Commit | Line | Data |
a0d0e21e |
1 | =head1 NAME |
2 | |
3 | perlre - Perl regular expressions |
4 | |
5 | =head1 DESCRIPTION |
6 | |
cb1a09d0 |
7 | This page describes the syntax of regular expressions in Perl. For a |
5f05dabc |
8 | description of how to I<use> regular expressions in matching |
19799a22 |
9 | operations, plus various examples of the same, see discussions |
1e66bd83 |
10 | of C<m//>, C<s///>, C<qr//> and C<??> in L<perlop/"Regexp Quote-Like Operators">. |
cb1a09d0 |
11 | |
19799a22 |
12 | Matching operations can have various modifiers. Modifiers |
5a964f20 |
13 | that relate to the interpretation of the regular expression inside |
19799a22 |
14 | are listed below. Modifiers that alter the way a regular expression |
15 | is used by Perl are detailed in L<perlop/"Regexp Quote-Like Operators"> and |
1e66bd83 |
16 | L<perlop/"Gory details of parsing quoted constructs">. |
a0d0e21e |
17 | |
55497cff |
18 | =over 4 |
19 | |
20 | =item i |
21 | |
22 | Do case-insensitive pattern matching. |
23 | |
a034a98d |
24 | If C<use locale> is in effect, the case map is taken from the current |
25 | locale. See L<perllocale>. |
26 | |
54310121 |
27 | =item m |
55497cff |
28 | |
29 | Treat string as multiple lines. That is, change "^" and "$" from matching |
14218588 |
30 | the start or end of the string to matching the start or end of any |
7f761169 |
31 | line anywhere within the string. |
55497cff |
32 | |
54310121 |
33 | =item s |
55497cff |
34 | |
35 | Treat string as single line. That is, change "." to match any character |
19799a22 |
36 | whatsoever, even a newline, which normally it would not match. |
55497cff |
37 | |
19799a22 |
38 | The C</s> and C</m> modifiers both override the C<$*> setting. That |
39 | is, no matter what C<$*> contains, C</s> without C</m> will force |
40 | "^" to match only at the beginning of the string and "$" to match |
41 | only at the end (or just before a newline at the end) of the string. |
42 | Together, as /ms, they let the "." match any character whatsoever, |
43 | while yet allowing "^" and "$" to match, respectively, just after |
44 | and just before newlines within the string. |
7b8d334a |
45 | |
54310121 |
46 | =item x |
55497cff |
47 | |
48 | Extend your pattern's legibility by permitting whitespace and comments. |
49 | |
50 | =back |
a0d0e21e |
51 | |
52 | These are usually written as "the C</x> modifier", even though the delimiter |
14218588 |
53 | in question might not really be a slash. Any of these |
a0d0e21e |
54 | modifiers may also be embedded within the regular expression itself using |
14218588 |
55 | the C<(?...)> construct. See below. |
a0d0e21e |
56 | |
4633a7c4 |
57 | The C</x> modifier itself needs a little more explanation. It tells |
55497cff |
58 | the regular expression parser to ignore whitespace that is neither |
59 | backslashed nor within a character class. You can use this to break up |
4633a7c4 |
60 | your regular expression into (slightly) more readable parts. The C<#> |
54310121 |
61 | character is also treated as a metacharacter introducing a comment, |
55497cff |
62 | just as in ordinary Perl code. This also means that if you want real |
14218588 |
63 | whitespace or C<#> characters in the pattern (outside a character |
5a964f20 |
64 | class, where they are unaffected by C</x>), that you'll either have to |
55497cff |
65 | escape them or encode them using octal or hex escapes. Taken together, |
66 | these features go a long way towards making Perl's regular expressions |
0c815be9 |
67 | more readable. Note that you have to be careful not to include the |
68 | pattern delimiter in the comment--perl has no way of knowing you did |
5a964f20 |
69 | not intend to close the pattern early. See the C-comment deletion code |
0c815be9 |
70 | in L<perlop>. |
a0d0e21e |
71 | |
72 | =head2 Regular Expressions |
73 | |
19799a22 |
74 | The patterns used in Perl pattern matching derive from supplied in |
14218588 |
75 | the Version 8 regex routines. (The routines are derived |
19799a22 |
76 | (distantly) from Henry Spencer's freely redistributable reimplementation |
77 | of the V8 routines.) See L<Version 8 Regular Expressions> for |
78 | details. |
a0d0e21e |
79 | |
80 | In particular the following metacharacters have their standard I<egrep>-ish |
81 | meanings: |
82 | |
54310121 |
83 | \ Quote the next metacharacter |
a0d0e21e |
84 | ^ Match the beginning of the line |
85 | . Match any character (except newline) |
c07a80fd |
86 | $ Match the end of the line (or before newline at the end) |
a0d0e21e |
87 | | Alternation |
88 | () Grouping |
89 | [] Character class |
90 | |
14218588 |
91 | By default, the "^" character is guaranteed to match only the |
92 | beginning of the string, the "$" character only the end (or before the |
93 | newline at the end), and Perl does certain optimizations with the |
a0d0e21e |
94 | assumption that the string contains only one line. Embedded newlines |
95 | will not be matched by "^" or "$". You may, however, wish to treat a |
4a6725af |
96 | string as a multi-line buffer, such that the "^" will match after any |
a0d0e21e |
97 | newline within the string, and "$" will match before any newline. At the |
98 | cost of a little more overhead, you can do this by using the /m modifier |
99 | on the pattern match operator. (Older programs did this by setting C<$*>, |
5f05dabc |
100 | but this practice is now deprecated.) |
a0d0e21e |
101 | |
14218588 |
102 | To simplify multi-line substitutions, the "." character never matches a |
55497cff |
103 | newline unless you use the C</s> modifier, which in effect tells Perl to pretend |
a0d0e21e |
104 | the string is a single line--even if it isn't. The C</s> modifier also |
105 | overrides the setting of C<$*>, in case you have some (badly behaved) older |
106 | code that sets it in another module. |
107 | |
108 | The following standard quantifiers are recognized: |
109 | |
110 | * Match 0 or more times |
111 | + Match 1 or more times |
112 | ? Match 1 or 0 times |
113 | {n} Match exactly n times |
114 | {n,} Match at least n times |
115 | {n,m} Match at least n but not more than m times |
116 | |
117 | (If a curly bracket occurs in any other context, it is treated |
118 | as a regular character.) The "*" modifier is equivalent to C<{0,}>, the "+" |
25f94b33 |
119 | modifier to C<{1,}>, and the "?" modifier to C<{0,1}>. n and m are limited |
9c79236d |
120 | to integral values less than a preset limit defined when perl is built. |
121 | This is usually 32766 on the most common platforms. The actual limit can |
122 | be seen in the error message generated by code such as this: |
123 | |
124 | $_ **= $_ , / {$_} / for 2 .. 42; |
a0d0e21e |
125 | |
54310121 |
126 | By default, a quantified subpattern is "greedy", that is, it will match as |
127 | many times as possible (given a particular starting location) while still |
128 | allowing the rest of the pattern to match. If you want it to match the |
129 | minimum number of times possible, follow the quantifier with a "?". Note |
130 | that the meanings don't change, just the "greediness": |
a0d0e21e |
131 | |
132 | *? Match 0 or more times |
133 | +? Match 1 or more times |
134 | ?? Match 0 or 1 time |
135 | {n}? Match exactly n times |
136 | {n,}? Match at least n times |
137 | {n,m}? Match at least n but not more than m times |
138 | |
5f05dabc |
139 | Because patterns are processed as double quoted strings, the following |
a0d0e21e |
140 | also work: |
141 | |
0f36ee90 |
142 | \t tab (HT, TAB) |
143 | \n newline (LF, NL) |
144 | \r return (CR) |
145 | \f form feed (FF) |
146 | \a alarm (bell) (BEL) |
147 | \e escape (think troff) (ESC) |
cb1a09d0 |
148 | \033 octal char (think of a PDP-11) |
149 | \x1B hex char |
a0ed51b3 |
150 | \x{263a} wide hex char (Unicode SMILEY) |
a0d0e21e |
151 | \c[ control char |
4a2d328f |
152 | \N{name} named char |
cb1a09d0 |
153 | \l lowercase next char (think vi) |
154 | \u uppercase next char (think vi) |
155 | \L lowercase till \E (think vi) |
156 | \U uppercase till \E (think vi) |
157 | \E end case modification (think vi) |
5a964f20 |
158 | \Q quote (disable) pattern metacharacters till \E |
a0d0e21e |
159 | |
a034a98d |
160 | If C<use locale> is in effect, the case map used by C<\l>, C<\L>, C<\u> |
423cee85 |
161 | and C<\U> is taken from the current locale. See L<perllocale>. For |
4a2d328f |
162 | documentation of C<\N{name}>, see L<charnames>. |
a034a98d |
163 | |
1d2dff63 |
164 | You cannot include a literal C<$> or C<@> within a C<\Q> sequence. |
165 | An unescaped C<$> or C<@> interpolates the corresponding variable, |
166 | while escaping will cause the literal string C<\$> to be matched. |
167 | You'll need to write something like C<m/\Quser\E\@\Qhost/>. |
168 | |
a0d0e21e |
169 | In addition, Perl defines the following: |
170 | |
171 | \w Match a "word" character (alphanumeric plus "_") |
172 | \W Match a non-word character |
173 | \s Match a whitespace character |
174 | \S Match a non-whitespace character |
175 | \d Match a digit character |
176 | \D Match a non-digit character |
a0ed51b3 |
177 | \pP Match P, named property. Use \p{Prop} for longer names. |
178 | \PP Match non-P |
f244e06d |
179 | \X Match eXtended Unicode "combining character sequence", |
180 | equivalent to C<(?:\PM\pM*)> |
4a2d328f |
181 | \C Match a single C char (octet) even under utf8. |
a0d0e21e |
182 | |
19799a22 |
183 | A C<\w> matches a single alphanumeric character, not a whole word. |
14218588 |
184 | Use C<\w+> to match a string of Perl-identifier characters (which isn't |
185 | the same as matching an English word). If C<use locale> is in effect, the |
186 | list of alphabetic characters generated by C<\w> is taken from the |
187 | current locale. See L<perllocale>. You may use C<\w>, C<\W>, C<\s>, C<\S>, |
188 | C<\d>, and C<\D> within character classes (though not as either end of |
189 | a range). See L<utf8> for details about C<\pP>, C<\PP>, and C<\X>. |
a0d0e21e |
190 | |
b8c5462f |
191 | The POSIX character class syntax |
192 | |
193 | [:class:] |
194 | |
195 | is also available. The available classes and their \-equivalents |
196 | (if any) are as follows: |
197 | |
198 | alpha |
199 | alnum |
200 | ascii |
201 | cntrl |
202 | digit \d |
203 | graph |
204 | lower |
205 | print |
206 | punct |
207 | space \s |
208 | upper |
209 | word \w |
210 | xdigit |
211 | |
212 | Note that the [] are part of the [::] construct, not part of the whole |
213 | character class. For example: |
214 | |
215 | [01[:alpha:]%] |
216 | |
217 | matches one, zero, any alphabetic character, and the percentage sign. |
218 | |
219 | The exact meanings of the above classes depend from many things: |
93733859 |
220 | if the C<utf8> pragma is used, the following equivalences to Unicode |
b8c5462f |
221 | \p{} constructs hold: |
222 | |
223 | alpha IsAlpha |
224 | alnum IsAlnum |
225 | ascii IsASCII |
226 | cntrl IsCntrl |
227 | digit IsDigit |
228 | graph IsGraph |
229 | lower IsLower |
230 | print IsPrint |
231 | punct IsPunct |
232 | space IsSpace |
233 | upper IsUpper |
234 | word IsWord |
235 | xdigit IsXDigit |
236 | |
237 | For example, [:lower:] and \p{IsLower} are equivalent. |
238 | |
239 | If the C<utf8> pragma is not used but the C<locale> pragma is, the |
240 | classes correlate with the isalpha(3) interface (except for `word', |
93733859 |
241 | which is a Perl extension, mirroring \w). |
b8c5462f |
242 | |
243 | The assumedly non-obviously named classes are: |
244 | |
245 | =over 4 |
246 | |
247 | =item cntrl |
248 | |
249 | Any control character. Usually characters that don't produce |
250 | output as such but instead control the terminal somehow: |
251 | for example newline and backspace are control characters. |
93733859 |
252 | All characters with ord() less than 32 are most often control |
253 | classified as characters. |
b8c5462f |
254 | |
255 | =item graph |
256 | |
257 | Any alphanumeric or punctuation character. |
258 | |
259 | =item print |
260 | |
261 | Any alphanumeric or punctuation character or space. |
262 | |
263 | =item punct |
264 | |
265 | Any punctuation character. |
266 | |
267 | =item xdigit |
268 | |
269 | Any hexadecimal digit. Though this may feel silly |
270 | (/0-9a-f/i would work just fine) it is included |
271 | for completeness. |
272 | |
273 | =item |
274 | |
275 | =back |
276 | |
277 | You can negate the [::] character classes by prefixing the class name |
278 | with a '^'. This is a Perl extension. For example: |
279 | |
93733859 |
280 | POSIX trad. Perl utf8 Perl |
281 | |
282 | [:^digit:] \D \P{IsDigit} |
283 | [:^space:] \S \P{IsSpace} |
284 | [:^word:] \W \P{IsWord} |
b8c5462f |
285 | |
286 | The POSIX character classes [.cc.] and [=cc=] are B<not> supported |
287 | and trying to use them will cause an error. |
288 | |
a0d0e21e |
289 | Perl defines the following zero-width assertions: |
290 | |
291 | \b Match a word boundary |
292 | \B Match a non-(word boundary) |
b85d18e9 |
293 | \A Match only at beginning of string |
294 | \Z Match only at end of string, or before newline at the end |
295 | \z Match only at end of string |
a99df21c |
296 | \G Match only where previous m//g left off (works only with /g) |
a0d0e21e |
297 | |
14218588 |
298 | A word boundary (C<\b>) is a spot between two characters |
19799a22 |
299 | that has a C<\w> on one side of it and a C<\W> on the other side |
300 | of it (in either order), counting the imaginary characters off the |
301 | beginning and end of the string as matching a C<\W>. (Within |
302 | character classes C<\b> represents backspace rather than a word |
303 | boundary, just as it normally does in any double-quoted string.) |
304 | The C<\A> and C<\Z> are just like "^" and "$", except that they |
305 | won't match multiple times when the C</m> modifier is used, while |
306 | "^" and "$" will match at every internal line boundary. To match |
307 | the actual end of the string and not ignore an optional trailing |
308 | newline, use C<\z>. |
309 | |
310 | The C<\G> assertion can be used to chain global matches (using |
311 | C<m//g>), as described in L<perlop/"Regexp Quote-Like Operators">. |
312 | It is also useful when writing C<lex>-like scanners, when you have |
313 | several patterns that you want to match against consequent substrings |
314 | of your string, see the previous reference. The actual location |
315 | where C<\G> will match can also be influenced by using C<pos()> as |
316 | an lvalue. See L<perlfunc/pos>. |
14218588 |
317 | |
318 | The bracketing construct C<( ... )> creates capture buffers. To |
319 | refer to the digit'th buffer use \E<lt>digitE<gt> within the |
320 | match. Outside the match use "$" instead of "\". (The |
321 | \E<lt>digitE<gt> notation works in certain circumstances outside |
322 | the match. See the warning below about \1 vs $1 for details.) |
