3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
4 * 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 by Larry Wall and others
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
12 * I sit beside the fire and think
13 * of all that I have seen.
16 * [p.278 of _The Lord of the Rings_, II/iii: "The Ring Goes South"]
20 =head1 Hash Manipulation Functions
22 A HV structure represents a Perl hash. It consists mainly of an array
23 of pointers, each of which points to a linked list of HE structures. The
24 array is indexed by the hash function of the key, so each linked list
25 represents all the hash entries with the same hash value. Each HE contains
26 a pointer to the actual value, plus a pointer to a HEK structure which
27 holds the key and hash value.
35 #define PERL_HASH_INTERNAL_ACCESS
38 #define HV_MAX_LENGTH_BEFORE_SPLIT 14
40 static const char S_strtab_error[]
41 = "Cannot modify shared string table in hv_%s";
47 /* We could generate this at compile time via (another) auxiliary C
49 const size_t arena_size = Perl_malloc_good_size(PERL_ARENA_SIZE);
50 HE* he = (HE*) Perl_get_arena(aTHX_ arena_size, HE_SVSLOT);
51 HE * const heend = &he[arena_size / sizeof(HE) - 1];
53 PL_body_roots[HE_SVSLOT] = he;
55 HeNEXT(he) = (HE*)(he + 1);
63 #define new_HE() (HE*)safemalloc(sizeof(HE))
64 #define del_HE(p) safefree((char*)p)
73 void ** const root = &PL_body_roots[HE_SVSLOT];
83 #define new_HE() new_he()
86 HeNEXT(p) = (HE*)(PL_body_roots[HE_SVSLOT]); \
87 PL_body_roots[HE_SVSLOT] = p; \
95 S_save_hek_flags(const char *str, I32 len, U32 hash, int flags)
97 const int flags_masked = flags & HVhek_MASK;
101 PERL_ARGS_ASSERT_SAVE_HEK_FLAGS;
103 Newx(k, HEK_BASESIZE + len + 2, char);
105 Copy(str, HEK_KEY(hek), len, char);
106 HEK_KEY(hek)[len] = 0;
108 HEK_HASH(hek) = hash;
109 HEK_FLAGS(hek) = (unsigned char)flags_masked | HVhek_UNSHARED;
111 if (flags & HVhek_FREEKEY)
116 /* free the pool of temporary HE/HEK pairs returned by hv_fetch_ent
120 Perl_free_tied_hv_pool(pTHX)
123 HE *he = PL_hv_fetch_ent_mh;
126 Safefree(HeKEY_hek(he));
130 PL_hv_fetch_ent_mh = NULL;
133 #if defined(USE_ITHREADS)
135 Perl_hek_dup(pTHX_ HEK *source, CLONE_PARAMS* param)
137 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
139 PERL_ARGS_ASSERT_HEK_DUP;
140 PERL_UNUSED_ARG(param);
143 /* We already shared this hash key. */
144 (void)share_hek_hek(shared);
148 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
149 HEK_HASH(source), HEK_FLAGS(source));
150 ptr_table_store(PL_ptr_table, source, shared);
156 Perl_he_dup(pTHX_ const HE *e, bool shared, CLONE_PARAMS* param)
160 PERL_ARGS_ASSERT_HE_DUP;
164 /* look for it in the table first */
165 ret = (HE*)ptr_table_fetch(PL_ptr_table, e);
169 /* create anew and remember what it is */
171 ptr_table_store(PL_ptr_table, e, ret);
173 HeNEXT(ret) = he_dup(HeNEXT(e),shared, param);
174 if (HeKLEN(e) == HEf_SVKEY) {
176 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
177 HeKEY_hek(ret) = (HEK*)k;
178 HeKEY_sv(ret) = SvREFCNT_inc(sv_dup(HeKEY_sv(e), param));
181 /* This is hek_dup inlined, which seems to be important for speed
183 HEK * const source = HeKEY_hek(e);
184 HEK *shared = (HEK*)ptr_table_fetch(PL_ptr_table, source);
187 /* We already shared this hash key. */
188 (void)share_hek_hek(shared);
192 = share_hek_flags(HEK_KEY(source), HEK_LEN(source),
193 HEK_HASH(source), HEK_FLAGS(source));
194 ptr_table_store(PL_ptr_table, source, shared);
196 HeKEY_hek(ret) = shared;
199 HeKEY_hek(ret) = save_hek_flags(HeKEY(e), HeKLEN(e), HeHASH(e),
201 HeVAL(ret) = SvREFCNT_inc(sv_dup(HeVAL(e), param));
204 #endif /* USE_ITHREADS */
207 S_hv_notallowed(pTHX_ int flags, const char *key, I32 klen,
210 SV * const sv = sv_newmortal();
212 PERL_ARGS_ASSERT_HV_NOTALLOWED;
214 if (!(flags & HVhek_FREEKEY)) {
215 sv_setpvn(sv, key, klen);
218 /* Need to free saved eventually assign to mortal SV */
219 /* XXX is this line an error ???: SV *sv = sv_newmortal(); */
220 sv_usepvn(sv, (char *) key, klen);
222 if (flags & HVhek_UTF8) {
225 Perl_croak(aTHX_ msg, SVfARG(sv));
228 /* (klen == HEf_SVKEY) is special for MAGICAL hv entries, meaning key slot
234 Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
235 the length of the key. The C<hash> parameter is the precomputed hash
236 value; if it is zero then Perl will compute it. The return value will be
237 NULL if the operation failed or if the value did not need to be actually
238 stored within the hash (as in the case of tied hashes). Otherwise it can
239 be dereferenced to get the original C<SV*>. Note that the caller is
240 responsible for suitably incrementing the reference count of C<val> before
241 the call, and decrementing it if the function returned NULL. Effectively
242 a successful hv_store takes ownership of one reference to C<val>. This is
243 usually what you want; a newly created SV has a reference count of one, so
244 if all your code does is create SVs then store them in a hash, hv_store
245 will own the only reference to the new SV, and your code doesn't need to do
246 anything further to tidy up. hv_store is not implemented as a call to
247 hv_store_ent, and does not create a temporary SV for the key, so if your
248 key data is not already in SV form then use hv_store in preference to
251 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
252 information on how to use this function on tied hashes.
254 =for apidoc hv_store_ent
256 Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
257 parameter is the precomputed hash value; if it is zero then Perl will
258 compute it. The return value is the new hash entry so created. It will be
259 NULL if the operation failed or if the value did not need to be actually
260 stored within the hash (as in the case of tied hashes). Otherwise the
261 contents of the return value can be accessed using the C<He?> macros
262 described here. Note that the caller is responsible for suitably
263 incrementing the reference count of C<val> before the call, and
264 decrementing it if the function returned NULL. Effectively a successful
265 hv_store_ent takes ownership of one reference to C<val>. This is
266 usually what you want; a newly created SV has a reference count of one, so
267 if all your code does is create SVs then store them in a hash, hv_store
268 will own the only reference to the new SV, and your code doesn't need to do
269 anything further to tidy up. Note that hv_store_ent only reads the C<key>;
270 unlike C<val> it does not take ownership of it, so maintaining the correct
271 reference count on C<key> is entirely the caller's responsibility. hv_store
272 is not implemented as a call to hv_store_ent, and does not create a temporary
273 SV for the key, so if your key data is not already in SV form then use
274 hv_store in preference to hv_store_ent.
276 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
277 information on how to use this function on tied hashes.
279 =for apidoc hv_exists
281 Returns a boolean indicating whether the specified hash key exists. The
282 C<klen> is the length of the key.
286 Returns the SV which corresponds to the specified key in the hash. The
287 C<klen> is the length of the key. If C<lval> is set then the fetch will be
288 part of a store. Check that the return value is non-null before
289 dereferencing it to an C<SV*>.
291 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
292 information on how to use this function on tied hashes.
294 =for apidoc hv_exists_ent
296 Returns a boolean indicating whether the specified hash key exists. C<hash>
297 can be a valid precomputed hash value, or 0 to ask for it to be
303 /* returns an HE * structure with the all fields set */
304 /* note that hent_val will be a mortal sv for MAGICAL hashes */
306 =for apidoc hv_fetch_ent
308 Returns the hash entry which corresponds to the specified key in the hash.
309 C<hash> must be a valid precomputed hash number for the given C<key>, or 0
310 if you want the function to compute it. IF C<lval> is set then the fetch
311 will be part of a store. Make sure the return value is non-null before
312 accessing it. The return value when C<tb> is a tied hash is a pointer to a
313 static location, so be sure to make a copy of the structure if you need to
316 See L<perlguts/"Understanding the Magic of Tied Hashes and Arrays"> for more
317 information on how to use this function on tied hashes.
