Revert "show -E in error message when called with -E"
[p5sagit/p5-mst-13.2.git] / time64.c
CommitLineData
a272e669 1/*
2
3Copyright (c) 2007-2008 Michael G Schwern
4
5This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
6
7The MIT License:
8
9Permission is hereby granted, free of charge, to any person obtaining a copy
10of this software and associated documentation files (the "Software"), to deal
11in the Software without restriction, including without limitation the rights
12to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13copies of the Software, and to permit persons to whom the Software is
14furnished to do so, subject to the following conditions:
15
16The above copyright notice and this permission notice shall be included in
17all copies or substantial portions of the Software.
18
19THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25THE SOFTWARE.
26
27*/
28
29/*
30
31Programmers who have available to them 64-bit time values as a 'long
32long' type can use localtime64_r() and gmtime64_r() which correctly
33converts the time even on 32-bit systems. Whether you have 64-bit time
34values will depend on the operating system.
35
36localtime64_r() is a 64-bit equivalent of localtime_r().
37
38gmtime64_r() is a 64-bit equivalent of gmtime_r().
39
40*/
41
7643e68f 42#include "time64.h"
af9b2bf5 43
a272e669 44static const int days_in_month[2][12] = {
45 {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
46 {31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
47};
48
49static const int julian_days_by_month[2][12] = {
50 {0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
51 {0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
52};
53
54static const int length_of_year[2] = { 365, 366 };
55
56/* Number of days in a 400 year Gregorian cycle */
806a119a 57static const Year years_in_gregorian_cycle = 400;
a272e669 58static const int days_in_gregorian_cycle = (365 * 400) + 100 - 4 + 1;
59
60/* 28 year calendar cycle between 2010 and 2037 */
806a119a 61#define SOLAR_CYCLE_LENGTH 28
62static const int safe_years[SOLAR_CYCLE_LENGTH] = {
a272e669 63 2016, 2017, 2018, 2019,
64 2020, 2021, 2022, 2023,
65 2024, 2025, 2026, 2027,
66 2028, 2029, 2030, 2031,
67 2032, 2033, 2034, 2035,
68 2036, 2037, 2010, 2011,
69 2012, 2013, 2014, 2015
70};
71
ea722b76 72static const int dow_year_start[SOLAR_CYCLE_LENGTH] = {
003c3b95 73 5, 0, 1, 2, /* 0 2016 - 2019 */
74 3, 5, 6, 0, /* 4 */
75 1, 3, 4, 5, /* 8 */
76 6, 1, 2, 3, /* 12 */
77 4, 6, 0, 1, /* 16 */
78 2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */
79 0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */
a272e669 80};
81
9af24521 82/* Let's assume people are going to be looking for dates in the future.
83 Let's provide some cheats so you can skip ahead.
84 This has a 4x speed boost when near 2008.
85*/
86/* Number of days since epoch on Jan 1st, 2008 GMT */
87#define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
88#define CHEAT_YEARS 108
a272e669 89
90#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
91#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))
92
b86b480f 93#ifdef USE_SYSTEM_LOCALTIME
94# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
7bda3dfc 95 (a) <= SYSTEM_LOCALTIME_MAX && \
96 (a) >= SYSTEM_LOCALTIME_MIN \
97)
b86b480f 98#else
99# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
100#endif
101
102#ifdef USE_SYSTEM_GMTIME
103# define SHOULD_USE_SYSTEM_GMTIME(a) ( \
7bda3dfc 104 (a) <= SYSTEM_GMTIME_MAX && \
105 (a) >= SYSTEM_GMTIME_MIN \
106)
b86b480f 107#else
108# define SHOULD_USE_SYSTEM_GMTIME(a) (0)
109#endif
a64acb40 110
d4fb0a1f 111/* Multi varadic macros are a C99 thing, alas */
461d5a49 112#ifdef TIME_64_DEBUG
d4fb0a1f 113# define TRACE(format) (fprintf(stderr, format))
114# define TRACE1(format, var1) (fprintf(stderr, format, var1))
115# define TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2))
116# define TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3))
461d5a49 117#else
d4fb0a1f 118# define TRACE(format) ((void)0)
119# define TRACE1(format, var1) ((void)0)
120# define TRACE2(format, var1, var2) ((void)0)
121# define TRACE3(format, var1, var2, var3) ((void)0)
461d5a49 122#endif
a64acb40 123
b86b480f 124static int is_exception_century(Year year)
a272e669 125{
126 int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
d4fb0a1f 127 TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
a272e669 128
129 return(is_exception);
130}
131
9af24521 132
806a119a 133Time64_T timegm64(struct TM *date) {
b86b480f 134 int days = 0;
135 Time64_T seconds = 0;
136 Year year;
a272e669 137
9af24521 138 if( date->tm_year > 70 ) {
139 year = 70;
140 while( year < date->tm_year ) {
141 days += length_of_year[IS_LEAP(year)];
142 year++;
a272e669 143 }
144 }
9af24521 145 else if ( date->tm_year < 70 ) {
146 year = 69;
147 do {
148 days -= length_of_year[IS_LEAP(year)];
149 year--;
150 } while( year >= date->tm_year );
151 }
152
153 days += julian_days_by_month[IS_LEAP(date->tm_year)][date->tm_mon];
154 days += date->tm_mday - 1;
155
ea722b76 156 /* Avoid overflowing the days integer */
157 seconds = days;
158 seconds = seconds * 60 * 60 * 24;
159
9af24521 160 seconds += date->tm_hour * 60 * 60;
161 seconds += date->tm_min * 60;
162 seconds += date->tm_sec;
163
b86b480f 164 return(seconds);
9af24521 165}
166
167
806a119a 168static int check_tm(struct TM *tm)
9af24521 169{
9af24521 170 /* Don't forget leap seconds */
af9b2bf5 171 assert(tm->tm_sec >= 0);
9af24521 172 assert(tm->tm_sec <= 61);
173
af9b2bf5 174 assert(tm->tm_min >= 0);
9af24521 175 assert(tm->tm_min <= 59);
176
177 assert(tm->tm_hour >= 0);
178 assert(tm->tm_hour <= 23);
179
180 assert(tm->tm_mday >= 1);
af9b2bf5 181 assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
9af24521 182
183 assert(tm->tm_mon >= 0);
184 assert(tm->tm_mon <= 11);
185
186 assert(tm->tm_wday >= 0);
187 assert(tm->tm_wday <= 6);
188
189 assert(tm->tm_yday >= 0);
af9b2bf5 190 assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
9af24521 191
192#ifdef HAS_TM_TM_GMTOFF
193 assert(tm->tm_gmtoff >= -24 * 60 * 60);
194 assert(tm->tm_gmtoff <= 24 * 60 * 60);
195#endif
af9b2bf5 196
197 return 1;
a272e669 198}
a64acb40 199
a272e669 200
201/* The exceptional centuries without leap years cause the cycle to
202 shift by 16
203*/
806a119a 204static Year cycle_offset(Year year)
a272e669 205{
750c447b 206 const Year start_year = 2000;
207 Year year_diff = year - start_year;
208 Year exceptions;
003c3b95 209
210 if( year > start_year )
211 year_diff--;
212
750c447b 213 exceptions = year_diff / 100;
214 exceptions -= year_diff / 400;
a272e669 215
d4fb0a1f 216 TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
461d5a49 217 year, exceptions, year_diff);
a272e669 218
219 return exceptions * 16;
220}
221
222/* For a given year after 2038, pick the latest possible matching
223 year in the 28 year calendar cycle.
ea722b76 224
225 A matching year...
226 1) Starts on the same day of the week.
227 2) Has the same leap year status.
228
229 This is so the calendars match up.
230
231 Also the previous year must match. When doing Jan 1st you might
232 wind up on Dec 31st the previous year when doing a -UTC time zone.
003c3b95 233
234 Finally, the next year must have the same start day of week. This
235 is for Dec 31st with a +UTC time zone.
236 It doesn't need the same leap year status since we only care about
237 January 1st.
a272e669 238*/
806a119a 239static int safe_year(Year year)
a272e669 240{
241 int safe_year;
806a119a 242 Year year_cycle = year + cycle_offset(year);
a272e669 243
244 /* Change non-leap xx00 years to an equivalent */
806a119a 245 if( is_exception_century(year) )
a272e669 246 year_cycle += 11;
247
003c3b95 248 /* Also xx01 years, since the previous year will be wrong */
806a119a 249 if( is_exception_century(year - 1) )
003c3b95 250 year_cycle += 17;
251
a272e669 252 year_cycle %= SOLAR_CYCLE_LENGTH;
ea722b76 253 if( year_cycle < 0 )
254 year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
a272e669 255
003c3b95 256 assert( year_cycle >= 0 );
257 assert( year_cycle < SOLAR_CYCLE_LENGTH );
a272e669 258 safe_year = safe_years[year_cycle];
259
260 assert(safe_year <= 2037 && safe_year >= 2010);
261
d4fb0a1f 262 TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
461d5a49 263 year, year_cycle, safe_year);
a272e669 264
265 return safe_year;
266}
267
750c447b 268
ef3a38ff 269void copy_little_tm_to_big_TM(const struct tm *src, struct TM *dest) {
806a119a 270 if( src == NULL ) {
271 memset(dest, 0, sizeof(*dest));
272 }
273 else {
274# ifdef USE_TM64
275 dest->tm_sec = src->tm_sec;
276 dest->tm_min = src->tm_min;
277 dest->tm_hour = src->tm_hour;
278 dest->tm_mday = src->tm_mday;
279 dest->tm_mon = src->tm_mon;
280 dest->tm_year = (Year)src->tm_year;
281 dest->tm_wday = src->tm_wday;
282 dest->tm_yday = src->tm_yday;
283 dest->tm_isdst = src->tm_isdst;
284
285# ifdef HAS_TM_TM_GMTOFF
286 dest->tm_gmtoff = src->tm_gmtoff;
287# endif
288
289# ifdef HAS_TM_TM_ZONE
290 dest->tm_zone = src->tm_zone;
291# endif
292
293# else
294 /* They're the same type */
295 memcpy(dest, src, sizeof(*dest));
296# endif
297 }
298}
299
300
ef3a38ff 301void copy_big_TM_to_little_tm(const struct TM *src, struct tm *dest) {
806a119a 302 if( src == NULL ) {
303 memset(dest, 0, sizeof(*dest));
304 }
305 else {
306# ifdef USE_TM64
307 dest->tm_sec = src->tm_sec;
308 dest->tm_min = src->tm_min;
309 dest->tm_hour = src->tm_hour;
310 dest->tm_mday = src->tm_mday;
311 dest->tm_mon = src->tm_mon;
312 dest->tm_year = (int)src->tm_year;
313 dest->tm_wday = src->tm_wday;
314 dest->tm_yday = src->tm_yday;
315 dest->tm_isdst = src->tm_isdst;
316
317# ifdef HAS_TM_TM_GMTOFF
318 dest->tm_gmtoff = src->tm_gmtoff;
319# endif
320
321# ifdef HAS_TM_TM_ZONE
322 dest->tm_zone = src->tm_zone;
323# endif
324
325# else
326 /* They're the same type */
327 memcpy(dest, src, sizeof(*dest));
328# endif
329 }
330}
331
332
948ea7a9 333/* Simulate localtime_r() to the best of our ability */
334struct tm * fake_localtime_r(const time_t *clock, struct tm *result) {
478780ab 335 dTHX; /* in case the following is defined as Perl_my_localtime(aTHX_ ...) */
948ea7a9 336 const struct tm *static_result = localtime(clock);
337
338 assert(result != NULL);
339
340 if( static_result == NULL ) {
341 memset(result, 0, sizeof(*result));
342 return NULL;
343 }
344 else {
345 memcpy(result, static_result, sizeof(*result));
346 return result;
347 }
348}
349
350
351/* Simulate gmtime_r() to the best of our ability */
352struct tm * fake_gmtime_r(const time_t *clock, struct tm *result) {
478780ab 353 dTHX; /* in case the following is defined as Perl_my_gmtime(aTHX_ ...) */
948ea7a9 354 const struct tm *static_result = gmtime(clock);
355
356 assert(result != NULL);
357
358 if( static_result == NULL ) {
359 memset(result, 0, sizeof(*result));
360 return NULL;
361 }
362 else {
363 memcpy(result, static_result, sizeof(*result));
364 return result;
365 }
366}
367
368
806a119a 369struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p)
a272e669 370{
371 int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
b86b480f 372 Time64_T v_tm_tday;
a272e669 373 int leap;
b86b480f 374 Time64_T m;
a272e669 375 Time64_T time = *in_time;
750c447b 376 Year year = 70;
806a119a 377 int cycles = 0;
a272e669 378
948ea7a9 379 assert(p != NULL);
380
a64acb40 381 /* Use the system gmtime() if time_t is small enough */
382 if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
383 time_t safe_time = *in_time;
806a119a 384 struct tm safe_date;
385 GMTIME_R(&safe_time, &safe_date);
386
ef3a38ff 387 copy_little_tm_to_big_TM(&safe_date, p);
806a119a 388 assert(check_tm(p));
389
a64acb40 390 return p;
391 }
392
9af24521 393#ifdef HAS_TM_TM_GMTOFF
a272e669 394 p->tm_gmtoff = 0;
395#endif
396 p->tm_isdst = 0;
397
9af24521 398#ifdef HAS_TM_TM_ZONE
a272e669 399 p->tm_zone = "UTC";
400#endif
401
750c447b 402 v_tm_sec = (int)(time % 60);
a272e669 403 time /= 60;
750c447b 404 v_tm_min = (int)(time % 60);
a272e669 405 time /= 60;
750c447b 406 v_tm_hour = (int)(time % 24);
a272e669 407 time /= 24;
408 v_tm_tday = time;
750c447b 409
a272e669 410 WRAP (v_tm_sec, v_tm_min, 60);
411 WRAP (v_tm_min, v_tm_hour, 60);
412 WRAP (v_tm_hour, v_tm_tday, 24);
750c447b 413
414 v_tm_wday = (int)((v_tm_tday + 4) % 7);
415 if (v_tm_wday < 0)
a272e669 416 v_tm_wday += 7;
417 m = v_tm_tday;
a272e669 418
9af24521 419 if (m >= CHEAT_DAYS) {
420 year = CHEAT_YEARS;
421 m -= CHEAT_DAYS;
422 }
423
424 if (m >= 0) {
a272e669 425 /* Gregorian cycles, this is huge optimization for distant times */
461d5a49 426 cycles = (int)(m / (Time64_T) days_in_gregorian_cycle);
806a119a 427 if( cycles ) {
428 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
429 year += (cycles * years_in_gregorian_cycle);
a272e669 430 }
431
432 /* Years */
433 leap = IS_LEAP (year);
434 while (m >= (Time64_T) length_of_year[leap]) {
435 m -= (Time64_T) length_of_year[leap];
436 year++;
437 leap = IS_LEAP (year);
438 }
439
440 /* Months */
441 v_tm_mon = 0;
442 while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
443 m -= (Time64_T) days_in_month[leap][v_tm_mon];
444 v_tm_mon++;
445 }
446 } else {
9af24521 447 year--;
a272e669 448
449 /* Gregorian cycles */
461d5a49 450 cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1);
806a119a 451 if( cycles ) {
452 m -= (cycles * (Time64_T) days_in_gregorian_cycle);
453 year += (cycles * years_in_gregorian_cycle);
a272e669 454 }
455
456 /* Years */
457 leap = IS_LEAP (year);
458 while (m < (Time64_T) -length_of_year[leap]) {
459 m += (Time64_T) length_of_year[leap];
460 year--;
461 leap = IS_LEAP (year);
462 }
463
464 /* Months */
465 v_tm_mon = 11;
466 while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
467 m += (Time64_T) days_in_month[leap][v_tm_mon];
468 v_tm_mon--;
469 }
470 m += (Time64_T) days_in_month[leap][v_tm_mon];
471 }
472
473 p->tm_year = year;
474 if( p->tm_year != year ) {
9af24521 475#ifdef EOVERFLOW
a272e669 476 errno = EOVERFLOW;
9af24521 477#endif
a272e669 478 return NULL;
479 }
480
b86b480f 481 /* At this point m is less than a year so casting to an int is safe */
a272e669 482 p->tm_mday = (int) m + 1;
b86b480f 483 p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
484 p->tm_sec = v_tm_sec;
485 p->tm_min = v_tm_min;
486 p->tm_hour = v_tm_hour;
487 p->tm_mon = v_tm_mon;
488 p->tm_wday = v_tm_wday;
a272e669 489
806a119a 490 assert(check_tm(p));
a272e669 491
492 return p;
493}
494
495
806a119a 496struct TM *localtime64_r (const Time64_T *time, struct TM *local_tm)
a272e669 497{
498 time_t safe_time;
806a119a 499 struct tm safe_date;
500 struct TM gm_tm;
750c447b 501 Year orig_year;
a272e669 502 int month_diff;
503
948ea7a9 504 assert(local_tm != NULL);
505
a64acb40 506 /* Use the system localtime() if time_t is small enough */
507 if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
508 safe_time = *time;
806a119a 509
d4fb0a1f 510 TRACE1("Using system localtime for %lld\n", *time);
461d5a49 511
806a119a 512 LOCALTIME_R(&safe_time, &safe_date);
513
ef3a38ff 514 copy_little_tm_to_big_TM(&safe_date, local_tm);
806a119a 515 assert(check_tm(local_tm));
516
a64acb40 517 return local_tm;
518 }
519
461d5a49 520 if( gmtime64_r(time, &gm_tm) == NULL ) {
d4fb0a1f 521 TRACE1("gmtime64_r returned null for %lld\n", *time);
af832814 522 return NULL;
461d5a49 523 }
af832814 524
a272e669 525 orig_year = gm_tm.tm_year;
526
c07fe26c 527 if (gm_tm.tm_year > (2037 - 1900) ||
461d5a49 528 gm_tm.tm_year < (1970 - 1900)
c07fe26c 529 )
530 {
d4fb0a1f 531 TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
b86b480f 532 gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
c07fe26c 533 }
a272e669 534
806a119a 535 safe_time = timegm64(&gm_tm);
461d5a49 536 if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
d4fb0a1f 537 TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
af832814 538 return NULL;
461d5a49 539 }
a272e669 540
ef3a38ff 541 copy_little_tm_to_big_TM(&safe_date, local_tm);
806a119a 542
a272e669 543 local_tm->tm_year = orig_year;
af832814 544 if( local_tm->tm_year != orig_year ) {
d4fb0a1f 545 TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
461d5a49 546 (Year)local_tm->tm_year, (Year)orig_year);
547
af832814 548#ifdef EOVERFLOW
549 errno = EOVERFLOW;
550#endif
551 return NULL;
552 }
553
554
a272e669 555 month_diff = local_tm->tm_mon - gm_tm.tm_mon;
556
557 /* When localtime is Dec 31st previous year and
558 gmtime is Jan 1st next year.
559 */
560 if( month_diff == 11 ) {
561 local_tm->tm_year--;
562 }
563
564 /* When localtime is Jan 1st, next year and
565 gmtime is Dec 31st, previous year.
566 */
567 if( month_diff == -11 ) {
568 local_tm->tm_year++;
569 }
570
571 /* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
572 in a non-leap xx00. There is one point in the cycle
573 we can't account for which the safe xx00 year is a leap
574 year. So we need to correct for Dec 31st comming out as
575 the 366th day of the year.
576 */
577 if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
578 local_tm->tm_yday--;
579
806a119a 580 assert(check_tm(local_tm));
a272e669 581
582 return local_tm;
583}