3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * I sit beside the fire and think
13 * of all that I have seen.
16 * [p.278 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
20 =head1 Hash Manipulation Functions
22 A HV structure represents a Perl hash. It consists mainly of an array
23 of pointers, each of which points to a linked list of HE structures. The
24 array is indexed by the hash function of the key, so each linked list
25 represents all the hash entries with the same hash value. Each HE contains
26 a pointer to the actual value, plus a pointer to a HEK structure which
27 holds the key and hash value.
35 #define PERL_HASH_INTERNAL_ACCESS
38 #define HV_MAX_LENGTH_BEFORE_SPLIT 14
40 static const char S_strtab_error[]
41 = "Cannot modify shared string table in hv_%s";
47 /* We could generate this at compile time via (another) auxiliary C
49 const size_t arena_size = Perl_malloc_good_size(PERL_ARENA_SIZE);
50 HE* he = (HE*) Perl_get_arena(aTHX_ arena_size, HE_SVSLOT);
51 HE * const heend = &he[arena_size / sizeof(HE) - 1];
53 PL_body_roots[HE_SVSLOT] = he;
55 HeNEXT(he) = (HE*)(he + 1);
63 #define new_HE() (HE*)safemalloc(sizeof(HE))
64 #define del_HE(p) safefree((char*)p)
73 void ** const root = &PL_body_roots[HE_SVSLOT];
83 #define new_HE() new_he()
86 HeNEXT(p) = (HE*)(PL_body_roots[HE_SVSLOT]); \
87 PL_body_roots[HE_SVSLOT] = p; \
95 S_save_hek_flags(const char *str, I32 len, U32 hash, int flags)
97 const int flags_masked = flags & HVhek_MASK;
101 PERL_ARGS_ASSERT_SAVE_HEK_FLAGS;
103 Newx(k, HEK_BASESIZE + len + 2, char);
105 Copy(str, HEK_KEY(hek), len, char);
106 HEK_KEY(hek)[len] = 0;
108 HEK_HASH(hek) = hash;
109 HEK_FLAGS(hek) = (unsigned char)flags_masked | HVhek_UNSHARED;
111 if (flags & HVhek_FREEKEY)
116 /* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent
120 Perl_free_tied_hv_pool(pTHX)
123 HE *he = PL_hv_fetch_ent_mh;
126 Safefree(HeKEY_hek(he));
130 PL_hv_fetch_ent_mh = NULL;
133 #if defined(USE_ITHREADS)
135 Perl_hek_dup(pTHX_ HEK *source, CLONE_PARAMS* param)
139 PERL_ARGS_ASSERT_HEK_DUP;
140 PERL_UNUSED_ARG(param);
145 shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
147 /* We already shared this hash key. */
148 (void)share_hek_hek(shared);
152 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
153 HEK_HASH(source), HEK_FLAGS(source));
154 ptr_table_store(PL_ptr_table, source, shared);
160 Perl_he_dup(pTHX_ const HE *e, bool shared, CLONE_PARAMS* param)
164 PERL_ARGS_ASSERT_HE_DUP;
168 /* look for it in the table first */
169 ret = (HE*)ptr_table_fetch(PL_ptr_table, e);
173 /* create anew and remember what it is */
175 ptr_table_store(PL_ptr_table, e, ret);
177 HeNEXT(ret) = he_dup(HeNEXT(e),shared, param);
178 if (HeKLEN(e) == HEf_SVKEY) {
180 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
181 HeKEY_hek(ret) = (HEK*)k;
182 HeKEY_sv(ret) = SvREFCNT_inc(sv_dup(HeKEY_sv(e), param));
185 /* This is hek_dup inlined, which seems to be important for speed
187 HEK * const source = HeKEY_hek(e);
188 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
191 /* We already shared this hash key. */
192 (void)share_hek_hek(shared);
196 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
197 HEK_HASH(source), HEK_FLAGS(source));
198 ptr_table_store(PL_ptr_table, source, shared);
200 HeKEY_hek(ret) = shared;
203 HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
205 HeVAL(ret) = SvREFCNT_inc(sv_dup(HeVAL(e), param));
208 #endif /* USE_ITHREADS */
211 S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen,
214 SV * const sv = sv_newmortal();
216 PERL_ARGS_ASSERT_HV_NOTALLOWED;
218 if (!(flags & HVhek_FREEKEY)) {
219 sv_setpvn(sv, key, klen);
222 /* Need to free saved eventually assign to mortal SV */
223 /* XXX is this line an error ???: SV *sv = sv_newmortal(); */
224 sv_usepvn(sv, (char *) key, klen);
226 if (flags & HVhek_UTF8) {
229 Perl_croak(aTHX_ msg, SVfARG(sv));
232 /* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot
238 Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
239 the length of the key. The C<hash> parameter is the precomputed hash
240 value; if it is zero then Perl will compute it. The return value will be
241 NULL if the operation failed or if the value did not need to be actually
242 stored within the hash (as in the case of tied hashes). Otherwise it can
243 be dereferenced to get the original C<SV*>. Note that the caller is
244 responsible for suitably incrementing the reference count of C<val> before
245 the call, and decrementing it if the function returned NULL. Effectively
246 a successful hv_store takes ownership of one reference to C<val>. This is
247 usually what you want; a newly created SV has a reference count of one, so
248 if all your code does is create SVs then store them in a hash, hv_store
249 will own the only reference to the new SV, and your code doesn't need to do
250 anything further to tidy up. hv_store is not implemented as a call to
251 hv_store_ent, and does not create a temporary SV for the key, so if your
252 key data is not already in SV form then use hv_store in preference to
255 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
256 information on how to use this function on tied hashes.
258 =for apidoc hv_store_ent
260 Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
261 parameter is the precomputed hash value; if it is zero then Perl will
262 compute it. The return value is the new hash entry so created. It will be
263 NULL if the operation failed or if the value did not need to be actually
264 stored within the hash (as in the case of tied hashes). Otherwise the
265 contents of the return value can be accessed using the C<He?> macros
266 described here. Note that the caller is responsible for suitably
267 incrementing the reference count of C<val> before the call, and
268 decrementing it if the function returned NULL. Effectively a successful
269 hv_store_ent takes ownership of one reference to C<val>. This is
270 usually what you want; a newly created SV has a reference count of one, so
271 if all your code does is create SVs then store them in a hash, hv_store
272 will own the only reference to the new SV, and your code doesn't need to do
273 anything further to tidy up. Note that hv_store_ent only reads the C<key>;
274 unlike C<val> it does not take ownership of it, so maintaining the correct
275 reference count on C<key> is entirely the caller's responsibility. hv_store
276 is not implemented as a call to hv_store_ent, and does not create a temporary
277 SV for the key, so if your key data is not already in SV form then use
278 hv_store in preference to hv_store_ent.
280 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
281 information on how to use this function on tied hashes.
283 =for apidoc hv_exists
285 Returns a boolean indicating whether the specified hash key exists. The
286 C<klen> is the length of the key.
290 Returns the SV which corresponds to the specified key in the hash. The
291 C<klen> is the length of the key. If C<lval> is set then the fetch will be
292 part of a store. Check that the return value is non-null before
293 dereferencing it to an C<SV*>.
295 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
296 information on how to use this function on tied hashes.
298 =for apidoc hv_exists_ent
300 Returns a boolean indicating whether the specified hash key exists. C<hash>
301 can be a valid precomputed hash value, or 0 to ask for it to be
307 /* returns an HE * structure with the all fields set */
308 /* note that hent_val will be a mortal sv for MAGICAL hashes */
310 =for apidoc hv_fetch_ent
312 Returns the hash entry which corresponds to the specified key in the hash.
313 C<hash> must be a valid precomputed hash number for the given C<key>, or 0
314 if you want the function to compute it. IF C<lval> is set then the fetch
315 will be part of a store. Make sure the return value is non-null before
316 accessing it. The return value when C<tb> is a tied hash is a pointer to a
317 static location, so be sure to make a copy of the structure if you need to
320 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
321 information on how to use this function on tied hashes.
326 /* Common code for hv_delete()/hv_exists()/hv_fetch()/hv_store() */
328 Perl_hv_common_key_len(pTHX_ HV *hv, const char *key, I32 klen_i32,
329 const int action, SV *val, const U32 hash)
334 PERL_ARGS_ASSERT_HV_COMMON_KEY_LEN;
343 return hv_common(hv, NULL, key, klen, flags, action, val, hash);
347 Perl_hv_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
348 int flags, int action, SV *val, register U32 hash)
357 const int return_svp = action & HV_FETCH_JUST_SV;
361 if (SvTYPE(hv) == SVTYPEMASK)
364 assert(SvTYPE(hv) == SVt_PVHV);
366 if (SvSMAGICAL(hv) && SvGMAGICAL(hv) && !(action & HV_DISABLE_UVAR_XKEY)) {
368 if ((mg = mg_find((const SV *)hv, PERL_MAGIC_uvar))) {
369 struct ufuncs * const uf = (struct ufuncs *)mg->mg_ptr;
370 if (uf->uf_set == NULL) {
371 SV* obj = mg->mg_obj;
374 keysv = newSVpvn_flags(key, klen, SVs_TEMP |
375 ((flags & HVhek_UTF8)
379 mg->mg_obj = keysv; /* pass key */
380 uf->uf_index = action; /* pass action */
381 magic_getuvar(MUTABLE_SV(hv), mg);
382 keysv = mg->mg_obj; /* may have changed */
385 /* If the key may have changed, then we need to invalidate
386 any passed-in computed hash value. */
392 if (flags & HVhek_FREEKEY)
394 key = SvPV_const(keysv, klen);
395 is_utf8 = (SvUTF8(keysv) != 0);
396 if (SvIsCOW_shared_hash(keysv)) {
397 flags = HVhek_KEYCANONICAL | (is_utf8 ? HVhek_UTF8 : 0);
402 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
405 if (action & HV_DELETE) {
406 return (void *) hv_delete_common(hv, keysv, key, klen,
407 flags | (is_utf8 ? HVhek_UTF8 : 0),
411 xhv = (XPVHV*)SvANY(hv);
413 if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS))) {
414 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
415 || SvGMAGICAL((const SV *)hv))
417 /* FIXME should be able to skimp on the HE/HEK here when
418 HV_FETCH_JUST_SV is true. */
420 keysv = newSVpvn_utf8(key, klen, is_utf8);
422 keysv = newSVsv(keysv);
425 mg_copy(MUTABLE_SV(hv), sv, (char *)keysv, HEf_SVKEY);
427 /* grab a fake HE/HEK pair from the pool or make a new one */
428 entry = PL_hv_fetch_ent_mh;
430 PL_hv_fetch_ent_mh = HeNEXT(entry);
434 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
435 HeKEY_hek(entry) = (HEK*)k;
437 HeNEXT(entry) = NULL;
438 HeSVKEY_set(entry, keysv);
440 sv_upgrade(sv, SVt_PVLV);
442 /* so we can free entry when freeing sv */
443 LvTARG(sv) = MUTABLE_SV(entry);
445 /* XXX remove at some point? */
446 if (flags & HVhek_FREEKEY)
450 return entry ? (void *) &HeVAL(entry) : NULL;
452 return (void *) entry;
454 #ifdef ENV_IS_CASELESS
455 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
457 for (i = 0; i < klen; ++i)
458 if (isLOWER(key[i])) {
459 /* Would be nice if we had a routine to do the
460 copy and upercase in a single pass through. */
461 const char * const nkey = strupr(savepvn(key,klen));
462 /* Note that this fetch is for nkey (the uppercased
463 key) whereas the store is for key (the original) */
464 void *result = hv_common(hv, NULL, nkey, klen,
465 HVhek_FREEKEY, /* free nkey */
466 0 /* non-LVAL fetch */
467 | HV_DISABLE_UVAR_XKEY
470 0 /* compute hash */);
471 if (!result && (action & HV_FETCH_LVALUE)) {
472 /* This call will free key if necessary.
473 Do it this way to encourage compiler to tail
475 result = hv_common(hv, keysv, key, klen, flags,
477 | HV_DISABLE_UVAR_XKEY
481 if (flags & HVhek_FREEKEY)
489 else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) {
490 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
491 || SvGMAGICAL((const SV *)hv)) {
492 /* I don't understand why hv_exists_ent has svret and sv,
493 whereas hv_exists only had one. */
494 SV * const svret = sv_newmortal();
497 if (keysv || is_utf8) {
499 keysv = newSVpvn_utf8(key, klen, TRUE);
501 keysv = newSVsv(keysv);
503 mg_copy(MUTABLE_SV(hv), sv, (char *)sv_2mortal(keysv), HEf_SVKEY);
505 mg_copy(MUTABLE_SV(hv), sv, key, klen);
507 if (flags & HVhek_FREEKEY)
509 magic_existspack(svret, mg_find(sv, PERL_MAGIC_tiedelem));
510 /* This cast somewhat evil, but I'm merely using NULL/
511 not NULL to return the boolean exists.
512 And I know hv is not NULL. */
513 return SvTRUE(svret) ? (void *)hv : NULL;
515 #ifdef ENV_IS_CASELESS
516 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
517 /* XXX This code isn't UTF8 clean. */
518 char * const keysave = (char * const)key;
519 /* Will need to free this, so set FREEKEY flag. */
520 key = savepvn(key,klen);
521 key = (const char*)strupr((char*)key);
526 if (flags & HVhek_FREEKEY) {
529 flags |= HVhek_FREEKEY;
533 else if (action & HV_FETCH_ISSTORE) {
536 hv_magic_check (hv, &needs_copy, &needs_store);
538 const bool save_taint = PL_tainted;
539 if (keysv || is_utf8) {
541 keysv = newSVpvn_utf8(key, klen, TRUE);
544 PL_tainted = SvTAINTED(keysv);
545 keysv = sv_2mortal(newSVsv(keysv));
546 mg_copy(MUTABLE_SV(hv), val, (char*)keysv, HEf_SVKEY);
548 mg_copy(MUTABLE_SV(hv), val, key, klen);
551 TAINT_IF(save_taint);
553 if (flags & HVhek_FREEKEY)
557 #ifdef ENV_IS_CASELESS
558 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
559 /* XXX This code isn't UTF8 clean. */
560 const char *keysave = key;
561 /* Will need to free this, so set FREEKEY flag. */
562 key = savepvn(key,klen);
563 key = (const char*)strupr((char*)key);
568 if (flags & HVhek_FREEKEY) {
571 flags |= HVhek_FREEKEY;
579 if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE))
580 #ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */
581 || (SvRMAGICAL((const SV *)hv)
582 && mg_find((const SV *)hv, PERL_MAGIC_env))
587 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
589 HvARRAY(hv) = (HE**)array;
591 #ifdef DYNAMIC_ENV_FETCH
592 else if (action & HV_FETCH_ISEXISTS) {
593 /* for an %ENV exists, if we do an insert it's by a recursive
594 store call, so avoid creating HvARRAY(hv) right now. */
598 /* XXX remove at some point? */
599 if (flags & HVhek_FREEKEY)
606 if (is_utf8 & !(flags & HVhek_KEYCANONICAL)) {
607 char * const keysave = (char *)key;
608 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
612 flags &= ~HVhek_UTF8;
613 if (key != keysave) {
614 if (flags & HVhek_FREEKEY)
616 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
617 /* If the caller calculated a hash, it was on the sequence of
618 octets that are the UTF-8 form. We've now changed the sequence
619 of octets stored to that of the equivalent byte representation,
620 so the hash we need is different. */
626 PERL_HASH_INTERNAL(hash, key, klen);
627 /* We don't have a pointer to the hv, so we have to replicate the
628 flag into every HEK, so that hv_iterkeysv can see it. */
629 /* And yes, you do need this even though you are not "storing" because
630 you can flip the flags below if doing an lval lookup. (And that
631 was put in to give the semantics Andreas was expecting.) */
632 flags |= HVhek_REHASH;
634 if (keysv && (SvIsCOW_shared_hash(keysv))) {
635 hash = SvSHARED_HASH(keysv);
637 PERL_HASH(hash, key, klen);
641 masked_flags = (flags & HVhek_MASK);
643 #ifdef DYNAMIC_ENV_FETCH
644 if (!HvARRAY(hv)) entry = NULL;
648 entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)];
650 for (; entry; entry = HeNEXT(entry)) {
651 if (HeHASH(entry) != hash) /* strings can't be equal */
653 if (HeKLEN(entry) != (I32)klen)
655 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
657 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
660 if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) {
661 if (HeKFLAGS(entry) != masked_flags) {
662 /* We match if HVhek_UTF8 bit in our flags and hash key's
663 match. But if entry was set previously with HVhek_WASUTF8
664 and key now doesn't (or vice versa) then we should change
665 the key's flag, as this is assignment. */
666 if (HvSHAREKEYS(hv)) {
667 /* Need to swap the key we have for a key with the flags we
668 need. As keys are shared we can't just write to the
669 flag, so we share the new one, unshare the old one. */
670 HEK * const new_hek = share_hek_flags(key, klen, hash,
672 unshare_hek (HeKEY_hek(entry));
673 HeKEY_hek(entry) = new_hek;
675 else if (hv == PL_strtab) {
676 /* PL_strtab is usually the only hash without HvSHAREKEYS,
677 so putting this test here is cheap */
678 if (flags & HVhek_FREEKEY)
680 Perl_croak(aTHX_ S_strtab_error,
681 action & HV_FETCH_LVALUE ? "fetch" : "store");
684 HeKFLAGS(entry) = masked_flags;
685 if (masked_flags & HVhek_ENABLEHVKFLAGS)
688 if (HeVAL(entry) == &PL_sv_placeholder) {
689 /* yes, can store into placeholder slot */
690 if (action & HV_FETCH_LVALUE) {
692 /* This preserves behaviour with the old hv_fetch
693 implementation which at this point would bail out
694 with a break; (at "if we find a placeholder, we
695 pretend we haven't found anything")
697 That break mean that if a placeholder were found, it
698 caused a call into hv_store, which in turn would
699 check magic, and if there is no magic end up pretty
700 much back at this point (in hv_store's code). */
703 /* LVAL fetch which actaully needs a store. */
705 HvPLACEHOLDERS(hv)--;
708 if (val != &PL_sv_placeholder)
709 HvPLACEHOLDERS(hv)--;
712 } else if (action & HV_FETCH_ISSTORE) {
713 SvREFCNT_dec(HeVAL(entry));
716 } else if (HeVAL(entry) == &PL_sv_placeholder) {
717 /* if we find a placeholder, we pretend we haven't found
721 if (flags & HVhek_FREEKEY)
724 return entry ? (void *) &HeVAL(entry) : NULL;
728 #ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */
729 if (!(action & HV_FETCH_ISSTORE)
730 && SvRMAGICAL((const SV *)hv)
731 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
733 const char * const env = PerlEnv_ENVgetenv_len(key,&len);
735 sv = newSVpvn(env,len);
737 return hv_common(hv, keysv, key, klen, flags,
738 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
744 if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) {
745 hv_notallowed(flags, key, klen,
746 "Attempt to access disallowed key '%"SVf"' in"
747 " a restricted hash");
749 if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) {
750 /* Not doing some form of store, so return failure. */
751 if (flags & HVhek_FREEKEY)
755 if (action & HV_FETCH_LVALUE) {
758 /* At this point the old hv_fetch code would call to hv_store,
759 which in turn might do some tied magic. So we need to make that
760 magic check happen. */
761 /* gonna assign to this, so it better be there */
762 /* If a fetch-as-store fails on the fetch, then the action is to
763 recurse once into "hv_store". If we didn't do this, then that
764 recursive call would call the key conversion routine again.