322 /* Common code for hv_delete()/hv_exists()/hv_fetch()/hv_store() */
324 Perl_hv_common_key_len(pTHX_ HV *hv, const char *key, I32 klen_i32,
325 const int action, SV *val, const U32 hash)
330 PERL_ARGS_ASSERT_HV_COMMON_KEY_LEN;
339 return hv_common(hv, NULL, key, klen, flags, action, val, hash);
343 Perl_hv_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
344 int flags, int action, SV *val, register U32 hash)
353 const int return_svp = action & HV_FETCH_JUST_SV;
357 if (SvTYPE(hv) == SVTYPEMASK)
360 assert(SvTYPE(hv) == SVt_PVHV);
362 if (SvSMAGICAL(hv) && SvGMAGICAL(hv) && !(action & HV_DISABLE_UVAR_XKEY)) {
364 if ((mg = mg_find((const SV *)hv, PERL_MAGIC_uvar))) {
365 struct ufuncs * const uf = (struct ufuncs *)mg->mg_ptr;
366 if (uf->uf_set == NULL) {
367 SV* obj = mg->mg_obj;
370 keysv = newSVpvn_flags(key, klen, SVs_TEMP |
371 ((flags & HVhek_UTF8)
375 mg->mg_obj = keysv; /* pass key */
376 uf->uf_index = action; /* pass action */
377 magic_getuvar(MUTABLE_SV(hv), mg);
378 keysv = mg->mg_obj; /* may have changed */
381 /* If the key may have changed, then we need to invalidate
382 any passed-in computed hash value. */
388 if (flags & HVhek_FREEKEY)
390 key = SvPV_const(keysv, klen);
391 is_utf8 = (SvUTF8(keysv) != 0);
392 if (SvIsCOW_shared_hash(keysv)) {
393 flags = HVhek_KEYCANONICAL | (is_utf8 ? HVhek_UTF8 : 0);
398 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
401 if (action & HV_DELETE) {
402 return (void *) hv_delete_common(hv, keysv, key, klen,
403 flags | (is_utf8 ? HVhek_UTF8 : 0),
407 xhv = (XPVHV*)SvANY(hv);
409 if (SvRMAGICAL(hv) && !(action & (HV_FETCH_ISSTORE|HV_FETCH_ISEXISTS))) {
410 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
411 || SvGMAGICAL((const SV *)hv))
413 /* FIXME should be able to skimp on the HE/HEK here when
414 HV_FETCH_JUST_SV is true. */
416 keysv = newSVpvn_utf8(key, klen, is_utf8);
418 keysv = newSVsv(keysv);
421 mg_copy(MUTABLE_SV(hv), sv, (char *)keysv, HEf_SVKEY);
423 /* grab a fake HE/HEK pair from the pool or make a new one */
424 entry = PL_hv_fetch_ent_mh;
426 PL_hv_fetch_ent_mh = HeNEXT(entry);
430 Newx(k, HEK_BASESIZE + sizeof(const SV *), char);
431 HeKEY_hek(entry) = (HEK*)k;
433 HeNEXT(entry) = NULL;
434 HeSVKEY_set(entry, keysv);
436 sv_upgrade(sv, SVt_PVLV);
438 /* so we can free entry when freeing sv */
439 LvTARG(sv) = MUTABLE_SV(entry);
441 /* XXX remove at some point? */
442 if (flags & HVhek_FREEKEY)
446 return entry ? (void *) &HeVAL(entry) : NULL;
448 return (void *) entry;
450 #ifdef ENV_IS_CASELESS
451 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
453 for (i = 0; i < klen; ++i)
454 if (isLOWER(key[i])) {
455 /* Would be nice if we had a routine to do the
456 copy and upercase in a single pass through. */
457 const char * const nkey = strupr(savepvn(key,klen));
458 /* Note that this fetch is for nkey (the uppercased
459 key) whereas the store is for key (the original) */
460 void *result = hv_common(hv, NULL, nkey, klen,
461 HVhek_FREEKEY, /* free nkey */
462 0 /* non-LVAL fetch */
463 | HV_DISABLE_UVAR_XKEY
466 0 /* compute hash */);
467 if (!result && (action & HV_FETCH_LVALUE)) {
468 /* This call will free key if necessary.
469 Do it this way to encourage compiler to tail
471 result = hv_common(hv, keysv, key, klen, flags,
473 | HV_DISABLE_UVAR_XKEY
477 if (flags & HVhek_FREEKEY)
485 else if (SvRMAGICAL(hv) && (action & HV_FETCH_ISEXISTS)) {
486 if (mg_find((const SV *)hv, PERL_MAGIC_tied)
487 || SvGMAGICAL((const SV *)hv)) {
488 /* I don't understand why hv_exists_ent has svret and sv,
489 whereas hv_exists only had one. */
490 SV * const svret = sv_newmortal();
493 if (keysv || is_utf8) {
495 keysv = newSVpvn_utf8(key, klen, TRUE);
497 keysv = newSVsv(keysv);
499 mg_copy(MUTABLE_SV(hv), sv, (char *)sv_2mortal(keysv), HEf_SVKEY);
501 mg_copy(MUTABLE_SV(hv), sv, key, klen);
503 if (flags & HVhek_FREEKEY)
505 magic_existspack(svret, mg_find(sv, PERL_MAGIC_tiedelem));
506 /* This cast somewhat evil, but I'm merely using NULL/
507 not NULL to return the boolean exists.
508 And I know hv is not NULL. */
509 return SvTRUE(svret) ? (void *)hv : NULL;
511 #ifdef ENV_IS_CASELESS
512 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
513 /* XXX This code isn't UTF8 clean. */
514 char * const keysave = (char * const)key;
515 /* Will need to free this, so set FREEKEY flag. */
516 key = savepvn(key,klen);
517 key = (const char*)strupr((char*)key);
522 if (flags & HVhek_FREEKEY) {
525 flags |= HVhek_FREEKEY;
529 else if (action & HV_FETCH_ISSTORE) {
532 hv_magic_check (hv, &needs_copy, &needs_store);
534 const bool save_taint = PL_tainted;
535 if (keysv || is_utf8) {
537 keysv = newSVpvn_utf8(key, klen, TRUE);
540 PL_tainted = SvTAINTED(keysv);
541 keysv = sv_2mortal(newSVsv(keysv));
542 mg_copy(MUTABLE_SV(hv), val, (char*)keysv, HEf_SVKEY);
544 mg_copy(MUTABLE_SV(hv), val, key, klen);
547 TAINT_IF(save_taint);
549 if (flags & HVhek_FREEKEY)
553 #ifdef ENV_IS_CASELESS
554 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
555 /* XXX This code isn't UTF8 clean. */
556 const char *keysave = key;
557 /* Will need to free this, so set FREEKEY flag. */
558 key = savepvn(key,klen);
559 key = (const char*)strupr((char*)key);
564 if (flags & HVhek_FREEKEY) {
567 flags |= HVhek_FREEKEY;
575 if ((action & (HV_FETCH_LVALUE | HV_FETCH_ISSTORE))
576 #ifdef DYNAMIC_ENV_FETCH /* if it's an %ENV lookup, we may get it on the fly */
577 || (SvRMAGICAL((const SV *)hv)
578 && mg_find((const SV *)hv, PERL_MAGIC_env))
583 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
585 HvARRAY(hv) = (HE**)array;
587 #ifdef DYNAMIC_ENV_FETCH
588 else if (action & HV_FETCH_ISEXISTS) {
589 /* for an %ENV exists, if we do an insert it's by a recursive
590 store call, so avoid creating HvARRAY(hv) right now. */
594 /* XXX remove at some point? */
595 if (flags & HVhek_FREEKEY)
602 if (is_utf8 & !(flags & HVhek_KEYCANONICAL)) {
603 char * const keysave = (char *)key;
604 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
608 flags &= ~HVhek_UTF8;
609 if (key != keysave) {
610 if (flags & HVhek_FREEKEY)
612 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
613 /* If the caller calculated a hash, it was on the sequence of
614 octets that are the UTF-8 form. We've now changed the sequence
615 of octets stored to that of the equivalent byte representation,
616 so the hash we need is different. */
622 PERL_HASH_INTERNAL(hash, key, klen);
623 /* We don't have a pointer to the hv, so we have to replicate the
624 flag into every HEK, so that hv_iterkeysv can see it. */
625 /* And yes, you do need this even though you are not "storing" because
626 you can flip the flags below if doing an lval lookup. (And that
627 was put in to give the semantics Andreas was expecting.) */
628 flags |= HVhek_REHASH;
630 if (keysv && (SvIsCOW_shared_hash(keysv))) {
631 hash = SvSHARED_HASH(keysv);
633 PERL_HASH(hash, key, klen);
637 masked_flags = (flags & HVhek_MASK);
639 #ifdef DYNAMIC_ENV_FETCH
640 if (!HvARRAY(hv)) entry = NULL;
644 entry = (HvARRAY(hv))[hash & (I32) HvMAX(hv)];
646 for (; entry; entry = HeNEXT(entry)) {
647 if (HeHASH(entry) != hash) /* strings can't be equal */
649 if (HeKLEN(entry) != (I32)klen)
651 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
653 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
656 if (action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE)) {
657 if (HeKFLAGS(entry) != masked_flags) {
658 /* We match if HVhek_UTF8 bit in our flags and hash key's
659 match. But if entry was set previously with HVhek_WASUTF8
660 and key now doesn't (or vice versa) then we should change
661 the key's flag, as this is assignment. */
662 if (HvSHAREKEYS(hv)) {
663 /* Need to swap the key we have for a key with the flags we
664 need. As keys are shared we can't just write to the
665 flag, so we share the new one, unshare the old one. */
666 HEK * const new_hek = share_hek_flags(key, klen, hash,
668 unshare_hek (HeKEY_hek(entry));
669 HeKEY_hek(entry) = new_hek;
671 else if (hv == PL_strtab) {
672 /* PL_strtab is usually the only hash without HvSHAREKEYS,
673 so putting this test here is cheap */
674 if (flags & HVhek_FREEKEY)
676 Perl_croak(aTHX_ S_strtab_error,
677 action & HV_FETCH_LVALUE ? "fetch" : "store");
680 HeKFLAGS(entry) = masked_flags;
681 if (masked_flags & HVhek_ENABLEHVKFLAGS)
684 if (HeVAL(entry) == &PL_sv_placeholder) {
685 /* yes, can store into placeholder slot */
686 if (action & HV_FETCH_LVALUE) {
688 /* This preserves behaviour with the old hv_fetch
689 implementation which at this point would bail out
690 with a break; (at "if we find a placeholder, we
691 pretend we haven't found anything")
693 That break mean that if a placeholder were found, it
694 caused a call into hv_store, which in turn would
695 check magic, and if there is no magic end up pretty
696 much back at this point (in hv_store's code). */
699 /* LVAL fetch which actaully needs a store. */
701 HvPLACEHOLDERS(hv)--;
704 if (val != &PL_sv_placeholder)
705 HvPLACEHOLDERS(hv)--;
708 } else if (action & HV_FETCH_ISSTORE) {
709 SvREFCNT_dec(HeVAL(entry));
712 } else if (HeVAL(entry) == &PL_sv_placeholder) {
713 /* if we find a placeholder, we pretend we haven't found
717 if (flags & HVhek_FREEKEY)
720 return entry ? (void *) &HeVAL(entry) : NULL;
724 #ifdef DYNAMIC_ENV_FETCH /* %ENV lookup? If so, try to fetch the value now */
725 if (!(action & HV_FETCH_ISSTORE)
726 && SvRMAGICAL((const SV *)hv)
727 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
729 const char * const env = PerlEnv_ENVgetenv_len(key,&len);
731 sv = newSVpvn(env,len);
733 return hv_common(hv, keysv, key, klen, flags,
734 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
740 if (!entry && SvREADONLY(hv) && !(action & HV_FETCH_ISEXISTS)) {
741 hv_notallowed(flags, key, klen,
742 "Attempt to access disallowed key '%"SVf"' in"
743 " a restricted hash");
745 if (!(action & (HV_FETCH_LVALUE|HV_FETCH_ISSTORE))) {
746 /* Not doing some form of store, so return failure. */
747 if (flags & HVhek_FREEKEY)
751 if (action & HV_FETCH_LVALUE) {
754 /* At this point the old hv_fetch code would call to hv_store,
755 which in turn might do some tied magic. So we need to make that
756 magic check happen. */
757 /* gonna assign to this, so it better be there */
758 /* If a fetch-as-store fails on the fetch, then the action is to
759 recurse once into "hv_store". If we didn't do this, then that
760 recursive call would call the key conversion routine again.
761 However, as we replace the original key with the converted
762 key, this would result in a double conversion, which would show
763 up as a bug if the conversion routine is not idempotent. */
764 return hv_common(hv, keysv, key, klen, flags,
765 HV_FETCH_ISSTORE|HV_DISABLE_UVAR_XKEY|return_svp,
767 /* XXX Surely that could leak if the fetch-was-store fails?
768 Just like the hv_fetch. */
772 /* Welcome to hv_store... */
775 /* Not sure if we can get here. I think the only case of oentry being
776 NULL is for %ENV with dynamic env fetch. But that should disappear
777 with magic in the previous code. */
780 PERL_HV_ARRAY_ALLOC_BYTES(xhv->xhv_max+1 /* HvMAX(hv)+1 */),
782 HvARRAY(hv) = (HE**)array;
785 oentry = &(HvARRAY(hv))[hash & (I32) xhv->xhv_max];
788 /* share_hek_flags will do the free for us. This might be considered
791 HeKEY_hek(entry) = share_hek_flags(key, klen, hash, flags);
792 else if (hv == PL_strtab) {
793 /* PL_strtab is usually the only hash without HvSHAREKEYS, so putting
794 this test here is cheap */
795 if (flags & HVhek_FREEKEY)
797 Perl_croak(aTHX_ S_strtab_error,
798 action & HV_FETCH_LVALUE ? "fetch" : "store");
800 else /* gotta do the real thing */
801 HeKEY_hek(entry) = save_hek_flags(key, klen, hash, flags);
803 HeNEXT(entry) = *oentry;
806 if (val == &PL_sv_placeholder)
807 HvPLACEHOLDERS(hv)++;
808 if (masked_flags & HVhek_ENABLEHVKFLAGS)
812 const HE *counter = HeNEXT(entry);
814 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
815 if (!counter) { /* initial entry? */
816 xhv->xhv_fill++; /* HvFILL(hv)++ */
817 } else if (xhv->xhv_keys > (IV)xhv->xhv_max) {
819 } else if(!HvREHASH(hv)) {
822 while ((counter = HeNEXT(counter)))
825 if (n_links > HV_MAX_LENGTH_BEFORE_SPLIT) {
826 /* Use only the old HvKEYS(hv) > HvMAX(hv) condition to limit
827 bucket splits on a rehashed hash, as we're not going to
828 split it again, and if someone is lucky (evil) enough to
829 get all the keys in one list they could exhaust our memory
830 as we repeatedly double the number of buckets on every
831 entry. Linear search feels a less worse thing to do. */
838 return entry ? (void *) &HeVAL(entry) : NULL;
840 return (void *) entry;
844 S_hv_magic_check(HV *hv, bool *needs_copy, bool *needs_store)
846 const MAGIC *mg = SvMAGIC(hv);
848 PERL_ARGS_ASSERT_HV_MAGIC_CHECK;
853 if (isUPPER(mg->mg_type)) {
855 if (mg->mg_type == PERL_MAGIC_tied) {
856 *needs_store = FALSE;
857 return; /* We've set all there is to set. */
860 mg = mg->mg_moremagic;
865 =for apidoc hv_scalar
867 Evaluates the hash in scalar context and returns the result. Handles magic when the hash is tied.
873 Perl_hv_scalar(pTHX_ HV *hv)
877 PERL_ARGS_ASSERT_HV_SCALAR;
879 if (SvRMAGICAL(hv)) {
880 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_tied);
882 return magic_scalarpack(hv, mg);
886 if (HvFILL((const HV *)hv))
887 Perl_sv_setpvf(aTHX_ sv, "%ld/%ld",
888 (long)HvFILL(hv), (long)HvMAX(hv) + 1);
896 =for apidoc hv_delete
898 Deletes a key/value pair in the hash. The value SV is removed from the
899 hash and returned to the caller. The C<klen> is the length of the key.
900 The C<flags> value will normally be zero; if set to G_DISCARD then NULL
903 =for apidoc hv_delete_ent
905 Deletes a key/value pair in the hash. The value SV is removed from the
906 hash and returned to the caller. The C<flags> value will normally be zero;
907 if set to G_DISCARD then NULL will be returned. C<hash> can be a valid
908 precomputed hash value, or 0 to ask for it to be computed.
914 S_hv_delete_common(pTHX_ HV *hv, SV *keysv, const char *key, STRLEN klen,
915 int k_flags, I32 d_flags, U32 hash)
920 register HE **oentry;
921 HE *const *first_entry;
922 bool is_utf8 = (k_flags & HVhek_UTF8) ? TRUE : FALSE;
925 if (SvRMAGICAL(hv)) {
928 hv_magic_check (hv, &needs_copy, &needs_store);
932 entry = (HE *) hv_common(hv, keysv, key, klen,
933 k_flags & ~HVhek_FREEKEY,
934 HV_FETCH_LVALUE|HV_DISABLE_UVAR_XKEY,
936 sv = entry ? HeVAL(entry) : NULL;
942 if (mg_find(sv, PERL_MAGIC_tiedelem)) {
943 /* No longer an element */
944 sv_unmagic(sv, PERL_MAGIC_tiedelem);
947 return NULL; /* element cannot be deleted */
949 #ifdef ENV_IS_CASELESS
950 else if (mg_find((const SV *)hv, PERL_MAGIC_env)) {
951 /* XXX This code isn't UTF8 clean. */
952 keysv = newSVpvn_flags(key, klen, SVs_TEMP);
953 if (k_flags & HVhek_FREEKEY) {
956 key = strupr(SvPVX(keysv));
965 xhv = (XPVHV*)SvANY(hv);
970 const char * const keysave = key;
971 key = (char*)bytes_from_utf8((U8*)key, &klen, &is_utf8);
974 k_flags |= HVhek_UTF8;
976 k_flags &= ~HVhek_UTF8;
977 if (key != keysave) {
978 if (k_flags & HVhek_FREEKEY) {
979 /* This shouldn't happen if our caller does what we expect,
980 but strictly the API allows it. */
983 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
985 HvHASKFLAGS_on(MUTABLE_SV(hv));
989 PERL_HASH_INTERNAL(hash, key, klen);
991 if (keysv && (SvIsCOW_shared_hash(keysv))) {
992 hash = SvSHARED_HASH(keysv);
994 PERL_HASH(hash, key, klen);
998 masked_flags = (k_flags & HVhek_MASK);
1000 first_entry = oentry = &(HvARRAY(hv))[hash & (I32) HvMAX(hv)];
1002 for (; entry; oentry = &HeNEXT(entry), entry = *oentry) {
1004 if (HeHASH(entry) != hash) /* strings can't be equal */
1006 if (HeKLEN(entry) != (I32)klen)
1008 if (HeKEY(entry) != key && memNE(HeKEY(entry),key,klen)) /* is this it? */
1010 if ((HeKFLAGS(entry) ^ masked_flags) & HVhek_UTF8)
1013 if (hv == PL_strtab) {
1014 if (k_flags & HVhek_FREEKEY)
1016 Perl_croak(aTHX_ S_strtab_error, "delete");
1019 /* if placeholder is here, it's already been deleted.... */
1020 if (HeVAL(entry) == &PL_sv_placeholder) {
1021 if (k_flags & HVhek_FREEKEY)
1025 if (SvREADONLY(hv) && HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1026 hv_notallowed(k_flags, key, klen,
1027 "Attempt to delete readonly key '%"SVf"' from"
1028 " a restricted hash");
1030 if (k_flags & HVhek_FREEKEY)
1033 if (d_flags & G_DISCARD)
1036 sv = sv_2mortal(HeVAL(entry));
1037 HeVAL(entry) = &PL_sv_placeholder;
1041 * If a restricted hash, rather than really deleting the entry, put
1042 * a placeholder there. This marks the key as being "approved", so
1043 * we can still access via not-really-existing key without raising
1046 if (SvREADONLY(hv)) {
1047 SvREFCNT_dec(HeVAL(entry));
1048 HeVAL(entry) = &PL_sv_placeholder;
1049 /* We'll be saving this slot, so the number of allocated keys
1050 * doesn't go down, but the number placeholders goes up */
1051 HvPLACEHOLDERS(hv)++;
1053 *oentry = HeNEXT(entry);
1055 xhv->xhv_fill--; /* HvFILL(hv)-- */
1057 if (SvOOK(hv) && entry == HvAUX(hv)->xhv_eiter /* HvEITER(hv) */)
1060 hv_free_ent(hv, entry);
1061 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
1062 if (xhv->xhv_keys == 0)
1063 HvHASKFLAGS_off(hv);
1067 if (SvREADONLY(hv)) {
1068 hv_notallowed(k_flags, key, klen,
1069 "Attempt to delete disallowed key '%"SVf"' from"
1070 " a restricted hash");
1073 if (k_flags & HVhek_FREEKEY)
1079 S_hsplit(pTHX_ HV *hv)
1082 register XPVHV* const xhv = (XPVHV*)SvANY(hv);
1083 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1084 register I32 newsize = oldsize * 2;
1086 char *a = (char*) HvARRAY(hv);
1088 register HE **oentry;
1089 int longest_chain = 0;
1092 PERL_ARGS_ASSERT_HSPLIT;
1094 /*PerlIO_printf(PerlIO_stderr(), "hsplit called for %p which had %d\n",
1095 (void*)hv, (int) oldsize);*/
1097 if (HvPLACEHOLDERS_get(hv) && !SvREADONLY(hv)) {
1098 /* Can make this clear any placeholders first for non-restricted hashes,
1099 even though Storable rebuilds restricted hashes by putting in all the
1100 placeholders (first) before turning on the readonly flag, because
1101 Storable always pre-splits the hash. */
1102 hv_clear_placeholders(hv);
1106 #if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1107 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1108 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1114 Move(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1117 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1118 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1123 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1125 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1127 if (oldsize >= 64) {
1128 offer_nice_chunk(HvARRAY(hv),
1129 PERL_HV_ARRAY_ALLOC_BYTES(oldsize)
1130 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0));
1133 Safefree(HvARRAY(hv));
1137 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1138 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1139 HvARRAY(hv) = (HE**) a;
1142 for (i=0; i<oldsize; i++,aep++) {
1143 int left_length = 0;
1144 int right_length = 0;
1148 if (!*aep) /* non-existent */
1151 for (oentry = aep, entry = *aep; entry; entry = *oentry) {
1152 if ((HeHASH(entry) & newsize) != (U32)i) {
1153 *oentry = HeNEXT(entry);
1154 HeNEXT(entry) = *bep;
1156 xhv->xhv_fill++; /* HvFILL(hv)++ */
1162 oentry = &HeNEXT(entry);
1166 if (!*aep) /* everything moved */
1167 xhv->xhv_fill--; /* HvFILL(hv)-- */
1168 /* I think we don't actually need to keep track of the longest length,
1169 merely flag if anything is too long. But for the moment while
1170 developing this code I'll track it. */
1171 if (left_length > longest_chain)
1172 longest_chain = left_length;
1173 if (right_length > longest_chain)
1174 longest_chain = right_length;
1178 /* Pick your policy for "hashing isn't working" here: */
1179 if (longest_chain <= HV_MAX_LENGTH_BEFORE_SPLIT /* split worked? */
1184 if (hv == PL_strtab) {
1185 /* Urg. Someone is doing something nasty to the string table.
