Created a CURRENT per mst's recommendation
[dbsrgits/DBM-Deep.git] / CURRENT / lib / DBM / Deep / Internals.pod
1 =head1 NAME
2
3 DBM::Deep::Internals
4
5 =head1 DESCRIPTION
6
7 This is a document describing the internal workings of L<DBM::Deep/>. It is
8 not necessary to read this document if you only intend to be a user. This
9 document is intended for people who either want a deeper understanding of
10 specifics of how L<DBM::Deep/> works or who wish to help program
11 L<DBM::Deep/>.
12
13 =head1 CLASS LAYOUT
14
15 L<DBM::Deep/> is broken up into five classes in three inheritance hierarchies.
16
17 =over 4
18
19 =item *
20
21 L<DBM::Deep/> is the parent of L<DBM::Deep::Array/> and L<DBM::Deep::Hash/>.
22 These classes form the immediate interface to the outside world. They are the
23 classes that provide the TIE mechanisms as well as the OO methods.
24
25 =item *
26
27 L<DBM::Deep::Engine/> is the layer that deals with the mechanics of reading
28 and writing to the file. This is where the logic of the file layout is
29 handled.
30
31 =item *
32
33 L<DBM::Deep::File/> is the layer that deals with the physical file. As a
34 singleton that every other object has a reference to, it also provides a place
35 to handle datastructure-wide items, such as transactions.
36
37 =back
38
39 =head1 FILE LAYOUT
40
41 DBM::Deep uses a tagged file layout. Every section has a tag, a size, and then
42 the data.
43
44 =head2 File header
45
46 =over 4
47
48 =item * File Signature
49
50 The first four bytes are 'DPDB' in network byte order, signifying that this is
51 a DBM::Deep file.
52
53 =item * File tag/size
54
55 This is the tagging of the file header. The file used by versions prior to
56 1.00 had a different fifth byte, allowing the difference to the determined.
57
58 =item * Version
59
60 This is four bytes containing the header version. This lets the header change over time.
61
62 =item * Transaction information
63
64 The current running transactions are stored here, as is the next transaction
65 ID.
66
67 =item * Constants
68
69 These are the file-wide constants that determine how the file is laid out.
70 They can only be set upon file creation.
71
72 =back
73
74 =head2 Index
75
76 The Index parts can be tagged either as Hash, Array, or Index. The latter
77 is if there was a reindexing due to a bucketlist growing too large. The others
78 are the root index for their respective datatypes. The index consists of a
79 tag, a size, and then 256 sections containing file locations. Each section
80 corresponds to each value representable in a byte.
81
82 The index is used as follows - whenever a hashed key is being looked up, the
83 first byte is used to determine which location to go to from the root index.
84 Then, if that's also an index, the second byte is used, and so forth until a
85 bucketlist is found.
86
87 =head2 Bucketlist
88
89 This is the part that contains the link to the data section. A bucketlist
90 defaults to being 16 buckets long (modifiable by the I<max_buckets>
91 parameter used when creating a new file). Each bucket contains an MD5 and a
92 location of the appropriate key section.
93
94 =head2 Key area
95
96 This is the part that handles transactional awareness. There are
97 I<max_buckets> sections. Each section contains the location to the data
98 section, a transaction ID, and whether that transaction considers this key to
99 be deleted or not.
100
101 =head2 Data area
102
103 This is the part that actual stores the key, value, and class (if
104 appropriate). The layout is:
105
106 =over 4
107
108 =item * tag
109
110 =item * length of the value
111
112 =item * the actual value
113
114 =item * keylength
115
116 =item * the actual key
117
118 =item * a byte indicating if this value has a classname
119
120 =item * the classname (if one is there)
121
122 =back
123
124 The key is stored after the value because the value is requested more often
125 than the key.
126
127 =head1 PERFORMANCE
128
129 L<DBM::Deep/> is written completely in Perl. It also is a multi-process DBM
130 that uses the datafile as a method of synchronizing between multiple
131 processes. This is unlike most RDBMSes like MySQL and Oracle. Furthermore,
132 unlike all RDBMSes, L<DBM::Deep/> stores both the data and the structure of
133 that data as it would appear in a Perl program.
134
135 =head2 CPU
136
137 DBM::Deep attempts to be CPU-light. As it stores all the data on disk,
138 DBM::Deep is I/O-bound, not CPU-bound.
139
140 =head2 RAM
141
142 DBM::Deep uses extremely little RAM relative to the amount of data you can
143 access. You can iterate through a million keys (using C<each()>) without
144 increasing your memeory usage at all.
145
146 =head2 DISK
147
148 DBM::Deep is I/O-bound, pure and simple. The faster your disk, the faster
149 DBM::Deep will be. Currently, when performing C<my $x = $db-E<gt>{foo}>, there
150 are a minimum of 4 seeks and 1332 + N bytes read (where N is the length of your
151 data). (All values assume a medium filesize.) The actions take are:
152
153 =over 4
154
155 =item 1 Lock the file
156
157 =item 1 Perform a stat() to determine if the inode has changed
158
159 =item 1 Go to the primary index for the $db (1 seek)
160
161 =item 1 Read the tag/size of the primary index (5 bytes)
162
163 =item 1 Read the body of the primary index (1024 bytes)
164
165 =item 1 Go to the bucketlist for this MD5 (1 seek)
166
167 =item 1 Read the tag/size of the bucketlist (5 bytes)
168
169 =item 1 Read the body of the bucketlist (144 bytes)
170
171 =item 1 Go to the keys location for this MD5 (1 seek)
172
173 =item 1 Read the tag/size of the keys section (5 bytes)
174
175 =item 1 Read the body of the keys location (144 bytes)
176
177 =item 1 Go to the data section that corresponds to this transaction ID. (1 seek)
178
179 =item 1 Read the tag/size of the data section (5 bytes)
180
181 =item 1 Read the value for this data (N bytes)
182
183 =item 1 Unlock the file
184
185 =back
186
187 Every additional level of indexing (if there are enough keys) requires an
188 additional seek and the reading of 1029 additional bytes. If the value is
189 blessed, an additional 1 seek and 9 + M bytes are read (where M is the length
190 of the classname).
191
192 Arrays are (currently) even worse because they're considered "funny hashes"
193 with the length stored as just another key. This means that if you do any sort
194 of lookup with a negative index, this entire process is performed twice - once
195 for the length and once for the value.
196
197 =head1 ACTUAL TESTS
198
199 =head2 SPEED
200
201 Obviously, DBM::Deep isn't going to be as fast as some C-based DBMs, such as
202 the almighty I<BerkeleyDB>.  But it makes up for it in features like true
203 multi-level hash/array support, and cross-platform FTPable files.  Even so,
204 DBM::Deep is still pretty fast, and the speed stays fairly consistent, even
205 with huge databases.  Here is some test data:
206
207     Adding 1,000,000 keys to new DB file...
208
209     At 100 keys, avg. speed is 2,703 keys/sec
210     At 200 keys, avg. speed is 2,642 keys/sec
211     At 300 keys, avg. speed is 2,598 keys/sec
212     At 400 keys, avg. speed is 2,578 keys/sec
213     At 500 keys, avg. speed is 2,722 keys/sec
214     At 600 keys, avg. speed is 2,628 keys/sec
215     At 700 keys, avg. speed is 2,700 keys/sec
216     At 800 keys, avg. speed is 2,607 keys/sec
217     At 900 keys, avg. speed is 2,190 keys/sec
218     At 1,000 keys, avg. speed is 2,570 keys/sec
219     At 2,000 keys, avg. speed is 2,417 keys/sec
220     At 3,000 keys, avg. speed is 1,982 keys/sec
221     At 4,000 keys, avg. speed is 1,568 keys/sec
222     At 5,000 keys, avg. speed is 1,533 keys/sec
223     At 6,000 keys, avg. speed is 1,787 keys/sec
224     At 7,000 keys, avg. speed is 1,977 keys/sec
225     At 8,000 keys, avg. speed is 2,028 keys/sec
226     At 9,000 keys, avg. speed is 2,077 keys/sec
227     At 10,000 keys, avg. speed is 2,031 keys/sec
228     At 20,000 keys, avg. speed is 1,970 keys/sec
229     At 30,000 keys, avg. speed is 2,050 keys/sec
230     At 40,000 keys, avg. speed is 2,073 keys/sec
231     At 50,000 keys, avg. speed is 1,973 keys/sec
232     At 60,000 keys, avg. speed is 1,914 keys/sec
233     At 70,000 keys, avg. speed is 2,091 keys/sec
234     At 80,000 keys, avg. speed is 2,103 keys/sec
235     At 90,000 keys, avg. speed is 1,886 keys/sec
236     At 100,000 keys, avg. speed is 1,970 keys/sec
237     At 200,000 keys, avg. speed is 2,053 keys/sec
238     At 300,000 keys, avg. speed is 1,697 keys/sec
239     At 400,000 keys, avg. speed is 1,838 keys/sec
240     At 500,000 keys, avg. speed is 1,941 keys/sec
241     At 600,000 keys, avg. speed is 1,930 keys/sec
242     At 700,000 keys, avg. speed is 1,735 keys/sec
243     At 800,000 keys, avg. speed is 1,795 keys/sec
244     At 900,000 keys, avg. speed is 1,221 keys/sec
245     At 1,000,000 keys, avg. speed is 1,077 keys/sec
246
247 This test was performed on a PowerMac G4 1gHz running Mac OS X 10.3.2 & Perl
248 5.8.1, with an 80GB Ultra ATA/100 HD spinning at 7200RPM.  The hash keys and
249 values were between 6 - 12 chars in length.  The DB file ended up at 210MB.
250 Run time was 12 min 3 sec.
251
252 =head2 MEMORY USAGE
253
254 One of the great things about L<DBM::Deep/> is that it uses very little memory.
255 Even with huge databases (1,000,000+ keys) you will not see much increased
256 memory on your process.  L<DBM::Deep/> relies solely on the filesystem for storing
257 and fetching data.  Here is output from I<top> before even opening a database
258 handle:
259
260     PID USER     PRI  NI  SIZE  RSS SHARE STAT %CPU %MEM   TIME COMMAND
261   22831 root      11   0  2716 2716  1296 R     0.0  0.2   0:07 perl
262
263 Basically the process is taking 2,716K of memory.  And here is the same
264 process after storing and fetching 1,000,000 keys:
265
266     PID USER     PRI  NI  SIZE  RSS SHARE STAT %CPU %MEM   TIME COMMAND
267   22831 root      14   0  2772 2772  1328 R     0.0  0.2  13:32 perl
268
269 Notice the memory usage increased by only 56K.  Test was performed on a 700mHz
270 x86 box running Linux RedHat 7.2 & Perl 5.6.1.
271
272 =cut