Upgrade to Encode 1.65.
[p5sagit/p5-mst-13.2.git] / pp_sort.c
CommitLineData
84d4ea48 1/* pp_sort.c
2 *
be3c0a43 3 * Copyright (c) 1991-2002, Larry Wall
84d4ea48 4 *
5 * You may distribute under the terms of either the GNU General Public
6 * License or the Artistic License, as specified in the README file.
7 *
8 */
9
10/*
11 * ...they shuffled back towards the rear of the line. 'No, not at the
12 * rear!' the slave-driver shouted. 'Three files up. And stay there...
13 */
14
15#include "EXTERN.h"
16#define PERL_IN_PP_SORT_C
17#include "perl.h"
18
42165d27 19#if defined(UNDER_CE)
20/* looks like 'small' is reserved word for WINCE (or somesuch)*/
21#define small xsmall
22#endif
23
84d4ea48 24static I32 sortcv(pTHX_ SV *a, SV *b);
25static I32 sortcv_stacked(pTHX_ SV *a, SV *b);
26static I32 sortcv_xsub(pTHX_ SV *a, SV *b);
27static I32 sv_ncmp(pTHX_ SV *a, SV *b);
28static I32 sv_i_ncmp(pTHX_ SV *a, SV *b);
29static I32 amagic_ncmp(pTHX_ SV *a, SV *b);
30static I32 amagic_i_ncmp(pTHX_ SV *a, SV *b);
31static I32 amagic_cmp(pTHX_ SV *a, SV *b);
32static I32 amagic_cmp_locale(pTHX_ SV *a, SV *b);
33
34#define sv_cmp_static Perl_sv_cmp
35#define sv_cmp_locale_static Perl_sv_cmp_locale
36
37#define SORTHINTS(hintsvp) \
38 ((PL_hintgv && \
39 (hintsvp = hv_fetch(GvHV(PL_hintgv), "SORT", 4, FALSE))) ? \
40 (I32)SvIV(*hintsvp) : 0)
41
c53fc8a6 42#ifndef SMALLSORT
43#define SMALLSORT (200)
44#endif
45
84d4ea48 46/*
47 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
48 *
49 * The original code was written in conjunction with BSD Computer Software
50 * Research Group at University of California, Berkeley.
51 *
52 * See also: "Optimistic Merge Sort" (SODA '92)
53 *
54 * The integration to Perl is by John P. Linderman <jpl@research.att.com>.
55 *
56 * The code can be distributed under the same terms as Perl itself.
57 *
58 */
59
84d4ea48 60
61typedef char * aptr; /* pointer for arithmetic on sizes */
62typedef SV * gptr; /* pointers in our lists */
63
64/* Binary merge internal sort, with a few special mods
65** for the special perl environment it now finds itself in.
66**
67** Things that were once options have been hotwired
68** to values suitable for this use. In particular, we'll always
69** initialize looking for natural runs, we'll always produce stable
70** output, and we'll always do Peter McIlroy's binary merge.
71*/
72
73/* Pointer types for arithmetic and storage and convenience casts */
74
75#define APTR(P) ((aptr)(P))
76#define GPTP(P) ((gptr *)(P))
77#define GPPP(P) ((gptr **)(P))
78
79
80/* byte offset from pointer P to (larger) pointer Q */
81#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
82
83#define PSIZE sizeof(gptr)
84
85/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
86
87#ifdef PSHIFT
88#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
89#define PNBYTE(N) ((N) << (PSHIFT))
90#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
91#else
92/* Leave optimization to compiler */
93#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
94#define PNBYTE(N) ((N) * (PSIZE))
95#define PINDEX(P, N) (GPTP(P) + (N))
96#endif
97
98/* Pointer into other corresponding to pointer into this */
99#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
100
101#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
102
103
104/* Runs are identified by a pointer in the auxilliary list.
105** The pointer is at the start of the list,
106** and it points to the start of the next list.
107** NEXT is used as an lvalue, too.
108*/
109
110#define NEXT(P) (*GPPP(P))
111
112
113/* PTHRESH is the minimum number of pairs with the same sense to justify
114** checking for a run and extending it. Note that PTHRESH counts PAIRS,
115** not just elements, so PTHRESH == 8 means a run of 16.
116*/
117
118#define PTHRESH (8)
119
120/* RTHRESH is the number of elements in a run that must compare low
121** to the low element from the opposing run before we justify
122** doing a binary rampup instead of single stepping.
123** In random input, N in a row low should only happen with
124** probability 2^(1-N), so we can risk that we are dealing
125** with orderly input without paying much when we aren't.
126*/
127
128#define RTHRESH (6)
129
130
131/*
132** Overview of algorithm and variables.
133** The array of elements at list1 will be organized into runs of length 2,
134** or runs of length >= 2 * PTHRESH. We only try to form long runs when
135** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
136**
137** Unless otherwise specified, pair pointers address the first of two elements.
138**
139** b and b+1 are a pair that compare with sense ``sense''.
140** b is the ``bottom'' of adjacent pairs that might form a longer run.
141**
142** p2 parallels b in the list2 array, where runs are defined by
143** a pointer chain.
144**
145** t represents the ``top'' of the adjacent pairs that might extend
146** the run beginning at b. Usually, t addresses a pair
147** that compares with opposite sense from (b,b+1).
148** However, it may also address a singleton element at the end of list1,
149** or it may be equal to ``last'', the first element beyond list1.
150**
151** r addresses the Nth pair following b. If this would be beyond t,
152** we back it off to t. Only when r is less than t do we consider the
153** run long enough to consider checking.
154**
155** q addresses a pair such that the pairs at b through q already form a run.
156** Often, q will equal b, indicating we only are sure of the pair itself.
157** However, a search on the previous cycle may have revealed a longer run,
158** so q may be greater than b.
159**
160** p is used to work back from a candidate r, trying to reach q,
161** which would mean b through r would be a run. If we discover such a run,
162** we start q at r and try to push it further towards t.
163** If b through r is NOT a run, we detect the wrong order at (p-1,p).
164** In any event, after the check (if any), we have two main cases.
165**
166** 1) Short run. b <= q < p <= r <= t.
167** b through q is a run (perhaps trivial)
168** q through p are uninteresting pairs
169** p through r is a run
170**
171** 2) Long run. b < r <= q < t.
172** b through q is a run (of length >= 2 * PTHRESH)
173**
174** Note that degenerate cases are not only possible, but likely.
175** For example, if the pair following b compares with opposite sense,
176** then b == q < p == r == t.
177*/
178
179
957d8989 180static IV
84d4ea48 181dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, SVCOMPARE_t cmp)
182{
957d8989 183 I32 sense;
84d4ea48 184 register gptr *b, *p, *q, *t, *p2;
185 register gptr c, *last, *r;
186 gptr *savep;
957d8989 187 IV runs = 0;
84d4ea48 188
189 b = list1;
190 last = PINDEX(b, nmemb);
191 sense = (cmp(aTHX_ *b, *(b+1)) > 0);
192 for (p2 = list2; b < last; ) {
193 /* We just started, or just reversed sense.
194 ** Set t at end of pairs with the prevailing sense.
195 */
196 for (p = b+2, t = p; ++p < last; t = ++p) {
197 if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
198 }
199 q = b;
200 /* Having laid out the playing field, look for long runs */
201 do {
202 p = r = b + (2 * PTHRESH);
203 if (r >= t) p = r = t; /* too short to care about */
204 else {
205 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
206 ((p -= 2) > q));
207 if (p <= q) {
208 /* b through r is a (long) run.
209 ** Extend it as far as possible.