765 However, as we replace the original key with the converted
766 key, this would result in a double conversion, which would show
767 up as a bug if the conversion routine is not idempotent. */
768 return hv_common(hv, keysv, key, klen, flags,
769 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
771 /* XXX Surely that could leak if the fetch-was-store fails?
772 Just like the hv_fetch. */
776 /* Welcome to hv_store... */
779 /* Not sure if we can get here. I think the only case of oentry being
780 NULL is for %ENV with dynamic env fetch. But that should disappear
781 with magic in the previous code. */
784 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
786 HvARRAY(hv) = (HE**)array;
789 oentry = &(HvARRAY(hv))[hash & (I32) xhv->xhv_max];
792 /* share_hek_flags will do the free for us. This might be considered
795 HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags);
796 else if (hv == PL_strtab) {
797 /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting
798 this test here is cheap */
799 if (flags & HVhek_FREEKEY)
801 Perl_croak(aTHX_ S_strtab_error,
802 action & HV_FETCH_LVALUE ? "fetch" : "store");
804 else /* gotta do the real thing */
805 HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags);
807 HeNEXT(entry) = *oentry;
810 if (val == &PL_sv_placeholder)
811 HvPLACEHOLDERS(hv)++;
812 if (masked_flags & HVhek_ENABLEHVKFLAGS)
816 const HE *counter = HeNEXT(entry);
818 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
819 if (!counter) { /* initial entry? */
820 xhv->xhv_fill++; /* HvFILL(hv)++ */
821 } else if (xhv->xhv_keys > (IV)xhv->xhv_max) {
823 } else if(!HvREHASH(hv)) {
826 while ((counter = HeNEXT(counter)))
829 if (n_links > HV_MAX_LENGTH_BEFORE_SPLIT) {
830 /* Use only the old HvKEYS(hv) > HvMAX(hv) condition to limit
831 bucket splits on a rehashed hash, as we're not going to
832 split it again, and if someone is lucky (evil) enough to
833 get all the keys in one list they could exhaust our memory
834 as we repeatedly double the number of buckets on every
835 entry. Linear search feels a less worse thing to do. */
842 return entry ? (void *) &HeVAL(entry) : NULL;
844 return (void *) entry;
848 S_hv_magic_check(HV *hv, bool *needs_copy, bool *needs_store)
850 const MAGIC *mg = SvMAGIC(hv);
852 PERL_ARGS_ASSERT_HV_MAGIC_CHECK;
857 if (isUPPER(mg->mg_type)) {
859 if (mg->mg_type == PERL_MAGIC_tied) {
860 *needs_store = FALSE;
861 return; /* We've set all there is to set. */
864 mg = mg->mg_moremagic;
869 =for apidoc hv_scalar
871 Evaluates the hash in scalar context and returns the result. Handles magic when the hash is tied.
877 Perl_hv_scalar(pTHX_ HV *hv)
881 PERL_ARGS_ASSERT_HV_SCALAR;
883 if (SvRMAGICAL(hv)) {
884 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_tied);
886 return magic_scalarpack(hv, mg);
890 if (HvTOTALKEYS((const HV *)hv))
891 Perl_sv_setpvf(aTHX_ sv, "%ld/%ld",
892 (long)HvFILL(hv), (long)HvMAX(hv) + 1);
900 =for apidoc hv_delete
902 Deletes a key/value pair in the hash. The value SV is removed from the
903 hash and returned to the caller. The C<klen> is the length of the key.
904 The C<flags> value will normally be zero; if set to G_DISCARD then NULL
907 =for apidoc hv_delete_ent
909 Deletes a key/value pair in the hash. The value SV is removed from the
910 hash and returned to the caller. The C<flags> value will normally be zero;
911 if set to G_DISCARD then NULL will be returned. C<hash> can be a valid
912 precomputed hash value, or 0 to ask for it to be computed.
918 S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
919 int k_flags, I32 d_flags, U32 hash)
924 register HE **oentry;
925 HE *const *first_entry;
926 bool is_utf8 = (k_flags & HVhek_UTF8) ? TRUE : FALSE;
929 if (SvRMAGICAL(hv)) {
932 hv_magic_check (hv, &needs_copy, &needs_store);
936 entry = (HE *) hv_common(hv, keysv, key, klen,
937 k_flags & ~HVhek_FREEKEY,
938 HV_FETCH_LVALUE|HV_DISABLE_UVAR_XKEY,
940 sv = entry ? HeVAL(entry) : NULL;
946 if (mg_find(sv, PERL_MAGIC_tiedelem)) {
947 /* No longer an element */
948 sv_unmagic(sv, PERL_MAGIC_tiedelem);
951 return NULL; /* element cannot be deleted */
953 #ifdef ENV_IS_CASELESS
954 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
955 /* XXX This code isn't UTF8 clean. */
956 keysv = newSVpvn_flags(key, klen, SVs_TEMP);
957 if (k_flags & HVhek_FREEKEY) {
960 key = strupr(SvPVX(keysv));
969 xhv = (XPVHV*)SvANY(hv);
974 const char * const keysave = key;
975 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
978 k_flags |= HVhek_UTF8;
980 k_flags &= ~HVhek_UTF8;
981 if (key != keysave) {
982 if (k_flags & HVhek_FREEKEY) {
983 /* This shouldn't happen if our caller does what we expect,
984 but strictly the API allows it. */
987 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
989 HvHASKFLAGS_on(MUTABLE_SV(hv));
993 PERL_HASH_INTERNAL(hash, key, klen);
995 if (keysv && (SvIsCOW_shared_hash(keysv))) {
996 hash = SvSHARED_HASH(keysv);
998 PERL_HASH(hash, key, klen);
1002 masked_flags = (k_flags & HVhek_MASK);
1004 first_entry = oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)];
1006 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
1008 if (HeHASH(entry) != hash) /* strings can't be equal */
1010 if (HeKLEN(entry) != (I32)klen)
1012 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
1014 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
1017 if (hv == PL_strtab) {
1018 if (k_flags & HVhek_FREEKEY)
1020 Perl_croak(aTHX_ S_strtab_error, "delete");
1023 /* if placeholder is here, it's already been deleted.... */
1024 if (HeVAL(entry) == &PL_sv_placeholder) {
1025 if (k_flags & HVhek_FREEKEY)
1029 if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1030 hv_notallowed(k_flags, key, klen,
1031 "Attempt to delete readonly key '%"SVf"' from"
1032 " a restricted hash");
1034 if (k_flags & HVhek_FREEKEY)
1037 if (d_flags & G_DISCARD)
1040 sv = sv_2mortal(HeVAL(entry));
1041 HeVAL(entry) = &PL_sv_placeholder;
1045 * If a restricted hash, rather than really deleting the entry, put
1046 * a placeholder there. This marks the key as being "approved", so
1047 * we can still access via not-really-existing key without raising
1050 if (SvREADONLY(hv)) {
1051 SvREFCNT_dec(HeVAL(entry));
1052 HeVAL(entry) = &PL_sv_placeholder;
1053 /* We'll be saving this slot, so the number of allocated keys
1054 * doesn't go down, but the number placeholders goes up */
1055 HvPLACEHOLDERS(hv)++;
1057 *oentry = HeNEXT(entry);
1059 xhv->xhv_fill--; /* HvFILL(hv)-- */
1061 if (SvOOK(hv) && entry == HvAUX(hv)->xhv_eiter /* HvEITER(hv) */)
1064 hv_free_ent(hv, entry);
1065 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
1066 if (xhv->xhv_keys == 0)
1067 HvHASKFLAGS_off(hv);
1071 if (SvREADONLY(hv)) {
1072 hv_notallowed(k_flags, key, klen,
1073 "Attempt to delete disallowed key '%"SVf"' from"
1074 " a restricted hash");
1077 if (k_flags & HVhek_FREEKEY)
1083 S_hsplit(pTHX_ HV *hv)
1086 register XPVHV* const xhv = (XPVHV*)SvANY(hv);
1087 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1088 register I32 newsize = oldsize * 2;
1090 char *a = (char*) HvARRAY(hv);
1092 register HE **oentry;
1093 int longest_chain = 0;
1096 PERL_ARGS_ASSERT_HSPLIT;
1098 /*PerlIO_printf(PerlIO_stderr(), "hsplit called for %p which had %d\n",
1099 (void*)hv, (int) oldsize);*/
1101 if (HvPLACEHOLDERS_get(hv) && !SvREADONLY(hv)) {
1102 /* Can make this clear any placeholders first for non-restricted hashes,
1103 even though Storable rebuilds restricted hashes by putting in all the
1104 placeholders (first) before turning on the readonly flag, because
1105 Storable always pre-splits the hash. */
1106 hv_clear_placeholders(hv);
1110 #if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1111 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1112 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1118 Move(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1121 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1122 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1127 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1129 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1131 if (oldsize >= 64) {
1132 offer_nice_chunk(HvARRAY(hv),
1133 PERL_HV_ARRAY_ALLOC_BYTES(oldsize)
1134 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0));
1137 Safefree(HvARRAY(hv));
1141 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1142 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1143 HvARRAY(hv) = (HE**) a;
1146 for (i=0; i<oldsize; i++,aep++) {
1147 int left_length = 0;
1148 int right_length = 0;
1152 if (!*aep) /* non-existent */
1155 for (oentry = aep, entry = *aep; entry; entry = *oentry) {
1156 if ((HeHASH(entry) & newsize) != (U32)i) {
1157 *oentry = HeNEXT(entry);
1158 HeNEXT(entry) = *bep;
1160 xhv->xhv_fill++; /* HvFILL(hv)++ */
1166 oentry = &HeNEXT(entry);
1170 if (!*aep) /* everything moved */
1171 xhv->xhv_fill--; /* HvFILL(hv)-- */
1172 /* I think we don't actually need to keep track of the longest length,
1173 merely flag if anything is too long. But for the moment while
1174 developing this code I'll track it. */
1175 if (left_length > longest_chain)
1176 longest_chain = left_length;
1177 if (right_length > longest_chain)
1178 longest_chain = right_length;
1182 /* Pick your policy for "hashing isn't working" here: */
1183 if (longest_chain <= HV_MAX_LENGTH_BEFORE_SPLIT /* split worked? */
1188 if (hv == PL_strtab) {
1189 /* Urg. Someone is doing something nasty to the string table.
1194 /* Awooga. Awooga. Pathological data. */
1195 /*PerlIO_printf(PerlIO_stderr(), "%p %d of %d with %d/%d buckets\n", (void*)hv,
1196 longest_chain, HvTOTALKEYS(hv), HvFILL(hv), 1+HvMAX(hv));*/
1199 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1200 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1202 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1205 was_shared = HvSHAREKEYS(hv);
1208 HvSHAREKEYS_off(hv);
1213 for (i=0; i<newsize; i++,aep++) {
1214 register HE *entry = *aep;
1216 /* We're going to trash this HE's next pointer when we chain it
1217 into the new hash below, so store where we go next. */
1218 HE * const next = HeNEXT(entry);
1223 PERL_HASH_INTERNAL(hash, HeKEY(entry), HeKLEN(entry));
1228 = save_hek_flags(HeKEY(entry), HeKLEN(entry),
1229 hash, HeKFLAGS(entry));
1230 unshare_hek (HeKEY_hek(entry));
1231 HeKEY_hek(entry) = new_hek;
1233 /* Not shared, so simply write the new hash in. */
1234 HeHASH(entry) = hash;
1236 /*PerlIO_printf(PerlIO_stderr(), "%d ", HeKFLAGS(entry));*/
1237 HEK_REHASH_on(HeKEY_hek(entry));
1238 /*PerlIO_printf(PerlIO_stderr(), "%d\n", HeKFLAGS(entry));*/
1240 /* Copy oentry to the correct new chain. */
1241 bep = ((HE**)a) + (hash & (I32) xhv->xhv_max);
1243 xhv->xhv_fill++; /* HvFILL(hv)++ */
1244 HeNEXT(entry) = *bep;
1250 Safefree (HvARRAY(hv));
1251 HvARRAY(hv) = (HE **)a;
1255 Perl_hv_ksplit(pTHX_ HV *hv, IV newmax)
1258 register XPVHV* xhv = (XPVHV*)SvANY(hv);
1259 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1260 register I32 newsize;
1265 register HE **oentry;
1267 PERL_ARGS_ASSERT_HV_KSPLIT;
1269 newsize = (I32) newmax; /* possible truncation here */
1270 if (newsize != newmax || newmax <= oldsize)
1272 while ((newsize & (1 + ~newsize)) != newsize) {
1273 newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */
1275 if (newsize < newmax)
1277 if (newsize < newmax)
1278 return; /* overflow detection */
1280 a = (char *) HvARRAY(hv);
1283 #if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1284 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1285 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1291 Copy(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1294 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1295 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1300 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1302 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1304 if (oldsize >= 64) {
1305 offer_nice_chunk(HvARRAY(hv),
1306 PERL_HV_ARRAY_ALLOC_BYTES(oldsize)
1307 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0));
1310 Safefree(HvARRAY(hv));
1313 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1316 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
1318 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1319 HvARRAY(hv) = (HE **) a;
1320 if (!xhv->xhv_keys /* !HvTOTALKEYS(hv) */) /* skip rest if no entries */
1324 for (i=0; i<oldsize; i++,aep++) {
1325 if (!*aep) /* non-existent */
1327 for (oentry = aep, entry = *aep; entry; entry = *oentry) {
1328 register I32 j = (HeHASH(entry) & newsize);
1332 *oentry = HeNEXT(entry);
1333 if (!(HeNEXT(entry) = aep[j]))
1334 xhv->xhv_fill++; /* HvFILL(hv)++ */
1339 oentry = &HeNEXT(entry);
1341 if (!*aep) /* everything moved */
1342 xhv->xhv_fill--; /* HvFILL(hv)-- */
1347 Perl_newHVhv(pTHX_ HV *ohv)
1350 HV * const hv = newHV();
1353 if (!ohv || !HvTOTALKEYS(ohv))
1355 hv_max = HvMAX(ohv);
1357 if (!SvMAGICAL((const SV *)ohv)) {
1358 /* It's an ordinary hash, so copy it fast. AMS 20010804 */
1360 const bool shared = !!HvSHAREKEYS(ohv);
1361 HE **ents, ** const oents = (HE **)HvARRAY(ohv);
1363 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char);
1366 /* In each bucket... */
1367 for (i = 0; i <= hv_max; i++) {
1369 HE *oent = oents[i];
1376 /* Copy the linked list of entries. */
1377 for (; oent; oent = HeNEXT(oent)) {
1378 const U32 hash = HeHASH(oent);
1379 const char * const key = HeKEY(oent);
1380 const STRLEN len = HeKLEN(oent);
1381 const int flags = HeKFLAGS(oent);
1382 HE * const ent = new_HE();
1383 SV *const val = HeVAL(oent);
1385 HeVAL(ent) = SvIMMORTAL(val) ? val : newSVsv(val);
1387 = shared ? share_hek_flags(key, len, hash, flags)
1388 : save_hek_flags(key, len, hash, flags);
1399 HvFILL(hv) = HvFILL(ohv);
1400 HvTOTALKEYS(hv) = HvTOTALKEYS(ohv);
1404 /* Iterate over ohv, copying keys and values one at a time. */
1406 const I32 riter = HvRITER_get(ohv);
1407 HE * const eiter = HvEITER_get(ohv);
1408 STRLEN hv_fill = HvFILL(ohv);
1410 /* Can we use fewer buckets? (hv_max is always 2^n-1) */
1411 while (hv_max && hv_max + 1 >= hv_fill * 2)
1412 hv_max = hv_max / 2;
1416 while ((entry = hv_iternext_flags(ohv, 0))) {
1417 SV *const val = HeVAL(entry);
1418 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1419 SvIMMORTAL(val) ? val : newSVsv(val),
1420 HeHASH(entry), HeKFLAGS(entry));
1422 HvRITER_set(ohv, riter);
1423 HvEITER_set(ohv, eiter);
1429 /* A rather specialised version of newHVhv for copying %^H, ensuring all the
1430 magic stays on it. */
1432 Perl_hv_copy_hints_hv(pTHX_ HV *const ohv)
1434 HV * const hv = newHV();
1436 if (ohv && HvTOTALKEYS(ohv)) {
1437 STRLEN hv_max = HvMAX(ohv);
1438 STRLEN hv_fill = HvFILL(ohv);
1440 const I32 riter = HvRITER_get(ohv);
1441 HE * const eiter = HvEITER_get(ohv);
1443 while (hv_max && hv_max + 1 >= hv_fill * 2)
1444 hv_max = hv_max / 2;
1448 while ((entry = hv_iternext_flags(ohv, 0))) {
1449 SV *const sv = newSVsv(HeVAL(entry));
1450 SV *heksv = newSVhek(HeKEY_hek(entry));
1451 sv_magic(sv, NULL, PERL_MAGIC_hintselem,
1452 (char *)heksv, HEf_SVKEY);
1453 SvREFCNT_dec(heksv);
1454 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1455 sv, HeHASH(entry), HeKFLAGS(entry));
1457 HvRITER_set(ohv, riter);
1458 HvEITER_set(ohv, eiter);
1460 hv_magic(hv, NULL, PERL_MAGIC_hints);
1465 Perl_hv_free_ent(pTHX_ HV *hv, register HE *entry)
1470 PERL_ARGS_ASSERT_HV_FREE_ENT;
1475 if (HvNAME(hv) && anonymise_cv(HvNAME_HEK(hv), val) && GvCVu(val))
1476 mro_method_changed_in(hv);
1478 if (HeKLEN(entry) == HEf_SVKEY) {
1479 SvREFCNT_dec(HeKEY_sv(entry));
1480 Safefree(HeKEY_hek(entry));
1482 else if (HvSHAREKEYS(hv))
1483 unshare_hek(HeKEY_hek(entry));
1485 Safefree(HeKEY_hek(entry));
1490 S_anonymise_cv(pTHX_ HEK *stash, SV *val)
1494 PERL_ARGS_ASSERT_ANONYMISE_CV;
1496 if (val && isGV(val) && isGV_with_GP(val) && (cv = GvCV(val))) {
1497 if ((SV *)CvGV(cv) == val) {
1501 SV *gvname = newSVhek(stash);
1502 sv_catpvs(gvname, "::__ANON__");
1503 anongv = gv_fetchsv(gvname, GV_ADDMULTI, SVt_PVCV);
1504 SvREFCNT_dec(gvname);
1506 anongv = gv_fetchpvs("__ANON__::__ANON__", GV_ADDMULTI,
1518 Perl_hv_delayfree_ent(pTHX_ HV *hv, register HE *entry)
1522 PERL_ARGS_ASSERT_HV_DELAYFREE_ENT;
1526 /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */
1527 sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */
1528 if (HeKLEN(entry) == HEf_SVKEY) {
1529 sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry)));
1531 hv_free_ent(hv, entry);
1535 =for apidoc hv_clear
1537 Clears a hash, making it empty.
1543 Perl_hv_clear(pTHX_ HV *hv)
1546 register XPVHV* xhv;
1550 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1552 xhv = (XPVHV*)SvANY(hv);
1554 if (SvREADONLY(hv) && HvARRAY(hv) != NULL) {
1555 /* restricted hash: convert all keys to placeholders */
1557 for (i = 0; i <= xhv->xhv_max; i++) {
1558 HE *entry = (HvARRAY(hv))[i];
1559 for (; entry; entry = HeNEXT(entry)) {
1560 /* not already placeholder */
1561 if (HeVAL(entry) != &PL_sv_placeholder) {
1562 if (HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1563 SV* const keysv = hv_iterkeysv(entry);
1565 "Attempt to delete readonly key '%"SVf"' from a restricted hash",
1568 SvREFCNT_dec(HeVAL(entry));
1569 HeVAL(entry) = &PL_sv_placeholder;
1570 HvPLACEHOLDERS(hv)++;
1578 HvPLACEHOLDERS_set(hv, 0);
1580 Zero(HvARRAY(hv), xhv->xhv_max+1 /* HvMAX(hv)+1 */, HE*);
1583 mg_clear(MUTABLE_SV(hv));
1585 HvHASKFLAGS_off(hv);
1590 mro_isa_changed_in(hv);
1591 HvEITER_set(hv, NULL);
1596 =for apidoc hv_clear_placeholders
1598 Clears any placeholders from a hash. If a restricted hash has any of its keys
1599 marked as readonly and the key is subsequently deleted, the key is not actually
1600 deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags
1601 it so it will be ignored by future operations such as iterating over the hash,
1602 but will still allow the hash to have a value reassigned to the key at some
1603 future point. This function clears any such placeholder keys from the hash.