1190 /* Awooga. Awooga. Pathological data. */
1191 /*PerlIO_printf(PerlIO_stderr(), "%p %d of %d with %d/%d buckets\n", (void*)hv,
1192 longest_chain, HvTOTALKEYS(hv), HvFILL(hv), 1+HvMAX(hv));*/
1195 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1196 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1198 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1201 was_shared = HvSHAREKEYS(hv);
1204 HvSHAREKEYS_off(hv);
1209 for (i=0; i<newsize; i++,aep++) {
1210 register HE *entry = *aep;
1212 /* We're going to trash this HE's next pointer when we chain it
1213 into the new hash below, so store where we go next. */
1214 HE * const next = HeNEXT(entry);
1219 PERL_HASH_INTERNAL(hash, HeKEY(entry), HeKLEN(entry));
1224 = save_hek_flags(HeKEY(entry), HeKLEN(entry),
1225 hash, HeKFLAGS(entry));
1226 unshare_hek (HeKEY_hek(entry));
1227 HeKEY_hek(entry) = new_hek;
1229 /* Not shared, so simply write the new hash in. */
1230 HeHASH(entry) = hash;
1232 /*PerlIO_printf(PerlIO_stderr(), "%d ", HeKFLAGS(entry));*/
1233 HEK_REHASH_on(HeKEY_hek(entry));
1234 /*PerlIO_printf(PerlIO_stderr(), "%d\n", HeKFLAGS(entry));*/
1236 /* Copy oentry to the correct new chain. */
1237 bep = ((HE**)a) + (hash & (I32) xhv->xhv_max);
1239 xhv->xhv_fill++; /* HvFILL(hv)++ */
1240 HeNEXT(entry) = *bep;
1246 Safefree (HvARRAY(hv));
1247 HvARRAY(hv) = (HE **)a;
1251 Perl_hv_ksplit(pTHX_ HV *hv, IV newmax)
1254 register XPVHV* xhv = (XPVHV*)SvANY(hv);
1255 const I32 oldsize = (I32) xhv->xhv_max+1; /* HvMAX(hv)+1 (sick) */
1256 register I32 newsize;
1261 register HE **oentry;
1263 PERL_ARGS_ASSERT_HV_KSPLIT;
1265 newsize = (I32) newmax; /* possible truncation here */
1266 if (newsize != newmax || newmax <= oldsize)
1268 while ((newsize & (1 + ~newsize)) != newsize) {
1269 newsize &= ~(newsize & (1 + ~newsize)); /* get proper power of 2 */
1271 if (newsize < newmax)
1273 if (newsize < newmax)
1274 return; /* overflow detection */
1276 a = (char *) HvARRAY(hv);
1279 #if defined(STRANGE_MALLOC) || defined(MYMALLOC)
1280 Renew(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1281 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1287 Copy(&a[oldsize * sizeof(HE*)], &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1290 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize)
1291 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0), char);
1296 Copy(HvARRAY(hv), a, oldsize * sizeof(HE*), char);
1298 Copy(HvAUX(hv), &a[newsize * sizeof(HE*)], 1, struct xpvhv_aux);
1300 if (oldsize >= 64) {
1301 offer_nice_chunk(HvARRAY(hv),
1302 PERL_HV_ARRAY_ALLOC_BYTES(oldsize)
1303 + (SvOOK(hv) ? sizeof(struct xpvhv_aux) : 0));
1306 Safefree(HvARRAY(hv));
1309 Zero(&a[oldsize * sizeof(HE*)], (newsize-oldsize) * sizeof(HE*), char); /* zero 2nd half*/
1312 Newxz(a, PERL_HV_ARRAY_ALLOC_BYTES(newsize), char);
1314 xhv->xhv_max = --newsize; /* HvMAX(hv) = --newsize */
1315 HvARRAY(hv) = (HE **) a;
1316 if (!xhv->xhv_fill /* !HvFILL(hv) */) /* skip rest if no entries */
1320 for (i=0; i<oldsize; i++,aep++) {
1321 if (!*aep) /* non-existent */
1323 for (oentry = aep, entry = *aep; entry; entry = *oentry) {
1324 register I32 j = (HeHASH(entry) & newsize);
1328 *oentry = HeNEXT(entry);
1329 if (!(HeNEXT(entry) = aep[j]))
1330 xhv->xhv_fill++; /* HvFILL(hv)++ */
1335 oentry = &HeNEXT(entry);
1337 if (!*aep) /* everything moved */
1338 xhv->xhv_fill--; /* HvFILL(hv)-- */
1343 Perl_newHVhv(pTHX_ HV *ohv)
1345 HV * const hv = newHV();
1346 STRLEN hv_max, hv_fill;
1348 if (!ohv || (hv_fill = HvFILL(ohv)) == 0)
1350 hv_max = HvMAX(ohv);
1352 if (!SvMAGICAL((const SV *)ohv)) {
1353 /* It's an ordinary hash, so copy it fast. AMS 20010804 */
1355 const bool shared = !!HvSHAREKEYS(ohv);
1356 HE **ents, ** const oents = (HE **)HvARRAY(ohv);
1358 Newx(a, PERL_HV_ARRAY_ALLOC_BYTES(hv_max+1), char);
1361 /* In each bucket... */
1362 for (i = 0; i <= hv_max; i++) {
1364 HE *oent = oents[i];
1371 /* Copy the linked list of entries. */
1372 for (; oent; oent = HeNEXT(oent)) {
1373 const U32 hash = HeHASH(oent);
1374 const char * const key = HeKEY(oent);
1375 const STRLEN len = HeKLEN(oent);
1376 const int flags = HeKFLAGS(oent);
1377 HE * const ent = new_HE();
1379 HeVAL(ent) = newSVsv(HeVAL(oent));
1381 = shared ? share_hek_flags(key, len, hash, flags)
1382 : save_hek_flags(key, len, hash, flags);
1393 HvFILL(hv) = hv_fill;
1394 HvTOTALKEYS(hv) = HvTOTALKEYS(ohv);
1398 /* Iterate over ohv, copying keys and values one at a time. */
1400 const I32 riter = HvRITER_get(ohv);
1401 HE * const eiter = HvEITER_get(ohv);
1403 /* Can we use fewer buckets? (hv_max is always 2^n-1) */
1404 while (hv_max && hv_max + 1 >= hv_fill * 2)
1405 hv_max = hv_max / 2;
1409 while ((entry = hv_iternext_flags(ohv, 0))) {
1410 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1411 newSVsv(HeVAL(entry)), HeHASH(entry),
1414 HvRITER_set(ohv, riter);
1415 HvEITER_set(ohv, eiter);
1421 /* A rather specialised version of newHVhv for copying %^H, ensuring all the
1422 magic stays on it. */
1424 Perl_hv_copy_hints_hv(pTHX_ HV *const ohv)
1426 HV * const hv = newHV();
1429 if (ohv && (hv_fill = HvFILL(ohv))) {
1430 STRLEN hv_max = HvMAX(ohv);
1432 const I32 riter = HvRITER_get(ohv);
1433 HE * const eiter = HvEITER_get(ohv);
1435 while (hv_max && hv_max + 1 >= hv_fill * 2)
1436 hv_max = hv_max / 2;
1440 while ((entry = hv_iternext_flags(ohv, 0))) {
1441 SV *const sv = newSVsv(HeVAL(entry));
1442 sv_magic(sv, NULL, PERL_MAGIC_hintselem,
1443 (char *)newSVhek (HeKEY_hek(entry)), HEf_SVKEY);
1444 (void)hv_store_flags(hv, HeKEY(entry), HeKLEN(entry),
1445 sv, HeHASH(entry), HeKFLAGS(entry));
1447 HvRITER_set(ohv, riter);
1448 HvEITER_set(ohv, eiter);
1450 hv_magic(hv, NULL, PERL_MAGIC_hints);
1455 Perl_hv_free_ent(pTHX_ HV *hv, register HE *entry)
1460 PERL_ARGS_ASSERT_HV_FREE_ENT;
1465 if (val && isGV(val) && isGV_with_GP(val) && GvCVu(val) && HvNAME_get(hv))
1466 mro_method_changed_in(hv); /* deletion of method from stash */
1468 if (HeKLEN(entry) == HEf_SVKEY) {
1469 SvREFCNT_dec(HeKEY_sv(entry));
1470 Safefree(HeKEY_hek(entry));
1472 else if (HvSHAREKEYS(hv))
1473 unshare_hek(HeKEY_hek(entry));
1475 Safefree(HeKEY_hek(entry));
1480 Perl_hv_delayfree_ent(pTHX_ HV *hv, register HE *entry)
1484 PERL_ARGS_ASSERT_HV_DELAYFREE_ENT;
1488 /* SvREFCNT_inc to counter the SvREFCNT_dec in hv_free_ent */
1489 sv_2mortal(SvREFCNT_inc(HeVAL(entry))); /* free between statements */
1490 if (HeKLEN(entry) == HEf_SVKEY) {
1491 sv_2mortal(SvREFCNT_inc(HeKEY_sv(entry)));
1493 hv_free_ent(hv, entry);
1497 =for apidoc hv_clear
1499 Clears a hash, making it empty.
1505 Perl_hv_clear(pTHX_ HV *hv)
1508 register XPVHV* xhv;
1512 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1514 xhv = (XPVHV*)SvANY(hv);
1516 if (SvREADONLY(hv) && HvARRAY(hv) != NULL) {
1517 /* restricted hash: convert all keys to placeholders */
1519 for (i = 0; i <= xhv->xhv_max; i++) {
1520 HE *entry = (HvARRAY(hv))[i];
1521 for (; entry; entry = HeNEXT(entry)) {
1522 /* not already placeholder */
1523 if (HeVAL(entry) != &PL_sv_placeholder) {
1524 if (HeVAL(entry) && SvREADONLY(HeVAL(entry))) {
1525 SV* const keysv = hv_iterkeysv(entry);
1527 "Attempt to delete readonly key '%"SVf"' from a restricted hash",
1530 SvREFCNT_dec(HeVAL(entry));
1531 HeVAL(entry) = &PL_sv_placeholder;
1532 HvPLACEHOLDERS(hv)++;
1540 HvPLACEHOLDERS_set(hv, 0);
1542 Zero(HvARRAY(hv), xhv->xhv_max+1 /* HvMAX(hv)+1 */, HE*);
1545 mg_clear(MUTABLE_SV(hv));
1547 HvHASKFLAGS_off(hv);
1552 mro_isa_changed_in(hv);
1553 HvEITER_set(hv, NULL);
1558 =for apidoc hv_clear_placeholders
1560 Clears any placeholders from a hash. If a restricted hash has any of its keys
1561 marked as readonly and the key is subsequently deleted, the key is not actually
1562 deleted but is marked by assigning it a value of &PL_sv_placeholder. This tags
1563 it so it will be ignored by future operations such as iterating over the hash,
1564 but will still allow the hash to have a value reassigned to the key at some
1565 future point. This function clears any such placeholder keys from the hash.