210 */
211 p = q = r;
212 while (((p += 2) < t) &&
213 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
214 r = p = q + 2; /* no simple pairs, no after-run */
215 }
216 }
217 if (q > b) { /* run of greater than 2 at b */
218 savep = p;
219 p = q += 2;
220 /* pick up singleton, if possible */
221 if ((p == t) &&
222 ((t + 1) == last) &&
223 ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
224 savep = r = p = q = last;
957d8989 225 p2 = NEXT(p2) = p2 + (p - b); ++runs;
84d4ea48 226 if (sense) while (b < --p) {
227 c = *b;
228 *b++ = *p;
229 *p = c;
230 }
231 p = savep;
232 }
233 while (q < p) { /* simple pairs */
957d8989 234 p2 = NEXT(p2) = p2 + 2; ++runs;
84d4ea48 235 if (sense) {
236 c = *q++;
237 *(q-1) = *q;
238 *q++ = c;
239 } else q += 2;
240 }
241 if (((b = p) == t) && ((t+1) == last)) {
957d8989 242 NEXT(p2) = p2 + 1; ++runs;
84d4ea48 243 b++;
244 }
245 q = r;
246 } while (b < t);
247 sense = !sense;
248 }
957d8989 249 return runs;
84d4ea48 250}
251
252
3fe0b9a9 253/* The original merge sort, in use since 5.7, was as fast as, or faster than,
957d8989 254 * qsort on many platforms, but slower than qsort, conspicuously so,
3fe0b9a9 255 * on others. The most likely explanation was platform-specific
957d8989 256 * differences in cache sizes and relative speeds.
257 *
258 * The quicksort divide-and-conquer algorithm guarantees that, as the
259 * problem is subdivided into smaller and smaller parts, the parts
260 * fit into smaller (and faster) caches. So it doesn't matter how
261 * many levels of cache exist, quicksort will "find" them, and,
262 * as long as smaller is faster, take advanatge of them.
263 *
3fe0b9a9 264 * By contrast, consider how the original mergesort algorithm worked.
957d8989 265 * Suppose we have five runs (each typically of length 2 after dynprep).
266 *
267 * pass base aux
268 * 0 1 2 3 4 5
269 * 1 12 34 5
270 * 2 1234 5
271 * 3 12345
272 * 4 12345
273 *
274 * Adjacent pairs are merged in "grand sweeps" through the input.
275 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
276 * runs 3 and 4 are merged and the runs from run 5 have been copied.
277 * The only cache that matters is one large enough to hold *all* the input.
278 * On some platforms, this may be many times slower than smaller caches.
279 *
280 * The following pseudo-code uses the same basic merge algorithm,
281 * but in a divide-and-conquer way.
282 *
283 * # merge $runs runs at offset $offset of list $list1 into $list2.
284 * # all unmerged runs ($runs == 1) originate in list $base.
285 * sub mgsort2 {
286 * my ($offset, $runs, $base, $list1, $list2) = @_;
287 *
288 * if ($runs == 1) {
289 * if ($list1 is $base) copy run to $list2
290 * return offset of end of list (or copy)
291 * } else {
292 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
293 * mgsort2($off2, $runs/2, $base, $list2, $list1)
294 * merge the adjacent runs at $offset of $list1 into $list2
295 * return the offset of the end of the merged runs
296 * }
297 * }
298 * mgsort2(0, $runs, $base, $aux, $base);
299 *
300 * For our 5 runs, the tree of calls looks like
301 *
302 * 5
303 * 3 2
304 * 2 1 1 1
305 * 1 1
306 *
307 * 1 2 3 4 5
308 *
309 * and the corresponding activity looks like
310 *
311 * copy runs 1 and 2 from base to aux
312 * merge runs 1 and 2 from aux to base
313 * (run 3 is where it belongs, no copy needed)
314 * merge runs 12 and 3 from base to aux
315 * (runs 4 and 5 are where they belong, no copy needed)
316 * merge runs 4 and 5 from base to aux
317 * merge runs 123 and 45 from aux to base
318 *
319 * Note that we merge runs 1 and 2 immediately after copying them,
320 * while they are still likely to be in fast cache. Similarly,
321 * run 3 is merged with run 12 while it still may be lingering in cache.
322 * This implementation should therefore enjoy much of the cache-friendly
323 * behavior that quicksort does. In addition, it does less copying
324 * than the original mergesort implementation (only runs 1 and 2 are copied)
325 * and the "balancing" of merges is better (merged runs comprise more nearly
326 * equal numbers of original runs).
327 *
328 * The actual cache-friendly implementation will use a pseudo-stack
329 * to avoid recursion, and will unroll processing of runs of length 2,
330 * but it is otherwise similar to the recursive implementation.
957d8989 331 */
332
333typedef struct {
334 IV offset; /* offset of 1st of 2 runs at this level */
335 IV runs; /* how many runs must be combined into 1 */
336} off_runs; /* pseudo-stack element */
337
338STATIC void
3fe0b9a9 339S_mergesortsv(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp)
957d8989 340{
341 IV i, run, runs, offset;
342 I32 sense, level;
343 int iwhich;
344 register gptr *f1, *f2, *t, *b, *p, *tp2, *l1, *l2, *q;
345 gptr *aux, *list1, *list2;
346 gptr *p1;
347 gptr small[SMALLSORT];
348 gptr *which[3];
349 off_runs stack[60], *stackp;
350
351 if (nmemb <= 1) return; /* sorted trivially */
352 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
353 else { New(799,aux,nmemb,gptr); } /* allocate auxilliary array */
354 level = 0;
355 stackp = stack;
356 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
357 stackp->offset = offset = 0;
358 which[0] = which[2] = base;
359 which[1] = aux;
360 for (;;) {
361 /* On levels where both runs have be constructed (stackp->runs == 0),
362 * merge them, and note the offset of their end, in case the offset
363 * is needed at the next level up. Hop up a level, and,
364 * as long as stackp->runs is 0, keep merging.
365 */
366 if ((runs = stackp->runs) == 0) {
367 iwhich = level & 1;
368 list1 = which[iwhich]; /* area where runs are now */
369 list2 = which[++iwhich]; /* area for merged runs */
370 do {
371 offset = stackp->offset;
372 f1 = p1 = list1 + offset; /* start of first run */
373 p = tp2 = list2 + offset; /* where merged run will go */
374 t = NEXT(p); /* where first run ends */
375 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
376 t = NEXT(t); /* where second runs ends */
377 l2 = POTHER(t, list2, list1); /* ... on the other side */
378 offset = PNELEM(list2, t);
379 while (f1 < l1 && f2 < l2) {
380 /* If head 1 is larger than head 2, find ALL the elements
381 ** in list 2 strictly less than head1, write them all,
382 ** then head 1. Then compare the new heads, and repeat,
383 ** until one or both lists are exhausted.
384 **
385 ** In all comparisons (after establishing
386 ** which head to merge) the item to merge
387 ** (at pointer q) is the first operand of
388 ** the comparison. When we want to know
389 ** if ``q is strictly less than the other'',
390 ** we can't just do
391 ** cmp(q, other) < 0
392 ** because stability demands that we treat equality
393 ** as high when q comes from l2, and as low when
394 ** q was from l1. So we ask the question by doing
395 ** cmp(q, other) <= sense
396 ** and make sense == 0 when equality should look low,
397 ** and -1 when equality should look high.
398 */
399
400
401 if (cmp(aTHX_ *f1, *f2) <= 0) {
402 q = f2; b = f1; t = l1;
403 sense = -1;
404 } else {
405 q = f1; b = f2; t = l2;
406 sense = 0;
407 }
408
409
410 /* ramp up
411 **
412 ** Leave t at something strictly
413 ** greater than q (or at the end of the list),
414 ** and b at something strictly less than q.
415 */
416 for (i = 1, run = 0 ;;) {
417 if ((p = PINDEX(b, i)) >= t) {
418 /* off the end */
419 if (((p = PINDEX(t, -1)) > b) &&
420 (cmp(aTHX_ *q, *p) <= sense))
421 t = p;
422 else b = p;
423 break;
424 } else if (cmp(aTHX_ *q, *p) <= sense) {
425 t = p;
426 break;
427 } else b = p;
428 if (++run >= RTHRESH) i += i;
429 }
430
431
432 /* q is known to follow b and must be inserted before t.
433 ** Increment b, so the range of possibilities is [b,t).
434 ** Round binary split down, to favor early appearance.
435 ** Adjust b and t until q belongs just before t.
436 */
437
438 b++;
439 while (b < t) {
440 p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
441 if (cmp(aTHX_ *q, *p) <= sense) {
442 t = p;
443 } else b = p + 1;
444 }
445
446
447 /* Copy all the strictly low elements */
448
449 if (q == f1) {
450 FROMTOUPTO(f2, tp2, t);
451 *tp2++ = *f1++;
452 } else {
453 FROMTOUPTO(f1, tp2, t);
454 *tp2++ = *f2++;
455 }
456 }
457
458
459 /* Run out remaining list */
460 if (f1 == l1) {
461 if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
462 } else FROMTOUPTO(f1, tp2, l1);
463 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
464
465 if (--level == 0) goto done;
466 --stackp;
467 t = list1; list1 = list2; list2 = t; /* swap lists */
468 } while ((runs = stackp->runs) == 0);
469 }
470
471
472 stackp->runs = 0; /* current run will finish level */
473 /* While there are more than 2 runs remaining,
474 * turn them into exactly 2 runs (at the "other" level),
475 * each made up of approximately half the runs.
476 * Stack the second half for later processing,
477 * and set about producing the first half now.
478 */
479 while (runs > 2) {
480 ++level;
481 ++stackp;
482 stackp->offset = offset;
483 runs -= stackp->runs = runs / 2;
484 }
485 /* We must construct a single run from 1 or 2 runs.
486 * All the original runs are in which[0] == base.
487 * The run we construct must end up in which[level&1].
488 */
489 iwhich = level & 1;
490 if (runs == 1) {
491 /* Constructing a single run from a single run.
492 * If it's where it belongs already, there's nothing to do.
493 * Otherwise, copy it to where it belongs.
494 * A run of 1 is either a singleton at level 0,
495 * or the second half of a split 3. In neither event
496 * is it necessary to set offset. It will be set by the merge
497 * that immediately follows.
498 */
499 if (iwhich) { /* Belongs in aux, currently in base */
500 f1 = b = PINDEX(base, offset); /* where list starts */
501 f2 = PINDEX(aux, offset); /* where list goes */
502 t = NEXT(f2); /* where list will end */
503 offset = PNELEM(aux, t); /* offset thereof */
504 t = PINDEX(base, offset); /* where it currently ends */
505 FROMTOUPTO(f1, f2, t); /* copy */
506 NEXT(b) = t; /* set up parallel pointer */
507 } else if (level == 0) goto done; /* single run at level 0 */
508 } else {
509 /* Constructing a single run from two runs.
510 * The merge code at the top will do that.
511 * We need only make sure the two runs are in the "other" array,
512 * so they'll end up in the correct array after the merge.
513 */
514 ++level;
515 ++stackp;
516 stackp->offset = offset;
517 stackp->runs = 0; /* take care of both runs, trigger merge */
518 if (!iwhich) { /* Merged runs belong in aux, copy 1st */
519 f1 = b = PINDEX(base, offset); /* where first run starts */
520 f2 = PINDEX(aux, offset); /* where it will be copied */
521 t = NEXT(f2); /* where first run will end */
522 offset = PNELEM(aux, t); /* offset thereof */
523 p = PINDEX(base, offset); /* end of first run */
524 t = NEXT(t); /* where second run will end */
525 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
526 FROMTOUPTO(f1, f2, t); /* copy both runs */
527 NEXT(b) = p; /* paralled pointer for 1st */
528 NEXT(p) = t; /* ... and for second */
529 }
530 }
531 }
532done:
533 if (aux != small) Safefree(aux); /* free iff allocated */
534 return;
535}
536
84d4ea48 537/*
538 * The quicksort implementation was derived from source code contributed
539 * by Tom Horsley.
540 *
541 * NOTE: this code was derived from Tom Horsley's qsort replacement
542 * and should not be confused with the original code.
543 */
544
545/* Copyright (C) Tom Horsley, 1997. All rights reserved.
546
547 Permission granted to distribute under the same terms as perl which are
548 (briefly):
549
550 This program is free software; you can redistribute it and/or modify
551 it under the terms of either:
552
553 a) the GNU General Public License as published by the Free
554 Software Foundation; either version 1, or (at your option) any
555 later version, or
556
557 b) the "Artistic License" which comes with this Kit.
558
559 Details on the perl license can be found in the perl source code which
560 may be located via the www.perl.com web page.
561
562 This is the most wonderfulest possible qsort I can come up with (and
563 still be mostly portable) My (limited) tests indicate it consistently
564 does about 20% fewer calls to compare than does the qsort in the Visual
565 C++ library, other vendors may vary.
566
567 Some of the ideas in here can be found in "Algorithms" by Sedgewick,
568 others I invented myself (or more likely re-invented since they seemed
569 pretty obvious once I watched the algorithm operate for a while).
570
571 Most of this code was written while watching the Marlins sweep the Giants
572 in the 1997 National League Playoffs - no Braves fans allowed to use this
573 code (just kidding :-).
574
575 I realize that if I wanted to be true to the perl tradition, the only
576 comment in this file would be something like:
577
578 ...they shuffled back towards the rear of the line. 'No, not at the
579 rear!' the slave-driver shouted. 'Three files up. And stay there...
580
581 However, I really needed to violate that tradition just so I could keep
582 track of what happens myself, not to mention some poor fool trying to
583 understand this years from now :-).
584*/
585
586/* ********************************************************** Configuration */
587
588#ifndef QSORT_ORDER_GUESS
589#define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */
590#endif
591
592/* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for
593 future processing - a good max upper bound is log base 2 of memory size
594 (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can
595 safely be smaller than that since the program is taking up some space and
596 most operating systems only let you grab some subset of contiguous
597 memory (not to mention that you are normally sorting data larger than
598 1 byte element size :-).
599*/
600#ifndef QSORT_MAX_STACK
601#define QSORT_MAX_STACK 32
602#endif
603
604/* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort.
605 Anything bigger and we use qsort. If you make this too small, the qsort
606 will probably break (or become less efficient), because it doesn't expect
607 the middle element of a partition to be the same as the right or left -
608 you have been warned).
609*/
610#ifndef QSORT_BREAK_EVEN
611#define QSORT_BREAK_EVEN 6
612#endif
613
4eb872f6 614/* QSORT_PLAY_SAFE is the size of the largest partition we're willing
615 to go quadratic on. We innoculate larger partitions against
616 quadratic behavior by shuffling them before sorting. This is not
617 an absolute guarantee of non-quadratic behavior, but it would take
618 staggeringly bad luck to pick extreme elements as the pivot
619 from randomized data.
620*/
621#ifndef QSORT_PLAY_SAFE
622#define QSORT_PLAY_SAFE 255
623#endif
624
84d4ea48 625/* ************************************************************* Data Types */
626
627/* hold left and right index values of a partition waiting to be sorted (the
628 partition includes both left and right - right is NOT one past the end or
629 anything like that).
630*/
631struct partition_stack_entry {
632 int left;
633 int right;
634#ifdef QSORT_ORDER_GUESS
635 int qsort_break_even;
636#endif
637};
638
639/* ******************************************************* Shorthand Macros */
640
641/* Note that these macros will be used from inside the qsort function where
642 we happen to know that the variable 'elt_size' contains the size of an
643 array element and the variable 'temp' points to enough space to hold a
644 temp element and the variable 'array' points to the array being sorted
645 and 'compare' is the pointer to the compare routine.
646
647 Also note that there are very many highly architecture specific ways
648 these might be sped up, but this is simply the most generally portable
649 code I could think of.
650*/
651
652/* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2
653*/
654#define qsort_cmp(elt1, elt2) \
655 ((*compare)(aTHX_ array[elt1], array[elt2]))
656
657#ifdef QSORT_ORDER_GUESS
658#define QSORT_NOTICE_SWAP swapped++;
659#else
660#define QSORT_NOTICE_SWAP
661#endif
662
663/* swaps contents of array elements elt1, elt2.
664*/
665#define qsort_swap(elt1, elt2) \
666 STMT_START { \
667 QSORT_NOTICE_SWAP \
668 temp = array[elt1]; \
669 array[elt1] = array[elt2]; \
670 array[elt2] = temp; \
671 } STMT_END
672
673/* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets
674 elt3 and elt3 gets elt1.
675*/
676#define qsort_rotate(elt1, elt2, elt3) \
677 STMT_START { \
678 QSORT_NOTICE_SWAP \
679 temp = array[elt1]; \
680 array[elt1] = array[elt2]; \
681 array[elt2] = array[elt3]; \
682 array[elt3] = temp; \
683 } STMT_END
684
685/* ************************************************************ Debug stuff */
686
687#ifdef QSORT_DEBUG
688
689static void
690break_here()
691{
692 return; /* good place to set a breakpoint */
693}
694
695#define qsort_assert(t) (void)( (t) || (break_here(), 0) )
696
697static void
698doqsort_all_asserts(
699 void * array,
700 size_t num_elts,
701 size_t elt_size,
702 int (*compare)(const void * elt1, const void * elt2),
703 int pc_left, int pc_right, int u_left, int u_right)
704{
705 int i;
706
707 qsort_assert(pc_left <= pc_right);
708 qsort_assert(u_right < pc_left);
709 qsort_assert(pc_right < u_left);
710 for (i = u_right + 1; i < pc_left; ++i) {
711 qsort_assert(qsort_cmp(i, pc_left) < 0);
712 }
713 for (i = pc_left; i < pc_right; ++i) {
714 qsort_assert(qsort_cmp(i, pc_right) == 0);
715 }
716 for (i = pc_right + 1; i < u_left; ++i) {
717 qsort_assert(qsort_cmp(pc_right, i) < 0);
718 }
719}
720
721#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \
722 doqsort_all_asserts(array, num_elts, elt_size, compare, \
723 PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT)
724
725#else
726
727#define qsort_assert(t) ((void)0)
728
729#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0)
730
731#endif
732
733/* ****************************************************************** qsort */
734
735STATIC void /* the standard unstable (u) quicksort (qsort) */
736S_qsortsvu(pTHX_ SV ** array, size_t num_elts, SVCOMPARE_t compare)
737{
738 register SV * temp;
739
740 struct partition_stack_entry partition_stack[QSORT_MAX_STACK];
741 int next_stack_entry = 0;
742
743 int part_left;
744 int part_right;
745#ifdef QSORT_ORDER_GUESS
746 int qsort_break_even;
747 int swapped;
748#endif
749
750 /* Make sure we actually have work to do.
751 */
752 if (num_elts <= 1) {
753 return;
754 }
755
4eb872f6 756 /* Innoculate large partitions against quadratic behavior */
757 if (num_elts > QSORT_PLAY_SAFE) {
758 register size_t n, j;
759 register SV **q;
760 for (n = num_elts, q = array; n > 1; ) {
eb160463 761 j = (size_t)(n-- * Drand01());
4eb872f6 762 temp = q[j];
763 q[j] = q[n];
764 q[n] = temp;
765 }
766 }
767
84d4ea48 768 /* Setup the initial partition definition and fall into the sorting loop
769 */
770 part_left = 0;
771 part_right = (int)(num_elts - 1);
772#ifdef QSORT_ORDER_GUESS
773 qsort_break_even = QSORT_BREAK_EVEN;
774#else
775#define qsort_break_even QSORT_BREAK_EVEN
776#endif
777 for ( ; ; ) {
778 if ((part_right - part_left) >= qsort_break_even) {
779 /* OK, this is gonna get hairy, so lets try to document all the
780 concepts and abbreviations and variables and what they keep
781 track of:
782
783 pc: pivot chunk - the set of array elements we accumulate in the
784 middle of the partition, all equal in value to the original
785 pivot element selected. The pc is defined by:
786
787 pc_left - the leftmost array index of the pc
788 pc_right - the rightmost array index of the pc
789
790 we start with pc_left == pc_right and only one element
791 in the pivot chunk (but it can grow during the scan).
792
793 u: uncompared elements - the set of elements in the partition
794 we have not yet compared to the pivot value. There are two
795 uncompared sets during the scan - one to the left of the pc
796 and one to the right.
797
798 u_right - the rightmost index of the left side's uncompared set
799 u_left - the leftmost index of the right side's uncompared set
800
801 The leftmost index of the left sides's uncompared set
802 doesn't need its own variable because it is always defined
803 by the leftmost edge of the whole partition (part_left). The
804 same goes for the rightmost edge of the right partition
805 (part_right).
806
807 We know there are no uncompared elements on the left once we
808 get u_right < part_left and no uncompared elements on the
809 right once u_left > part_right. When both these conditions
810 are met, we have completed the scan of the partition.
811
812 Any elements which are between the pivot chunk and the
813 uncompared elements should be less than the pivot value on
814 the left side and greater than the pivot value on the right
815 side (in fact, the goal of the whole algorithm is to arrange
816 for that to be true and make the groups of less-than and
817 greater-then elements into new partitions to sort again).
818
819 As you marvel at the complexity of the code and wonder why it
820 has to be so confusing. Consider some of the things this level
821 of confusion brings:
822
823 Once I do a compare, I squeeze every ounce of juice out of it. I
824 never do compare calls I don't have to do, and I certainly never
825 do redundant calls.
826
827 I also never swap any elements unless I can prove there is a
828 good reason. Many sort algorithms will swap a known value with
829 an uncompared value just to get things in the right place (or
830 avoid complexity :-), but that uncompared value, once it gets
831 compared, may then have to be swapped again. A lot of the
832 complexity of this code is due to the fact that it never swaps
833 anything except compared values, and it only swaps them when the
834 compare shows they are out of position.
835 */
836 int pc_left, pc_right;
837 int u_right, u_left;
838
839 int s;
840
841 pc_left = ((part_left + part_right) / 2);
842 pc_right = pc_left;
843 u_right = pc_left - 1;
844 u_left = pc_right + 1;
845
846 /* Qsort works best when the pivot value is also the median value
847 in the partition (unfortunately you can't find the median value
848 without first sorting :-), so to give the algorithm a helping
849 hand, we pick 3 elements and sort them and use the median value
850 of that tiny set as the pivot value.
851
852 Some versions of qsort like to use the left middle and right as
853 the 3 elements to sort so they can insure the ends of the
854 partition will contain values which will stop the scan in the
855 compare loop, but when you have to call an arbitrarily complex
856 routine to do a compare, its really better to just keep track of
857 array index values to know when you hit the edge of the
858 partition and avoid the extra compare. An even better reason to
859 avoid using a compare call is the fact that you can drop off the
860 edge of the array if someone foolishly provides you with an
861 unstable compare function that doesn't always provide consistent
862 results.
863
864 So, since it is simpler for us to compare the three adjacent
865 elements in the middle of the partition, those are the ones we
866 pick here (conveniently pointed at by u_right, pc_left, and
867 u_left). The values of the left, center, and right elements
868 are refered to as l c and r in the following comments.
869 */
870
871#ifdef QSORT_ORDER_GUESS
872 swapped = 0;
873#endif
874 s = qsort_cmp(u_right, pc_left);
875 if (s < 0) {
876 /* l < c */
877 s = qsort_cmp(pc_left, u_left);
878 /* if l < c, c < r - already in order - nothing to do */
879 if (s == 0) {
880 /* l < c, c == r - already in order, pc grows */
881 ++pc_right;
882 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
883 } else if (s > 0) {
884 /* l < c, c > r - need to know more */
885 s = qsort_cmp(u_right, u_left);
886 if (s < 0) {
887 /* l < c, c > r, l < r - swap c & r to get ordered */
888 qsort_swap(pc_left, u_left);
889 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
890 } else if (s == 0) {
891 /* l < c, c > r, l == r - swap c&r, grow pc */
892 qsort_swap(pc_left, u_left);
893 --pc_left;
894 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
895 } else {
896 /* l < c, c > r, l > r - make lcr into rlc to get ordered */
897 qsort_rotate(pc_left, u_right, u_left);
898 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
899 }
900 }
901 } else if (s == 0) {
902 /* l == c */
903 s = qsort_cmp(pc_left, u_left);
904 if (s < 0) {
905 /* l == c, c < r - already in order, grow pc */
906 --pc_left;
907 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
908 } else if (s == 0) {
909 /* l == c, c == r - already in order, grow pc both ways */
910 --pc_left;
911 ++pc_right;
912 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
913 } else {
914 /* l == c, c > r - swap l & r, grow pc */
915 qsort_swap(u_right, u_left);
916 ++pc_right;
917 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
918 }
919 } else {
920 /* l > c */
921 s = qsort_cmp(pc_left, u_left);
922 if (s < 0) {
923 /* l > c, c < r - need to know more */
924 s = qsort_cmp(u_right, u_left);
925 if (s < 0) {
926 /* l > c, c < r, l < r - swap l & c to get ordered */
927 qsort_swap(u_right, pc_left);
928 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
929 } else if (s == 0) {
930 /* l > c, c < r, l == r - swap l & c, grow pc */
931 qsort_swap(u_right, pc_left);
932 ++pc_right;
933 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
934 } else {
935 /* l > c, c < r, l > r - rotate lcr into crl to order */
936 qsort_rotate(u_right, pc_left, u_left);
937 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
938 }
939 } else if (s == 0) {
940 /* l > c, c == r - swap ends, grow pc */
941 qsort_swap(u_right, u_left);
942 --pc_left;
943 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
944 } else {
945 /* l > c, c > r - swap ends to get in order */
946 qsort_swap(u_right, u_left);
947 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
948 }
949 }
950 /* We now know the 3 middle elements have been compared and
951 arranged in the desired order, so we can shrink the uncompared
952 sets on both sides
953 */
954 --u_right;
955 ++u_left;
956 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
957
958 /* The above massive nested if was the simple part :-). We now have
959 the middle 3 elements ordered and we need to scan through the
960 uncompared sets on either side, swapping elements that are on
961 the wrong side or simply shuffling equal elements around to get
962 all equal elements into the pivot chunk.
963 */
964
965 for ( ; ; ) {
966 int still_work_on_left;
967 int still_work_on_right;
968
969 /* Scan the uncompared values on the left. If I find a value
970 equal to the pivot value, move it over so it is adjacent to
971 the pivot chunk and expand the pivot chunk. If I find a value
972 less than the pivot value, then just leave it - its already
973 on the correct side of the partition. If I find a greater
974 value, then stop the scan.
975 */
976 while ((still_work_on_left = (u_right >= part_left))) {
977 s = qsort_cmp(u_right, pc_left);
978 if (s < 0) {
979 --u_right;
980 } else if (s == 0) {
981 --pc_left;
982 if (pc_left != u_right) {
983 qsort_swap(u_right, pc_left);
984 }
985 --u_right;
986 } else {
987 break;
988 }
989 qsort_assert(u_right < pc_left);
990 qsort_assert(pc_left <= pc_right);
991 qsort_assert(qsort_cmp(u_right + 1, pc_left) <= 0);
992 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
993 }
994
995 /* Do a mirror image scan of uncompared values on the right
996 */
997 while ((still_work_on_right = (u_left <= part_right))) {
998 s = qsort_cmp(pc_right, u_left);
999 if (s < 0) {
1000 ++u_left;
1001 } else if (s == 0) {
1002 ++pc_right;
1003 if (pc_right != u_left) {
1004 qsort_swap(pc_right, u_left);
1005 }
1006 ++u_left;
1007 } else {
1008 break;
1009 }
1010 qsort_assert(u_left > pc_right);
1011 qsort_assert(pc_left <= pc_right);
1012 qsort_assert(qsort_cmp(pc_right, u_left - 1) <= 0);
1013 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1014 }
1015
1016 if (still_work_on_left) {
1017 /* I know I have a value on the left side which needs to be
1018 on the right side, but I need to know more to decide
1019 exactly the best thing to do with it.
1020 */
1021 if (still_work_on_right) {
1022 /* I know I have values on both side which are out of
1023 position. This is a big win because I kill two birds
1024 with one swap (so to speak). I can advance the
1025 uncompared pointers on both sides after swapping both
1026 of them into the right place.
1027 */
1028 qsort_swap(u_right, u_left);
1029 --u_right;
1030 ++u_left;
1031 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
1032 } else {
1033 /* I have an out of position value on the left, but the
1034 right is fully scanned, so I "slide" the pivot chunk
1035 and any less-than values left one to make room for the
1036 greater value over on the right. If the out of position
1037 value is immediately adjacent to the pivot chunk (there
1038 are no less-than values), I can do that with a swap,
1039 otherwise, I have to rotate one of the less than values
1040 into the former position of the out of position value
1041 and the right end of the pivot chunk into the left end
1042 (got all that?).
1043 */
1044 --pc_left;
1045 if (pc_left == u_right) {
1046 qsort_swap(u_right, pc_right);
1047 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1048 } else {
1049 qsort_rotate(u_right, pc_left, pc_right);
1050 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1051 }
1052 --pc_right;
1053 --u_right;
1054 }
1055 } else if (still_work_on_right) {
1056 /* Mirror image of complex case above: I have an out of
1057 position value on the right, but the left is fully
1058 scanned, so I need to shuffle things around to make room
1059 for the right value on the left.
1060 */
1061 ++pc_right;
1062 if (pc_right == u_left) {
1063 qsort_swap(u_left, pc_left);
1064 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1065 } else {
1066 qsort_rotate(pc_right, pc_left, u_left);
1067 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1068 }
1069 ++pc_left;
1070 ++u_left;
1071 } else {
1072 /* No more scanning required on either side of partition,
1073 break out of loop and figure out next set of partitions
1074 */
1075 break;
1076 }
1077 }
1078
1079 /* The elements in the pivot chunk are now in the right place. They
1080 will never move or be compared again. All I have to do is decide
1081 what to do with the stuff to the left and right of the pivot
1082 chunk.
1083
1084 Notes on the QSORT_ORDER_GUESS ifdef code:
1085
1086 1. If I just built these partitions without swapping any (or
1087 very many) elements, there is a chance that the elements are
1088 already ordered properly (being properly ordered will
1089 certainly result in no swapping, but the converse can't be
1090 proved :-).
1091
1092 2. A (properly written) insertion sort will run faster on
1093 already ordered data than qsort will.
1094
1095 3. Perhaps there is some way to make a good guess about
1096 switching to an insertion sort earlier than partition size 6
1097 (for instance - we could save the partition size on the stack
1098 and increase the size each time we find we didn't swap, thus
1099 switching to insertion sort earlier for partitions with a
1100 history of not swapping).
1101
1102 4. Naturally, if I just switch right away, it will make
1103 artificial benchmarks with pure ascending (or descending)
1104 data look really good, but is that a good reason in general?
1105 Hard to say...
1106 */
1107
1108#ifdef QSORT_ORDER_GUESS
1109 if (swapped < 3) {
1110#if QSORT_ORDER_GUESS == 1
1111 qsort_break_even = (part_right - part_left) + 1;
1112#endif
1113#if QSORT_ORDER_GUESS == 2
1114 qsort_break_even *= 2;
1115#endif
1116#if QSORT_ORDER_GUESS == 3
1117 int prev_break = qsort_break_even;
1118 qsort_break_even *= qsort_break_even;
1119 if (qsort_break_even < prev_break) {
1120 qsort_break_even = (part_right - part_left) + 1;
1121 }
1122#endif
1123 } else {
1124 qsort_break_even = QSORT_BREAK_EVEN;
1125 }
1126#endif
1127
1128 if (part_left < pc_left) {
1129 /* There are elements on the left which need more processing.
1130 Check the right as well before deciding what to do.
1131 */
1132 if (pc_right < part_right) {
1133 /* We have two partitions to be sorted. Stack the biggest one
1134 and process the smallest one on the next iteration. This
1135 minimizes the stack height by insuring that any additional
1136 stack entries must come from the smallest partition which
1137 (because it is smallest) will have the fewest
1138 opportunities to generate additional stack entries.
1139 */
1140 if ((part_right - pc_right) > (pc_left - part_left)) {
1141 /* stack the right partition, process the left */
1142 partition_stack[next_stack_entry].left = pc_right + 1;
1143 partition_stack[next_stack_entry].right = part_right;
1144#ifdef QSORT_ORDER_GUESS
1145 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1146#endif
1147 part_right = pc_left - 1;
1148 } else {
1149 /* stack the left partition, process the right */
1150 partition_stack[next_stack_entry].left = part_left;
1151 partition_stack[next_stack_entry].right = pc_left - 1;
1152#ifdef QSORT_ORDER_GUESS
1153 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1154#endif
1155 part_left = pc_right + 1;
1156 }
1157 qsort_assert(next_stack_entry < QSORT_MAX_STACK);
1158 ++next_stack_entry;
1159 } else {
1160 /* The elements on the left are the only remaining elements
1161 that need sorting, arrange for them to be processed as the
1162 next partition.
1163 */
1164 part_right = pc_left - 1;
1165 }
1166 } else if (pc_right < part_right) {
1167 /* There is only one chunk on the right to be sorted, make it
1168 the new partition and loop back around.
1169 */
1170 part_left = pc_right + 1;
1171 } else {
1172 /* This whole partition wound up in the pivot chunk, so
1173 we need to get a new partition off the stack.
1174 */
1175 if (next_stack_entry == 0) {
1176 /* the stack is empty - we are done */
1177 break;
1178 }
1179 --next_stack_entry;
1180 part_left = partition_stack[next_stack_entry].left;
1181 part_right = partition_stack[next_stack_entry].right;
1182#ifdef QSORT_ORDER_GUESS
1183 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1184#endif
1185 }
1186 } else {
1187 /* This partition is too small to fool with qsort complexity, just
1188 do an ordinary insertion sort to minimize overhead.
1189 */
1190 int i;
1191 /* Assume 1st element is in right place already, and start checking
1192 at 2nd element to see where it should be inserted.
1193 */
1194 for (i = part_left + 1; i <= part_right; ++i) {
1195 int j;
1196 /* Scan (backwards - just in case 'i' is already in right place)
1197 through the elements already sorted to see if the ith element
1198 belongs ahead of one of them.
1199 */
1200 for (j = i - 1; j >= part_left; --j) {
1201 if (qsort_cmp(i, j) >= 0) {
1202 /* i belongs right after j
1203 */
1204 break;
1205 }
1206 }
1207 ++j;
1208 if (j != i) {
1209 /* Looks like we really need to move some things
1210 */
1211 int k;
1212 temp = array[i];
1213 for (k = i - 1; k >= j; --k)
1214 array[k + 1] = array[k];
1215 array[j] = temp;
1216 }
1217 }
1218
1219 /* That partition is now sorted, grab the next one, or get out
1220 of the loop if there aren't any more.
1221 */
1222
1223 if (next_stack_entry == 0) {
1224 /* the stack is empty - we are done */
1225 break;
1226 }
1227 --next_stack_entry;
1228 part_left = partition_stack[next_stack_entry].left;
1229 part_right = partition_stack[next_stack_entry].right;
1230#ifdef QSORT_ORDER_GUESS
1231 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1232#endif
1233 }
1234 }
1235
1236 /* Believe it or not, the array is sorted at this point! */
1237}
1238
84d4ea48 1239/* Stabilize what is, presumably, an otherwise unstable sort method.
1240 * We do that by allocating (or having on hand) an array of pointers
1241 * that is the same size as the original array of elements to be sorted.
1242 * We initialize this parallel array with the addresses of the original
1243 * array elements. This indirection can make you crazy.
1244 * Some pictures can help. After initializing, we have
1245 *
1246 * indir list1
1247 * +----+ +----+
1248 * | | --------------> | | ------> first element to be sorted
1249 * +----+ +----+
1250 * | | --------------> | | ------> second element to be sorted
1251 * +----+ +----+
1252 * | | --------------> | | ------> third element to be sorted
1253 * +----+ +----+
1254 * ...
1255 * +----+ +----+
1256 * | | --------------> | | ------> n-1st element to be sorted
1257 * +----+ +----+
1258 * | | --------------> | | ------> n-th element to be sorted
1259 * +----+ +----+
1260 *
1261 * During the sort phase, we leave the elements of list1 where they are,
1262 * and sort the pointers in the indirect array in the same order determined
1263 * by the original comparison routine on the elements pointed to.
1264 * Because we don't move the elements of list1 around through
1265 * this phase, we can break ties on elements that compare equal
1266 * using their address in the list1 array, ensuring stabilty.
1267 * This leaves us with something looking like
1268 *
1269 * indir list1
1270 * +----+ +----+
1271 * | | --+ +---> | | ------> first element to be sorted
1272 * +----+ | | +----+
1273 * | | --|-------|---> | | ------> second element to be sorted
1274 * +----+ | | +----+
1275 * | | --|-------+ +-> | | ------> third element to be sorted
1276 * +----+ | | +----+
1277 * ...
1278 * +----+ | | | | +----+
1279 * | | ---|-+ | +--> | | ------> n-1st element to be sorted
1280 * +----+ | | +----+
1281 * | | ---+ +----> | | ------> n-th element to be sorted
1282 * +----+ +----+
1283 *
1284 * where the i-th element of the indirect array points to the element
1285 * that should be i-th in the sorted array. After the sort phase,
1286 * we have to put the elements of list1 into the places
1287 * dictated by the indirect array.
1288 */
1289
1290static SVCOMPARE_t RealCmp;
1291
1292static I32
1293cmpindir(pTHX_ gptr a, gptr b)
1294{
1295 I32 sense;
1296 gptr *ap = (gptr *)a;
1297 gptr *bp = (gptr *)b;
1298
1299 if ((sense = RealCmp(aTHX_ *ap, *bp)) == 0)
1300 sense = (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1301 return sense;
1302}
1303
1304STATIC void
1305S_qsortsv(pTHX_ gptr *list1, size_t nmemb, SVCOMPARE_t cmp)
1306{
1307 SV **hintsvp;
1308
c53fc8a6 1309 if (SORTHINTS(hintsvp) & HINT_SORT_STABLE) {
84d4ea48 1310 register gptr **pp, *q;
1311 register size_t n, j, i;
1312 gptr *small[SMALLSORT], **indir, tmp;
1313 SVCOMPARE_t savecmp;
1314 if (nmemb <= 1) return; /* sorted trivially */
4eb872f6 1315
84d4ea48 1316 /* Small arrays can use the stack, big ones must be allocated */
1317 if (nmemb <= SMALLSORT) indir = small;
1318 else { New(1799, indir, nmemb, gptr *); }
4eb872f6 1319
84d4ea48 1320 /* Copy pointers to original array elements into indirect array */
1321 for (n = nmemb, pp = indir, q = list1; n--; ) *pp++ = q++;
4eb872f6 1322
84d4ea48 1323 savecmp = RealCmp; /* Save current comparison routine, if any */
1324 RealCmp = cmp; /* Put comparison routine where cmpindir can find it */
4eb872f6 1325
84d4ea48 1326 /* sort, with indirection */
1327 S_qsortsvu(aTHX_ (gptr *)indir, nmemb, cmpindir);
4eb872f6 1328
84d4ea48 1329 pp = indir;
1330 q = list1;
1331 for (n = nmemb; n--; ) {
1332 /* Assert A: all elements of q with index > n are already
1333 * in place. This is vacuosly true at the start, and we
1334 * put element n where it belongs below (if it wasn't
1335 * already where it belonged). Assert B: we only move
1336 * elements that aren't where they belong,
1337 * so, by A, we never tamper with elements above n.
1338 */
1339 j = pp[n] - q; /* This sets j so that q[j] is
1340 * at pp[n]. *pp[j] belongs in
1341 * q[j], by construction.
1342 */
1343 if (n != j) { /* all's well if n == j */
1344 tmp = q[j]; /* save what's in q[j] */
1345 do {
1346 q[j] = *pp[j]; /* put *pp[j] where it belongs */
1347 i = pp[j] - q; /* the index in q of the element
1348 * just moved */
1349 pp[j] = q + j; /* this is ok now */
1350 } while ((j = i) != n);
1351 /* There are only finitely many (nmemb) addresses
1352 * in the pp array.
1353 * So we must eventually revisit an index we saw before.
1354 * Suppose the first revisited index is k != n.
1355 * An index is visited because something else belongs there.
1356 * If we visit k twice, then two different elements must
1357 * belong in the same place, which cannot be.
1358 * So j must get back to n, the loop terminates,
1359 * and we put the saved element where it belongs.
1360 */
1361 q[n] = tmp; /* put what belongs into
1362 * the n-th element */
1363 }
1364 }
1365
1366 /* free iff allocated */
1367 if (indir != small) { Safefree(indir); }
1368 /* restore prevailing comparison routine */
1369 RealCmp = savecmp;
c53fc8a6 1370 } else {
1371 S_qsortsvu(aTHX_ list1, nmemb, cmp);
84d4ea48 1372 }
1373}
4eb872f6 1374
1375/*
ccfc67b7 1376=head1 Array Manipulation Functions
1377
84d4ea48 1378=for apidoc sortsv
1379
1380Sort an array. Here is an example:
1381
4eb872f6 1382 sortsv(AvARRAY(av), av_len(av)+1, Perl_sv_cmp_locale);
84d4ea48 1383
78210658 1384See lib/sort.pm for details about controlling the sorting algorithm.
1385
84d4ea48 1386=cut
1387*/
4eb872f6 1388
84d4ea48 1389void
1390Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1391{
1392 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp) =
1393 S_mergesortsv;
1394 SV **hintsvp;
1395 I32 hints;
4eb872f6 1396
78210658 1397 /* Sun's Compiler (cc: WorkShop Compilers 4.2 30 Oct 1996 C 4.2) used
1398 to miscompile this function under optimization -O. If you get test
1399 errors related to picking the correct sort() function, try recompiling
1400 this file without optimiziation. -- A.D. 4/2002.
1401 */
1402 hints = SORTHINTS(hintsvp);
1403 if (hints & HINT_SORT_QUICKSORT) {
1404 sortsvp = S_qsortsv;
1405 }
1406 else {
1407 /* The default as of 5.8.0 is mergesort */
1408 sortsvp = S_mergesortsv;
84d4ea48 1409 }
4eb872f6 1410
84d4ea48 1411 sortsvp(aTHX_ array, nmemb, cmp);
1412}
1413
1414PP(pp_sort)
1415{
1416 dSP; dMARK; dORIGMARK;
1417 register SV **up;
1418 SV **myorigmark = ORIGMARK;
1419 register I32 max;
1420 HV *stash;
1421 GV *gv;
1422 CV *cv = 0;
1423 I32 gimme = GIMME;
1424 OP* nextop = PL_op->op_next;
1425 I32 overloading = 0;
1426 bool hasargs = FALSE;
1427 I32 is_xsub = 0;
1428
1429 if (gimme != G_ARRAY) {
1430 SP = MARK;
1431 RETPUSHUNDEF;
1432 }
1433
1434 ENTER;
1435 SAVEVPTR(PL_sortcop);
1436 if (PL_op->op_flags & OPf_STACKED) {
1437 if (PL_op->op_flags & OPf_SPECIAL) {
1438 OP *kid = cLISTOP->op_first->op_sibling; /* pass pushmark */
1439 kid = kUNOP->op_first; /* pass rv2gv */
1440 kid = kUNOP->op_first; /* pass leave */
1441 PL_sortcop = kid->op_next;
1442 stash = CopSTASH(PL_curcop);
1443 }
1444 else {
1445 cv = sv_2cv(*++MARK, &stash, &gv, 0);
1446 if (cv && SvPOK(cv)) {
1447 STRLEN n_a;
1448 char *proto = SvPV((SV*)cv, n_a);
1449 if (proto && strEQ(proto, "$$")) {
1450 hasargs = TRUE;
1451 }
1452 }
1453 if (!(cv && CvROOT(cv))) {
1454 if (cv && CvXSUB(cv)) {
1455 is_xsub = 1;
1456 }
1457 else if (gv) {
1458 SV *tmpstr = sv_newmortal();
1459 gv_efullname3(tmpstr, gv, Nullch);
1460 DIE(aTHX_ "Undefined sort subroutine \"%s\" called",
1461 SvPVX(tmpstr));
1462 }
1463 else {
1464 DIE(aTHX_ "Undefined subroutine in sort");
1465 }
1466 }
1467
1468 if (is_xsub)
1469 PL_sortcop = (OP*)cv;
1470 else {
1471 PL_sortcop = CvSTART(cv);
1472 SAVEVPTR(CvROOT(cv)->op_ppaddr);
1473 CvROOT(cv)->op_ppaddr = PL_ppaddr[OP_NULL];
1474
1475 SAVEVPTR(PL_curpad);
1476 PL_curpad = AvARRAY((AV*)AvARRAY(CvPADLIST(cv))[1]);
1477 }
1478 }
1479 }
1480 else {
1481 PL_sortcop = Nullop;
1482 stash = CopSTASH(PL_curcop);
1483 }
1484
1485 up = myorigmark + 1;
1486 while (MARK < SP) { /* This may or may not shift down one here. */
1487 /*SUPPRESS 560*/
1488 if ((*up = *++MARK)) { /* Weed out nulls. */
1489 SvTEMP_off(*up);
1490 if (!PL_sortcop && !SvPOK(*up)) {
1491 STRLEN n_a;
1492 if (SvAMAGIC(*up))
1493 overloading = 1;
1494 else
1495 (void)sv_2pv(*up, &n_a);
1496 }
1497 up++;
1498 }
1499 }
1500 max = --up - myorigmark;
1501 if (PL_sortcop) {
1502 if (max > 1) {
1503 PERL_CONTEXT *cx;
1504 SV** newsp;
1505 bool oldcatch = CATCH_GET;
1506
1507 SAVETMPS;
1508 SAVEOP();
1509
1510 CATCH_SET(TRUE);
1511 PUSHSTACKi(PERLSI_SORT);
1512 if (!hasargs && !is_xsub) {
1513 if (PL_sortstash != stash || !PL_firstgv || !PL_secondgv) {
1514 SAVESPTR(PL_firstgv);
1515 SAVESPTR(PL_secondgv);
1516 PL_firstgv = gv_fetchpv("a", TRUE, SVt_PV);
1517 PL_secondgv = gv_fetchpv("b", TRUE, SVt_PV);
1518 PL_sortstash = stash;
1519 }
1520#ifdef USE_5005THREADS
1521 sv_lock((SV *)PL_firstgv);
1522 sv_lock((SV *)PL_secondgv);
1523#endif
1524 SAVESPTR(GvSV(PL_firstgv));
1525 SAVESPTR(GvSV(PL_secondgv));
1526 }
1527
1528 PUSHBLOCK(cx, CXt_NULL, PL_stack_base);
1529 if (!(PL_op->op_flags & OPf_SPECIAL)) {
1530 cx->cx_type = CXt_SUB;
1531 cx->blk_gimme = G_SCALAR;
1532 PUSHSUB(cx);
1533 if (!CvDEPTH(cv))
1534 (void)SvREFCNT_inc(cv); /* in preparation for POPSUB */
1535 }
1536 PL_sortcxix = cxstack_ix;
1537
1538 if (hasargs && !is_xsub) {
1539 /* This is mostly copied from pp_entersub */
1540 AV *av = (AV*)PL_curpad[0];
1541
1542#ifndef USE_5005THREADS
1543 cx->blk_sub.savearray = GvAV(PL_defgv);
1544 GvAV(PL_defgv) = (AV*)SvREFCNT_inc(av);
1545#endif /* USE_5005THREADS */
1546 cx->blk_sub.oldcurpad = PL_curpad;
1547 cx->blk_sub.argarray = av;
1548 }
1549 sortsv((myorigmark+1), max,
1550 is_xsub ? sortcv_xsub : hasargs ? sortcv_stacked : sortcv);
1551
1552 POPBLOCK(cx,PL_curpm);
1553 PL_stack_sp = newsp;
1554 POPSTACK;
1555 CATCH_SET(oldcatch);
1556 }
1557 }
1558 else {
1559 if (max > 1) {
1560 MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */
1561 sortsv(ORIGMARK+1, max,
1562 (PL_op->op_private & OPpSORT_NUMERIC)
1563 ? ( (PL_op->op_private & OPpSORT_INTEGER)
1564 ? ( overloading ? amagic_i_ncmp : sv_i_ncmp)
1565 : ( overloading ? amagic_ncmp : sv_ncmp))
1566 : ( IN_LOCALE_RUNTIME
1567 ? ( overloading
1568 ? amagic_cmp_locale
1569 : sv_cmp_locale_static)
1570 : ( overloading ? amagic_cmp : sv_cmp_static)));
1571 if (PL_op->op_private & OPpSORT_REVERSE) {
1572 SV **p = ORIGMARK+1;
1573 SV **q = ORIGMARK+max;
1574 while (p < q) {
1575 SV *tmp = *p;
1576 *p++ = *q;
1577 *q-- = tmp;
1578 }
1579 }
1580 }
1581 }
1582 LEAVE;
1583 PL_stack_sp = ORIGMARK + max;
1584 return nextop;
1585}
1586
1587static I32
1588sortcv(pTHX_ SV *a, SV *b)
1589{
1590 I32 oldsaveix = PL_savestack_ix;
1591 I32 oldscopeix = PL_scopestack_ix;
1592 I32 result;
1593 GvSV(PL_firstgv) = a;
1594 GvSV(PL_secondgv) = b;
1595 PL_stack_sp = PL_stack_base;
1596 PL_op = PL_sortcop;
1597 CALLRUNOPS(aTHX);
1598 if (PL_stack_sp != PL_stack_base + 1)
1599 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1600 if (!SvNIOKp(*PL_stack_sp))
1601 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1602 result = SvIV(*PL_stack_sp);
1603 while (PL_scopestack_ix > oldscopeix) {
1604 LEAVE;
1605 }
1606 leave_scope(oldsaveix);
1607 return result;
1608}
1609
1610static I32
1611sortcv_stacked(pTHX_ SV *a, SV *b)
1612{
1613 I32 oldsaveix = PL_savestack_ix;
1614 I32 oldscopeix = PL_scopestack_ix;
1615 I32 result;
1616 AV *av;
1617
1618#ifdef USE_5005THREADS
1619 av = (AV*)PL_curpad[0];
1620#else
1621 av = GvAV(PL_defgv);
1622#endif
1623
1624 if (AvMAX(av) < 1) {
1625 SV** ary = AvALLOC(av);
1626 if (AvARRAY(av) != ary) {
1627 AvMAX(av) += AvARRAY(av) - AvALLOC(av);
1628 SvPVX(av) = (char*)ary;
1629 }
1630 if (AvMAX(av) < 1) {
1631 AvMAX(av) = 1;
1632 Renew(ary,2,SV*);
1633 SvPVX(av) = (char*)ary;
1634 }
1635 }
1636 AvFILLp(av) = 1;
1637
1638 AvARRAY(av)[0] = a;
1639 AvARRAY(av)[1] = b;
1640 PL_stack_sp = PL_stack_base;
1641 PL_op = PL_sortcop;
1642 CALLRUNOPS(aTHX);
1643 if (PL_stack_sp != PL_stack_base + 1)
1644 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1645 if (!SvNIOKp(*PL_stack_sp))
1646 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1647 result = SvIV(*PL_stack_sp);
1648 while (PL_scopestack_ix > oldscopeix) {
1649 LEAVE;
1650 }
1651 leave_scope(oldsaveix);
1652 return result;
1653}
1654
1655static I32
1656sortcv_xsub(pTHX_ SV *a, SV *b)
1657{
1658 dSP;
1659 I32 oldsaveix = PL_savestack_ix;
1660 I32 oldscopeix = PL_scopestack_ix;
1661 I32 result;
1662 CV *cv=(CV*)PL_sortcop;
1663
1664 SP = PL_stack_base;
1665 PUSHMARK(SP);
1666 EXTEND(SP, 2);
1667 *++SP = a;
1668 *++SP = b;
1669 PUTBACK;
1670 (void)(*CvXSUB(cv))(aTHX_ cv);
1671 if (PL_stack_sp != PL_stack_base + 1)
1672 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1673 if (!SvNIOKp(*PL_stack_sp))
1674 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1675 result = SvIV(*PL_stack_sp);
1676 while (PL_scopestack_ix > oldscopeix) {
1677 LEAVE;
1678 }
1679 leave_scope(oldsaveix);
1680 return result;
1681}
1682
1683
1684static I32
1685sv_ncmp(pTHX_ SV *a, SV *b)
1686{
1687 NV nv1 = SvNV(a);
1688 NV nv2 = SvNV(b);
1689 return nv1 < nv2 ? -1 : nv1 > nv2 ? 1 : 0;
1690}
1691
1692static I32
1693sv_i_ncmp(pTHX_ SV *a, SV *b)
1694{
1695 IV iv1 = SvIV(a);
1696 IV iv2 = SvIV(b);
1697 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1698}
1699#define tryCALL_AMAGICbin(left,right,meth,svp) STMT_START { \
1700 *svp = Nullsv; \
1701 if (PL_amagic_generation) { \
1702 if (SvAMAGIC(left)||SvAMAGIC(right))\
1703 *svp = amagic_call(left, \
1704 right, \
1705 CAT2(meth,_amg), \
1706 0); \
1707 } \
1708 } STMT_END
1709
1710static I32
1711amagic_ncmp(pTHX_ register SV *a, register SV *b)
1712{
1713 SV *tmpsv;
1714 tryCALL_AMAGICbin(a,b,ncmp,&tmpsv);
1715 if (tmpsv) {
1716 NV d;
4eb872f6 1717
84d4ea48 1718 if (SvIOK(tmpsv)) {
1719 I32 i = SvIVX(tmpsv);
1720 if (i > 0)
1721 return 1;
1722 return i? -1 : 0;
1723 }
1724 d = SvNV(tmpsv);
1725 if (d > 0)
1726 return 1;
1727 return d? -1 : 0;
1728 }
1729 return sv_ncmp(aTHX_ a, b);
1730}
1731
1732static I32
1733amagic_i_ncmp(pTHX_ register SV *a, register SV *b)
1734{
1735 SV *tmpsv;
1736 tryCALL_AMAGICbin(a,b,ncmp,&tmpsv);
1737 if (tmpsv) {
1738 NV d;
4eb872f6 1739
84d4ea48 1740 if (SvIOK(tmpsv)) {
1741 I32 i = SvIVX(tmpsv);
1742 if (i > 0)
1743 return 1;
1744 return i? -1 : 0;
1745 }
1746 d = SvNV(tmpsv);
1747 if (d > 0)
1748 return 1;
1749 return d? -1 : 0;
1750 }
1751 return sv_i_ncmp(aTHX_ a, b);
1752}
1753
1754static I32
1755amagic_cmp(pTHX_ register SV *str1, register SV *str2)
1756{
1757 SV *tmpsv;
1758 tryCALL_AMAGICbin(str1,str2,scmp,&tmpsv);
1759 if (tmpsv) {
1760 NV d;
4eb872f6 1761
84d4ea48 1762 if (SvIOK(tmpsv)) {
1763 I32 i = SvIVX(tmpsv);
1764 if (i > 0)
1765 return 1;
1766 return i? -1 : 0;
1767 }
1768 d = SvNV(tmpsv);
1769 if (d > 0)
1770 return 1;
1771 return d? -1 : 0;
1772 }
1773 return sv_cmp(str1, str2);
1774}
1775
1776static I32
1777amagic_cmp_locale(pTHX_ register SV *str1, register SV *str2)
1778{
1779 SV *tmpsv;
1780 tryCALL_AMAGICbin(str1,str2,scmp,&tmpsv);
1781 if (tmpsv) {
1782 NV d;
4eb872f6 1783
84d4ea48 1784 if (SvIOK(tmpsv)) {
1785 I32 i = SvIVX(tmpsv);
1786 if (i > 0)
1787 return 1;
1788 return i? -1 : 0;
1789 }
1790 d = SvNV(tmpsv);
1791 if (d > 0)
1792 return 1;
1793 return d? -1 : 0;
1794 }
1795 return sv_cmp_locale(str1, str2);
1796}