performance tweaking op.c
[p5sagit/p5-mst-13.2.git] / pp_sort.c
CommitLineData
84d4ea48 1/* pp_sort.c
2 *
4bb101f2 3 * Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
b94e2f88 4 * 2000, 2001, 2002, 2003, 2004, 2005, 2006, by Larry Wall and others
84d4ea48 5 *
6 * You may distribute under the terms of either the GNU General Public
7 * License or the Artistic License, as specified in the README file.
8 *
9 */
10
11/*
12 * ...they shuffled back towards the rear of the line. 'No, not at the
13 * rear!' the slave-driver shouted. 'Three files up. And stay there...
14 */
15
166f8a29 16/* This file contains pp ("push/pop") functions that
17 * execute the opcodes that make up a perl program. A typical pp function
18 * expects to find its arguments on the stack, and usually pushes its
19 * results onto the stack, hence the 'pp' terminology. Each OP structure
20 * contains a pointer to the relevant pp_foo() function.
21 *
22 * This particular file just contains pp_sort(), which is complex
23 * enough to merit its own file! See the other pp*.c files for the rest of
24 * the pp_ functions.
25 */
26
84d4ea48 27#include "EXTERN.h"
28#define PERL_IN_PP_SORT_C
29#include "perl.h"
30
42165d27 31#if defined(UNDER_CE)
32/* looks like 'small' is reserved word for WINCE (or somesuch)*/
33#define small xsmall
34#endif
35
84d4ea48 36#define sv_cmp_static Perl_sv_cmp
37#define sv_cmp_locale_static Perl_sv_cmp_locale
38
c53fc8a6 39#ifndef SMALLSORT
40#define SMALLSORT (200)
41#endif
42
7b9ef140 43/* Flags for qsortsv and mergesortsv */
44#define SORTf_DESC 1
45#define SORTf_STABLE 2
46#define SORTf_QSORT 4
47
84d4ea48 48/*
49 * The mergesort implementation is by Peter M. Mcilroy <pmcilroy@lucent.com>.
50 *
51 * The original code was written in conjunction with BSD Computer Software
52 * Research Group at University of California, Berkeley.
53 *
54 * See also: "Optimistic Merge Sort" (SODA '92)
55 *
56 * The integration to Perl is by John P. Linderman <jpl@research.att.com>.
57 *
58 * The code can be distributed under the same terms as Perl itself.
59 *
60 */
61
84d4ea48 62
63typedef char * aptr; /* pointer for arithmetic on sizes */
64typedef SV * gptr; /* pointers in our lists */
65
66/* Binary merge internal sort, with a few special mods
67** for the special perl environment it now finds itself in.
68**
69** Things that were once options have been hotwired
70** to values suitable for this use. In particular, we'll always
71** initialize looking for natural runs, we'll always produce stable
72** output, and we'll always do Peter McIlroy's binary merge.
73*/
74
75/* Pointer types for arithmetic and storage and convenience casts */
76
77#define APTR(P) ((aptr)(P))
78#define GPTP(P) ((gptr *)(P))
79#define GPPP(P) ((gptr **)(P))
80
81
82/* byte offset from pointer P to (larger) pointer Q */
83#define BYTEOFF(P, Q) (APTR(Q) - APTR(P))
84
85#define PSIZE sizeof(gptr)
86
87/* If PSIZE is power of 2, make PSHIFT that power, if that helps */
88
89#ifdef PSHIFT
90#define PNELEM(P, Q) (BYTEOFF(P,Q) >> (PSHIFT))
91#define PNBYTE(N) ((N) << (PSHIFT))
92#define PINDEX(P, N) (GPTP(APTR(P) + PNBYTE(N)))
93#else
94/* Leave optimization to compiler */
95#define PNELEM(P, Q) (GPTP(Q) - GPTP(P))
96#define PNBYTE(N) ((N) * (PSIZE))
97#define PINDEX(P, N) (GPTP(P) + (N))
98#endif
99
100/* Pointer into other corresponding to pointer into this */
101#define POTHER(P, THIS, OTHER) GPTP(APTR(OTHER) + BYTEOFF(THIS,P))
102
103#define FROMTOUPTO(src, dst, lim) do *dst++ = *src++; while(src<lim)
104
105
106/* Runs are identified by a pointer in the auxilliary list.
107** The pointer is at the start of the list,
108** and it points to the start of the next list.
109** NEXT is used as an lvalue, too.
110*/
111
112#define NEXT(P) (*GPPP(P))
113
114
115/* PTHRESH is the minimum number of pairs with the same sense to justify
116** checking for a run and extending it. Note that PTHRESH counts PAIRS,
117** not just elements, so PTHRESH == 8 means a run of 16.
118*/
119
120#define PTHRESH (8)
121
122/* RTHRESH is the number of elements in a run that must compare low
123** to the low element from the opposing run before we justify
124** doing a binary rampup instead of single stepping.
125** In random input, N in a row low should only happen with
126** probability 2^(1-N), so we can risk that we are dealing
127** with orderly input without paying much when we aren't.
128*/
129
130#define RTHRESH (6)
131
132
133/*
134** Overview of algorithm and variables.
135** The array of elements at list1 will be organized into runs of length 2,
136** or runs of length >= 2 * PTHRESH. We only try to form long runs when
137** PTHRESH adjacent pairs compare in the same way, suggesting overall order.
138**
139** Unless otherwise specified, pair pointers address the first of two elements.
140**
a0288114 141** b and b+1 are a pair that compare with sense "sense".
142** b is the "bottom" of adjacent pairs that might form a longer run.
84d4ea48 143**
144** p2 parallels b in the list2 array, where runs are defined by
145** a pointer chain.
146**
a0288114 147** t represents the "top" of the adjacent pairs that might extend
84d4ea48 148** the run beginning at b. Usually, t addresses a pair
149** that compares with opposite sense from (b,b+1).
150** However, it may also address a singleton element at the end of list1,
a0288114 151** or it may be equal to "last", the first element beyond list1.
84d4ea48 152**
153** r addresses the Nth pair following b. If this would be beyond t,
154** we back it off to t. Only when r is less than t do we consider the
155** run long enough to consider checking.
156**
157** q addresses a pair such that the pairs at b through q already form a run.
158** Often, q will equal b, indicating we only are sure of the pair itself.
159** However, a search on the previous cycle may have revealed a longer run,
160** so q may be greater than b.
161**
162** p is used to work back from a candidate r, trying to reach q,
163** which would mean b through r would be a run. If we discover such a run,
164** we start q at r and try to push it further towards t.
165** If b through r is NOT a run, we detect the wrong order at (p-1,p).
166** In any event, after the check (if any), we have two main cases.
167**
168** 1) Short run. b <= q < p <= r <= t.
169** b through q is a run (perhaps trivial)
170** q through p are uninteresting pairs
171** p through r is a run
172**
173** 2) Long run. b < r <= q < t.
174** b through q is a run (of length >= 2 * PTHRESH)
175**
176** Note that degenerate cases are not only possible, but likely.
177** For example, if the pair following b compares with opposite sense,
178** then b == q < p == r == t.
179*/
180
181
957d8989 182static IV
84d4ea48 183dynprep(pTHX_ gptr *list1, gptr *list2, size_t nmemb, SVCOMPARE_t cmp)
184{
957d8989 185 I32 sense;
84d4ea48 186 register gptr *b, *p, *q, *t, *p2;
187 register gptr c, *last, *r;
188 gptr *savep;
957d8989 189 IV runs = 0;
84d4ea48 190
191 b = list1;
192 last = PINDEX(b, nmemb);
193 sense = (cmp(aTHX_ *b, *(b+1)) > 0);
194 for (p2 = list2; b < last; ) {
195 /* We just started, or just reversed sense.
196 ** Set t at end of pairs with the prevailing sense.
197 */
198 for (p = b+2, t = p; ++p < last; t = ++p) {
199 if ((cmp(aTHX_ *t, *p) > 0) != sense) break;
200 }
201 q = b;
202 /* Having laid out the playing field, look for long runs */
203 do {
204 p = r = b + (2 * PTHRESH);
205 if (r >= t) p = r = t; /* too short to care about */
206 else {
207 while (((cmp(aTHX_ *(p-1), *p) > 0) == sense) &&
208 ((p -= 2) > q));
209 if (p <= q) {
210 /* b through r is a (long) run.
211 ** Extend it as far as possible.
212 */
213 p = q = r;
214 while (((p += 2) < t) &&
215 ((cmp(aTHX_ *(p-1), *p) > 0) == sense)) q = p;
216 r = p = q + 2; /* no simple pairs, no after-run */
217 }
218 }
219 if (q > b) { /* run of greater than 2 at b */
220 savep = p;
221 p = q += 2;
222 /* pick up singleton, if possible */
223 if ((p == t) &&
224 ((t + 1) == last) &&
225 ((cmp(aTHX_ *(p-1), *p) > 0) == sense))
226 savep = r = p = q = last;
957d8989 227 p2 = NEXT(p2) = p2 + (p - b); ++runs;
84d4ea48 228 if (sense) while (b < --p) {
229 c = *b;
230 *b++ = *p;
231 *p = c;
232 }
233 p = savep;
234 }
235 while (q < p) { /* simple pairs */
957d8989 236 p2 = NEXT(p2) = p2 + 2; ++runs;
84d4ea48 237 if (sense) {
238 c = *q++;
239 *(q-1) = *q;
240 *q++ = c;
241 } else q += 2;
242 }
243 if (((b = p) == t) && ((t+1) == last)) {
957d8989 244 NEXT(p2) = p2 + 1; ++runs;
84d4ea48 245 b++;
246 }
247 q = r;
248 } while (b < t);
249 sense = !sense;
250 }
957d8989 251 return runs;
84d4ea48 252}
253
254
3fe0b9a9 255/* The original merge sort, in use since 5.7, was as fast as, or faster than,
957d8989 256 * qsort on many platforms, but slower than qsort, conspicuously so,
3fe0b9a9 257 * on others. The most likely explanation was platform-specific
957d8989 258 * differences in cache sizes and relative speeds.
259 *
260 * The quicksort divide-and-conquer algorithm guarantees that, as the
261 * problem is subdivided into smaller and smaller parts, the parts
262 * fit into smaller (and faster) caches. So it doesn't matter how
263 * many levels of cache exist, quicksort will "find" them, and,
e62b3022 264 * as long as smaller is faster, take advantage of them.
957d8989 265 *
3fe0b9a9 266 * By contrast, consider how the original mergesort algorithm worked.
957d8989 267 * Suppose we have five runs (each typically of length 2 after dynprep).
268 *
269 * pass base aux
270 * 0 1 2 3 4 5
271 * 1 12 34 5
272 * 2 1234 5
273 * 3 12345
274 * 4 12345
275 *
276 * Adjacent pairs are merged in "grand sweeps" through the input.
277 * This means, on pass 1, the records in runs 1 and 2 aren't revisited until
278 * runs 3 and 4 are merged and the runs from run 5 have been copied.
279 * The only cache that matters is one large enough to hold *all* the input.
280 * On some platforms, this may be many times slower than smaller caches.
281 *
282 * The following pseudo-code uses the same basic merge algorithm,
283 * but in a divide-and-conquer way.
284 *
285 * # merge $runs runs at offset $offset of list $list1 into $list2.
286 * # all unmerged runs ($runs == 1) originate in list $base.
287 * sub mgsort2 {
288 * my ($offset, $runs, $base, $list1, $list2) = @_;
289 *
290 * if ($runs == 1) {
291 * if ($list1 is $base) copy run to $list2
292 * return offset of end of list (or copy)
293 * } else {
294 * $off2 = mgsort2($offset, $runs-($runs/2), $base, $list2, $list1)
295 * mgsort2($off2, $runs/2, $base, $list2, $list1)
296 * merge the adjacent runs at $offset of $list1 into $list2
297 * return the offset of the end of the merged runs
298 * }
299 * }
300 * mgsort2(0, $runs, $base, $aux, $base);
301 *
302 * For our 5 runs, the tree of calls looks like
303 *
304 * 5
305 * 3 2
306 * 2 1 1 1
307 * 1 1
308 *
309 * 1 2 3 4 5
310 *
311 * and the corresponding activity looks like
312 *
313 * copy runs 1 and 2 from base to aux
314 * merge runs 1 and 2 from aux to base
315 * (run 3 is where it belongs, no copy needed)
316 * merge runs 12 and 3 from base to aux
317 * (runs 4 and 5 are where they belong, no copy needed)
318 * merge runs 4 and 5 from base to aux
319 * merge runs 123 and 45 from aux to base
320 *
321 * Note that we merge runs 1 and 2 immediately after copying them,
322 * while they are still likely to be in fast cache. Similarly,
323 * run 3 is merged with run 12 while it still may be lingering in cache.
324 * This implementation should therefore enjoy much of the cache-friendly
325 * behavior that quicksort does. In addition, it does less copying
326 * than the original mergesort implementation (only runs 1 and 2 are copied)
327 * and the "balancing" of merges is better (merged runs comprise more nearly
328 * equal numbers of original runs).
329 *
330 * The actual cache-friendly implementation will use a pseudo-stack
331 * to avoid recursion, and will unroll processing of runs of length 2,
332 * but it is otherwise similar to the recursive implementation.
957d8989 333 */
334
335typedef struct {
336 IV offset; /* offset of 1st of 2 runs at this level */
337 IV runs; /* how many runs must be combined into 1 */
338} off_runs; /* pseudo-stack element */
339
6c3fb703 340
341static I32
342cmp_desc(pTHX_ gptr a, gptr b)
343{
344 return -PL_sort_RealCmp(aTHX_ a, b);
345}
346
957d8989 347STATIC void
6c3fb703 348S_mergesortsv(pTHX_ gptr *base, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
957d8989 349{
551405c4 350 IV i, run, offset;
957d8989 351 I32 sense, level;
551405c4 352 register gptr *f1, *f2, *t, *b, *p;
957d8989 353 int iwhich;
551405c4 354 gptr *aux;
957d8989 355 gptr *p1;
356 gptr small[SMALLSORT];
357 gptr *which[3];
358 off_runs stack[60], *stackp;
a80036c6 359 SVCOMPARE_t savecmp = 0;
957d8989 360
361 if (nmemb <= 1) return; /* sorted trivially */
6c3fb703 362
363 if (flags) {
364 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
365 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
366 cmp = cmp_desc;
367 }
368
957d8989 369 if (nmemb <= SMALLSORT) aux = small; /* use stack for aux array */
a02a5408 370 else { Newx(aux,nmemb,gptr); } /* allocate auxilliary array */
957d8989 371 level = 0;
372 stackp = stack;
373 stackp->runs = dynprep(aTHX_ base, aux, nmemb, cmp);
374 stackp->offset = offset = 0;
375 which[0] = which[2] = base;
376 which[1] = aux;
377 for (;;) {
378 /* On levels where both runs have be constructed (stackp->runs == 0),
379 * merge them, and note the offset of their end, in case the offset
380 * is needed at the next level up. Hop up a level, and,
381 * as long as stackp->runs is 0, keep merging.
382 */
551405c4 383 IV runs = stackp->runs;
384 if (runs == 0) {
385 gptr *list1, *list2;
957d8989 386 iwhich = level & 1;
387 list1 = which[iwhich]; /* area where runs are now */
388 list2 = which[++iwhich]; /* area for merged runs */
389 do {
551405c4 390 register gptr *l1, *l2, *tp2;
957d8989 391 offset = stackp->offset;
392 f1 = p1 = list1 + offset; /* start of first run */
393 p = tp2 = list2 + offset; /* where merged run will go */
394 t = NEXT(p); /* where first run ends */
395 f2 = l1 = POTHER(t, list2, list1); /* ... on the other side */
396 t = NEXT(t); /* where second runs ends */
397 l2 = POTHER(t, list2, list1); /* ... on the other side */
398 offset = PNELEM(list2, t);
399 while (f1 < l1 && f2 < l2) {
400 /* If head 1 is larger than head 2, find ALL the elements
401 ** in list 2 strictly less than head1, write them all,
402 ** then head 1. Then compare the new heads, and repeat,
403 ** until one or both lists are exhausted.
404 **
405 ** In all comparisons (after establishing
406 ** which head to merge) the item to merge
407 ** (at pointer q) is the first operand of
408 ** the comparison. When we want to know
a0288114 409 ** if "q is strictly less than the other",
957d8989 410 ** we can't just do
411 ** cmp(q, other) < 0
412 ** because stability demands that we treat equality
413 ** as high when q comes from l2, and as low when
414 ** q was from l1. So we ask the question by doing
415 ** cmp(q, other) <= sense
416 ** and make sense == 0 when equality should look low,
417 ** and -1 when equality should look high.
418 */
419
551405c4 420 register gptr *q;
957d8989 421 if (cmp(aTHX_ *f1, *f2) <= 0) {
422 q = f2; b = f1; t = l1;
423 sense = -1;
424 } else {
425 q = f1; b = f2; t = l2;
426 sense = 0;
427 }
428
429
430 /* ramp up
431 **
432 ** Leave t at something strictly
433 ** greater than q (or at the end of the list),
434 ** and b at something strictly less than q.
435 */
436 for (i = 1, run = 0 ;;) {
437 if ((p = PINDEX(b, i)) >= t) {
438 /* off the end */
439 if (((p = PINDEX(t, -1)) > b) &&
440 (cmp(aTHX_ *q, *p) <= sense))
441 t = p;
442 else b = p;
443 break;
444 } else if (cmp(aTHX_ *q, *p) <= sense) {
445 t = p;
446 break;
447 } else b = p;
448 if (++run >= RTHRESH) i += i;
449 }
450
451
452 /* q is known to follow b and must be inserted before t.
453 ** Increment b, so the range of possibilities is [b,t).
454 ** Round binary split down, to favor early appearance.
455 ** Adjust b and t until q belongs just before t.
456 */
457
458 b++;
459 while (b < t) {
460 p = PINDEX(b, (PNELEM(b, t) - 1) / 2);
461 if (cmp(aTHX_ *q, *p) <= sense) {
462 t = p;
463 } else b = p + 1;
464 }
465
466
467 /* Copy all the strictly low elements */
468
469 if (q == f1) {
470 FROMTOUPTO(f2, tp2, t);
471 *tp2++ = *f1++;
472 } else {
473 FROMTOUPTO(f1, tp2, t);
474 *tp2++ = *f2++;
475 }
476 }
477
478
479 /* Run out remaining list */
480 if (f1 == l1) {
481 if (f2 < l2) FROMTOUPTO(f2, tp2, l2);
482 } else FROMTOUPTO(f1, tp2, l1);
483 p1 = NEXT(p1) = POTHER(tp2, list2, list1);
484
485 if (--level == 0) goto done;
486 --stackp;
487 t = list1; list1 = list2; list2 = t; /* swap lists */
488 } while ((runs = stackp->runs) == 0);
489 }
490
491
492 stackp->runs = 0; /* current run will finish level */
493 /* While there are more than 2 runs remaining,
494 * turn them into exactly 2 runs (at the "other" level),
495 * each made up of approximately half the runs.
496 * Stack the second half for later processing,
497 * and set about producing the first half now.
498 */
499 while (runs > 2) {
500 ++level;
501 ++stackp;
502 stackp->offset = offset;
503 runs -= stackp->runs = runs / 2;
504 }
505 /* We must construct a single run from 1 or 2 runs.
506 * All the original runs are in which[0] == base.
507 * The run we construct must end up in which[level&1].
508 */
509 iwhich = level & 1;
510 if (runs == 1) {
511 /* Constructing a single run from a single run.
512 * If it's where it belongs already, there's nothing to do.
513 * Otherwise, copy it to where it belongs.
514 * A run of 1 is either a singleton at level 0,
515 * or the second half of a split 3. In neither event
516 * is it necessary to set offset. It will be set by the merge
517 * that immediately follows.
518 */
519 if (iwhich) { /* Belongs in aux, currently in base */
520 f1 = b = PINDEX(base, offset); /* where list starts */
521 f2 = PINDEX(aux, offset); /* where list goes */
522 t = NEXT(f2); /* where list will end */
523 offset = PNELEM(aux, t); /* offset thereof */
524 t = PINDEX(base, offset); /* where it currently ends */
525 FROMTOUPTO(f1, f2, t); /* copy */
526 NEXT(b) = t; /* set up parallel pointer */
527 } else if (level == 0) goto done; /* single run at level 0 */
528 } else {
529 /* Constructing a single run from two runs.
530 * The merge code at the top will do that.
531 * We need only make sure the two runs are in the "other" array,
532 * so they'll end up in the correct array after the merge.
533 */
534 ++level;
535 ++stackp;
536 stackp->offset = offset;
537 stackp->runs = 0; /* take care of both runs, trigger merge */
538 if (!iwhich) { /* Merged runs belong in aux, copy 1st */
539 f1 = b = PINDEX(base, offset); /* where first run starts */
540 f2 = PINDEX(aux, offset); /* where it will be copied */
541 t = NEXT(f2); /* where first run will end */
542 offset = PNELEM(aux, t); /* offset thereof */
543 p = PINDEX(base, offset); /* end of first run */
544 t = NEXT(t); /* where second run will end */
545 t = PINDEX(base, PNELEM(aux, t)); /* where it now ends */
546 FROMTOUPTO(f1, f2, t); /* copy both runs */
547 NEXT(b) = p; /* paralled pointer for 1st */
548 NEXT(p) = t; /* ... and for second */
549 }
550 }
551 }
552done:
553 if (aux != small) Safefree(aux); /* free iff allocated */
6c3fb703 554 if (flags) {
555 PL_sort_RealCmp = savecmp; /* Restore current comparison routine, if any */
556 }
957d8989 557 return;
558}
559
84d4ea48 560/*
561 * The quicksort implementation was derived from source code contributed
562 * by Tom Horsley.
563 *
564 * NOTE: this code was derived from Tom Horsley's qsort replacement
565 * and should not be confused with the original code.
566 */
567
568/* Copyright (C) Tom Horsley, 1997. All rights reserved.
569
570 Permission granted to distribute under the same terms as perl which are
571 (briefly):
572
573 This program is free software; you can redistribute it and/or modify
574 it under the terms of either:
575
576 a) the GNU General Public License as published by the Free
577 Software Foundation; either version 1, or (at your option) any
578 later version, or
579
580 b) the "Artistic License" which comes with this Kit.
581
582 Details on the perl license can be found in the perl source code which
583 may be located via the www.perl.com web page.
584
585 This is the most wonderfulest possible qsort I can come up with (and
586 still be mostly portable) My (limited) tests indicate it consistently
587 does about 20% fewer calls to compare than does the qsort in the Visual
588 C++ library, other vendors may vary.
589
590 Some of the ideas in here can be found in "Algorithms" by Sedgewick,
591 others I invented myself (or more likely re-invented since they seemed
592 pretty obvious once I watched the algorithm operate for a while).
593
594 Most of this code was written while watching the Marlins sweep the Giants
595 in the 1997 National League Playoffs - no Braves fans allowed to use this
596 code (just kidding :-).
597
598 I realize that if I wanted to be true to the perl tradition, the only
599 comment in this file would be something like:
600
601 ...they shuffled back towards the rear of the line. 'No, not at the
602 rear!' the slave-driver shouted. 'Three files up. And stay there...
603
604 However, I really needed to violate that tradition just so I could keep
605 track of what happens myself, not to mention some poor fool trying to
606 understand this years from now :-).
607*/
608
609/* ********************************************************** Configuration */
610
611#ifndef QSORT_ORDER_GUESS
612#define QSORT_ORDER_GUESS 2 /* Select doubling version of the netBSD trick */
613#endif
614
615/* QSORT_MAX_STACK is the largest number of partitions that can be stacked up for
616 future processing - a good max upper bound is log base 2 of memory size
617 (32 on 32 bit machines, 64 on 64 bit machines, etc). In reality can
618 safely be smaller than that since the program is taking up some space and
619 most operating systems only let you grab some subset of contiguous
620 memory (not to mention that you are normally sorting data larger than
621 1 byte element size :-).
622*/
623#ifndef QSORT_MAX_STACK
624#define QSORT_MAX_STACK 32
625#endif
626
627/* QSORT_BREAK_EVEN is the size of the largest partition we should insertion sort.
628 Anything bigger and we use qsort. If you make this too small, the qsort
629 will probably break (or become less efficient), because it doesn't expect
630 the middle element of a partition to be the same as the right or left -
631 you have been warned).
632*/
633#ifndef QSORT_BREAK_EVEN
634#define QSORT_BREAK_EVEN 6
635#endif
636
4eb872f6 637/* QSORT_PLAY_SAFE is the size of the largest partition we're willing
638 to go quadratic on. We innoculate larger partitions against
639 quadratic behavior by shuffling them before sorting. This is not
640 an absolute guarantee of non-quadratic behavior, but it would take
641 staggeringly bad luck to pick extreme elements as the pivot
642 from randomized data.
643*/
644#ifndef QSORT_PLAY_SAFE
645#define QSORT_PLAY_SAFE 255
646#endif
647
84d4ea48 648/* ************************************************************* Data Types */
649
650/* hold left and right index values of a partition waiting to be sorted (the
651 partition includes both left and right - right is NOT one past the end or
652 anything like that).
653*/
654struct partition_stack_entry {
655 int left;
656 int right;
657#ifdef QSORT_ORDER_GUESS
658 int qsort_break_even;
659#endif
660};
661
662/* ******************************************************* Shorthand Macros */
663
664/* Note that these macros will be used from inside the qsort function where
665 we happen to know that the variable 'elt_size' contains the size of an
666 array element and the variable 'temp' points to enough space to hold a
667 temp element and the variable 'array' points to the array being sorted
668 and 'compare' is the pointer to the compare routine.
669
670 Also note that there are very many highly architecture specific ways
671 these might be sped up, but this is simply the most generally portable
672 code I could think of.
673*/
674
675/* Return < 0 == 0 or > 0 as the value of elt1 is < elt2, == elt2, > elt2
676*/
677#define qsort_cmp(elt1, elt2) \
678 ((*compare)(aTHX_ array[elt1], array[elt2]))
679
680#ifdef QSORT_ORDER_GUESS
681#define QSORT_NOTICE_SWAP swapped++;
682#else
683#define QSORT_NOTICE_SWAP
684#endif
685
686/* swaps contents of array elements elt1, elt2.
687*/
688#define qsort_swap(elt1, elt2) \
689 STMT_START { \
690 QSORT_NOTICE_SWAP \
691 temp = array[elt1]; \
692 array[elt1] = array[elt2]; \
693 array[elt2] = temp; \
694 } STMT_END
695
696/* rotate contents of elt1, elt2, elt3 such that elt1 gets elt2, elt2 gets
697 elt3 and elt3 gets elt1.
698*/
699#define qsort_rotate(elt1, elt2, elt3) \
700 STMT_START { \
701 QSORT_NOTICE_SWAP \
702 temp = array[elt1]; \
703 array[elt1] = array[elt2]; \
704 array[elt2] = array[elt3]; \
705 array[elt3] = temp; \
706 } STMT_END
707
708/* ************************************************************ Debug stuff */
709
710#ifdef QSORT_DEBUG
711
712static void
713break_here()
714{
715 return; /* good place to set a breakpoint */
716}
717
718#define qsort_assert(t) (void)( (t) || (break_here(), 0) )
719
720static void
721doqsort_all_asserts(
722 void * array,
723 size_t num_elts,
724 size_t elt_size,
725 int (*compare)(const void * elt1, const void * elt2),
726 int pc_left, int pc_right, int u_left, int u_right)
727{
728 int i;
729
730 qsort_assert(pc_left <= pc_right);
731 qsort_assert(u_right < pc_left);
732 qsort_assert(pc_right < u_left);
733 for (i = u_right + 1; i < pc_left; ++i) {
734 qsort_assert(qsort_cmp(i, pc_left) < 0);
735 }
736 for (i = pc_left; i < pc_right; ++i) {
737 qsort_assert(qsort_cmp(i, pc_right) == 0);
738 }
739 for (i = pc_right + 1; i < u_left; ++i) {
740 qsort_assert(qsort_cmp(pc_right, i) < 0);
741 }
742}
743
744#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) \
745 doqsort_all_asserts(array, num_elts, elt_size, compare, \
746 PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT)
747
748#else
749
750#define qsort_assert(t) ((void)0)
751
752#define qsort_all_asserts(PC_LEFT, PC_RIGHT, U_LEFT, U_RIGHT) ((void)0)
753
754#endif
755
756/* ****************************************************************** qsort */
757
758STATIC void /* the standard unstable (u) quicksort (qsort) */
759S_qsortsvu(pTHX_ SV ** array, size_t num_elts, SVCOMPARE_t compare)
760{
761 register SV * temp;
762
763 struct partition_stack_entry partition_stack[QSORT_MAX_STACK];
764 int next_stack_entry = 0;
765
766 int part_left;
767 int part_right;
768#ifdef QSORT_ORDER_GUESS
769 int qsort_break_even;
770 int swapped;
771#endif
772
773 /* Make sure we actually have work to do.
774 */
775 if (num_elts <= 1) {
776 return;
777 }
778
4eb872f6 779 /* Innoculate large partitions against quadratic behavior */
780 if (num_elts > QSORT_PLAY_SAFE) {
901017d6 781 register size_t n;
782 register SV ** const q = array;
783 for (n = num_elts; n > 1; ) {
784 register const size_t j = (size_t)(n-- * Drand01());
4eb872f6 785 temp = q[j];
786 q[j] = q[n];
787 q[n] = temp;
788 }
789 }
790
84d4ea48 791 /* Setup the initial partition definition and fall into the sorting loop
792 */
793 part_left = 0;
794 part_right = (int)(num_elts - 1);
795#ifdef QSORT_ORDER_GUESS
796 qsort_break_even = QSORT_BREAK_EVEN;
797#else
798#define qsort_break_even QSORT_BREAK_EVEN
799#endif
800 for ( ; ; ) {
801 if ((part_right - part_left) >= qsort_break_even) {
802 /* OK, this is gonna get hairy, so lets try to document all the
803 concepts and abbreviations and variables and what they keep
804 track of:
805
806 pc: pivot chunk - the set of array elements we accumulate in the
807 middle of the partition, all equal in value to the original
808 pivot element selected. The pc is defined by:
809
810 pc_left - the leftmost array index of the pc
811 pc_right - the rightmost array index of the pc
812
813 we start with pc_left == pc_right and only one element
814 in the pivot chunk (but it can grow during the scan).
815
816 u: uncompared elements - the set of elements in the partition
817 we have not yet compared to the pivot value. There are two
818 uncompared sets during the scan - one to the left of the pc
819 and one to the right.
820
821 u_right - the rightmost index of the left side's uncompared set
822 u_left - the leftmost index of the right side's uncompared set
823
824 The leftmost index of the left sides's uncompared set
825 doesn't need its own variable because it is always defined
826 by the leftmost edge of the whole partition (part_left). The
827 same goes for the rightmost edge of the right partition
828 (part_right).
829
830 We know there are no uncompared elements on the left once we
831 get u_right < part_left and no uncompared elements on the
832 right once u_left > part_right. When both these conditions
833 are met, we have completed the scan of the partition.
834
835 Any elements which are between the pivot chunk and the
836 uncompared elements should be less than the pivot value on
837 the left side and greater than the pivot value on the right
838 side (in fact, the goal of the whole algorithm is to arrange
839 for that to be true and make the groups of less-than and
840 greater-then elements into new partitions to sort again).
841
842 As you marvel at the complexity of the code and wonder why it
843 has to be so confusing. Consider some of the things this level
844 of confusion brings:
845
846 Once I do a compare, I squeeze every ounce of juice out of it. I
847 never do compare calls I don't have to do, and I certainly never
848 do redundant calls.
849
850 I also never swap any elements unless I can prove there is a
851 good reason. Many sort algorithms will swap a known value with
852 an uncompared value just to get things in the right place (or
853 avoid complexity :-), but that uncompared value, once it gets
854 compared, may then have to be swapped again. A lot of the
855 complexity of this code is due to the fact that it never swaps
856 anything except compared values, and it only swaps them when the
857 compare shows they are out of position.
858 */
859 int pc_left, pc_right;
860 int u_right, u_left;
861
862 int s;
863
864 pc_left = ((part_left + part_right) / 2);
865 pc_right = pc_left;
866 u_right = pc_left - 1;
867 u_left = pc_right + 1;
868
869 /* Qsort works best when the pivot value is also the median value
870 in the partition (unfortunately you can't find the median value
871 without first sorting :-), so to give the algorithm a helping
872 hand, we pick 3 elements and sort them and use the median value
873 of that tiny set as the pivot value.
874
875 Some versions of qsort like to use the left middle and right as
876 the 3 elements to sort so they can insure the ends of the
877 partition will contain values which will stop the scan in the
878 compare loop, but when you have to call an arbitrarily complex
879 routine to do a compare, its really better to just keep track of
880 array index values to know when you hit the edge of the
881 partition and avoid the extra compare. An even better reason to
882 avoid using a compare call is the fact that you can drop off the
883 edge of the array if someone foolishly provides you with an
884 unstable compare function that doesn't always provide consistent
885 results.
886
887 So, since it is simpler for us to compare the three adjacent
888 elements in the middle of the partition, those are the ones we
889 pick here (conveniently pointed at by u_right, pc_left, and
890 u_left). The values of the left, center, and right elements
891 are refered to as l c and r in the following comments.
892 */
893
894#ifdef QSORT_ORDER_GUESS
895 swapped = 0;
896#endif
897 s = qsort_cmp(u_right, pc_left);
898 if (s < 0) {
899 /* l < c */
900 s = qsort_cmp(pc_left, u_left);
901 /* if l < c, c < r - already in order - nothing to do */
902 if (s == 0) {
903 /* l < c, c == r - already in order, pc grows */
904 ++pc_right;
905 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
906 } else if (s > 0) {
907 /* l < c, c > r - need to know more */
908 s = qsort_cmp(u_right, u_left);
909 if (s < 0) {
910 /* l < c, c > r, l < r - swap c & r to get ordered */
911 qsort_swap(pc_left, u_left);
912 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
913 } else if (s == 0) {
914 /* l < c, c > r, l == r - swap c&r, grow pc */
915 qsort_swap(pc_left, u_left);
916 --pc_left;
917 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
918 } else {
919 /* l < c, c > r, l > r - make lcr into rlc to get ordered */
920 qsort_rotate(pc_left, u_right, u_left);
921 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
922 }
923 }
924 } else if (s == 0) {
925 /* l == c */
926 s = qsort_cmp(pc_left, u_left);
927 if (s < 0) {
928 /* l == c, c < r - already in order, grow pc */
929 --pc_left;
930 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
931 } else if (s == 0) {
932 /* l == c, c == r - already in order, grow pc both ways */
933 --pc_left;
934 ++pc_right;
935 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
936 } else {
937 /* l == c, c > r - swap l & r, grow pc */
938 qsort_swap(u_right, u_left);
939 ++pc_right;
940 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
941 }
942 } else {
943 /* l > c */
944 s = qsort_cmp(pc_left, u_left);
945 if (s < 0) {
946 /* l > c, c < r - need to know more */
947 s = qsort_cmp(u_right, u_left);
948 if (s < 0) {
949 /* l > c, c < r, l < r - swap l & c to get ordered */
950 qsort_swap(u_right, pc_left);
951 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
952 } else if (s == 0) {
953 /* l > c, c < r, l == r - swap l & c, grow pc */
954 qsort_swap(u_right, pc_left);
955 ++pc_right;
956 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
957 } else {
958 /* l > c, c < r, l > r - rotate lcr into crl to order */
959 qsort_rotate(u_right, pc_left, u_left);
960 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
961 }
962 } else if (s == 0) {
963 /* l > c, c == r - swap ends, grow pc */
964 qsort_swap(u_right, u_left);
965 --pc_left;
966 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
967 } else {
968 /* l > c, c > r - swap ends to get in order */
969 qsort_swap(u_right, u_left);
970 qsort_all_asserts(pc_left, pc_right, u_left + 1, u_right - 1);
971 }
972 }
973 /* We now know the 3 middle elements have been compared and
974 arranged in the desired order, so we can shrink the uncompared
975 sets on both sides
976 */
977 --u_right;
978 ++u_left;
979 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
980
981 /* The above massive nested if was the simple part :-). We now have
982 the middle 3 elements ordered and we need to scan through the
983 uncompared sets on either side, swapping elements that are on
984 the wrong side or simply shuffling equal elements around to get
985 all equal elements into the pivot chunk.
986 */
987
988 for ( ; ; ) {
989 int still_work_on_left;
990 int still_work_on_right;
991
992 /* Scan the uncompared values on the left. If I find a value
993 equal to the pivot value, move it over so it is adjacent to
994 the pivot chunk and expand the pivot chunk. If I find a value
995 less than the pivot value, then just leave it - its already
996 on the correct side of the partition. If I find a greater
997 value, then stop the scan.
998 */
999 while ((still_work_on_left = (u_right >= part_left))) {
1000 s = qsort_cmp(u_right, pc_left);
1001 if (s < 0) {
1002 --u_right;
1003 } else if (s == 0) {
1004 --pc_left;
1005 if (pc_left != u_right) {
1006 qsort_swap(u_right, pc_left);
1007 }
1008 --u_right;
1009 } else {
1010 break;
1011 }
1012 qsort_assert(u_right < pc_left);
1013 qsort_assert(pc_left <= pc_right);
1014 qsort_assert(qsort_cmp(u_right + 1, pc_left) <= 0);
1015 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1016 }
1017
1018 /* Do a mirror image scan of uncompared values on the right
1019 */
1020 while ((still_work_on_right = (u_left <= part_right))) {
1021 s = qsort_cmp(pc_right, u_left);
1022 if (s < 0) {
1023 ++u_left;
1024 } else if (s == 0) {
1025 ++pc_right;
1026 if (pc_right != u_left) {
1027 qsort_swap(pc_right, u_left);
1028 }
1029 ++u_left;
1030 } else {
1031 break;
1032 }
1033 qsort_assert(u_left > pc_right);
1034 qsort_assert(pc_left <= pc_right);
1035 qsort_assert(qsort_cmp(pc_right, u_left - 1) <= 0);
1036 qsort_assert(qsort_cmp(pc_left, pc_right) == 0);
1037 }
1038
1039 if (still_work_on_left) {
1040 /* I know I have a value on the left side which needs to be
1041 on the right side, but I need to know more to decide
1042 exactly the best thing to do with it.
1043 */
1044 if (still_work_on_right) {
1045 /* I know I have values on both side which are out of
1046 position. This is a big win because I kill two birds
1047 with one swap (so to speak). I can advance the
1048 uncompared pointers on both sides after swapping both
1049 of them into the right place.
1050 */
1051 qsort_swap(u_right, u_left);
1052 --u_right;
1053 ++u_left;
1054 qsort_all_asserts(pc_left, pc_right, u_left, u_right);
1055 } else {
1056 /* I have an out of position value on the left, but the
1057 right is fully scanned, so I "slide" the pivot chunk
1058 and any less-than values left one to make room for the
1059 greater value over on the right. If the out of position
1060 value is immediately adjacent to the pivot chunk (there
1061 are no less-than values), I can do that with a swap,
1062 otherwise, I have to rotate one of the less than values
1063 into the former position of the out of position value
1064 and the right end of the pivot chunk into the left end
1065 (got all that?).
1066 */
1067 --pc_left;
1068 if (pc_left == u_right) {
1069 qsort_swap(u_right, pc_right);
1070 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1071 } else {
1072 qsort_rotate(u_right, pc_left, pc_right);
1073 qsort_all_asserts(pc_left, pc_right-1, u_left, u_right-1);
1074 }
1075 --pc_right;
1076 --u_right;
1077 }
1078 } else if (still_work_on_right) {
1079 /* Mirror image of complex case above: I have an out of
1080 position value on the right, but the left is fully
1081 scanned, so I need to shuffle things around to make room
1082 for the right value on the left.
1083 */
1084 ++pc_right;
1085 if (pc_right == u_left) {
1086 qsort_swap(u_left, pc_left);
1087 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1088 } else {
1089 qsort_rotate(pc_right, pc_left, u_left);
1090 qsort_all_asserts(pc_left+1, pc_right, u_left+1, u_right);
1091 }
1092 ++pc_left;
1093 ++u_left;
1094 } else {
1095 /* No more scanning required on either side of partition,
1096 break out of loop and figure out next set of partitions
1097 */
1098 break;
1099 }
1100 }
1101
1102 /* The elements in the pivot chunk are now in the right place. They
1103 will never move or be compared again. All I have to do is decide
1104 what to do with the stuff to the left and right of the pivot
1105 chunk.
1106
1107 Notes on the QSORT_ORDER_GUESS ifdef code:
1108
1109 1. If I just built these partitions without swapping any (or
1110 very many) elements, there is a chance that the elements are
1111 already ordered properly (being properly ordered will
1112 certainly result in no swapping, but the converse can't be
1113 proved :-).
1114
1115 2. A (properly written) insertion sort will run faster on
1116 already ordered data than qsort will.
1117
1118 3. Perhaps there is some way to make a good guess about
1119 switching to an insertion sort earlier than partition size 6
1120 (for instance - we could save the partition size on the stack
1121 and increase the size each time we find we didn't swap, thus
1122 switching to insertion sort earlier for partitions with a
1123 history of not swapping).
1124
1125 4. Naturally, if I just switch right away, it will make
1126 artificial benchmarks with pure ascending (or descending)
1127 data look really good, but is that a good reason in general?
1128 Hard to say...
1129 */
1130
1131#ifdef QSORT_ORDER_GUESS
1132 if (swapped < 3) {
1133#if QSORT_ORDER_GUESS == 1
1134 qsort_break_even = (part_right - part_left) + 1;
1135#endif
1136#if QSORT_ORDER_GUESS == 2
1137 qsort_break_even *= 2;
1138#endif
1139#if QSORT_ORDER_GUESS == 3
901017d6 1140 const int prev_break = qsort_break_even;
84d4ea48 1141 qsort_break_even *= qsort_break_even;
1142 if (qsort_break_even < prev_break) {
1143 qsort_break_even = (part_right - part_left) + 1;
1144 }
1145#endif
1146 } else {
1147 qsort_break_even = QSORT_BREAK_EVEN;
1148 }
1149#endif
1150
1151 if (part_left < pc_left) {
1152 /* There are elements on the left which need more processing.
1153 Check the right as well before deciding what to do.
1154 */
1155 if (pc_right < part_right) {
1156 /* We have two partitions to be sorted. Stack the biggest one
1157 and process the smallest one on the next iteration. This
1158 minimizes the stack height by insuring that any additional
1159 stack entries must come from the smallest partition which
1160 (because it is smallest) will have the fewest
1161 opportunities to generate additional stack entries.
1162 */
1163 if ((part_right - pc_right) > (pc_left - part_left)) {
1164 /* stack the right partition, process the left */
1165 partition_stack[next_stack_entry].left = pc_right + 1;
1166 partition_stack[next_stack_entry].right = part_right;
1167#ifdef QSORT_ORDER_GUESS
1168 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1169#endif
1170 part_right = pc_left - 1;
1171 } else {
1172 /* stack the left partition, process the right */
1173 partition_stack[next_stack_entry].left = part_left;
1174 partition_stack[next_stack_entry].right = pc_left - 1;
1175#ifdef QSORT_ORDER_GUESS
1176 partition_stack[next_stack_entry].qsort_break_even = qsort_break_even;
1177#endif
1178 part_left = pc_right + 1;
1179 }
1180 qsort_assert(next_stack_entry < QSORT_MAX_STACK);
1181 ++next_stack_entry;
1182 } else {
1183 /* The elements on the left are the only remaining elements
1184 that need sorting, arrange for them to be processed as the
1185 next partition.
1186 */
1187 part_right = pc_left - 1;
1188 }
1189 } else if (pc_right < part_right) {
1190 /* There is only one chunk on the right to be sorted, make it
1191 the new partition and loop back around.
1192 */
1193 part_left = pc_right + 1;
1194 } else {
1195 /* This whole partition wound up in the pivot chunk, so
1196 we need to get a new partition off the stack.
1197 */
1198 if (next_stack_entry == 0) {
1199 /* the stack is empty - we are done */
1200 break;
1201 }
1202 --next_stack_entry;
1203 part_left = partition_stack[next_stack_entry].left;
1204 part_right = partition_stack[next_stack_entry].right;
1205#ifdef QSORT_ORDER_GUESS
1206 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1207#endif
1208 }
1209 } else {
1210 /* This partition is too small to fool with qsort complexity, just
1211 do an ordinary insertion sort to minimize overhead.
1212 */
1213 int i;
1214 /* Assume 1st element is in right place already, and start checking
1215 at 2nd element to see where it should be inserted.
1216 */
1217 for (i = part_left + 1; i <= part_right; ++i) {
1218 int j;
1219 /* Scan (backwards - just in case 'i' is already in right place)
1220 through the elements already sorted to see if the ith element
1221 belongs ahead of one of them.
1222 */
1223 for (j = i - 1; j >= part_left; --j) {
1224 if (qsort_cmp(i, j) >= 0) {
1225 /* i belongs right after j
1226 */
1227 break;
1228 }
1229 }
1230 ++j;
1231 if (j != i) {
1232 /* Looks like we really need to move some things
1233 */
1234 int k;
1235 temp = array[i];
1236 for (k = i - 1; k >= j; --k)
1237 array[k + 1] = array[k];
1238 array[j] = temp;
1239 }
1240 }
1241
1242 /* That partition is now sorted, grab the next one, or get out
1243 of the loop if there aren't any more.
1244 */
1245
1246 if (next_stack_entry == 0) {
1247 /* the stack is empty - we are done */
1248 break;
1249 }
1250 --next_stack_entry;
1251 part_left = partition_stack[next_stack_entry].left;
1252 part_right = partition_stack[next_stack_entry].right;
1253#ifdef QSORT_ORDER_GUESS
1254 qsort_break_even = partition_stack[next_stack_entry].qsort_break_even;
1255#endif
1256 }
1257 }
1258
1259 /* Believe it or not, the array is sorted at this point! */
1260}
1261
84d4ea48 1262/* Stabilize what is, presumably, an otherwise unstable sort method.
1263 * We do that by allocating (or having on hand) an array of pointers
1264 * that is the same size as the original array of elements to be sorted.
1265 * We initialize this parallel array with the addresses of the original
1266 * array elements. This indirection can make you crazy.
1267 * Some pictures can help. After initializing, we have
1268 *
1269 * indir list1
1270 * +----+ +----+
1271 * | | --------------> | | ------> first element to be sorted
1272 * +----+ +----+
1273 * | | --------------> | | ------> second element to be sorted
1274 * +----+ +----+
1275 * | | --------------> | | ------> third element to be sorted
1276 * +----+ +----+
1277 * ...
1278 * +----+ +----+
1279 * | | --------------> | | ------> n-1st element to be sorted
1280 * +----+ +----+
1281 * | | --------------> | | ------> n-th element to be sorted
1282 * +----+ +----+
1283 *
1284 * During the sort phase, we leave the elements of list1 where they are,
1285 * and sort the pointers in the indirect array in the same order determined
1286 * by the original comparison routine on the elements pointed to.
1287 * Because we don't move the elements of list1 around through
1288 * this phase, we can break ties on elements that compare equal
1289 * using their address in the list1 array, ensuring stabilty.
1290 * This leaves us with something looking like
1291 *
1292 * indir list1
1293 * +----+ +----+
1294 * | | --+ +---> | | ------> first element to be sorted
1295 * +----+ | | +----+
1296 * | | --|-------|---> | | ------> second element to be sorted
1297 * +----+ | | +----+
1298 * | | --|-------+ +-> | | ------> third element to be sorted
1299 * +----+ | | +----+
1300 * ...
1301 * +----+ | | | | +----+
1302 * | | ---|-+ | +--> | | ------> n-1st element to be sorted
1303 * +----+ | | +----+
1304 * | | ---+ +----> | | ------> n-th element to be sorted
1305 * +----+ +----+
1306 *
1307 * where the i-th element of the indirect array points to the element
1308 * that should be i-th in the sorted array. After the sort phase,
1309 * we have to put the elements of list1 into the places
1310 * dictated by the indirect array.
1311 */
1312
84d4ea48 1313
1314static I32
1315cmpindir(pTHX_ gptr a, gptr b)
1316{
901017d6 1317 gptr * const ap = (gptr *)a;
1318 gptr * const bp = (gptr *)b;
0bcc34c2 1319 const I32 sense = PL_sort_RealCmp(aTHX_ *ap, *bp);
84d4ea48 1320
0bcc34c2 1321 if (sense)
1322 return sense;
1323 return (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
84d4ea48 1324}
1325
6c3fb703 1326static I32
1327cmpindir_desc(pTHX_ gptr a, gptr b)
1328{
901017d6 1329 gptr * const ap = (gptr *)a;
1330 gptr * const bp = (gptr *)b;
0bcc34c2 1331 const I32 sense = PL_sort_RealCmp(aTHX_ *ap, *bp);
6c3fb703 1332
1333 /* Reverse the default */
0bcc34c2 1334 if (sense)
6c3fb703 1335 return -sense;
1336 /* But don't reverse the stability test. */
1337 return (ap > bp) ? 1 : ((ap < bp) ? -1 : 0);
1338
1339}
1340
84d4ea48 1341STATIC void
6c3fb703 1342S_qsortsv(pTHX_ gptr *list1, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
84d4ea48 1343{
7b9ef140 1344 if ((flags & SORTf_STABLE) != 0) {
84d4ea48 1345 register gptr **pp, *q;
1346 register size_t n, j, i;
1347 gptr *small[SMALLSORT], **indir, tmp;
1348 SVCOMPARE_t savecmp;
1349 if (nmemb <= 1) return; /* sorted trivially */
4eb872f6 1350
84d4ea48 1351 /* Small arrays can use the stack, big ones must be allocated */
1352 if (nmemb <= SMALLSORT) indir = small;
a02a5408 1353 else { Newx(indir, nmemb, gptr *); }
4eb872f6 1354
84d4ea48 1355 /* Copy pointers to original array elements into indirect array */
1356 for (n = nmemb, pp = indir, q = list1; n--; ) *pp++ = q++;
4eb872f6 1357
147f47de 1358 savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
1359 PL_sort_RealCmp = cmp; /* Put comparison routine where cmpindir can find it */
4eb872f6 1360
84d4ea48 1361 /* sort, with indirection */
6c3fb703 1362 S_qsortsvu(aTHX_ (gptr *)indir, nmemb,
7b9ef140 1363 ((flags & SORTf_DESC) != 0 ? cmpindir_desc : cmpindir));
4eb872f6 1364
84d4ea48 1365 pp = indir;
1366 q = list1;
1367 for (n = nmemb; n--; ) {
1368 /* Assert A: all elements of q with index > n are already
1369 * in place. This is vacuosly true at the start, and we
1370 * put element n where it belongs below (if it wasn't
1371 * already where it belonged). Assert B: we only move
1372 * elements that aren't where they belong,
1373 * so, by A, we never tamper with elements above n.
1374 */
1375 j = pp[n] - q; /* This sets j so that q[j] is
1376 * at pp[n]. *pp[j] belongs in
1377 * q[j], by construction.
1378 */
1379 if (n != j) { /* all's well if n == j */
1380 tmp = q[j]; /* save what's in q[j] */
1381 do {
1382 q[j] = *pp[j]; /* put *pp[j] where it belongs */
1383 i = pp[j] - q; /* the index in q of the element
1384 * just moved */
1385 pp[j] = q + j; /* this is ok now */
1386 } while ((j = i) != n);
1387 /* There are only finitely many (nmemb) addresses
1388 * in the pp array.
1389 * So we must eventually revisit an index we saw before.
1390 * Suppose the first revisited index is k != n.
1391 * An index is visited because something else belongs there.
1392 * If we visit k twice, then two different elements must
1393 * belong in the same place, which cannot be.
1394 * So j must get back to n, the loop terminates,
1395 * and we put the saved element where it belongs.
1396 */
1397 q[n] = tmp; /* put what belongs into
1398 * the n-th element */
1399 }
1400 }
1401
1402 /* free iff allocated */
1403 if (indir != small) { Safefree(indir); }
1404 /* restore prevailing comparison routine */
147f47de 1405 PL_sort_RealCmp = savecmp;
7b9ef140 1406 } else if ((flags & SORTf_DESC) != 0) {
6c3fb703 1407 SVCOMPARE_t savecmp = PL_sort_RealCmp; /* Save current comparison routine, if any */
1408 PL_sort_RealCmp = cmp; /* Put comparison routine where cmp_desc can find it */
1409 cmp = cmp_desc;
1410 S_qsortsvu(aTHX_ list1, nmemb, cmp);
1411 /* restore prevailing comparison routine */
1412 PL_sort_RealCmp = savecmp;
c53fc8a6 1413 } else {
1414 S_qsortsvu(aTHX_ list1, nmemb, cmp);
84d4ea48 1415 }
1416}
4eb872f6 1417
1418/*
ccfc67b7 1419=head1 Array Manipulation Functions
1420
84d4ea48 1421=for apidoc sortsv
1422
1423Sort an array. Here is an example:
1424
4eb872f6 1425 sortsv(AvARRAY(av), av_len(av)+1, Perl_sv_cmp_locale);
84d4ea48 1426
7b9ef140 1427Currently this always uses mergesort. See sortsv_flags for a more
1428flexible routine.
78210658 1429
84d4ea48 1430=cut
1431*/
4eb872f6 1432
84d4ea48 1433void
1434Perl_sortsv(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp)
1435{
7b9ef140 1436 sortsv_flags(array, nmemb, cmp, 0);
6c3fb703 1437}
1438
7b9ef140 1439/*
1440=for apidoc sortsv_flags
6c3fb703 1441
7b9ef140 1442Sort an array, with various options.
1443
1444=cut
1445*/
1446void
1447Perl_sortsv_flags(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
6c3fb703 1448{
1449 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
7b9ef140 1450 = ((flags & SORTf_QSORT) != 0 ? S_qsortsv : S_mergesortsv);
6c3fb703 1451
7b9ef140 1452 sortsvp(aTHX_ array, nmemb, cmp, flags);
84d4ea48 1453}
1454
4d562308 1455#define SvNSIOK(sv) ((SvFLAGS(sv) & SVf_NOK) || ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK))
1456#define SvSIOK(sv) ((SvFLAGS(sv) & (SVf_IOK|SVf_IVisUV)) == SVf_IOK)
1457#define SvNSIV(sv) ( SvNOK(sv) ? SvNVX(sv) : ( SvSIOK(sv) ? SvIVX(sv) : sv_2nv(sv) ) )
1458
84d4ea48 1459PP(pp_sort)
1460{
27da23d5 1461 dVAR; dSP; dMARK; dORIGMARK;
fe1bc4cf 1462 register SV **p1 = ORIGMARK+1, **p2;
1463 register I32 max, i;
7d49f689 1464 AV* av = NULL;
84d4ea48 1465 HV *stash;
1466 GV *gv;
cbbf8932 1467 CV *cv = NULL;
84d4ea48 1468 I32 gimme = GIMME;
0bcc34c2 1469 OP* const nextop = PL_op->op_next;
84d4ea48 1470 I32 overloading = 0;
1471 bool hasargs = FALSE;
1472 I32 is_xsub = 0;
fe1bc4cf 1473 I32 sorting_av = 0;
901017d6 1474 const U8 priv = PL_op->op_private;
1475 const U8 flags = PL_op->op_flags;
7b9ef140 1476 U32 sort_flags = 0;
1477 void (*sortsvp)(pTHX_ SV **array, size_t nmemb, SVCOMPARE_t cmp, U32 flags)
1478 = Perl_sortsv_flags;
4d562308 1479 I32 all_SIVs = 1;
84d4ea48 1480
7b9ef140 1481 if ((priv & OPpSORT_DESCEND) != 0)
1482 sort_flags |= SORTf_DESC;
1483 if ((priv & OPpSORT_QSORT) != 0)
1484 sort_flags |= SORTf_QSORT;
1485 if ((priv & OPpSORT_STABLE) != 0)
1486 sort_flags |= SORTf_STABLE;
1487
84d4ea48 1488 if (gimme != G_ARRAY) {
1489 SP = MARK;
b59aed67 1490 EXTEND(SP,1);
84d4ea48 1491 RETPUSHUNDEF;
1492 }
1493
1494 ENTER;
1495 SAVEVPTR(PL_sortcop);
471178c0 1496 if (flags & OPf_STACKED) {
1497 if (flags & OPf_SPECIAL) {
84d4ea48 1498 OP *kid = cLISTOP->op_first->op_sibling; /* pass pushmark */
1499 kid = kUNOP->op_first; /* pass rv2gv */
1500 kid = kUNOP->op_first; /* pass leave */
1501 PL_sortcop = kid->op_next;
1502 stash = CopSTASH(PL_curcop);
1503 }
1504 else {
1505 cv = sv_2cv(*++MARK, &stash, &gv, 0);
1506 if (cv && SvPOK(cv)) {
0bd48802 1507 const char * const proto = SvPV_nolen_const((SV*)cv);
84d4ea48 1508 if (proto && strEQ(proto, "$$")) {
1509 hasargs = TRUE;
1510 }
1511 }
1512 if (!(cv && CvROOT(cv))) {
1513 if (cv && CvXSUB(cv)) {
1514 is_xsub = 1;
1515 }
1516 else if (gv) {
1517 SV *tmpstr = sv_newmortal();
1518 gv_efullname3(tmpstr, gv, Nullch);
35c1215d 1519 DIE(aTHX_ "Undefined sort subroutine \"%"SVf"\" called",
1520 tmpstr);
84d4ea48 1521 }
1522 else {
1523 DIE(aTHX_ "Undefined subroutine in sort");
1524 }
1525 }
1526
1527 if (is_xsub)
1528 PL_sortcop = (OP*)cv;
9850bf21 1529 else
84d4ea48 1530 PL_sortcop = CvSTART(cv);
84d4ea48 1531 }
1532 }
1533 else {
1534 PL_sortcop = Nullop;
1535 stash = CopSTASH(PL_curcop);
1536 }
1537
fe1bc4cf 1538 /* optimiser converts "@a = sort @a" to "sort \@a";
1539 * in case of tied @a, pessimise: push (@a) onto stack, then assign
1540 * result back to @a at the end of this function */
0723351e 1541 if (priv & OPpSORT_INPLACE) {
fe1bc4cf 1542 assert( MARK+1 == SP && *SP && SvTYPE(*SP) == SVt_PVAV);
1543 (void)POPMARK; /* remove mark associated with ex-OP_AASSIGN */
1544 av = (AV*)(*SP);
1545 max = AvFILL(av) + 1;
1546 if (SvMAGICAL(av)) {
1547 MEXTEND(SP, max);
1548 p2 = SP;
fe2774ed 1549 for (i=0; i < max; i++) {
fe1bc4cf 1550 SV **svp = av_fetch(av, i, FALSE);
1551 *SP++ = (svp) ? *svp : Nullsv;
1552 }
1553 }
1554 else {
9850bf21 1555 if (SvREADONLY(av))
1556 Perl_croak(aTHX_ PL_no_modify);
1557 else
1558 SvREADONLY_on(av);
fe1bc4cf 1559 p1 = p2 = AvARRAY(av);
1560 sorting_av = 1;
1561 }
1562 }
1563 else {
1564 p2 = MARK+1;
1565 max = SP - MARK;
1566 }
1567
83a44efe 1568 /* shuffle stack down, removing optional initial cv (p1!=p2), plus
1569 * any nulls; also stringify or converting to integer or number as
1570 * required any args */
fe1bc4cf 1571 for (i=max; i > 0 ; i--) {
1572 if ((*p1 = *p2++)) { /* Weed out nulls. */
1573 SvTEMP_off(*p1);
83a44efe 1574 if (!PL_sortcop) {
1575 if (priv & OPpSORT_NUMERIC) {
1576 if (priv & OPpSORT_INTEGER) {
1577 if (!SvIOK(*p1)) {
1578 if (SvAMAGIC(*p1))
1579 overloading = 1;
1580 else
1581 (void)sv_2iv(*p1);
1582 }
1583 }
1584 else {
4d562308 1585 if (!SvNSIOK(*p1)) {
83a44efe 1586 if (SvAMAGIC(*p1))
1587 overloading = 1;
1588 else
1589 (void)sv_2nv(*p1);
1590 }
4d562308 1591 if (all_SIVs && !SvSIOK(*p1))
1592 all_SIVs = 0;
83a44efe 1593 }
1594 }
1595 else {
1596 if (!SvPOK(*p1)) {
83a44efe 1597 if (SvAMAGIC(*p1))
1598 overloading = 1;
1599 else
83003860 1600 (void)sv_2pv_flags(*p1, 0,
1601 SV_GMAGIC|SV_CONST_RETURN);
83a44efe 1602 }
1603 }
84d4ea48 1604 }
fe1bc4cf 1605 p1++;
84d4ea48 1606 }
fe1bc4cf 1607 else
1608 max--;
84d4ea48 1609 }
fe1bc4cf 1610 if (sorting_av)
1611 AvFILLp(av) = max-1;
1612
1613 if (max > 1) {
471178c0 1614 SV **start;
fe1bc4cf 1615 if (PL_sortcop) {
84d4ea48 1616 PERL_CONTEXT *cx;
1617 SV** newsp;
901017d6 1618 const bool oldcatch = CATCH_GET;
84d4ea48 1619
1620 SAVETMPS;
1621 SAVEOP();
1622
1623 CATCH_SET(TRUE);
1624 PUSHSTACKi(PERLSI_SORT);
1625 if (!hasargs && !is_xsub) {
9850bf21 1626 SAVESPTR(PL_firstgv);
1627 SAVESPTR(PL_secondgv);
1628 SAVESPTR(PL_sortstash);
1629 PL_firstgv = gv_fetchpv("a", TRUE, SVt_PV);
1630 PL_secondgv = gv_fetchpv("b", TRUE, SVt_PV);
1631 PL_sortstash = stash;
84d4ea48 1632 SAVESPTR(GvSV(PL_firstgv));
1633 SAVESPTR(GvSV(PL_secondgv));
1634 }
1635
1636 PUSHBLOCK(cx, CXt_NULL, PL_stack_base);
471178c0 1637 if (!(flags & OPf_SPECIAL)) {
84d4ea48 1638 cx->cx_type = CXt_SUB;
1639 cx->blk_gimme = G_SCALAR;
1640 PUSHSUB(cx);
9850bf21 1641 if (!is_xsub) {
0bcc34c2 1642 AV* const padlist = CvPADLIST(cv);
9850bf21 1643
1644 if (++CvDEPTH(cv) >= 2) {
1645 PERL_STACK_OVERFLOW_CHECK();
1646 pad_push(padlist, CvDEPTH(cv));
1647 }
1648 SAVECOMPPAD();
1649 PAD_SET_CUR_NOSAVE(padlist, CvDEPTH(cv));
84d4ea48 1650
9850bf21 1651 if (hasargs) {
1652 /* This is mostly copied from pp_entersub */
1653 AV *av = (AV*)PAD_SVl(0);
84d4ea48 1654
9850bf21 1655 cx->blk_sub.savearray = GvAV(PL_defgv);
1656 GvAV(PL_defgv) = (AV*)SvREFCNT_inc(av);
1657 CX_CURPAD_SAVE(cx->blk_sub);
1658 cx->blk_sub.argarray = av;
1659 }
1660
1661 }
84d4ea48 1662 }
9850bf21 1663 cx->cx_type |= CXp_MULTICALL;
471178c0 1664
1665 start = p1 - max;
1666 sortsvp(aTHX_ start, max,
7b9ef140 1667 (is_xsub ? S_sortcv_xsub : hasargs ? S_sortcv_stacked : S_sortcv),
1668 sort_flags);
84d4ea48 1669
9850bf21 1670 if (!(flags & OPf_SPECIAL)) {
1671 LEAVESUB(cv);
1672 if (!is_xsub)
1673 CvDEPTH(cv)--;
1674 }
84d4ea48 1675 POPBLOCK(cx,PL_curpm);
1676 PL_stack_sp = newsp;
1677 POPSTACK;
1678 CATCH_SET(oldcatch);
1679 }
fe1bc4cf 1680 else {
84d4ea48 1681 MEXTEND(SP, 20); /* Can't afford stack realloc on signal. */
471178c0 1682 start = sorting_av ? AvARRAY(av) : ORIGMARK+1;
1683 sortsvp(aTHX_ start, max,
0723351e 1684 (priv & OPpSORT_NUMERIC)
4d562308 1685 ? ( ( ( priv & OPpSORT_INTEGER) || all_SIVs)
f0f5dc9d 1686 ? ( overloading ? S_amagic_i_ncmp : S_sv_i_ncmp)
1687 : ( overloading ? S_amagic_ncmp : S_sv_ncmp ) )
84d4ea48 1688 : ( IN_LOCALE_RUNTIME
1689 ? ( overloading
f0f5dc9d 1690 ? S_amagic_cmp_locale
84d4ea48 1691 : sv_cmp_locale_static)
7b9ef140 1692 : ( overloading ? S_amagic_cmp : sv_cmp_static)),
1693 sort_flags);
471178c0 1694 }
7b9ef140 1695 if ((priv & OPpSORT_REVERSE) != 0) {
471178c0 1696 SV **q = start+max-1;
1697 while (start < q) {
0bcc34c2 1698 SV * const tmp = *start;
471178c0 1699 *start++ = *q;
1700 *q-- = tmp;
84d4ea48 1701 }
1702 }
1703 }
9850bf21 1704 if (sorting_av)
1705 SvREADONLY_off(av);
1706 else if (av && !sorting_av) {
fe1bc4cf 1707 /* simulate pp_aassign of tied AV */
901017d6 1708 SV** const base = ORIGMARK+1;
1709 for (i=0; i < max; i++) {
1710 base[i] = newSVsv(base[i]);
fe1bc4cf 1711 }
1712 av_clear(av);
1713 av_extend(av, max);
1714 for (i=0; i < max; i++) {
901017d6 1715 SV * const sv = base[i];
551405c4 1716 SV ** const didstore = av_store(av, i, sv);
fe1bc4cf 1717 if (SvSMAGICAL(sv))
1718 mg_set(sv);
1719 if (!didstore)
1720 sv_2mortal(sv);
1721 }
1722 }
84d4ea48 1723 LEAVE;
fe1bc4cf 1724 PL_stack_sp = ORIGMARK + (sorting_av ? 0 : max);
84d4ea48 1725 return nextop;
1726}
1727
1728static I32
f0f5dc9d 1729S_sortcv(pTHX_ SV *a, SV *b)
84d4ea48 1730{
27da23d5 1731 dVAR;
901017d6 1732 const I32 oldsaveix = PL_savestack_ix;
1733 const I32 oldscopeix = PL_scopestack_ix;
84d4ea48 1734 I32 result;
1735 GvSV(PL_firstgv) = a;
1736 GvSV(PL_secondgv) = b;
1737 PL_stack_sp = PL_stack_base;
1738 PL_op = PL_sortcop;
1739 CALLRUNOPS(aTHX);
1740 if (PL_stack_sp != PL_stack_base + 1)
1741 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1742 if (!SvNIOKp(*PL_stack_sp))
1743 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1744 result = SvIV(*PL_stack_sp);
1745 while (PL_scopestack_ix > oldscopeix) {
1746 LEAVE;
1747 }
1748 leave_scope(oldsaveix);
1749 return result;
1750}
1751
1752static I32
f0f5dc9d 1753S_sortcv_stacked(pTHX_ SV *a, SV *b)
84d4ea48 1754{
27da23d5 1755 dVAR;
901017d6 1756 const I32 oldsaveix = PL_savestack_ix;
1757 const I32 oldscopeix = PL_scopestack_ix;
84d4ea48 1758 I32 result;
901017d6 1759 AV * const av = GvAV(PL_defgv);
84d4ea48 1760
1761 if (AvMAX(av) < 1) {
1762 SV** ary = AvALLOC(av);
1763 if (AvARRAY(av) != ary) {
1764 AvMAX(av) += AvARRAY(av) - AvALLOC(av);
f880fe2f 1765 SvPV_set(av, (char*)ary);
84d4ea48 1766 }
1767 if (AvMAX(av) < 1) {
1768 AvMAX(av) = 1;
1769 Renew(ary,2,SV*);
f880fe2f 1770 SvPV_set(av, (char*)ary);
84d4ea48 1771 }
1772 }
1773 AvFILLp(av) = 1;
1774
1775 AvARRAY(av)[0] = a;
1776 AvARRAY(av)[1] = b;
1777 PL_stack_sp = PL_stack_base;
1778 PL_op = PL_sortcop;
1779 CALLRUNOPS(aTHX);
1780 if (PL_stack_sp != PL_stack_base + 1)
1781 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1782 if (!SvNIOKp(*PL_stack_sp))
1783 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1784 result = SvIV(*PL_stack_sp);
1785 while (PL_scopestack_ix > oldscopeix) {
1786 LEAVE;
1787 }
1788 leave_scope(oldsaveix);
1789 return result;
1790}
1791
1792static I32
f0f5dc9d 1793S_sortcv_xsub(pTHX_ SV *a, SV *b)
84d4ea48 1794{
27da23d5 1795 dVAR; dSP;
901017d6 1796 const I32 oldsaveix = PL_savestack_ix;
1797 const I32 oldscopeix = PL_scopestack_ix;
1798 CV * const cv=(CV*)PL_sortcop;
84d4ea48 1799 I32 result;
84d4ea48 1800
1801 SP = PL_stack_base;
1802 PUSHMARK(SP);
1803 EXTEND(SP, 2);
1804 *++SP = a;
1805 *++SP = b;
1806 PUTBACK;
1807 (void)(*CvXSUB(cv))(aTHX_ cv);
1808 if (PL_stack_sp != PL_stack_base + 1)
1809 Perl_croak(aTHX_ "Sort subroutine didn't return single value");
1810 if (!SvNIOKp(*PL_stack_sp))
1811 Perl_croak(aTHX_ "Sort subroutine didn't return a numeric value");
1812 result = SvIV(*PL_stack_sp);
1813 while (PL_scopestack_ix > oldscopeix) {
1814 LEAVE;
1815 }
1816 leave_scope(oldsaveix);
1817 return result;
1818}
1819
1820
1821static I32
f0f5dc9d 1822S_sv_ncmp(pTHX_ SV *a, SV *b)
84d4ea48 1823{
901017d6 1824 const NV nv1 = SvNSIV(a);
1825 const NV nv2 = SvNSIV(b);
84d4ea48 1826 return nv1 < nv2 ? -1 : nv1 > nv2 ? 1 : 0;
1827}
1828
1829static I32
f0f5dc9d 1830S_sv_i_ncmp(pTHX_ SV *a, SV *b)
84d4ea48 1831{
901017d6 1832 const IV iv1 = SvIV(a);
1833 const IV iv2 = SvIV(b);
84d4ea48 1834 return iv1 < iv2 ? -1 : iv1 > iv2 ? 1 : 0;
1835}
901017d6 1836
1837#define tryCALL_AMAGICbin(left,right,meth) \
1838 (PL_amagic_generation && (SvAMAGIC(left)||SvAMAGIC(right))) \
1839 ? amagic_call(left, right, CAT2(meth,_amg), 0) \
1840 : Nullsv;
84d4ea48 1841
1842static I32
f0f5dc9d 1843S_amagic_ncmp(pTHX_ register SV *a, register SV *b)
84d4ea48 1844{
901017d6 1845 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp);
84d4ea48 1846 if (tmpsv) {
84d4ea48 1847 if (SvIOK(tmpsv)) {
901017d6 1848 const I32 i = SvIVX(tmpsv);
84d4ea48 1849 if (i > 0)
1850 return 1;
1851 return i? -1 : 0;
1852 }
901017d6 1853 else {
1854 const NV d = SvNV(tmpsv);
1855 if (d > 0)
1856 return 1;
1857 return d ? -1 : 0;
1858 }
84d4ea48 1859 }
f0f5dc9d 1860 return S_sv_ncmp(aTHX_ a, b);
84d4ea48 1861}
1862
1863static I32
f0f5dc9d 1864S_amagic_i_ncmp(pTHX_ register SV *a, register SV *b)
84d4ea48 1865{
901017d6 1866 SV * const tmpsv = tryCALL_AMAGICbin(a,b,ncmp);
84d4ea48 1867 if (tmpsv) {
84d4ea48 1868 if (SvIOK(tmpsv)) {
901017d6 1869 const I32 i = SvIVX(tmpsv);
84d4ea48 1870 if (i > 0)
1871 return 1;
1872 return i? -1 : 0;
1873 }
901017d6 1874 else {
1875 const NV d = SvNV(tmpsv);
1876 if (d > 0)
1877 return 1;
1878 return d ? -1 : 0;
1879 }
84d4ea48 1880 }
f0f5dc9d 1881 return S_sv_i_ncmp(aTHX_ a, b);
84d4ea48 1882}
1883
1884static I32
f0f5dc9d 1885S_amagic_cmp(pTHX_ register SV *str1, register SV *str2)
84d4ea48 1886{
901017d6 1887 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp);
84d4ea48 1888 if (tmpsv) {
84d4ea48 1889 if (SvIOK(tmpsv)) {
901017d6 1890 const I32 i = SvIVX(tmpsv);
84d4ea48 1891 if (i > 0)
1892 return 1;
1893 return i? -1 : 0;
1894 }
901017d6 1895 else {
1896 const NV d = SvNV(tmpsv);
1897 if (d > 0)
1898 return 1;
1899 return d? -1 : 0;
1900 }
84d4ea48 1901 }
1902 return sv_cmp(str1, str2);
1903}
1904
1905static I32
f0f5dc9d 1906S_amagic_cmp_locale(pTHX_ register SV *str1, register SV *str2)
84d4ea48 1907{
901017d6 1908 SV * const tmpsv = tryCALL_AMAGICbin(str1,str2,scmp);
84d4ea48 1909 if (tmpsv) {
84d4ea48 1910 if (SvIOK(tmpsv)) {
901017d6 1911 const I32 i = SvIVX(tmpsv);
84d4ea48 1912 if (i > 0)
1913 return 1;
1914 return i? -1 : 0;
1915 }
901017d6 1916 else {
1917 const NV d = SvNV(tmpsv);
1918 if (d > 0)
1919 return 1;
1920 return d? -1 : 0;
1921 }
84d4ea48 1922 }
1923 return sv_cmp_locale(str1, str2);
1924}
241d1a3b 1925
1926/*
1927 * Local variables:
1928 * c-indentation-style: bsd
1929 * c-basic-offset: 4
1930 * indent-tabs-mode: t
1931 * End:
1932 *
37442d52 1933 * ex: set ts=8 sts=4 sw=4 noet:
1934 */