1566 See Hash::Util::lock_keys() for an example of its use.
1572 Perl_hv_clear_placeholders(pTHX_ HV *hv)
1575 const U32 items = (U32)HvPLACEHOLDERS_get(hv);
1577 PERL_ARGS_ASSERT_HV_CLEAR_PLACEHOLDERS;
1580 clear_placeholders(hv, items);
1584 S_clear_placeholders(pTHX_ HV *hv, U32 items)
1589 PERL_ARGS_ASSERT_CLEAR_PLACEHOLDERS;
1596 /* Loop down the linked list heads */
1598 HE **oentry = &(HvARRAY(hv))[i];
1601 while ((entry = *oentry)) {
1602 if (HeVAL(entry) == &PL_sv_placeholder) {
1603 *oentry = HeNEXT(entry);
1604 if (first && !*oentry)
1605 HvFILL(hv)--; /* This linked list is now empty. */
1606 if (entry == HvEITER_get(hv))
1609 hv_free_ent(hv, entry);
1613 HvTOTALKEYS(hv) -= (IV)HvPLACEHOLDERS_get(hv);
1614 if (HvKEYS(hv) == 0)
1615 HvHASKFLAGS_off(hv);
1616 HvPLACEHOLDERS_set(hv, 0);
1620 oentry = &HeNEXT(entry);
1625 /* You can't get here, hence assertion should always fail. */
1626 assert (items == 0);
1631 S_hfreeentries(pTHX_ HV *hv)
1633 /* This is the array that we're going to restore */
1634 HE **const orig_array = HvARRAY(hv);
1638 PERL_ARGS_ASSERT_HFREEENTRIES;
1644 /* If the hash is actually a symbol table with a name, look after the
1646 struct xpvhv_aux *iter = HvAUX(hv);
1648 name = iter->xhv_name;
1649 iter->xhv_name = NULL;
1654 /* orig_array remains unchanged throughout the loop. If after freeing all
1655 the entries it turns out that one of the little blighters has triggered
1656 an action that has caused HvARRAY to be re-allocated, then we set
1657 array to the new HvARRAY, and try again. */
1660 /* This is the one we're going to try to empty. First time round
1661 it's the original array. (Hopefully there will only be 1 time
1663 HE ** const array = HvARRAY(hv);
1666 /* Because we have taken xhv_name out, the only allocated pointer
1667 in the aux structure that might exist is the backreference array.
1672 struct mro_meta *meta;
1673 struct xpvhv_aux *iter = HvAUX(hv);
1674 /* If there are weak references to this HV, we need to avoid
1675 freeing them up here. In particular we need to keep the AV
1676 visible as what we're deleting might well have weak references
1677 back to this HV, so the for loop below may well trigger
1678 the removal of backreferences from this array. */
1680 if (iter->xhv_backreferences) {
1681 /* So donate them to regular backref magic to keep them safe.
1682 The sv_magic will increase the reference count of the AV,
1683 so we need to drop it first. */
1684 SvREFCNT_dec(iter->xhv_backreferences);
1685 if (AvFILLp(iter->xhv_backreferences) == -1) {
1686 /* Turns out that the array is empty. Just free it. */
1687 SvREFCNT_dec(iter->xhv_backreferences);
1690 sv_magic(MUTABLE_SV(hv),
1691 MUTABLE_SV(iter->xhv_backreferences),
1692 PERL_MAGIC_backref, NULL, 0);
1694 iter->xhv_backreferences = NULL;
1697 entry = iter->xhv_eiter; /* HvEITER(hv) */
1698 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1700 hv_free_ent(hv, entry);
1702 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1703 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1705 if((meta = iter->xhv_mro_meta)) {
1706 if (meta->mro_linear_all) {
1707 SvREFCNT_dec(MUTABLE_SV(meta->mro_linear_all));
1708 meta->mro_linear_all = NULL;
1709 /* This is just acting as a shortcut pointer. */
1710 meta->mro_linear_current = NULL;
1711 } else if (meta->mro_linear_current) {
1712 /* Only the current MRO is stored, so this owns the data.
1714 SvREFCNT_dec(meta->mro_linear_current);
1715 meta->mro_linear_current = NULL;
1717 if(meta->mro_nextmethod) SvREFCNT_dec(meta->mro_nextmethod);
1718 SvREFCNT_dec(meta->isa);
1720 iter->xhv_mro_meta = NULL;
1723 /* There are now no allocated pointers in the aux structure. */
1725 SvFLAGS(hv) &= ~SVf_OOK; /* Goodbye, aux structure. */
1726 /* What aux structure? */
1729 /* make everyone else think the array is empty, so that the destructors
1730 * called for freed entries can't recusively mess with us */
1733 ((XPVHV*) SvANY(hv))->xhv_keys = 0;
1737 /* Loop down the linked list heads */
1738 HE *entry = array[i];
1741 register HE * const oentry = entry;
1742 entry = HeNEXT(entry);
1743 hv_free_ent(hv, oentry);
1747 /* As there are no allocated pointers in the aux structure, it's now
1748 safe to free the array we just cleaned up, if it's not the one we're
1749 going to put back. */
1750 if (array != orig_array) {
1755 /* Good. No-one added anything this time round. */
1760 /* Someone attempted to iterate or set the hash name while we had
1761 the array set to 0. We'll catch backferences on the next time
1762 round the while loop. */
1763 assert(HvARRAY(hv));
1765 if (HvAUX(hv)->xhv_name) {
1766 unshare_hek_or_pvn(HvAUX(hv)->xhv_name, 0, 0, 0);
1770 if (--attempts == 0) {
1771 Perl_die(aTHX_ "panic: hfreeentries failed to free hash - something is repeatedly re-creating entries");
1775 HvARRAY(hv) = orig_array;
1777 /* If the hash was actually a symbol table, put the name back. */
1779 /* We have restored the original array. If name is non-NULL, then
1780 the original array had an aux structure at the end. So this is
1782 SvFLAGS(hv) |= SVf_OOK;
1783 HvAUX(hv)->xhv_name = name;
1788 =for apidoc hv_undef
1796 Perl_hv_undef(pTHX_ HV *hv)
1799 register XPVHV* xhv;
1804 DEBUG_A(Perl_hv_assert(aTHX_ hv));
1805 xhv = (XPVHV*)SvANY(hv);
1807 if ((name = HvNAME_get(hv)) && !PL_dirty)
1808 mro_isa_changed_in(hv);
1813 (void)hv_delete(PL_stashcache, name, HvNAMELEN_get(hv), G_DISCARD);
1814 hv_name_set(hv, NULL, 0, 0);
1816 SvFLAGS(hv) &= ~SVf_OOK;
1817 Safefree(HvARRAY(hv));
1818 xhv->xhv_max = 7; /* HvMAX(hv) = 7 (it's a normal hash) */
1820 HvPLACEHOLDERS_set(hv, 0);
1823 mg_clear(MUTABLE_SV(hv));
1826 static struct xpvhv_aux*
1827 S_hv_auxinit(HV *hv) {
1828 struct xpvhv_aux *iter;
1831 PERL_ARGS_ASSERT_HV_AUXINIT;
1834 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1835 + sizeof(struct xpvhv_aux), char);
1837 array = (char *) HvARRAY(hv);
1838 Renew(array, PERL_HV_ARRAY_ALLOC_BYTES(HvMAX(hv) + 1)
1839 + sizeof(struct xpvhv_aux), char);
1841 HvARRAY(hv) = (HE**) array;
1842 /* SvOOK_on(hv) attacks the IV flags. */
1843 SvFLAGS(hv) |= SVf_OOK;
1846 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1847 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1849 iter->xhv_backreferences = 0;
1850 iter->xhv_mro_meta = NULL;
1855 =for apidoc hv_iterinit
1857 Prepares a starting point to traverse a hash table. Returns the number of
1858 keys in the hash (i.e. the same as C<HvKEYS(tb)>). The return value is
1859 currently only meaningful for hashes without tie magic.
1861 NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number of
1862 hash buckets that happen to be in use. If you still need that esoteric
1863 value, you can get it through the macro C<HvFILL(tb)>.
1870 Perl_hv_iterinit(pTHX_ HV *hv)
1872 PERL_ARGS_ASSERT_HV_ITERINIT;
1874 /* FIXME: Are we not NULL, or do we croak? Place bets now! */
1877 Perl_croak(aTHX_ "Bad hash");
1880 struct xpvhv_aux * const iter = HvAUX(hv);
1881 HE * const entry = iter->xhv_eiter; /* HvEITER(hv) */
1882 if (entry && HvLAZYDEL(hv)) { /* was deleted earlier? */
1884 hv_free_ent(hv, entry);
1886 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
1887 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
1892 /* used to be xhv->xhv_fill before 5.004_65 */
1893 return HvTOTALKEYS(hv);
1897 Perl_hv_riter_p(pTHX_ HV *hv) {
1898 struct xpvhv_aux *iter;
1900 PERL_ARGS_ASSERT_HV_RITER_P;
1903 Perl_croak(aTHX_ "Bad hash");
1905 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1906 return &(iter->xhv_riter);
1910 Perl_hv_eiter_p(pTHX_ HV *hv) {
1911 struct xpvhv_aux *iter;
1913 PERL_ARGS_ASSERT_HV_EITER_P;
1916 Perl_croak(aTHX_ "Bad hash");
1918 iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1919 return &(iter->xhv_eiter);
1923 Perl_hv_riter_set(pTHX_ HV *hv, I32 riter) {
1924 struct xpvhv_aux *iter;
1926 PERL_ARGS_ASSERT_HV_RITER_SET;
1929 Perl_croak(aTHX_ "Bad hash");
1937 iter = hv_auxinit(hv);
1939 iter->xhv_riter = riter;
1943 Perl_hv_eiter_set(pTHX_ HV *hv, HE *eiter) {
1944 struct xpvhv_aux *iter;
1946 PERL_ARGS_ASSERT_HV_EITER_SET;
1949 Perl_croak(aTHX_ "Bad hash");
1954 /* 0 is the default so don't go malloc()ing a new structure just to
1959 iter = hv_auxinit(hv);
1961 iter->xhv_eiter = eiter;
1965 Perl_hv_name_set(pTHX_ HV *hv, const char *name, U32 len, U32 flags)
1968 struct xpvhv_aux *iter;
1971 PERL_ARGS_ASSERT_HV_NAME_SET;
1972 PERL_UNUSED_ARG(flags);
1975 Perl_croak(aTHX_ "panic: hv name too long (%"UVuf")", (UV) len);
1979 if (iter->xhv_name) {
1980 unshare_hek_or_pvn(iter->xhv_name, 0, 0, 0);
1986 iter = hv_auxinit(hv);
1988 PERL_HASH(hash, name, len);
1989 iter->xhv_name = name ? share_hek(name, len, hash) : NULL;
1993 Perl_hv_backreferences_p(pTHX_ HV *hv) {
1994 struct xpvhv_aux * const iter = SvOOK(hv) ? HvAUX(hv) : hv_auxinit(hv);
1996 PERL_ARGS_ASSERT_HV_BACKREFERENCES_P;
1997 PERL_UNUSED_CONTEXT;
1999 return &(iter->xhv_backreferences);
2003 Perl_hv_kill_backrefs(pTHX_ HV *hv) {
2006 PERL_ARGS_ASSERT_HV_KILL_BACKREFS;
2011 av = HvAUX(hv)->xhv_backreferences;
2014 HvAUX(hv)->xhv_backreferences = 0;
2015 Perl_sv_kill_backrefs(aTHX_ MUTABLE_SV(hv), av);
2021 hv_iternext is implemented as a macro in hv.h
2023 =for apidoc hv_iternext
2025 Returns entries from a hash iterator. See C<hv_iterinit>.
2027 You may call C<hv_delete> or C<hv_delete_ent> on the hash entry that the
2028 iterator currently points to, without losing your place or invalidating your
2029 iterator. Note that in this case the current entry is deleted from the hash
2030 with your iterator holding the last reference to it. Your iterator is flagged
2031 to free the entry on the next call to C<hv_iternext>, so you must not discard
2032 your iterator immediately else the entry will leak - call C<hv_iternext> to
2033 trigger the resource deallocation.
2035 =for apidoc hv_iternext_flags
2037 Returns entries from a hash iterator. See C<hv_iterinit> and C<hv_iternext>.
2038 The C<flags> value will normally be zero; if HV_ITERNEXT_WANTPLACEHOLDERS is
2039 set the placeholders keys (for restricted hashes) will be returned in addition
2040 to normal keys. By default placeholders are automatically skipped over.
2041 Currently a placeholder is implemented with a value that is
2042 C<&Perl_sv_placeholder>. Note that the implementation of placeholders and
2043 restricted hashes may change, and the implementation currently is
2044 insufficiently abstracted for any change to be tidy.
2050 Perl_hv_iternext_flags(pTHX_ HV *hv, I32 flags)
2053 register XPVHV* xhv;
2057 struct xpvhv_aux *iter;
2059 PERL_ARGS_ASSERT_HV_ITERNEXT_FLAGS;
2062 Perl_croak(aTHX_ "Bad hash");
2064 xhv = (XPVHV*)SvANY(hv);
2067 /* Too many things (well, pp_each at least) merrily assume that you can
2068 call iv_iternext without calling hv_iterinit, so we'll have to deal
2074 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2075 if (SvMAGICAL(hv) && SvRMAGICAL(hv)) {
2076 if ( ( mg = mg_find((const SV *)hv, PERL_MAGIC_tied) ) ) {
2077 SV * const key = sv_newmortal();
2079 sv_setsv(key, HeSVKEY_force(entry));
2080 SvREFCNT_dec(HeSVKEY(entry)); /* get rid of previous key */
2086 /* one HE per MAGICAL hash */
2087 iter->xhv_eiter = entry = new_HE(); /* HvEITER(hv) = new_HE() */
2089 Newxz(k, HEK_BASESIZE + sizeof(const SV *), char);
2091 HeKEY_hek(entry) = hek;
2092 HeKLEN(entry) = HEf_SVKEY;
2094 magic_nextpack(MUTABLE_SV(hv),mg,key);
2096 /* force key to stay around until next time */
2097 HeSVKEY_set(entry, SvREFCNT_inc_simple_NN(key));
2098 return entry; /* beware, hent_val is not set */
2101 SvREFCNT_dec(HeVAL(entry));
2102 Safefree(HeKEY_hek(entry));
2104 iter->xhv_eiter = NULL; /* HvEITER(hv) = NULL */
2108 #if defined(DYNAMIC_ENV_FETCH) && !defined(__riscos__) /* set up %ENV for iteration */
2109 if (!entry && SvRMAGICAL((const SV *)hv)
2110 && mg_find((const SV *)hv, PERL_MAGIC_env)) {
2113 /* The prime_env_iter() on VMS just loaded up new hash values
2114 * so the iteration count needs to be reset back to the beginning
2118 oldentry = entry = iter->xhv_eiter; /* HvEITER(hv) */
2123 /* hv_iterint now ensures this. */
2124 assert (HvARRAY(hv));
2126 /* At start of hash, entry is NULL. */
2129 entry = HeNEXT(entry);
2130 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2132 * Skip past any placeholders -- don't want to include them in
2135 while (entry && HeVAL(entry) == &PL_sv_placeholder) {
2136 entry = HeNEXT(entry);
2141 /* OK. Come to the end of the current list. Grab the next one. */
2143 iter->xhv_riter++; /* HvRITER(hv)++ */
2144 if (iter->xhv_riter > (I32)xhv->xhv_max /* HvRITER(hv) > HvMAX(hv) */) {
2145 /* There is no next one. End of the hash. */
2146 iter->xhv_riter = -1; /* HvRITER(hv) = -1 */
2149 entry = (HvARRAY(hv))[iter->xhv_riter];
2151 if (!(flags & HV_ITERNEXT_WANTPLACEHOLDERS)) {
2152 /* If we have an entry, but it's a placeholder, don't count it.
2154 while (entry && HeVAL(entry) == &PL_sv_placeholder)
2155 entry = HeNEXT(entry);
2157 /* Will loop again if this linked list starts NULL
2158 (for HV_ITERNEXT_WANTPLACEHOLDERS)
2159 or if we run through it and find only placeholders. */
2162 if (oldentry && HvLAZYDEL(hv)) { /* was deleted earlier? */
2164 hv_free_ent(hv, oldentry);
2167 /*if (HvREHASH(hv) && entry && !HeKREHASH(entry))
2168 PerlIO_printf(PerlIO_stderr(), "Awooga %p %p\n", (void*)hv, (void*)entry);*/
2170 iter->xhv_eiter = entry; /* HvEITER(hv) = entry */
2175 =for apidoc hv_iterkey
2177 Returns the key from the current position of the hash iterator. See
2184 Perl_hv_iterkey(pTHX_ register HE *entry, I32 *retlen)
2186 PERL_ARGS_ASSERT_HV_ITERKEY;
2188 if (HeKLEN(entry) == HEf_SVKEY) {
2190 char * const p = SvPV(HeKEY_sv(entry), len);
2195 *retlen = HeKLEN(entry);
2196 return HeKEY(entry);
2200 /* unlike hv_iterval(), this always returns a mortal copy of the key */
2202 =for apidoc hv_iterkeysv
2204 Returns the key as an C<SV*> from the current position of the hash
2205 iterator. The return value will always be a mortal copy of the key. Also
2212 Perl_hv_iterkeysv(pTHX_ register HE *entry)
2214 PERL_ARGS_ASSERT_HV_ITERKEYSV;
2216 return sv_2mortal(newSVhek(HeKEY_hek(entry)));
2220 =for apidoc hv_iterval
2222 Returns the value from the current position of the hash iterator. See
2229 Perl_hv_iterval(pTHX_ HV *hv, register HE *entry)
2231 PERL_ARGS_ASSERT_HV_ITERVAL;
2233 if (SvRMAGICAL(hv)) {
2234 if (mg_find((const SV *)hv, PERL_MAGIC_tied)) {
2235 SV* const sv = sv_newmortal();
2236 if (HeKLEN(entry) == HEf_SVKEY)
2237 mg_copy(MUTABLE_SV(hv), sv, (char*)HeKEY_sv(entry), HEf_SVKEY);
2239 mg_copy(MUTABLE_SV(hv), sv, HeKEY(entry), HeKLEN(entry));
2243 return HeVAL(entry);
2247 =for apidoc hv_iternextsv
2249 Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
2256 Perl_hv_iternextsv(pTHX_ HV *hv, char **key, I32 *retlen)
2258 HE * const he = hv_iternext_flags(hv, 0);
2260 PERL_ARGS_ASSERT_HV_ITERNEXTSV;
2264 *key = hv_iterkey(he, retlen);
2265 return hv_iterval(hv, he);
2272 =for apidoc hv_magic
2274 Adds magic to a hash. See C<sv_magic>.
2279 /* possibly free a shared string if no one has access to it
2280 * len and hash must both be valid for str.
2283 Perl_unsharepvn(pTHX_ const char *str, I32 len, U32 hash)
2285 unshare_hek_or_pvn (NULL, str, len, hash);
2290 Perl_unshare_hek(pTHX_ HEK *hek)
2293 unshare_hek_or_pvn(hek, NULL, 0, 0);
2296 /* possibly free a shared string if no one has access to it
2297 hek if non-NULL takes priority over the other 3, else str, len and hash
2298 are used. If so, len and hash must both be valid for str.
2301 S_unshare_hek_or_pvn(pTHX_ const HEK *hek, const char *str, I32 len, U32 hash)
2304 register XPVHV* xhv;
2306 register HE **oentry;
2308 bool is_utf8 = FALSE;
2310 const char * const save = str;
2311 struct shared_he *he = NULL;
2314 /* Find the shared he which is just before us in memory. */
2315 he = (struct shared_he *)(((char *)hek)
2316 - STRUCT_OFFSET(struct shared_he,
2319 /* Assert that the caller passed us a genuine (or at least consistent)
2321 assert (he->shared_he_he.hent_hek == hek);
2324 if (he->shared_he_he.he_valu.hent_refcount - 1) {
2325 --he->shared_he_he.he_valu.hent_refcount;
2326 UNLOCK_STRTAB_MUTEX;
2329 UNLOCK_STRTAB_MUTEX;
2331 hash = HEK_HASH(hek);
2332 } else if (len < 0) {
2333 STRLEN tmplen = -len;
2335 /* See the note in hv_fetch(). --jhi */
2336 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2339 k_flags = HVhek_UTF8;
2341 k_flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2344 /* what follows was the moral equivalent of:
2345 if ((Svp = hv_fetch(PL_strtab, tmpsv, FALSE, hash))) {
2347 hv_delete(PL_strtab, str, len, G_DISCARD, hash);
2349 xhv = (XPVHV*)SvANY(PL_strtab);
2350 /* assert(xhv_array != 0) */
2352 first = oentry = &(HvARRAY(PL_strtab))[hash & (I32) HvMAX(PL_strtab)];
2354 const HE *const he_he = &(he->shared_he_he);
2355 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2360 const int flags_masked = k_flags & HVhek_MASK;
2361 for (entry = *oentry; entry; oentry = &HeNEXT(entry), entry = *oentry) {
2362 if (HeHASH(entry) != hash) /* strings can't be equal */
2364 if (HeKLEN(entry) != len)
2366 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2368 if (HeKFLAGS(entry) != flags_masked)
2375 if (--entry->he_valu.hent_refcount == 0) {
2376 *oentry = HeNEXT(entry);
2378 /* There are now no entries in our slot. */
2379 xhv->xhv_fill--; /* HvFILL(hv)-- */
2382 xhv->xhv_keys--; /* HvTOTALKEYS(hv)-- */
2386 UNLOCK_STRTAB_MUTEX;
2387 if (!entry && ckWARN_d(WARN_INTERNAL))
2388 Perl_warner(aTHX_ packWARN(WARN_INTERNAL),
2389 "Attempt to free non-existent shared string '%s'%s"
2391 hek ? HEK_KEY(hek) : str,
2392 ((k_flags & HVhek_UTF8) ? " (utf8)" : "") pTHX__VALUE);
2393 if (k_flags & HVhek_FREEKEY)
2397 /* get a (constant) string ptr from the global string table
2398 * string will get added if it is not already there.
2399 * len and hash must both be valid for str.
2402 Perl_share_hek(pTHX_ const char *str, I32 len, register U32 hash)
2404 bool is_utf8 = FALSE;
2406 const char * const save = str;
2408 PERL_ARGS_ASSERT_SHARE_HEK;
2411 STRLEN tmplen = -len;
2413 /* See the note in hv_fetch(). --jhi */
2414 str = (char*)bytes_from_utf8((U8*)str, &tmplen, &is_utf8);
2416 /* If we were able to downgrade here, then than means that we were passed
2417 in a key which only had chars 0-255, but was utf8 encoded. */
2420 /* If we found we were able to downgrade the string to bytes, then
2421 we should flag that it needs upgrading on keys or each. Also flag
2422 that we need share_hek_flags to free the string. */
2424 flags |= HVhek_WASUTF8 | HVhek_FREEKEY;
2427 return share_hek_flags (str, len, hash, flags);
2431 S_share_hek_flags(pTHX_ const char *str, I32 len, register U32 hash, int flags)
2435 const int flags_masked = flags & HVhek_MASK;
2436 const U32 hindex = hash & (I32) HvMAX(PL_strtab);
2437 register XPVHV * const xhv = (XPVHV*)SvANY(PL_strtab);
2439 PERL_ARGS_ASSERT_SHARE_HEK_FLAGS;
2441 /* what follows is the moral equivalent of:
2443 if (!(Svp = hv_fetch(PL_strtab, str, len, FALSE)))
2444 hv_store(PL_strtab, str, len, NULL, hash);
2446 Can't rehash the shared string table, so not sure if it's worth
2447 counting the number of entries in the linked list
2450 /* assert(xhv_array != 0) */
2452 entry = (HvARRAY(PL_strtab))[hindex];
2453 for (;entry; entry = HeNEXT(entry)) {
2454 if (HeHASH(entry) != hash) /* strings can't be equal */
2456 if (HeKLEN(entry) != len)
2458 if (HeKEY(entry) != str && memNE(HeKEY(entry),str,len)) /* is this it? */
2460 if (HeKFLAGS(entry) != flags_masked)
2466 /* What used to be head of the list.
2467 If this is NULL, then we're the first entry for this slot, which
2468 means we need to increate fill. */
2469 struct shared_he *new_entry;
2472 HE **const head = &HvARRAY(PL_strtab)[hindex];
2473 HE *const next = *head;
2475 /* We don't actually store a HE from the arena and a regular HEK.
2476 Instead we allocate one chunk of memory big enough for both,
2477 and put the HEK straight after the HE. This way we can find the
2478 HEK directly from the HE.
2481 Newx(k, STRUCT_OFFSET(struct shared_he,
2482 shared_he_hek.hek_key[0]) + len + 2, char);
2483 new_entry = (struct shared_he *)k;
2484 entry = &(new_entry->shared_he_he);
2485 hek = &(new_entry->shared_he_hek);
2487 Copy(str, HEK_KEY(hek), len, char);
2488 HEK_KEY(hek)[len] = 0;
2490 HEK_HASH(hek) = hash;
2491 HEK_FLAGS(hek) = (unsigned char)flags_masked;
2493 /* Still "point" to the HEK, so that other code need not know what
2495 HeKEY_hek(entry) = hek;
2496 entry->he_valu.hent_refcount = 0;
2497 HeNEXT(entry) = next;
2500 xhv->xhv_keys++; /* HvTOTALKEYS(hv)++ */
2501 if (!next) { /* initial entry? */
2502 xhv->xhv_fill++; /* HvFILL(hv)++ */
2503 } else if (xhv->xhv_keys > (IV)xhv->xhv_max /* HvKEYS(hv) > HvMAX(hv) */) {
2508 ++entry->he_valu.hent_refcount;
2509 UNLOCK_STRTAB_MUTEX;
2511 if (flags & HVhek_FREEKEY)
2514 return HeKEY_hek(entry);
2518 Perl_hv_placeholders_p(pTHX_ HV *hv)
2521 MAGIC *mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2523 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_P;
2526 mg = sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, 0);
2529 Perl_die(aTHX_ "panic: hv_placeholders_p");
2532 return &(mg->mg_len);
2537 Perl_hv_placeholders_get(pTHX_ const HV *hv)
2540 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2542 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_GET;
2544 return mg ? mg->mg_len : 0;
2548 Perl_hv_placeholders_set(pTHX_ HV *hv, I32 ph)
2551 MAGIC * const mg = mg_find((const SV *)hv, PERL_MAGIC_rhash);
2553 PERL_ARGS_ASSERT_HV_PLACEHOLDERS_SET;
2558 if (!sv_magicext(MUTABLE_SV(hv), 0, PERL_MAGIC_rhash, 0, 0, ph))
2559 Perl_die(aTHX_ "panic: hv_placeholders_set");
2561 /* else we don't need to add magic to record 0 placeholders. */
2565 S_refcounted_he_value(pTHX_ const struct refcounted_he *he)
2570 PERL_ARGS_ASSERT_REFCOUNTED_HE_VALUE;
2572 switch(he->refcounted_he_data[0] & HVrhek_typemask) {
2577 value = &PL_sv_placeholder;
2580 value = newSViv(he->refcounted_he_val.refcounted_he_u_iv);
2583 value = newSVuv(he->refcounted_he_val.refcounted_he_u_uv);
2586 case HVrhek_PV_UTF8:
2587 /* Create a string SV that directly points to the bytes in our
2589 value = newSV_type(SVt_PV);
2590 SvPV_set(value, (char *) he->refcounted_he_data + 1);
2591 SvCUR_set(value, he->refcounted_he_val.refcounted_he_u_len);
2592 /* This stops anything trying to free it */
2593 SvLEN_set(value, 0);
2595 SvREADONLY_on(value);
2596 if ((he->refcounted_he_data[0] & HVrhek_typemask) == HVrhek_PV_UTF8)
2600 Perl_croak(aTHX_ "panic: refcounted_he_value bad flags %x",
2601 he->refcounted_he_data[0]);
2607 =for apidoc refcounted_he_chain_2hv
2609 Generates and returns a C<HV *> by walking up the tree starting at the passed
2610 in C<struct refcounted_he *>.
2615 Perl_refcounted_he_chain_2hv(pTHX_ const struct refcounted_he *chain)
2619 U32 placeholders = 0;
2620 /* We could chase the chain once to get an idea of the number of keys,
2621 and call ksplit. But for now we'll make a potentially inefficient
2622 hash with only 8 entries in its array. */
2623 const U32 max = HvMAX(hv);
2627 Newxz(array, PERL_HV_ARRAY_ALLOC_BYTES(max + 1), char);
2628 HvARRAY(hv) = (HE**)array;
2633 U32 hash = chain->refcounted_he_hash;
2635 U32 hash = HEK_HASH(chain->refcounted_he_hek);
2637 HE **oentry = &((HvARRAY(hv))[hash & max]);
2638 HE *entry = *oentry;
2641 for (; entry; entry = HeNEXT(entry)) {
2642 if (HeHASH(entry) == hash) {
2643 /* We might have a duplicate key here. If so, entry is older
2644 than the key we've already put in the hash, so if they are
2645 the same, skip adding entry. */
2647 const STRLEN klen = HeKLEN(entry);
2648 const char *const key = HeKEY(entry);
2649 if (klen == chain->refcounted_he_keylen
2650 && (!!HeKUTF8(entry)
2651 == !!(chain->refcounted_he_data[0] & HVhek_UTF8))
2652 && memEQ(key, REF_HE_KEY(chain), klen))
2655 if (HeKEY_hek(entry) == chain->refcounted_he_hek)
2657 if (HeKLEN(entry) == HEK_LEN(chain->refcounted_he_hek)
2658 && HeKUTF8(entry) == HEK_UTF8(chain->refcounted_he_hek)
2659 && memEQ(HeKEY(entry), HEK_KEY(chain->refcounted_he_hek),
2670 = share_hek_flags(REF_HE_KEY(chain),
2671 chain->refcounted_he_keylen,
2672 chain->refcounted_he_hash,
2673 (chain->refcounted_he_data[0]
2674 & (HVhek_UTF8|HVhek_WASUTF8)));
2676 HeKEY_hek(entry) = share_hek_hek(chain->refcounted_he_hek);
2678 value = refcounted_he_value(chain);
2679 if (value == &PL_sv_placeholder)
2681 HeVAL(entry) = value;
2683 /* Link it into the chain. */
2684 HeNEXT(entry) = *oentry;
2685 if (!HeNEXT(entry)) {
2686 /* initial entry. */
2694 chain = chain->refcounted_he_next;
2698 clear_placeholders(hv, placeholders);
2699 HvTOTALKEYS(hv) -= placeholders;
2702 /* We could check in the loop to see if we encounter any keys with key
2703 flags, but it's probably not worth it, as this per-hash flag is only
2704 really meant as an optimisation for things like Storable. */
2706 DEBUG_A(Perl_hv_assert(aTHX_ hv));
2712 Perl_refcounted_he_fetch(pTHX_ const struct refcounted_he *chain, SV *keysv,
2713 const char *key, STRLEN klen, int flags, U32 hash)
2716 /* Just to be awkward, if you're using this interface the UTF-8-or-not-ness
2717 of your key has to exactly match that which is stored. */
2718 SV *value = &PL_sv_placeholder;
2721 /* No point in doing any of this if there's nothing to find. */
2725 if (flags & HVhek_FREEKEY)
2727 key = SvPV_const(keysv, klen);
2729 is_utf8 = (SvUTF8(keysv) != 0);
2731 is_utf8 = ((flags & HVhek_UTF8) ? TRUE : FALSE);
2735 if (keysv && (SvIsCOW_shared_hash(keysv))) {
2736 hash = SvSHARED_HASH(keysv);
2738 PERL_HASH(hash, key, klen);
2742 for (; chain; chain = chain->refcounted_he_next) {
2744 if (hash != chain->refcounted_he_hash)
2746 if (klen != chain->refcounted_he_keylen)
2748 if (memNE(REF_HE_KEY(chain),key,klen))
2750 if (!!is_utf8 != !!(chain->refcounted_he_data[0] & HVhek_UTF8))
2753 if (hash != HEK_HASH(chain->refcounted_he_hek))
2755 if (klen != (STRLEN)HEK_LEN(chain->refcounted_he_hek))
2757 if (memNE(HEK_KEY(chain->refcounted_he_hek),key,klen))
2759 if (!!is_utf8 != !!HEK_UTF8(chain->refcounted_he_hek))
2763 value = sv_2mortal(refcounted_he_value(chain));
2768 if (flags & HVhek_FREEKEY)
2775 =for apidoc refcounted_he_new
2777 Creates a new C<struct refcounted_he>. As S<key> is copied, and value is
2778 stored in a compact form, all references remain the property of the caller.
2779 The C<struct refcounted_he> is returned with a reference count of 1.
2784 struct refcounted_he *
2785 Perl_refcounted_he_new(pTHX_ struct refcounted_he *const parent,
2786 SV *const key, SV *const value) {
2789 const char *key_p = SvPV_const(key, key_len);
2790 STRLEN value_len = 0;
2791 const char *value_p = NULL;
2794 bool is_utf8 = SvUTF8(key) ? TRUE : FALSE;
2797 value_type = HVrhek_PV;
2798 } else if (SvIOK(value)) {
2799 value_type = SvUOK((const SV *)value) ? HVrhek_UV : HVrhek_IV;
2800 } else if (value == &PL_sv_placeholder) {
2801 value_type = HVrhek_delete;
2802 } else if (!SvOK(value)) {
2803 value_type = HVrhek_undef;
2805 value_type = HVrhek_PV;
2808 if (value_type == HVrhek_PV) {
2809 /* Do it this way so that the SvUTF8() test is after the SvPV, in case
2810 the value is overloaded, and doesn't yet have the UTF-8flag set. */
2811 value_p = SvPV_const(value, value_len);
2813 value_type = HVrhek_PV_UTF8;
2818 /* Hash keys are always stored normalised to (yes) ISO-8859-1.
2819 As we're going to be building hash keys from this value in future,
2820 normalise it now. */
2821 key_p = (char*)bytes_from_utf8((const U8*)key_p, &key_len, &is_utf8);
2822 flags |= is_utf8 ? HVhek_UTF8 : HVhek_WASUTF8;
2825 return refcounted_he_new_common(parent, key_p, key_len, flags, value_type,
2826 ((value_type == HVrhek_PV
2827 || value_type == HVrhek_PV_UTF8) ?
2828 (void *)value_p : (void *)value),
2832 static struct refcounted_he *
2833 S_refcounted_he_new_common(pTHX_ struct refcounted_he *const parent,
2834 const char *const key_p, const STRLEN key_len,
2835 const char flags, char value_type,
2836 const void *value, const STRLEN value_len) {
2838 struct refcounted_he *he;
2840 const bool is_pv = value_type == HVrhek_PV || value_type == HVrhek_PV_UTF8;
2841 STRLEN key_offset = is_pv ? value_len + 2 : 1;
2843 PERL_ARGS_ASSERT_REFCOUNTED_HE_NEW_COMMON;
2846 he = (struct refcounted_he*)
2847 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
2851 he = (struct refcounted_he*)
2852 PerlMemShared_malloc(sizeof(struct refcounted_he) - 1
2856 he->refcounted_he_next = parent;
2859 Copy((char *)value, he->refcounted_he_data + 1, value_len + 1, char);
2860 he->refcounted_he_val.refcounted_he_u_len = value_len;
2861 } else if (value_type == HVrhek_IV) {
2862 he->refcounted_he_val.refcounted_he_u_iv = SvIVX((const SV *)value);
2863 } else if (value_type == HVrhek_UV) {
2864 he->refcounted_he_val.refcounted_he_u_uv = SvUVX((const SV *)value);
2867 PERL_HASH(hash, key_p, key_len);
2870 he->refcounted_he_hash = hash;
2871 he->refcounted_he_keylen = key_len;
2872 Copy(key_p, he->refcounted_he_data + key_offset, key_len, char);
2874 he->refcounted_he_hek = share_hek_flags(key_p, key_len, hash, flags);
2877 if (flags & HVhek_WASUTF8) {
2878 /* If it was downgraded from UTF-8, then the pointer returned from
2879 bytes_from_utf8 is an allocated pointer that we must free. */
2883 he->refcounted_he_data[0] = flags;
2884 he->refcounted_he_refcnt = 1;
2890 =for apidoc refcounted_he_free
2892 Decrements the reference count of the passed in C<struct refcounted_he *>
2893 by one. If the reference count reaches zero the structure's memory is freed,
2894 and C<refcounted_he_free> iterates onto the parent node.
2900 Perl_refcounted_he_free(pTHX_ struct refcounted_he *he) {
2902 PERL_UNUSED_CONTEXT;
2905 struct refcounted_he *copy;
2909 new_count = --he->refcounted_he_refcnt;
2910 HINTS_REFCNT_UNLOCK;
2916 #ifndef USE_ITHREADS
2917 unshare_hek_or_pvn (he->refcounted_he_hek, 0, 0, 0);
2920 he = he->refcounted_he_next;
2921 PerlMemShared_free(copy);
2926 Perl_fetch_cop_label(pTHX_ struct refcounted_he *const chain, STRLEN *len,
2931 if (chain->refcounted_he_keylen != 1)
2933 if (*REF_HE_KEY(chain) != ':')
2936 if ((STRLEN)HEK_LEN(chain->refcounted_he_hek) != 1)
2938 if (*HEK_KEY(chain->refcounted_he_hek) != ':')
2941 /* Stop anyone trying to really mess us up by adding their own value for
2943 if ((chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV
2944 && (chain->refcounted_he_data[0] & HVrhek_typemask) != HVrhek_PV_UTF8)
2948 *len = chain->refcounted_he_val.refcounted_he_u_len;
2950 *flags = ((chain->refcounted_he_data[0] & HVrhek_typemask)
2951 == HVrhek_PV_UTF8) ? SVf_UTF8 : 0;
2953 return chain->refcounted_he_data + 1;
2956 /* As newSTATEOP currently gets passed plain char* labels, we will only provide
2957 that interface. Once it works out how to pass in length and UTF-8 ness, this
2958 function will need superseding. */
2959 struct refcounted_he *
2960 Perl_store_cop_label(pTHX_ struct refcounted_he *const chain, const char *label)
2962 PERL_ARGS_ASSERT_STORE_COP_LABEL;
2964 return refcounted_he_new_common(chain, ":", 1, HVrhek_PV, HVrhek_PV,
2965 label, strlen(label));
2969 =for apidoc hv_assert
2971 Check that a hash is in an internally consistent state.
2979 Perl_hv_assert(pTHX_ HV *hv)
2984 int placeholders = 0;
2987 const I32 riter = HvRITER_get(hv);
2988 HE *eiter = HvEITER_get(hv);
2990 PERL_ARGS_ASSERT_HV_ASSERT;
2992 (void)hv_iterinit(hv);
2994 while ((entry = hv_iternext_flags(hv, HV_ITERNEXT_WANTPLACEHOLDERS))) {
2995 /* sanity check the values */
2996 if (HeVAL(entry) == &PL_sv_placeholder)
3000 /* sanity check the keys */
3001 if (HeSVKEY(entry)) {
3002 NOOP; /* Don't know what to check on SV keys. */
3003 } else if (HeKUTF8(entry)) {
3005 if (HeKWASUTF8(entry)) {
3006 PerlIO_printf(Perl_debug_log,
3007 "hash key has both WASUTF8 and UTF8: '%.*s'\n",
3008 (int) HeKLEN(entry), HeKEY(entry));
3011 } else if (HeKWASUTF8(entry))
3014 if (!SvTIED_mg((const SV *)hv, PERL_MAGIC_tied)) {
3015 static const char bad_count[] = "Count %d %s(s), but hash reports %d\n";
3016 const int nhashkeys = HvUSEDKEYS(hv);
3017 const int nhashplaceholders = HvPLACEHOLDERS_get(hv);
3019 if (nhashkeys != real) {
3020 PerlIO_printf(Perl_debug_log, bad_count, real, "keys", nhashkeys );
3023 if (nhashplaceholders != placeholders) {
3024 PerlIO_printf(Perl_debug_log, bad_count, placeholders, "placeholder", nhashplaceholders );
3028 if (withflags && ! HvHASKFLAGS(hv)) {
3029 PerlIO_printf(Perl_debug_log,
3030 "Hash has HASKFLAGS off but I count %d key(s) with flags\n",
3035 sv_dump(MUTABLE_SV(hv));
3037 HvRITER_set(hv, riter); /* Restore hash iterator state */
3038 HvEITER_set(hv, eiter);
3045 * c-indentation-style: bsd
3047 * indent-tabs-mode: t
3050 * ex: set ts=8 sts=4 sw=4 noet: