Update from y2038.
[p5sagit/p5-mst-13.2.git] / time64.c
CommitLineData
a272e669 1/*
2
3Copyright (c) 2007-2008 Michael G Schwern
4
5This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
6
7The MIT License:
8
9Permission is hereby granted, free of charge, to any person obtaining a copy
10of this software and associated documentation files (the "Software"), to deal
11in the Software without restriction, including without limitation the rights
12to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13copies of the Software, and to permit persons to whom the Software is
14furnished to do so, subject to the following conditions:
15
16The above copyright notice and this permission notice shall be included in
17all copies or substantial portions of the Software.
18
19THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25THE SOFTWARE.
26
27*/
28
29/*
30
31Programmers who have available to them 64-bit time values as a 'long
32long' type can use localtime64_r() and gmtime64_r() which correctly
33converts the time even on 32-bit systems. Whether you have 64-bit time
34values will depend on the operating system.
35
36localtime64_r() is a 64-bit equivalent of localtime_r().
37
38gmtime64_r() is a 64-bit equivalent of gmtime_r().
39
40*/
41
7643e68f 42#include "time64.h"
af9b2bf5 43
a272e669 44static const int days_in_month[2][12] = {
45 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
46 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
47};
48
49static const int julian_days_by_month[2][12] = {
50 {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
51 {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
52};
53
54static const int length_of_year[2] = { 365, 366 };
55
56/* Number of days in a 400 year Gregorian cycle */
806a119a 57static const Year years_in_gregorian_cycle = 400;
a272e669 58static const int days_in_gregorian_cycle = (365 * 400) + 100 - 4 + 1;
59
60/* 28 year calendar cycle between 2010 and 2037 */
806a119a 61#define SOLAR_CYCLE_LENGTH 28
62static const int safe_years[SOLAR_CYCLE_LENGTH] = {
a272e669 63 2016, 2017, 2018, 2019,
64 2020, 2021, 2022, 2023,
65 2024, 2025, 2026, 2027,
66 2028, 2029, 2030, 2031,
67 2032, 2033, 2034, 2035,
68 2036, 2037, 2010, 2011,
69 2012, 2013, 2014, 2015
70};
71
ea722b76 72static const int dow_year_start[SOLAR_CYCLE_LENGTH] = {
003c3b95 73 5, 0, 1, 2, /* 0 2016 - 2019 */
74 3, 5, 6, 0, /* 4 */
75 1, 3, 4, 5, /* 8 */
76 6, 1, 2, 3, /* 12 */
77 4, 6, 0, 1, /* 16 */
78 2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */
79 0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */
a272e669 80};
81
9af24521 82/* Let's assume people are going to be looking for dates in the future.
83 Let's provide some cheats so you can skip ahead.
84 This has a 4x speed boost when near 2008.
85*/
86/* Number of days since epoch on Jan 1st, 2008 GMT */
87#define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
88#define CHEAT_YEARS 108
a272e669 89
90#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
91#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))
92
b86b480f 93#ifdef USE_SYSTEM_LOCALTIME
94# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
7bda3dfc 95 (a) <= SYSTEM_LOCALTIME_MAX && \
96 (a) >= SYSTEM_LOCALTIME_MIN \
97)
b86b480f 98#else
99# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
100#endif
101
102#ifdef USE_SYSTEM_GMTIME
103# define SHOULD_USE_SYSTEM_GMTIME(a) ( \
7bda3dfc 104 (a) <= SYSTEM_GMTIME_MAX && \
105 (a) >= SYSTEM_GMTIME_MIN \
106)
b86b480f 107#else
108# define SHOULD_USE_SYSTEM_GMTIME(a) (0)
109#endif
a64acb40 110
461d5a49 111#ifdef TIME_64_DEBUG
112# define TRACE(format, ...) (fprintf(stderr, format, __VA_ARGS__))
113# define TRACE_NO_VARS(format) (fprintf(stderr, format))
114#else
115# define TRACE(format, ...) ((void)0)
116# define TRACE_NO_VARS(format) ((void)0)
117#endif
a64acb40 118
b86b480f 119static int is_exception_century(Year year)
a272e669 120{
121 int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
461d5a49 122 TRACE("# is_exception_century: %s\n", is_exception ? "yes" : "no");
a272e669 123
124 return(is_exception);
125}
126
9af24521 127
806a119a 128Time64_T timegm64(struct TM *date) {
b86b480f 129 int days = 0;
130 Time64_T seconds = 0;
131 Year year;
a272e669 132
9af24521 133 if( date->tm_year > 70 ) {
134 year = 70;
135 while( year < date->tm_year ) {
136 days += length_of_year[IS_LEAP(year)];
137 year++;
a272e669 138 }
139 }
9af24521 140 else if ( date->tm_year < 70 ) {
141 year = 69;
142 do {
143 days -= length_of_year[IS_LEAP(year)];
144 year--;
145 } while( year >= date->tm_year );
146 }
147
148 days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
149 days += date->tm_mday - 1;
150
ea722b76 151 /* Avoid overflowing the days integer */
152 seconds = days;
153 seconds = seconds * 60 * 60 * 24;
154
9af24521 155 seconds += date->tm_hour * 60 * 60;
156 seconds += date->tm_min * 60;
157 seconds += date->tm_sec;
158
b86b480f 159 return(seconds);
9af24521 160}
161
162
806a119a 163static int check_tm(struct TM *tm)
9af24521 164{
9af24521 165 /* Don't forget leap seconds */
af9b2bf5 166 assert(tm->tm_sec >= 0);
9af24521 167 assert(tm->tm_sec <= 61);
168
af9b2bf5 169 assert(tm->tm_min >= 0);
9af24521 170 assert(tm->tm_min <= 59);
171
172 assert(tm->tm_hour >= 0);
173 assert(tm->tm_hour <= 23);
174
175 assert(tm->tm_mday >= 1);
af9b2bf5 176 assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
9af24521 177
178 assert(tm->tm_mon >= 0);
179 assert(tm->tm_mon <= 11);
180
181 assert(tm->tm_wday >= 0);
182 assert(tm->tm_wday <= 6);
183
184 assert(tm->tm_yday >= 0);
af9b2bf5 185 assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
9af24521 186
187#ifdef HAS_TM_TM_GMTOFF
188 assert(tm->tm_gmtoff >= -24 * 60 * 60);
189 assert(tm->tm_gmtoff <= 24 * 60 * 60);
190#endif
af9b2bf5 191
192 return 1;
a272e669 193}
a64acb40 194
a272e669 195
196/* The exceptional centuries without leap years cause the cycle to
197 shift by 16
198*/
806a119a 199static Year cycle_offset(Year year)
a272e669 200{
750c447b 201 const Year start_year = 2000;
202 Year year_diff = year - start_year;
203 Year exceptions;
003c3b95 204
205 if( year > start_year )
206 year_diff--;
207
750c447b 208 exceptions = year_diff / 100;
209 exceptions -= year_diff / 400;
a272e669 210
461d5a49 211 TRACE("# year: %lld, exceptions: %lld, year_diff: %lld\n",
212 year, exceptions, year_diff);
a272e669 213
214 return exceptions * 16;
215}
216
217/* For a given year after 2038, pick the latest possible matching
218 year in the 28 year calendar cycle.
ea722b76 219
220 A matching year...
221 1) Starts on the same day of the week.
222 2) Has the same leap year status.
223
224 This is so the calendars match up.
225
226 Also the previous year must match. When doing Jan 1st you might
227 wind up on Dec 31st the previous year when doing a -UTC time zone.
003c3b95 228
229 Finally, the next year must have the same start day of week. This
230 is for Dec 31st with a +UTC time zone.
231 It doesn't need the same leap year status since we only care about
232 January 1st.
a272e669 233*/
806a119a 234static int safe_year(Year year)
a272e669 235{
236 int safe_year;
806a119a 237 Year year_cycle = year + cycle_offset(year);
a272e669 238
239 /* Change non-leap xx00 years to an equivalent */
806a119a 240 if( is_exception_century(year) )
a272e669 241 year_cycle += 11;
242
003c3b95 243 /* Also xx01 years, since the previous year will be wrong */
806a119a 244 if( is_exception_century(year - 1) )
003c3b95 245 year_cycle += 17;
246
a272e669 247 year_cycle %= SOLAR_CYCLE_LENGTH;
ea722b76 248 if( year_cycle < 0 )
249 year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
a272e669 250
003c3b95 251 assert( year_cycle >= 0 );
252 assert( year_cycle < SOLAR_CYCLE_LENGTH );
a272e669 253 safe_year = safe_years[year_cycle];
254
255 assert(safe_year <= 2037 && safe_year >= 2010);
256
461d5a49 257 TRACE("# year: %lld, year_cycle: %lld, safe_year: %d\n",
258 year, year_cycle, safe_year);
a272e669 259
260 return safe_year;
261}
262
750c447b 263
806a119a 264void copy_tm_to_TM(const struct tm *src, struct TM *dest) {
265 if( src == NULL ) {
266 memset(dest, 0, sizeof(*dest));
267 }
268 else {
269# ifdef USE_TM64
270 dest->tm_sec = src->tm_sec;
271 dest->tm_min = src->tm_min;
272 dest->tm_hour = src->tm_hour;
273 dest->tm_mday = src->tm_mday;
274 dest->tm_mon = src->tm_mon;
275 dest->tm_year = (Year)src->tm_year;
276 dest->tm_wday = src->tm_wday;
277 dest->tm_yday = src->tm_yday;
278 dest->tm_isdst = src->tm_isdst;
279
280# ifdef HAS_TM_TM_GMTOFF
281 dest->tm_gmtoff = src->tm_gmtoff;
282# endif
283
284# ifdef HAS_TM_TM_ZONE
285 dest->tm_zone = src->tm_zone;
286# endif
287
288# else
289 /* They're the same type */
290 memcpy(dest, src, sizeof(*dest));
291# endif
292 }
293}
294
295
296void copy_TM_to_tm(const struct TM *src, struct tm *dest) {
297 if( src == NULL ) {
298 memset(dest, 0, sizeof(*dest));
299 }
300 else {
301# ifdef USE_TM64
302 dest->tm_sec = src->tm_sec;
303 dest->tm_min = src->tm_min;
304 dest->tm_hour = src->tm_hour;
305 dest->tm_mday = src->tm_mday;
306 dest->tm_mon = src->tm_mon;
307 dest->tm_year = (int)src->tm_year;
308 dest->tm_wday = src->tm_wday;
309 dest->tm_yday = src->tm_yday;
310 dest->tm_isdst = src->tm_isdst;
311
312# ifdef HAS_TM_TM_GMTOFF
313 dest->tm_gmtoff = src->tm_gmtoff;
314# endif
315
316# ifdef HAS_TM_TM_ZONE
317 dest->tm_zone = src->tm_zone;
318# endif
319
320# else
321 /* They're the same type */
322 memcpy(dest, src, sizeof(*dest));
323# endif
324 }
325}
326
327
948ea7a9 328/* Simulate localtime_r() to the best of our ability */
329struct tm * fake_localtime_r(const time_t *clock, struct tm *result) {
330 const struct tm *static_result = localtime(clock);
331
332 assert(result != NULL);
333
334 if( static_result == NULL ) {
335 memset(result, 0, sizeof(*result));
336 return NULL;
337 }
338 else {
339 memcpy(result, static_result, sizeof(*result));
340 return result;
341 }
342}
343
344
345/* Simulate gmtime_r() to the best of our ability */
346struct tm * fake_gmtime_r(const time_t *clock, struct tm *result) {
347 const struct tm *static_result = gmtime(clock);
348
349 assert(result != NULL);
350
351 if( static_result == NULL ) {
352 memset(result, 0, sizeof(*result));
353 return NULL;
354 }
355 else {
356 memcpy(result, static_result, sizeof(*result));
357 return result;
358 }
359}
360
361
806a119a 362struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p)
a272e669 363{
364 int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
b86b480f 365 Time64_T v_tm_tday;
a272e669 366 int leap;
b86b480f 367 Time64_T m;
a272e669 368 Time64_T time = *in_time;
750c447b 369 Year year = 70;
806a119a 370 int cycles = 0;
a272e669 371
948ea7a9 372 assert(p != NULL);
373
a64acb40 374 /* Use the system gmtime() if time_t is small enough */
375 if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
376 time_t safe_time = *in_time;
806a119a 377 struct tm safe_date;
378 GMTIME_R(&safe_time, &safe_date);
379
380 copy_tm_to_TM(&safe_date, p);
381 assert(check_tm(p));
382
a64acb40 383 return p;
384 }
385
9af24521 386#ifdef HAS_TM_TM_GMTOFF
a272e669 387 p->tm_gmtoff = 0;
388#endif
389 p->tm_isdst = 0;
390
9af24521 391#ifdef HAS_TM_TM_ZONE
a272e669 392 p->tm_zone = "UTC";
393#endif
394
750c447b 395 v_tm_sec = (int)(time % 60);
a272e669 396 time /= 60;
750c447b 397 v_tm_min = (int)(time % 60);
a272e669 398 time /= 60;
750c447b 399 v_tm_hour = (int)(time % 24);
a272e669 400 time /= 24;
401 v_tm_tday = time;
750c447b 402
a272e669 403 WRAP (v_tm_sec, v_tm_min, 60);
404 WRAP (v_tm_min, v_tm_hour, 60);
405 WRAP (v_tm_hour, v_tm_tday, 24);
750c447b 406
407 v_tm_wday = (int)((v_tm_tday + 4) % 7);
408 if (v_tm_wday < 0)
a272e669 409 v_tm_wday += 7;
410 m = v_tm_tday;
a272e669 411
9af24521 412 if (m >= CHEAT_DAYS) {
413 year = CHEAT_YEARS;
414 m -= CHEAT_DAYS;
415 }
416
417 if (m >= 0) {
a272e669 418 /* Gregorian cycles, this is huge optimization for distant times */
461d5a49 419 cycles = (int)(m / (Time64_T) days_in_gregorian_cycle);
806a119a 420 if( cycles ) {
421 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
422 year += (cycles * years_in_gregorian_cycle);
a272e669 423 }
424
425 /* Years */
426 leap = IS_LEAP (year);
427 while (m >= (Time64_T) length_of_year[leap]) {
428 m -= (Time64_T) length_of_year[leap];
429 year++;
430 leap = IS_LEAP (year);
431 }
432
433 /* Months */
434 v_tm_mon = 0;
435 while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
436 m -= (Time64_T) days_in_month[leap][v_tm_mon];
437 v_tm_mon++;
438 }
439 } else {
9af24521 440 year--;
a272e669 441
442 /* Gregorian cycles */
461d5a49 443 cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1);
806a119a 444 if( cycles ) {
445 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
446 year += (cycles * years_in_gregorian_cycle);
a272e669 447 }
448
449 /* Years */
450 leap = IS_LEAP (year);
451 while (m < (Time64_T) -length_of_year[leap]) {
452 m += (Time64_T) length_of_year[leap];
453 year--;
454 leap = IS_LEAP (year);
455 }
456
457 /* Months */
458 v_tm_mon = 11;
459 while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
460 m += (Time64_T) days_in_month[leap][v_tm_mon];
461 v_tm_mon--;
462 }
463 m += (Time64_T) days_in_month[leap][v_tm_mon];
464 }
465
466 p->tm_year = year;
467 if( p->tm_year != year ) {
9af24521 468#ifdef EOVERFLOW
a272e669 469 errno = EOVERFLOW;
9af24521 470#endif
a272e669 471 return NULL;
472 }
473
b86b480f 474 /* At this point m is less than a year so casting to an int is safe */
a272e669 475 p->tm_mday = (int) m + 1;
b86b480f 476 p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
477 p->tm_sec = v_tm_sec;
478 p->tm_min = v_tm_min;
479 p->tm_hour = v_tm_hour;
480 p->tm_mon = v_tm_mon;
481 p->tm_wday = v_tm_wday;
a272e669 482
806a119a 483 assert(check_tm(p));
a272e669 484
485 return p;
486}
487
488
806a119a 489struct TM *localtime64_r (const Time64_T *time, struct TM *local_tm)
a272e669 490{
491 time_t safe_time;
806a119a 492 struct tm safe_date;
493 struct TM gm_tm;
750c447b 494 Year orig_year;
a272e669 495 int month_diff;
496
948ea7a9 497 assert(local_tm != NULL);
498
a64acb40 499 /* Use the system localtime() if time_t is small enough */
500 if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
501 safe_time = *time;
806a119a 502
461d5a49 503 TRACE("Using system localtime for %lld\n", *time);
504
806a119a 505 LOCALTIME_R(&safe_time, &safe_date);
506
507 copy_tm_to_TM(&safe_date, local_tm);
508 assert(check_tm(local_tm));
509
a64acb40 510 return local_tm;
511 }
512
461d5a49 513 if( gmtime64_r(time, &gm_tm) == NULL ) {
514 TRACE("gmtime64_r returned null for %lld\n", *time);
af832814 515 return NULL;
461d5a49 516 }
af832814 517
a272e669 518 orig_year = gm_tm.tm_year;
519
c07fe26c 520 if (gm_tm.tm_year > (2037 - 1900) ||
461d5a49 521 gm_tm.tm_year < (1970 - 1900)
c07fe26c 522 )
523 {
461d5a49 524 TRACE("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
b86b480f 525 gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
c07fe26c 526 }
a272e669 527
806a119a 528 safe_time = timegm64(&gm_tm);
461d5a49 529 if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
530 TRACE("localtime_r(%d) returned NULL\n", (int)safe_time);
af832814 531 return NULL;
461d5a49 532 }
a272e669 533
806a119a 534 copy_tm_to_TM(&safe_date, local_tm);
535
a272e669 536 local_tm->tm_year = orig_year;
af832814 537 if( local_tm->tm_year != orig_year ) {
461d5a49 538 TRACE("tm_year overflow: tm_year %lld, orig_year %lld\n",
539 (Year)local_tm->tm_year, (Year)orig_year);
540
af832814 541#ifdef EOVERFLOW
542 errno = EOVERFLOW;
543#endif
544 return NULL;
545 }
546
547
a272e669 548 month_diff = local_tm->tm_mon - gm_tm.tm_mon;
549
550 /* When localtime is Dec 31st previous year and
551 gmtime is Jan 1st next year.
552 */
553 if( month_diff == 11 ) {
554 local_tm->tm_year--;
555 }
556
557 /* When localtime is Jan 1st, next year and
558 gmtime is Dec 31st, previous year.
559 */
560 if( month_diff == -11 ) {
561 local_tm->tm_year++;
562 }
563
564 /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
565 in a non-leap xx00. There is one point in the cycle
566 we can't account for which the safe xx00 year is a leap
567 year. So we need to correct for Dec 31st comming out as
568 the 366th day of the year.
569 */
570 if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
571 local_tm->tm_yday--;
572
806a119a 573 assert(check_tm(local_tm));
a272e669 574
575 return local_tm;
576}