1604 See Hash::Util::lock_keys() for an example of its use.
1610 Perl_hv_clear_placeholders(pTHX_ HV *hv)
1613 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
1615 PERL_ARGS_ASSERT_HV_CLEAR_PLACEHOLDERS;
1618 clear_placeholders(hv, items);
1622 S_clear_placeholders(pTHX_ HV *hv, U32 items)
1627 PERL_ARGS_ASSERT_CLEAR_PLACEHOLDERS;
1634 /* Loop down the linked list heads */
1636 HE **oentry = &(HvARRAY(hv))[i];
1639 while ((entry = *oentry)) {
1640 if (HeVAL(entry) == &PL_sv_placeholder) {
1641 *oentry = HeNEXT(entry);
1642 if (first && !*oentry)
1643 HvFILL(hv)--; /* This linked list is now empty. */
1644 if (entry == HvEITER_get(hv))
1647 hv_free_ent(hv, entry);
1651 HvTOTALKEYS(hv) -= (IV)HvPLACEHOLDERS_get(hv);
1652 if (HvKEYS(hv) == 0)
1653 HvHASKFLAGS_off(hv);
1654 HvPLACEHOLDERS_set(hv, 0);
1658 oentry = &HeNEXT(entry);
1663 /* You can't get here, hence assertion should always fail. */
1664 assert (items == 0);
1669 S_hfreeentries(pTHX_ HV *hv)
1671 /* This is the array that we're going to restore */
1672 HE **const orig_array = HvARRAY(hv);
1676 PERL_ARGS_ASSERT_HFREEENTRIES;
1681 if (HvNAME(hv) && orig_array != NULL) {
1682 /* symbol table: make all the contained subs ANON */
1684 XPVHV *xhv = (XPVHV*)SvANY(hv);
1686 for (i = 0; i <= xhv->xhv_max; i++) {
1687 HE *entry = (HvARRAY(hv))[i];
1688 for (; entry; entry = HeNEXT(entry)) {
1689 SV *val = HeVAL(entry);
1690 /* we need to put the subs in the __ANON__ symtable, as
1691 * this one is being cleared. */
1692 anonymise_cv(NULL, val);
1698 /* If the hash is actually a symbol table with a name, look after the
1700 struct xpvhv_aux *iter = HvAUX(hv);
1702 name = iter->xhv_name;
1703 iter->xhv_name = NULL;
1708 /* orig_array remains unchanged throughout the loop. If after freeing all
1709 the entries it turns out that one of the little blighters has triggered
1710 an action that has caused HvARRAY to be re-allocated, then we set
1711 array to the new HvARRAY, and try again. */
1714 /* This is the one we're going to try to empty. First time round
1715 it's the original array. (Hopefully there will only be 1 time
1717 HE ** const array = HvARRAY(hv);
1720 /* Because we have taken xhv_name out, the only allocated pointer
1721 in the aux structure that might exist is the backreference array.
1726 struct mro_meta *meta;
1727 struct xpvhv_aux *iter = HvAUX(hv);
1728 /* If there are weak references to this HV, we need to avoid
1729 freeing them up here. In particular we need to keep the AV
1730 visible as what we're deleting might well have weak references
1731 back to this HV, so the for loop below may well trigger
1732 the removal of backreferences from this array. */
1734 if (iter->xhv_backreferences) {
1735 /* So donate them to regular backref magic to keep them safe.
1736 The sv_magic will increase the reference count of the AV,
1737 so we need to drop it first. */
1738 SvREFCNT_dec(iter->xhv_backreferences);
1739 if (AvFILLp(iter->xhv_backreferences) == -1) {
1740 /* Turns out that the array is empty. Just free it. */
1741 SvREFCNT_dec(iter->xhv_backreferences);
1744 sv_magic(MUTABLE_SV(hv),
1745 MUTABLE_SV(iter->xhv_backreferences),
1746 PERL_MAGIC_backref, NULL, 0);
1748 iter->xhv_backreferences = NULL;
1751 entry = iter->xhv_eiter; /* HvEITER(hv) */
1752 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1754 hv_free_ent(hv, entry);
1756 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1757 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1759 if((meta = iter->xhv_mro_meta)) {
1760 if (meta->mro_linear_all) {
1761 SvREFCNT_dec(MUTABLE_SV(meta->mro_linear_all));
1762 meta->mro_linear_all = NULL;
1763 /* This is just acting as a shortcut pointer. */
1764 meta->mro_linear_current = NULL;
1765 } else if (meta->mro_linear_current) {
1766 /* Only the current MRO is stored, so this owns the data.
1768 SvREFCNT_dec(meta->mro_linear_current);
1769 meta->mro_linear_current = NULL;
1771 if(meta->mro_nextmethod) SvREFCNT_dec(meta->mro_nextmethod);
1772 SvREFCNT_dec(meta->isa);
1774 iter->xhv_mro_meta = NULL;
1777 /* There are now no allocated pointers in the aux structure. */
1779 SvFLAGS(hv) &= ~SVf_OOK; /* Goodbye, aux structure. */
1780 /* What aux structure? */
1783 /* make everyone else think the array is empty, so that the destructors
1784 * called for freed entries can't recusively mess with us */
1787 ((XPVHV*) SvANY(hv))->xhv_keys = 0;
1791 /* Loop down the linked list heads */
1792 HE *entry = array[i];
1795 register HE * const oentry = entry;
1796 entry = HeNEXT(entry);
1797 hv_free_ent(hv, oentry);
1801 /* As there are no allocated pointers in the aux structure, it's now
1802 safe to free the array we just cleaned up, if it's not the one we're
1803 going to put back. */
1804 if (array != orig_array) {
1809 /* Good. No-one added anything this time round. */
1814 /* Someone attempted to iterate or set the hash name while we had
1815 the array set to 0. We'll catch backferences on the next time
1816 round the while loop. */
1817 assert(HvARRAY(hv));
1819 if (HvAUX(hv)->xhv_name) {
1820 unshare_hek_or_pvn(HvAUX(hv)->xhv_name, 0, 0, 0);
1824 if (--attempts == 0) {
1825 Perl_die(aTHX_ "panic: hfreeentries failed to free hash - something is repeatedly re-creating entries");
1829 HvARRAY(hv) = orig_array;
1831 /* If the hash was actually a symbol table, put the name back. */
1833 /* We have restored the original array. If name is non-NULL, then
1834 the original array had an aux structure at the end. So this is
1836 SvFLAGS(hv) |= SVf_OOK;
1837 HvAUX(hv)->xhv_name = name;
1842 =for apidoc hv_undef
1850 Perl_hv_undef(pTHX_ HV *hv)
1853 register XPVHV* xhv;
1858 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1859 xhv = (XPVHV*)SvANY(hv);
1861 if ((name = HvNAME_get(hv)) && !PL_dirty)
1862 mro_isa_changed_in(hv);
1867 (void)hv_delete(PL_stashcache, name, HvNAMELEN_get(hv), G_DISCARD);
1868 hv_name_set(hv, NULL, 0, 0);
1870 SvFLAGS(hv) &= ~SVf_OOK;
1871 Safefree(HvARRAY(hv));
1872 xhv->xhv_max = 7; /* HvMAX(hv) = 7 (it's a normal hash) */
1874 HvPLACEHOLDERS_set(hv, 0);
1877 mg_clear(MUTABLE_SV(hv));
1880 static struct xpvhv_aux*
1881 S_hv_auxinit(HV *hv) {
1882 struct xpvhv_aux *iter;
1885 PERL_ARGS_ASSERT_HV_AUXINIT;
1888 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1889 + sizeof(struct xpvhv_aux), char);
1891 array = (char *) HvARRAY(hv);
1892 Renew(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1893 + sizeof(struct xpvhv_aux), char);
1895 HvARRAY(hv) = (HE**) array;
1896 /* SvOOK_on(hv) attacks the IV flags. */
1897 SvFLAGS(hv) |= SVf_OOK;
1900 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1901 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1903 iter->xhv_backreferences = 0;
1904 iter->xhv_mro_meta = NULL;
1909 =for apidoc hv_iterinit
1911 Prepares a starting point to traverse a hash table. Returns the number of
1912 keys in the hash (i.e. the same as C<HvKEYS(tb)>). The return value is
1913 currently only meaningful for hashes without tie magic.
1915 NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number of
1916 hash buckets that happen to be in use. If you still need that esoteric
1917 value, you can get it through the macro C<HvFILL(tb)>.
1924 Perl_hv_iterinit(pTHX_ HV *hv)
1926 PERL_ARGS_ASSERT_HV_ITERINIT;
1928 /* FIXME: Are we not NULL, or do we croak? Place bets now! */
1931 Perl_croak(aTHX_ "Bad hash");
1934 struct xpvhv_aux * const iter = HvAUX(hv);
1935 HE * const entry = iter->xhv_eiter; /* HvEITER(hv) */
1936 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1938 hv_free_ent(hv, entry);
1940 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1941 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1946 /* used to be xhv->xhv_fill before 5.004_65 */
1947 return HvTOTALKEYS(hv);
1951 Perl_hv_riter_p(pTHX_ HV *hv) {
1952 struct xpvhv_aux *iter;
1954 PERL_ARGS_ASSERT_HV_RITER_P;
1957 Perl_croak(aTHX_ "Bad hash");
1959 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1960 return &(iter->xhv_riter);
1964 Perl_hv_eiter_p(pTHX_ HV *hv) {
1965 struct xpvhv_aux *iter;
1967 PERL_ARGS_ASSERT_HV_EITER_P;
1970 Perl_croak(aTHX_ "Bad hash");
1972 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1973 return &(iter->xhv_eiter);
1977 Perl_hv_riter_set(pTHX_ HV *hv, I32 riter) {
1978 struct xpvhv_aux *iter;
1980 PERL_ARGS_ASSERT_HV_RITER_SET;
1983 Perl_croak(aTHX_ "Bad hash");
1991 iter = hv_auxinit(hv);
1993 iter->xhv_riter = riter;
1997 Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter) {
1998 struct xpvhv_aux *iter;
2000 PERL_ARGS_ASSERT_HV_EITER_SET;
2003 Perl_croak(aTHX_ "Bad hash");
2008 /* 0 is the default so don't go malloc()ing a new structure just to
2013 iter = hv_auxinit(hv);
2015 iter->xhv_eiter = eiter;
2019 Perl_hv_name_set(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
2022 struct xpvhv_aux *iter;
2025 PERL_ARGS_ASSERT_HV_NAME_SET;
2026 PERL_UNUSED_ARG(flags);
2029 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
2033 if (iter->xhv_name) {
2034 unshare_hek_or_pvn(iter->xhv_name, 0, 0, 0);
2040 iter = hv_auxinit(hv);
2042 PERL_HASH(hash, name, len);
2043 iter->xhv_name = name ? share_hek(name, len, hash) : NULL;
2047 Perl_hv_backreferences_p(pTHX_ HV *hv) {
2048 struct xpvhv_aux * const iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
2050 PERL_ARGS_ASSERT_HV_BACKREFERENCES_P;
2051 PERL_UNUSED_CONTEXT;
2053 return &(iter->xhv_backreferences);
2057 Perl_hv_kill_backrefs(pTHX_ HV *hv) {
2060 PERL_ARGS_ASSERT_HV_KILL_BACKREFS;
2065 av = HvAUX(hv)->xhv_backreferences;
2068 HvAUX(hv)->xhv_backreferences = 0;
2069 Perl_sv_kill_backrefs(aTHX_ MUTABLE_SV(hv), av);
2075 hv_iternext is implemented as a macro in hv.h
2077 =for apidoc hv_iternext
2079 Returns entries from a hash iterator. See C<hv_iterinit>.
2081 You may call C<hv_delete> or C<hv_delete_ent> on the hash entry that the
2082 iterator currently points to, without losing your place or invalidating your
2083 iterator. Note that in this case the current entry is deleted from the hash
2084 with your iterator holding the last reference to it. Your iterator is flagged
2085 to free the entry on the next call to C<hv_iternext>, so you must not discard
2086 your iterator immediately else the entry will leak - call C<hv_iternext> to
2087 trigger the resource deallocation.
2089 =for apidoc hv_iternext_flags
2091 Returns entries from a hash iterator. See C<hv_iterinit> and C<hv_iternext>.
2092 The C<flags> value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
2093 set the placeholders keys (for restricted hashes) will be returned in addition
2094 to normal keys. By default placeholders are automatically skipped over.
2095 Currently a placeholder is implemented with a value that is
2096 C<&Perl_sv_placeholder>. Note that the implementation of placeholders and
2097 restricted hashes may change, and the implementation currently is
2098 insufficiently abstracted for any change to be tidy.
2104 Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags)
2107 register XPVHV* xhv;
2111 struct xpvhv_aux *iter;
2113 PERL_ARGS_ASSERT_HV_ITERNEXT_FLAGS;
2116 Perl_croak(aTHX_ "Bad hash");
2118 xhv = (XPVHV*)SvANY(hv);
2121 /* Too many things (well, pp_each at least) merrily assume that you can
2122 call iv_iternext without calling hv_iterinit, so we'll have to deal
2128 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2129 if (SvMAGICAL(hv) && SvRMAGICAL(hv)) {
2130 if ( ( mg = mg_find((const SV *)hv, PERL_MAGIC_tied) ) ) {
2131 SV * const key = sv_newmortal();
2133 sv_setsv(key, HeSVKEY_force(entry));
2134 SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */
2140 /* one HE per MAGICAL hash */
2141 iter->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */
2143 Newxz(k, HEK_BASESIZE + sizeof(const SV *), char);
2145 HeKEY_hek(entry) = hek;
2146 HeKLEN(entry) = HEf_SVKEY;
2148 magic_nextpack(MUTABLE_SV(hv),mg,key);
2150 /* force key to stay around until next time */
2151 HeSVKEY_set(entry, SvREFCNT_inc_simple_NN(key));
2152 return entry; /* beware, hent_val is not set */
2154 SvREFCNT_dec(HeVAL(entry));
2155 Safefree(HeKEY_hek(entry));
2157 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2161 #if defined(DYNAMIC_ENV_FETCH) && !defined(__riscos__) /* set up %ENV for iteration */
2162 if (!entry && SvRMAGICAL((const SV *)hv)
2163 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
2166 /* The prime_env_iter() on VMS just loaded up new hash values
2167 * so the iteration count needs to be reset back to the beginning
2171 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2176 /* hv_iterint now ensures this. */
2177 assert (HvARRAY(hv));
2179 /* At start of hash, entry is NULL. */
2182 entry = HeNEXT(entry);
2183 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2185 * Skip past any placeholders -- don't want to include them in
2188 while (entry && HeVAL(entry) == &PL_sv_placeholder) {
2189 entry = HeNEXT(entry);
2194 /* Skip the entire loop if the hash is empty. */
2195 if ((flags & HV_ITERNEXT_WANTPLACEHOLDERS)
2196 ? HvTOTALKEYS(hv) : HvUSEDKEYS(hv)) {
2198 /* OK. Come to the end of the current list. Grab the next one. */
2200 iter->xhv_riter++; /* HvRITER(hv)++ */
2201 if (iter->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) {
2202 /* There is no next one. End of the hash. */
2203 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2206 entry = (HvARRAY(hv))[iter->xhv_riter];
2208 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2209 /* If we have an entry, but it's a placeholder, don't count it.
2211 while (entry && HeVAL(entry) == &PL_sv_placeholder)
2212 entry = HeNEXT(entry);
2214 /* Will loop again if this linked list starts NULL
2215 (for HV_ITERNEXT_WANTPLACEHOLDERS)
2216 or if we run through it and find only placeholders. */
2220 if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2222 hv_free_ent(hv, oldentry);
2225 /*if (HvREHASH(hv) && entry && !HeKREHASH(entry))
2226 PerlIO_printf(PerlIO_stderr(), "Awooga %p %p\n", (void*)hv, (void*)entry);*/
2228 iter->xhv_eiter = entry; /* HvEITER(hv) = entry */
2233 =for apidoc hv_iterkey
2235 Returns the key from the current position of the hash iterator. See
2242 Perl_hv_iterkey(pTHX_ register HE *entry, I32 *retlen)
2244 PERL_ARGS_ASSERT_HV_ITERKEY;
2246 if (HeKLEN(entry) == HEf_SVKEY) {
2248 char * const p = SvPV(HeKEY_sv(entry), len);
2253 *retlen = HeKLEN(entry);
2254 return HeKEY(entry);
2258 /* unlike hv_iterval(), this always returns a mortal copy of the key */
2260 =for apidoc hv_iterkeysv
2262 Returns the key as an C<SV*> from the current position of the hash
2263 iterator. The return value will always be a mortal copy of the key. Also
2270 Perl_hv_iterkeysv(pTHX_ register HE *entry)
2272 PERL_ARGS_ASSERT_HV_ITERKEYSV;
2274 return sv_2mortal(newSVhek(HeKEY_hek(entry)));
2278 =for apidoc hv_iterval
2280 Returns the value from the current position of the hash iterator. See
2287 Perl_hv_iterval(pTHX_ HV *hv, register HE *entry)
2289 PERL_ARGS_ASSERT_HV_ITERVAL;
2291 if (SvRMAGICAL(hv)) {
2292 if (mg_find((const SV *)hv, PERL_MAGIC_tied)) {
2293 SV* const sv = sv_newmortal();
2294 if (HeKLEN(entry) == HEf_SVKEY)
2295 mg_copy(MUTABLE_SV(hv), sv, (char*)HeKEY_sv(entry), HEf_SVKEY);
2297 mg_copy(MUTABLE_SV(hv), sv, HeKEY(entry), HeKLEN(entry));
2301 return HeVAL(entry);
2305 =for apidoc hv_iternextsv
2307 Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
2314 Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen)
2316 HE * const he = hv_iternext_flags(hv, 0);
2318 PERL_ARGS_ASSERT_HV_ITERNEXTSV;
2322 *key = hv_iterkey(he, retlen);
2323 return hv_iterval(hv, he);
2330 =for apidoc hv_magic
2332 Adds magic to a hash. See C<sv_magic>.
2337 /* possibly free a shared string if no one has access to it
2338 * len and hash must both be valid for str.
2341 Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash)
2343 unshare_hek_or_pvn (NULL, str, len, hash);
2348 Perl_unshare_hek(pTHX_ HEK *hek)
2351 unshare_hek_or_pvn(hek, NULL, 0, 0);
2354 /* possibly free a shared string if no one has access to it
2355 hek if non-NULL takes priority over the other 3, else str, len and hash
2356 are used. If so, len and hash must both be valid for str.
2359 S_unshare_hek_or_pvn(pTHX_ const HEK *hek, const char *str, I32 len, U32 hash)
2362 register XPVHV* xhv;
2364 register HE **oentry;
2366 bool is_utf8 = FALSE;
2368 const char * const save = str;
2369 struct shared_he *he = NULL;
2372 /* Find the shared he which is just before us in memory. */
2373 he = (struct shared_he *)(((char *)hek)
2374 - STRUCT_OFFSET(struct shared_he,
2377 /* Assert that the caller passed us a genuine (or at least consistent)
2379 assert (he->shared_he_he.hent_hek == hek);
2381 if (he->shared_he_he.he_valu.hent_refcount - 1) {
2382 --he->shared_he_he.he_valu.hent_refcount;
2386 hash = HEK_HASH(hek);
2387 } else if (len < 0) {
2388 STRLEN tmplen = -len;
2390 /* See the note in hv_fetch(). --jhi */
2391 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2394 k_flags = HVhek_UTF8;
2396 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2399 /* what follows was the moral equivalent of:
2400 if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) {
2402 hv_delete(PL_strtab, str, len, G_DISCARD, hash);
2404 xhv = (XPVHV*)SvANY(PL_strtab);
2405 /* assert(xhv_array != 0) */
2406 first = oentry = &(HvARRAY(PL_strtab))[hash & (I32) HvMAX(PL_strtab)];
2408 const HE *const he_he = &(he->shared_he_he);
2409 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2414 const int flags_masked = k_flags & HVhek_MASK;
2415 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2416 if (HeHASH(entry) != hash) /* strings can't be equal */
2418 if (HeKLEN(entry) != len)
2420 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2422 if (HeKFLAGS(entry) != flags_masked)
2429 if (--entry->he_valu.hent_refcount == 0) {
2430 *oentry = HeNEXT(entry);
2432 /* There are now no entries in our slot. */
2433 xhv->xhv_fill--; /* HvFILL(hv)-- */
2436 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
2441 Perl_ck_warner_d(aTHX_ packWARN(WARN_INTERNAL),
2442 "Attempt to free non-existent shared string '%s'%s"
2444 hek ? HEK_KEY(hek) : str,
2445 ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE);
2446 if (k_flags & HVhek_FREEKEY)
2450 /* get a (constant) string ptr from the global string table
2451 * string will get added if it is not already there.
2452 * len and hash must both be valid for str.
2455 Perl_share_hek(pTHX_ const char *str, I32 len, register U32 hash)
2457 bool is_utf8 = FALSE;
2459 const char * const save = str;
2461 PERL_ARGS_ASSERT_SHARE_HEK;
2464 STRLEN tmplen = -len;
2466 /* See the note in hv_fetch(). --jhi */
2467 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2469 /* If we were able to downgrade here, then than means that we were passed
2470 in a key which only had chars 0-255, but was utf8 encoded. */
2473 /* If we found we were able to downgrade the string to bytes, then
2474 we should flag that it needs upgrading on keys or each. Also flag
2475 that we need share_hek_flags to free the string. */
2477 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2480 return share_hek_flags (str, len, hash, flags);
2484 S_share_hek_flags(pTHX_ const char *str, I32 len, register U32 hash, int flags)
2488 const int flags_masked = flags & HVhek_MASK;
2489 const U32 hindex = hash & (I32) HvMAX(PL_strtab);
2490 register XPVHV * const xhv = (XPVHV*)SvANY(PL_strtab);
2492 PERL_ARGS_ASSERT_SHARE_HEK_FLAGS;
2494 /* what follows is the moral equivalent of:
2496 if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE)))
2497 hv_store(PL_strtab, str, len, NULL, hash);
2499 Can't rehash the shared string table, so not sure if it's worth
2500 counting the number of entries in the linked list
2503 /* assert(xhv_array != 0) */
2504 entry = (HvARRAY(PL_strtab))[hindex];
2505 for (;entry; entry = HeNEXT(entry)) {
2506 if (HeHASH(entry) != hash) /* strings can't be equal */
2508 if (HeKLEN(entry) != len)
2510 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2512 if (HeKFLAGS(entry) != flags_masked)
2518 /* What used to be head of the list.
2519 If this is NULL, then we're the first entry for this slot, which
2520 means we need to increate fill. */
2521 struct shared_he *new_entry;
2524 HE **const head = &HvARRAY(PL_strtab)[hindex];
2525 HE *const next = *head;
2527 /* We don't actually store a HE from the arena and a regular HEK.
2528 Instead we allocate one chunk of memory big enough for both,
2529 and put the HEK straight after the HE. This way we can find the
2530 HEK directly from the HE.
2533 Newx(k, STRUCT_OFFSET(struct shared_he,
2534 shared_he_hek.hek_key[0]) + len + 2, char);
2535 new_entry = (struct shared_he *)k;
2536 entry = &(new_entry->shared_he_he);
2537 hek = &(new_entry->shared_he_hek);
2539 Copy(str, HEK_KEY(hek), len, char);
2540 HEK_KEY(hek)[len] = 0;
2542 HEK_HASH(hek) = hash;
2543 HEK_FLAGS(hek) = (unsigned char)flags_masked;
2545 /* Still "point" to the HEK, so that other code need not know what
2547 HeKEY_hek(entry) = hek;
2548 entry->he_valu.hent_refcount = 0;
2549 HeNEXT(entry) = next;
2552 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
2553 if (!next) { /* initial entry? */
2554 xhv->xhv_fill++; /* HvFILL(hv)++ */
2555 } else if (xhv->xhv_keys > (IV)xhv->xhv_max /* HvKEYS(hv) > HvMAX(hv) */) {
2560 ++entry->he_valu.hent_refcount;
2562 if (flags & HVhek_FREEKEY)
2565 return HeKEY_hek(entry);
2569 Perl_hv_placeholders_p(pTHX_ HV *hv)
2572 MAGIC *mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2574 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_P;
2577 mg = sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, 0);
2580 Perl_die(aTHX_ "panic: hv_placeholders_p");
2583 return &(mg->mg_len);
2588 Perl_hv_placeholders_get(pTHX_ const HV *hv)
2591 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2593 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_GET;
2595 return mg ? mg->mg_len : 0;
2599 Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph)
2602 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2604 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_SET;
2609 if (!sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, ph))
2610 Perl_die(aTHX_ "panic: hv_placeholders_set");
2612 /* else we don't need to add magic to record 0 placeholders. */
2616 S_refcounted_he_value(pTHX_ const struct refcounted_he *he)
2621 PERL_ARGS_ASSERT_REFCOUNTED_HE_VALUE;
2623 switch(he->refcounted_he_data[0] & HVrhek_typemask) {
2628 value = &PL_sv_placeholder;
2631 value = newSViv(he->refcounted_he_val.refcounted_he_u_iv);
2634 value = newSVuv(he->refcounted_he_val.refcounted_he_u_uv);
2637 case HVrhek_PV_UTF8:
2638 /* Create a string SV that directly points to the bytes in our
2640 value = newSV_type(SVt_PV);
2641 SvPV_set(value, (char *) he->refcounted_he_data + 1);
2642 SvCUR_set(value, he->refcounted_he_val.refcounted_he_u_len);
2643 /* This stops anything trying to free it */
2644 SvLEN_set(value, 0);
2646 SvREADONLY_on(value);
2647 if ((he->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8)
2651 Perl_croak(aTHX_ "panic: refcounted_he_value bad flags %x",
2652 he->refcounted_he_data[0]);
2658 =for apidoc refcounted_he_chain_2hv
2660 Generates and returns a C<HV *> by walking up the tree starting at the passed
2661 in C<struct refcounted_he *>.
2666 Perl_refcounted_he_chain_2hv(pTHX_ const struct refcounted_he *chain)
2670 U32 placeholders = 0;
2671 /* We could chase the chain once to get an idea of the number of keys,
2672 and call ksplit. But for now we'll make a potentially inefficient
2673 hash with only 8 entries in its array. */
2674 const U32 max = HvMAX(hv);
2678 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(max + 1), char);
2679 HvARRAY(hv) = (HE**)array;
2684 U32 hash = chain->refcounted_he_hash;
2686 U32 hash = HEK_HASH(chain->refcounted_he_hek);
2688 HE **oentry = &((HvARRAY(hv))[hash & max]);
2689 HE *entry = *oentry;
2692 for (; entry; entry = HeNEXT(entry)) {
2693 if (HeHASH(entry) == hash) {
2694 /* We might have a duplicate key here. If so, entry is older
2695 than the key we've already put in the hash, so if they are
2696 the same, skip adding entry. */
2698 const STRLEN klen = HeKLEN(entry);
2699 const char *const key = HeKEY(entry);
2700 if (klen == chain->refcounted_he_keylen
2701 && (!!HeKUTF8(entry)
2702 == !!(chain->refcounted_he_data[0] & HVhek_UTF8))
2703 && memEQ(key, REF_HE_KEY(chain), klen))
2706 if (HeKEY_hek(entry) == chain->refcounted_he_hek)
2708 if (HeKLEN(entry) == HEK_LEN(chain->refcounted_he_hek)
2709 && HeKUTF8(entry) == HEK_UTF8(chain->refcounted_he_hek)
2710 && memEQ(HeKEY(entry), HEK_KEY(chain->refcounted_he_hek),
2721 = share_hek_flags(REF_HE_KEY(chain),
2722 chain->refcounted_he_keylen,
2723 chain->refcounted_he_hash,
2724 (chain->refcounted_he_data[0]
2725 & (HVhek_UTF8|HVhek_WASUTF8)));
2727 HeKEY_hek(entry) = share_hek_hek(chain->refcounted_he_hek);
2729 value = refcounted_he_value(chain);
2730 if (value == &PL_sv_placeholder)
2732 HeVAL(entry) = value;
2734 /* Link it into the chain. */
2735 HeNEXT(entry) = *oentry;
2736 if (!HeNEXT(entry)) {
2737 /* initial entry. */
2745 chain = chain->refcounted_he_next;
2749 clear_placeholders(hv, placeholders);
2750 HvTOTALKEYS(hv) -= placeholders;
2753 /* We could check in the loop to see if we encounter any keys with key
2754 flags, but it's probably not worth it, as this per-hash flag is only
2755 really meant as an optimisation for things like Storable. */
2757 DEBUG_A(Perl_hv_assert(aTHX_ hv));
2763 Perl_refcounted_he_fetch(pTHX_ const struct refcounted_he *chain, SV *keysv,
2764 const char *key, STRLEN klen, int flags, U32 hash)
2767 /* Just to be awkward, if you're using this interface the UTF-8-or-not-ness
2768 of your key has to exactly match that which is stored. */
2769 SV *value = &PL_sv_placeholder;
2772 /* No point in doing any of this if there's nothing to find. */
2776 if (flags & HVhek_FREEKEY)
2778 key = SvPV_const(keysv, klen);
2780 is_utf8 = (SvUTF8(keysv) != 0);
2782 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
2786 if (keysv && (SvIsCOW_shared_hash(keysv))) {
2787 hash = SvSHARED_HASH(keysv);
2789 PERL_HASH(hash, key, klen);
2793 for (; chain; chain = chain->refcounted_he_next) {
2795 if (hash != chain->refcounted_he_hash)
2797 if (klen != chain->refcounted_he_keylen)
2799 if (memNE(REF_HE_KEY(chain),key,klen))
2801 if (!!is_utf8 != !!(chain->refcounted_he_data[0] & HVhek_UTF8))
2804 if (hash != HEK_HASH(chain->refcounted_he_hek))
2806 if (klen != (STRLEN)HEK_LEN(chain->refcounted_he_hek))
2808 if (memNE(HEK_KEY(chain->refcounted_he_hek),key,klen))
2810 if (!!is_utf8 != !!HEK_UTF8(chain->refcounted_he_hek))
2814 value = sv_2mortal(refcounted_he_value(chain));
2819 if (flags & HVhek_FREEKEY)
2826 =for apidoc refcounted_he_new
2828 Creates a new C<struct refcounted_he>. As S<key> is copied, and value is
2829 stored in a compact form, all references remain the property of the caller.
2830 The C<struct refcounted_he> is returned with a reference count of 1.
2835 struct refcounted_he *
2836 Perl_refcounted_he_new(pTHX_ struct refcounted_he *const parent,
2837 SV *const key, SV *const value) {
2840 const char *key_p = SvPV_const(key, key_len);
2841 STRLEN value_len = 0;
2842 const char *value_p = NULL;
2845 bool is_utf8 = SvUTF8(key) ? TRUE : FALSE;
2848 value_type = HVrhek_PV;
2849 } else if (SvIOK(value)) {
2850 value_type = SvUOK((const SV *)value) ? HVrhek_UV : HVrhek_IV;
2851 } else if (value == &PL_sv_placeholder) {
2852 value_type = HVrhek_delete;
2853 } else if (!SvOK(value)) {
2854 value_type = HVrhek_undef;
2856 value_type = HVrhek_PV;
2859 if (value_type == HVrhek_PV) {
2860 /* Do it this way so that the SvUTF8() test is after the SvPV, in case
2861 the value is overloaded, and doesn't yet have the UTF-8flag set. */
2862 value_p = SvPV_const(value, value_len);
2864 value_type = HVrhek_PV_UTF8;
2869 /* Hash keys are always stored normalised to (yes) ISO-8859-1.
2870 As we're going to be building hash keys from this value in future,
2871 normalise it now. */
2872 key_p = (char*)bytes_from_utf8((const U8*)key_p, &key_len, &is_utf8);
2873 flags |= is_utf8 ? HVhek_UTF8 : HVhek_WASUTF8;
2876 return refcounted_he_new_common(parent, key_p, key_len, flags, value_type,
2877 ((value_type == HVrhek_PV
2878 || value_type == HVrhek_PV_UTF8) ?
2879 (void *)value_p : (void *)value),
2883 static struct refcounted_he *
2884 S_refcounted_he_new_common(pTHX_ struct refcounted_he *const parent,
2885 const char *const key_p, const STRLEN key_len,
2886 const char flags, char value_type,
2887 const void *value, const STRLEN value_len) {
2889 struct refcounted_he *he;
2891 const bool is_pv = value_type == HVrhek_PV || value_type == HVrhek_PV_UTF8;
2892 STRLEN key_offset = is_pv ? value_len + 2 : 1;
2894 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_COMMON;
2897 he = (struct refcounted_he*)
2898 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
2902 he = (struct refcounted_he*)
2903 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
2907 he->refcounted_he_next = parent;
2910 Copy((char *)value, he->refcounted_he_data + 1, value_len + 1, char);
2911 he->refcounted_he_val.refcounted_he_u_len = value_len;
2912 } else if (value_type == HVrhek_IV) {
2913 he->refcounted_he_val.refcounted_he_u_iv = SvIVX((const SV *)value);
2914 } else if (value_type == HVrhek_UV) {
2915 he->refcounted_he_val.refcounted_he_u_uv = SvUVX((const SV *)value);
2918 PERL_HASH(hash, key_p, key_len);
2921 he->refcounted_he_hash = hash;
2922 he->refcounted_he_keylen = key_len;
2923 Copy(key_p, he->refcounted_he_data + key_offset, key_len, char);
2925 he->refcounted_he_hek = share_hek_flags(key_p, key_len, hash, flags);
2928 if (flags & HVhek_WASUTF8) {
2929 /* If it was downgraded from UTF-8, then the pointer returned from
2930 bytes_from_utf8 is an allocated pointer that we must free. */
2934 he->refcounted_he_data[0] = flags;
2935 he->refcounted_he_refcnt = 1;
2941 =for apidoc refcounted_he_free
2943 Decrements the reference count of the passed in C<struct refcounted_he *>
2944 by one. If the reference count reaches zero the structure's memory is freed,
2945 and C<refcounted_he_free> iterates onto the parent node.
2951 Perl_refcounted_he_free(pTHX_ struct refcounted_he *he) {
2953 PERL_UNUSED_CONTEXT;
2956 struct refcounted_he *copy;
2960 new_count = --he->refcounted_he_refcnt;
2961 HINTS_REFCNT_UNLOCK;
2967 #ifndef USE_ITHREADS
2968 unshare_hek_or_pvn (he->refcounted_he_hek, 0, 0, 0);
2971 he = he->refcounted_he_next;
2972 PerlMemShared_free(copy);
2976 /* pp_entereval is aware that labels are stored with a key ':' at the top of
2979 Perl_fetch_cop_label(pTHX_ struct refcounted_he *const chain, STRLEN *len,
2984 if (chain->refcounted_he_keylen != 1)
2986 if (*REF_HE_KEY(chain) != ':')
2989 if ((STRLEN)HEK_LEN(chain->refcounted_he_hek) != 1)
2991 if (*HEK_KEY(chain->refcounted_he_hek) != ':')
2994 /* Stop anyone trying to really mess us up by adding their own value for
2996 if ((chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV
2997 && (chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV_UTF8)
3001 *len = chain->refcounted_he_val.refcounted_he_u_len;
3003 *flags = ((chain->refcounted_he_data[0] & HVrhek_typemask)
3004 == HVrhek_PV_UTF8) ? SVf_UTF8 : 0;
3006 return chain->refcounted_he_data + 1;
3009 /* As newSTATEOP currently gets passed plain char* labels, we will only provide
3010 that interface. Once it works out how to pass in length and UTF-8 ness, this
3011 function will need superseding. */
3012 struct refcounted_he *
3013 Perl_store_cop_label(pTHX_ struct refcounted_he *const chain, const char *label)
3015 PERL_ARGS_ASSERT_STORE_COP_LABEL;
3017 return refcounted_he_new_common(chain, ":", 1, HVrhek_PV, HVrhek_PV,
3018 label, strlen(label));
3022 =for apidoc hv_assert
3024 Check that a hash is in an internally consistent state.
3032 Perl_hv_assert(pTHX_ HV *hv)
3037 int placeholders = 0;
3040 const I32 riter = HvRITER_get(hv);
3041 HE *eiter = HvEITER_get(hv);
3043 PERL_ARGS_ASSERT_HV_ASSERT;
3045 (void)hv_iterinit(hv);
3047 while ((entry = hv_iternext_flags(hv, HV_ITERNEXT_WANTPLACEHOLDERS))) {
3048 /* sanity check the values */
3049 if (HeVAL(entry) == &PL_sv_placeholder)
3053 /* sanity check the keys */
3054 if (HeSVKEY(entry)) {
3055 NOOP; /* Don't know what to check on SV keys. */
3056 } else if (HeKUTF8(entry)) {
3058 if (HeKWASUTF8(entry)) {
3059 PerlIO_printf(Perl_debug_log,
3060 "hash key has both WASUTF8 and UTF8: '%.*s'\n",
3061 (int) HeKLEN(entry), HeKEY(entry));
3064 } else if (HeKWASUTF8(entry))
3067 if (!SvTIED_mg((const SV *)hv, PERL_MAGIC_tied)) {
3068 static const char bad_count[] = "Count %d %s(s), but hash reports %d\n";
3069 const int nhashkeys = HvUSEDKEYS(hv);
3070 const int nhashplaceholders = HvPLACEHOLDERS_get(hv);
3072 if (nhashkeys != real) {
3073 PerlIO_printf(Perl_debug_log, bad_count, real, "keys", nhashkeys );
3076 if (nhashplaceholders != placeholders) {
3077 PerlIO_printf(Perl_debug_log, bad_count, placeholders, "placeholder", nhashplaceholders );
3081 if (withflags && ! HvHASKFLAGS(hv)) {
3082 PerlIO_printf(Perl_debug_log,
3083 "Hash has HASKFLAGS off but I count %d key(s) with flags\n",
3088 sv_dump(MUTABLE_SV(hv));
3090 HvRITER_set(hv, riter); /* Restore hash iterator state */
3091 HvEITER_set(hv, eiter);
3098 * c-indentation-style: bsd
3100 * indent-tabs-mode: t
3103 * ex: set ts=8 sts=4 sw=4 noet: