMPLE
1376
1377 Here is a working example that uses the I<Compress::Zlib> module to do real-time
1378 compression / decompression of keys & values with DBM::Deep Filters.
1379 Please visit L<http://search.cpan.org/search?module=Compress::Zlib> for
1380 more on I<Compress::Zlib>.
1381
1382     use DBM::Deep;
1383     use Compress::Zlib;
1384
1385     my $db = DBM::Deep->new(
1386         file => "foo-compress.db",
1387         filter_store_key => \&my_compress,
1388         filter_store_value => \&my_compress,
1389         filter_fetch_key => \&my_decompress,
1390         filter_fetch_value => \&my_decompress,
1391     );
1392
1393     $db->{key1} = "value1";
1394     $db->{key2} = "value2";
1395     print "key1: " . $db->{key1} . "\n";
1396     print "key2: " . $db->{key2} . "\n";
1397
1398     undef $db;
1399     exit;
1400
1401     sub my_compress {
1402         return Compress::Zlib::memGzip( $_[0] ) ;
1403     }
1404     sub my_decompress {
1405         return Compress::Zlib::memGunzip( $_[0] ) ;
1406     }
1407
1408 B<Note:> Filtering of keys only applies to hashes.  Array "keys" are
1409 actually numerical index numbers, and are not filtered.
1410
1411 =head1 ERROR HANDLING
1412
1413 Most DBM::Deep methods return a true value for success, and call die() on
1414 failure.  You can wrap calls in an eval block to catch the die.
1415
1416     my $db = DBM::Deep->new( "foo.db" ); # create hash
1417     eval { $db->push("foo"); }; # ILLEGAL -- push is array-only call
1418
1419     print $@;           # prints error message
1420
1421 =head1 LARGEFILE SUPPORT
1422
1423 If you have a 64-bit system, and your Perl is compiled with both LARGEFILE
1424 and 64-bit support, you I<may> be able to create databases larger than 2 GB.
1425 DBM::Deep by default uses 32-bit file offset tags, but these can be changed
1426 by calling the static C<set_pack()> method before you do anything else.
1427
1428     DBM::Deep::set_pack(8, 'Q');
1429
1430 This tells DBM::Deep to pack all file offsets with 8-byte (64-bit) quad words
1431 instead of 32-bit longs.  After setting these values your DB files have a
1432 theoretical maximum size of 16 XB (exabytes).
1433
1434 B<Note:> Changing these values will B<NOT> work for existing database files.
1435 Only change this for new files, and make sure it stays set consistently
1436 throughout the file's life.  If you do set these values, you can no longer
1437 access 32-bit DB files.  You can, however, call C<set_pack(4, 'N')> to change
1438 back to 32-bit mode.
1439
1440 B<Note:> I have not personally tested files > 2 GB -- all my systems have
1441 only a 32-bit Perl.  However, I have received user reports that this does
1442 indeed work!
1443
1444 =head1 LOW-LEVEL ACCESS
1445
1446 If you require low-level access to the underlying filehandle that DBM::Deep uses,
1447 you can call the C<_fh()> method, which returns the handle:
1448
1449     my $fh = $db->_fh();
1450
1451 This method can be called on the root level of the datbase, or any child
1452 hashes or arrays.  All levels share a I<root> structure, which contains things
1453 like the filehandle, a reference counter, and all the options specified
1454 when you created the object.  You can get access to this root structure by
1455 calling the C<root()> method.
1456
1457     my $root = $db->_root();
1458
1459 This is useful for changing options after the object has already been created,
1460 such as enabling/disabling locking.  You can also store your own temporary user
1461 data in this structure (be wary of name collision), which is then accessible from
1462 any child hash or array.
1463
1464 =head1 CUSTOM DIGEST ALGORITHM
1465
1466 DBM::Deep by default uses the I<Message Digest 5> (MD5) algorithm for hashing
1467 keys.  However you can override this, and use another algorithm (such as SHA-256)
1468 or even write your own.  But please note that DBM::Deep currently expects zero
1469 collisions, so your algorithm has to be I<perfect>, so to speak.
1470 Collision detection may be introduced in a later version.
1471
1472
1473
1474 You can specify a custom digest algorithm by calling the static C<set_digest()>
1475 function, passing a reference to a subroutine, and the length of the algorithm's
1476 hashes (in bytes).  This is a global static function, which affects ALL DBM::Deep
1477 objects.  Here is a working example that uses a 256-bit hash from the
1478 I<Digest::SHA256> module.  Please see
1479 L<http://search.cpan.org/search?module=Digest::SHA256> for more.
1480
1481     use DBM::Deep;
1482     use Digest::SHA256;
1483
1484     my $context = Digest::SHA256::new(256);
1485
1486     DBM::Deep::set_digest( \&my_digest, 32 );
1487
1488     my $db = DBM::Deep->new( "foo-sha.db" );
1489
1490     $db->{key1} = "value1";
1491     $db->{key2} = "value2";
1492     print "key1: " . $db->{key1} . "\n";
1493     print "key2: " . $db->{key2} . "\n";
1494
1495     undef $db;
1496     exit;
1497
1498     sub my_digest {
1499         return substr( $context->hash($_[0]), 0, 32 );
1500     }
1501
1502 B<Note:> Your returned digest strings must be B<EXACTLY> the number
1503 of bytes you specify in the C<set_digest()> function (in this case 32).
1504
1505 =head1 CIRCULAR REFERENCES
1506
1507 DBM::Deep has B<experimental> support for circular references.  Meaning you
1508 can have a nested hash key or array element that points to a parent object.
1509 This relationship is stored in the DB file, and is preserved between sessions.
1510 Here is an example:
1511
1512     my $db = DBM::Deep->new( "foo.db" );
1513
1514     $db->{foo} = "bar";
1515     $db->{circle} = $db; # ref to self
1516
1517     print $db->{foo} . "\n"; # prints "foo"
1518     print $db->{circle}->{foo} . "\n"; # prints "foo" again
1519
1520 One catch is, passing the object to a function that recursively walks the
1521 object tree (such as I<Data::Dumper> or even the built-in C<optimize()> or
1522 C<export()> methods) will result in an infinite loop.  The other catch is,
1523 if you fetch the I<key> of a circular reference (i.e. using the C<first_key()>
1524 or C<next_key()> methods), you will get the I<target object's key>, not the
1525 ref's key.  This gets even more interesting with the above example, where
1526 the I<circle> key points to the base DB object, which technically doesn't
1527 have a key.  So I made DBM::Deep return "[base]" as the key name in that
1528 special case.
1529
1530 =head1 CAVEATS / ISSUES / BUGS
1531
1532 This section describes all the known issues with DBM::Deep.  It you have found
1533 something that is not listed here, please send e-mail to L<jhuckaby@cpan.org>.
1534
1535 =head2 UNUSED SPACE RECOVERY
1536
1537 One major caveat with DBM::Deep is that space occupied by existing keys and
1538 values is not recovered when they are deleted.  Meaning if you keep deleting
1539 and adding new keys, your file will continuously grow.  I am working on this,
1540 but in the meantime you can call the built-in C<optimize()> method from time to
1541 time (perhaps in a crontab or something) to recover all your unused space.
1542
1543     $db->optimize(); # returns true on success
1544
1545 This rebuilds the ENTIRE database into a new file, then moves it on top of
1546 the original.  The new file will have no unused space, thus it will take up as
1547 little disk space as possible.  Please note that this operation can take
1548 a long time for large files, and you need enough disk space to temporarily hold
1549 2 copies of your DB file.  The temporary file is created in the same directory
1550 as the original, named with a ".tmp" extension, and is deleted when the
1551 operation completes.  Oh, and if locking is enabled, the DB is automatically
1552 locked for the entire duration of the copy.
1553
1554 B<WARNING:> Only call optimize() on the top-level node of the database, and
1555 make sure there are no child references lying around.  DBM::Deep keeps a reference
1556 counter, and if it is greater than 1, optimize() will abort and return undef.
1557
1558 =head2 AUTOVIVIFICATION
1559
1560 Unfortunately, autovivification doesn't work with tied hashes.  This appears to
1561 be a bug in Perl's tie() system, as I<Jakob Schmidt> encountered the very same
1562 issue with his I<DWH_FIle> module (see L<http://search.cpan.org/search?module=DWH_File>),
1563 and it is also mentioned in the BUGS section for the I<MLDBM> module <see
1564 L<http://search.cpan.org/search?module=MLDBM>).  Basically, on a new db file,
1565 this does not work:
1566
1567     $db->{foo}->{bar} = "hello";
1568
1569 Since "foo" doesn't exist, you cannot add "bar" to it.  You end up with "foo"
1570 being an empty hash.  Try this instead, which works fine:
1571
1572     $db->{foo} = { bar => "hello" };
1573
1574 As of Perl 5.8.7, this bug still exists.  I have walked very carefully through
1575 the execution path, and Perl indeed passes an empty hash to the STORE() method.
1576 Probably a bug in Perl.
1577
1578 =head2 FILE CORRUPTION
1579
1580 The current level of error handling in DBM::Deep is minimal.  Files I<are> checked
1581 for a 32-bit signature when opened, but other corruption in files can cause
1582 segmentation faults.  DBM::Deep may try to seek() past the end of a file, or get
1583 stuck in an infinite loop depending on the level of corruption.  File write
1584 operations are not checked for failure (for speed), so if you happen to run
1585 out of disk space, DBM::Deep will probably fail in a bad way.  These things will
1586 be addressed in a later version of DBM::Deep.
1587
1588 =head2 DB OVER NFS
1589
1590 Beware of using DB files over NFS.  DBM::Deep uses flock(), which works well on local
1591 filesystems, but will NOT protect you from file corruption over NFS.  I've heard
1592 about setting up your NFS server with a locking daemon, then using lockf() to
1593 lock your files, but your mileage may vary there as well.  From what I
1594 understand, there is no real way to do it.  However, if you need access to the
1595 underlying filehandle in DBM::Deep for using some other kind of locking scheme like
1596 lockf(), see the L<LOW-LEVEL ACCESS> section above.
1597
1598 =head2 COPYING OBJECTS
1599
1600 Beware of copying tied objects in Perl.  Very strange things can happen.
1601 Instead, use DBM::Deep's C<clone()> method which safely copies the object and
1602 returns a new, blessed, tied hash or array to the same level in the DB.
1603
1604     my $copy = $db->clone();
1605
1606 B<Note>: Since clone() here is cloning the object, not the database location, any
1607 modifications to either $db or $copy will be visible in both.
1608
1609 =head2 LARGE ARRAYS
1610
1611 Beware of using C<shift()>, C<unshift()> or C<splice()> with large arrays.
1612 These functions cause every element in the array to move, which can be murder
1613 on DBM::Deep, as every element has to be fetched from disk, then stored again in
1614 a different location.  This will be addressed in the forthcoming version 1.00.
1615
1616 =head2 WRITEONLY FILES
1617
1618 If you pass in a filehandle to new(), you may have opened it in either a readonly or
1619 writeonly mode. STORE will verify that the filehandle is writable. However, there
1620 doesn't seem to be a good way to determine if a filehandle is readable. And, if the
1621 filehandle isn't readable, it's not clear what will happen. So, don't do that.
1622
1623 =head1 PERFORMANCE
1624
1625 This section discusses DBM::Deep's speed and memory usage.
1626
1627 =head2 SPEED
1628
1629 Obviously, DBM::Deep isn't going to be as fast as some C-based DBMs, such as
1630 the almighty I<BerkeleyDB>.  But it makes up for it in features like true
1631 multi-level hash/array support, and cross-platform FTPable files.  Even so,
1632 DBM::Deep is still pretty fast, and the speed stays fairly consistent, even
1633 with huge databases.  Here is some test data:
1634
1635     Adding 1,000,000 keys to new DB file...
1636
1637     At 100 keys, avg. speed is 2,703 keys/sec
1638     At 200 keys, avg. speed is 2,642 keys/sec
1639     At 300 keys, avg. speed is 2,598 keys/sec
1640     At 400 keys, avg. speed is 2,578 keys/sec
1641     At 500 keys, avg. speed is 2,722 keys/sec
1642     At 600 keys, avg. speed is 2,628 keys/sec
1643     At 700 keys, avg. speed is 2,700 keys/sec
1644     At 800 keys, avg. speed is 2,607 keys/sec
1645     At 900 keys, avg. speed is 2,190 keys/sec
1646     At 1,000 keys, avg. speed is 2,570 keys/sec
1647     At 2,000 keys, avg. speed is 2,417 keys/sec
1648     At 3,000 keys, avg. speed is 1,982 keys/sec
1649     At 4,000 keys, avg. speed is 1,568 keys/sec
1650     At 5,000 keys, avg. speed is 1,533 keys/sec
1651     At 6,000 keys, avg. speed is 1,787 keys/sec
1652     At 7,000 keys, avg. speed is 1,977 keys/sec
1653     At 8,000 keys, avg. speed is 2,028 keys/sec
1654     At 9,000 keys, avg. speed is 2,077 keys/sec
1655     At 10,000 keys, avg. speed is 2,031 keys/sec
1656     At 20,000 keys, avg. speed is 1,970 keys/sec
1657     At 30,000 keys, avg. speed is 2,050 keys/sec
1658     At 40,000 keys, avg. speed is 2,073 keys/sec
1659     At 50,000 keys, avg. speed is 1,973 keys/sec
1660     At 60,000 keys, avg. speed is 1,914 keys/sec
1661     At 70,000 keys, avg. speed is 2,091 keys/sec
1662     At 80,000 keys, avg. speed is 2,103 keys/sec
1663     At 90,000 keys, avg. speed is 1,886 keys/sec
1664     At 100,000 keys, avg. speed is 1,970 keys/sec
1665     At 200,000 keys, avg. speed is 2,053 keys/sec
1666     At 300,000 keys, avg. speed is 1,697 keys/sec
1667     At 400,000 keys, avg. speed is 1,838 keys/sec
1668     At 500,000 keys, avg. speed is 1,941 keys/sec
1669     At 600,000 keys, avg. speed is 1,930 keys/sec
1670     At 700,000 keys, avg. speed is 1,735 keys/sec
1671     At 800,000 keys, avg. speed is 1,795 keys/sec
1672     At 900,000 keys, avg. speed is 1,221 keys/sec
1673     At 1,000,000 keys, avg. speed is 1,077 keys/sec
1674
1675 This test was performed on a PowerMac G4 1gHz running Mac OS X 10.3.2 & Perl
1676 5.8.1, with an 80GB Ultra ATA/100 HD spinning at 7200RPM.  The hash keys and
1677 values were between 6 - 12 chars in length.  The DB file ended up at 210MB.
1678 Run time was 12 min 3 sec.
1679
1680 =head2 MEMORY USAGE
1681
1682 One of the great things about DBM::Deep is that it uses very little memory.
1683 Even with huge databases (1,000,000+ keys) you will not see much increased
1684 memory on your process.  DBM::Deep relies solely on the filesystem for storing
1685 and fetching data.  Here is output from I</usr/bin/top> before even opening a
1686 database handle:
1687
1688       PID USER     PRI  NI  SIZE  RSS SHARE STAT %CPU %MEM   TIME COMMAND
1689     22831 root      11   0  2716 2716  1296 R     0.0  0.2   0:07 perl
1690
1691 Basically the process is taking 2,716K of memory.  And here is the same
1692 process after storing and fetching 1,000,000 keys:
1693
1694       PID USER     PRI  NI  SIZE  RSS SHARE STAT %CPU %MEM   TIME COMMAND
1695     22831 root      14   0  2772 2772  1328 R     0.0  0.2  13:32 perl
1696
1697 Notice the memory usage increased by only 56K.  Test was performed on a 700mHz
1698 x86 box running Linux RedHat 7.2 & Perl 5.6.1.
1699
1700 =head1 DB FILE FORMAT
1701
1702 In case you were interested in the underlying DB file format, it is documented
1703 here in this section.  You don't need to know this to use the module, it's just
1704 included for reference.
1705
1706 =head2 SIGNATURE
1707
1708 DBM::Deep files always start with a 32-bit signature to identify the file type.
1709 This is at offset 0.  The signature is "DPDB" in network byte order.  This is
1710 checked for when the file is opened and an error will be thrown if it's not found.
1711
1712 =head2 TAG
1713
1714 The DBM::Deep file is in a I<tagged format>, meaning each section of the file
1715 has a standard header containing the type of data, the length of data, and then
1716 the data itself.  The type is a single character (1 byte), the length is a
1717 32-bit unsigned long in network byte order, and the data is, well, the data.
1718 Here is how it unfolds:
1719
1720 =head2 MASTER INDEX
1721
1722 Immediately after the 32-bit file signature is the I<Master Index> record.
1723 This is a standard tag header followed by 1024 bytes (in 32-bit mode) or 2048
1724 bytes (in 64-bit mode) of data.  The type is I<H> for hash or I<A> for array,
1725 depending on how the DBM::Deep object was constructed.
1726
1727 The index works by looking at a I<MD5 Hash> of the hash key (or array index
1728 number).  The first 8-bit char of the MD5 signature is the offset into the
1729 index, multipled by 4 in 32-bit mode, or 8 in 64-bit mode.  The value of the
1730 index element is a file offset of the next tag for the key/element in question,
1731 which is usually a I<Bucket List> tag (see below).
1732
1733 The next tag I<could> be another index, depending on how many keys/elements
1734 exist.  See L<RE-INDEXING> below for details.
1735
1736 =head2 BUCKET LIST
1737
1738 A I<Bucket List> is a collection of 16 MD5 hashes for keys/elements, plus
1739 file offsets to where the actual data is stored.  It starts with a standard
1740 tag header, with type I<B>, and a data size of 320 bytes in 32-bit mode, or
1741 384 bytes in 64-bit mode.  Each MD5 hash is stored in full (16 bytes), plus
1742 the 32-bit or 64-bit file offset for the I<Bucket> containing the actual data.
1743 When the list fills up, a I<Re-Index> operation is performed (See
1744 L<RE-INDEXING> below).
1745
1746 =head2 BUCKET
1747
1748 A I<Bucket> is a tag containing a key/value pair (in hash mode), or a
1749 index/value pair (in array mode).  It starts with a standard tag header with
1750 type I<D> for scalar data (string, binary, etc.), or it could be a nested
1751 hash (type I<H>) or array (type I<A>).  The value comes just after the tag
1752 header.  The size reported in the tag header is only for the value, but then,
1753 just after the value is another size (32-bit unsigned long) and then the plain
1754 key itself.  Since the value is likely to be fetched more often than the plain
1755 key, I figured it would be I<slightly> faster to store the value first.
1756
1757 If the type is I<H> (hash) or I<A> (array), the value is another I<Master Index>
1758 record for the nested structure, where the process begins all over again.
1759
1760 =head2 RE-INDEXING
1761
1762 After a I<Bucket List> grows to 16 records, its allocated space in the file is
1763 exhausted.  Then, when another key/element comes in, the list is converted to a
1764 new index record.  However, this index will look at the next char in the MD5
1765 hash, and arrange new Bucket List pointers accordingly.  This process is called
1766 I<Re-Indexing>.  Basically, a new index tag is created at the file EOF, and all
1767 17 (16 + new one) keys/elements are removed from the old Bucket List and
1768 inserted into the new index.  Several new Bucket Lists are created in the
1769 process, as a new MD5 char from the key is being examined (it is unlikely that
1770 the keys will all share the same next char of their MD5s).
1771
1772 Because of the way the I<MD5> algorithm works, it is impossible to tell exactly
1773 when the Bucket Lists will turn into indexes, but the first round tends to
1774 happen right around 4,000 keys.  You will see a I<slight> decrease in
1775 performance here, but it picks back up pretty quick (see L<SPEED> above).  Then
1776 it takes B<a lot> more keys to exhaust the next level of Bucket Lists.  It's
1777 right around 900,000 keys.  This process can continue nearly indefinitely --
1778 right up until the point the I<MD5> signatures start colliding with each other,
1779 and this is B<EXTREMELY> rare -- like winning the lottery 5 times in a row AND
1780 getting struck by lightning while you are walking to cash in your tickets.
1781 Theoretically, since I<MD5> hashes are 128-bit values, you I<could> have up to
1782 340,282,366,921,000,000,000,000,000,000,000,000,000 keys/elements (I believe
1783 this is 340 unodecillion, but don't quote me).
1784
1785 =head2 STORING
1786
1787 When a new key/element is stored, the key (or index number) is first run through
1788 I<Digest::MD5> to get a 128-bit signature (example, in hex:
1789 b05783b0773d894396d475ced9d2f4f6).  Then, the I<Master Index> record is checked
1790 for the first char of the signature (in this case I<b0>).  If it does not exist,
1791 a new I<Bucket List> is created for our key (and the next 15 future keys that
1792 happen to also have I<b> as their first MD5 char).  The entire MD5 is written
1793 to the I<Bucket List> along with the offset of the new I<Bucket> record (EOF at
1794 this point, unless we are replacing an existing I<Bucket>), where the actual
1795 data will be stored.
1796
1797 =head2 FETCHING
1798
1799 Fetching an existing key/element involves getting a I<Digest::MD5> of the key
1800 (or index number), then walking along the indexes.  If there are enough
1801 keys/elements in this DB level, there might be nested indexes, each linked to
1802 a particular char of the MD5.  Finally, a I<Bucket List> is pointed to, which
1803 contains up to 16 full MD5 hashes.  Each is checked for equality to the key in
1804 question.  If we found a match, the I<Bucket> tag is loaded, where the value and
1805 plain key are stored.
1806
1807 Fetching the plain key occurs when calling the I<first_key()> and I<next_key()>
1808 methods.  In this process the indexes are walked systematically, and each key
1809 fetched in increasing MD5 order (which is why it appears random).   Once the
1810 I<Bucket> is found, the value is skipped and the plain key returned instead.
1811 B<Note:> Do not count on keys being fetched as if the MD5 hashes were
1812 alphabetically sorted.  This only happens on an index-level -- as soon as the
1813 I<Bucket Lists> are hit, the keys will come out in the order they went in --
1814 so it's pretty much undefined how the keys will come out -- just like Perl's
1815 built-in hashes.
1816
1817 =head1 CODE COVERAGE
1818
1819 We use B<Devel::Cover> to test the code coverage of our tests, below is the
1820 B<Devel::Cover> report on this module's test suite.
1821
1822   ---------------------------- ------ ------ ------ ------ ------ ------ ------
1823   File                           stmt   bran   cond    sub    pod   time  total
1824   ---------------------------- ------ ------ ------ ------ ------ ------ ------
1825   blib/lib/DBM/Deep.pm           95.1   81.6   70.3  100.0  100.0   33.4   91.0
1826   blib/lib/DBM/Deep/Array.pm    100.0   91.1  100.0  100.0    n/a   27.8   98.0
1827   blib/lib/DBM/Deep/Engine.pm    97.8   85.6   75.0  100.0    0.0   25.8   90.8
1828   blib/lib/DBM/Deep/Hash.pm     100.0   87.5  100.0  100.0    n/a   13.0   97.2
1829   Total                          97.5   85.4   76.6  100.0   46.9  100.0   92.5
1830   ---------------------------- ------ ------ ------ ------ ------ ------ ------
1831
1832 =head1 MORE INFORMATION
1833
1834 Check out the DBM::Deep Google Group at L<http://groups.google.com/group/DBM-Deep>
1835 or send email to L<DBM-Deep@googlegroups.com>.
1836
1837 =head1 AUTHORS
1838
1839 Joseph Huckaby, L<jhuckaby@cpan.org>
1840
1841 Rob Kinyon, L<rkinyon@cpan.org>
1842
1843 Special thanks to Adam Sah and Rich Gaushell!  You know why :-)
1844
1845 =head1 SEE ALSO
1846
1847 perltie(1), Tie::Hash(3), Digest::MD5(3), Fcntl(3), flock(2), lockf(3), nfs(5),
1848 Digest::SHA256(3), Crypt::Blowfish(3), Compress::Zlib(3)
1849
1850 =head1 LICENSE
1851
1852 Copyright (c) 2002-2006 Joseph Huckaby.  All Rights Reserved.
1853 This is free software, you may use it and distribute it under the
1854 same terms as Perl itself.
1855
1856 =cut