323 | Referring back to another part of the match is called a |
324 | I<backreference>. |
325 | |
326 | There is no limit to the number of captured substrings that you may |
327 | use. However Perl also uses \10, \11, etc. as aliases for \010, |
328 | \011, etc. (Recall that 0 means octal, so \011 is the 9'th ASCII |
329 | character, a tab.) Perl resolves this ambiguity by interpreting |
330 | \10 as a backreference only if at least 10 left parentheses have |
331 | opened before it. Likewise \11 is a backreference only if at least |
332 | 11 left parentheses have opened before it. And so on. \1 through |
333 | \9 are always interpreted as backreferences." |
334 | |
335 | Examples: |
a0d0e21e |
336 | |
337 | s/^([^ ]*) *([^ ]*)/$2 $1/; # swap first two words |
338 | |
14218588 |
339 | if (/(.)\1/) { # find first doubled char |
340 | print "'$1' is the first doubled character\n"; |
341 | } |
342 | |
343 | if (/Time: (..):(..):(..)/) { # parse out values |
a0d0e21e |
344 | $hours = $1; |
345 | $minutes = $2; |
346 | $seconds = $3; |
347 | } |
14218588 |
348 | |
349 | Several special variables also refer back to portions of the previous |
350 | match. C<$+> returns whatever the last bracket match matched. |
351 | C<$&> returns the entire matched string. (At one point C<$0> did |
352 | also, but now it returns the name of the program.) C<$`> returns |
353 | everything before the matched string. And C<$'> returns everything |
354 | after the matched string. |
355 | |
356 | The numbered variables ($1, $2, $3, etc.) and the related punctuation |
357 | set (C<<$+>, C<$&>, C<$`>, and C<$'>) are all dynamically scoped |
358 | until the end of the enclosing block or until the next successful |
359 | match, whichever comes first. (See L<perlsyn/"Compound Statements">.) |
360 | |
361 | B<WARNING>: Once Perl sees that you need one of C<$&>, C<$`>, or |
362 | C<$'> anywhere in the program, it has to provide them for every |
363 | pattern match. This may substantially slow your program. Perl |
364 | uses the same mechanism to produce $1, $2, etc, so you also pay a |
365 | price for each pattern that contains capturing parentheses. (To |
366 | avoid this cost while retaining the grouping behaviour, use the |
367 | extended regular expression C<(?: ... )> instead.) But if you never |
368 | use C<$&>, C<$`> or C<$'>, then patterns I<without> capturing |
369 | parentheses will not be penalized. So avoid C<$&>, C<$'>, and C<$`> |
370 | if you can, but if you can't (and some algorithms really appreciate |
371 | them), once you've used them once, use them at will, because you've |
372 | already paid the price. As of 5.005, C<$&> is not so costly as the |
373 | other two. |
68dc0745 |
374 | |
19799a22 |
375 | Backslashed metacharacters in Perl are alphanumeric, such as C<\b>, |
376 | C<\w>, C<\n>. Unlike some other regular expression languages, there |
377 | are no backslashed symbols that aren't alphanumeric. So anything |
378 | that looks like \\, \(, \), \E<lt>, \E<gt>, \{, or \} is always |
379 | interpreted as a literal character, not a metacharacter. This was |
380 | once used in a common idiom to disable or quote the special meanings |
381 | of regular expression metacharacters in a string that you want to |
382 | use for a pattern. Simply quote all non-alphanumeric characters: |
a0d0e21e |
383 | |
384 | $pattern =~ s/(\W)/\\$1/g; |
385 | |
14218588 |
386 | Today it is more common to use the quotemeta() function or the C<\Q> |
387 | metaquoting escape sequence to disable all metacharacters' special |
388 | meanings like this: |
a0d0e21e |
389 | |
390 | /$unquoted\Q$quoted\E$unquoted/ |
391 | |
19799a22 |
392 | =head2 Extended Patterns |
393 | |
14218588 |
394 | Perl also defines a consistent extension syntax for features not |
395 | found in standard tools like B<awk> and B<lex>. The syntax is a |
396 | pair of parentheses with a question mark as the first thing within |
397 | the parentheses. The character after the question mark indicates |
398 | the extension. |
19799a22 |
399 | |
14218588 |
400 | The stability of these extensions varies widely. Some have been |
401 | part of the core language for many years. Others are experimental |
402 | and may change without warning or be completely removed. Check |
403 | the documentation on an individual feature to verify its current |
404 | status. |
19799a22 |
405 | |
14218588 |
406 | A question mark was chosen for this and for the minimal-matching |
407 | construct because 1) question marks are rare in older regular |
408 | expressions, and 2) whenever you see one, you should stop and |
409 | "question" exactly what is going on. That's psychology... |
a0d0e21e |
410 | |
411 | =over 10 |
412 | |
cc6b7395 |
413 | =item C<(?#text)> |
a0d0e21e |
414 | |
14218588 |
415 | A comment. The text is ignored. If the C</x> modifier enables |
19799a22 |
416 | whitespace formatting, a simple C<#> will suffice. Note that Perl closes |
259138e3 |
417 | the comment as soon as it sees a C<)>, so there is no way to put a literal |
418 | C<)> in the comment. |
a0d0e21e |
419 | |
19799a22 |
420 | =item C<(?imsx-imsx)> |
421 | |
422 | One or more embedded pattern-match modifiers. This is particularly |
423 | useful for dynamic patterns, such as those read in from a configuration |
424 | file, read in as an argument, are specified in a table somewhere, |
425 | etc. Consider the case that some of which want to be case sensitive |
426 | and some do not. The case insensitive ones need to include merely |
427 | C<(?i)> at the front of the pattern. For example: |
428 | |
429 | $pattern = "foobar"; |
430 | if ( /$pattern/i ) { } |
431 | |
432 | # more flexible: |
433 | |
434 | $pattern = "(?i)foobar"; |
435 | if ( /$pattern/ ) { } |
436 | |
437 | Letters after a C<-> turn those modifiers off. These modifiers are |
438 | localized inside an enclosing group (if any). For example, |
439 | |
440 | ( (?i) blah ) \s+ \1 |
441 | |
442 | will match a repeated (I<including the case>!) word C<blah> in any |
14218588 |
443 | case, assuming C<x> modifier, and no C<i> modifier outside this |
19799a22 |
444 | group. |
445 | |
5a964f20 |
446 | =item C<(?:pattern)> |
a0d0e21e |
447 | |
ca9dfc88 |
448 | =item C<(?imsx-imsx:pattern)> |
449 | |
5a964f20 |
450 | This is for clustering, not capturing; it groups subexpressions like |
451 | "()", but doesn't make backreferences as "()" does. So |
a0d0e21e |
452 | |
5a964f20 |
453 | @fields = split(/\b(?:a|b|c)\b/) |
a0d0e21e |
454 | |
455 | is like |
456 | |
5a964f20 |
457 | @fields = split(/\b(a|b|c)\b/) |
a0d0e21e |
458 | |
19799a22 |
459 | but doesn't spit out extra fields. It's also cheaper not to capture |
460 | characters if you don't need to. |
a0d0e21e |
461 | |
19799a22 |
462 | Any letters between C<?> and C<:> act as flags modifiers as with |
463 | C<(?imsx-imsx)>. For example, |
ca9dfc88 |
464 | |
465 | /(?s-i:more.*than).*million/i |
466 | |
14218588 |
467 | is equivalent to the more verbose |
ca9dfc88 |
468 | |
469 | /(?:(?s-i)more.*than).*million/i |
470 | |
5a964f20 |
471 | =item C<(?=pattern)> |
a0d0e21e |
472 | |
19799a22 |
473 | A zero-width positive look-ahead assertion. For example, C</\w+(?=\t)/> |
a0d0e21e |
474 | matches a word followed by a tab, without including the tab in C<$&>. |
475 | |
5a964f20 |
476 | =item C<(?!pattern)> |
a0d0e21e |
477 | |
19799a22 |
478 | A zero-width negative look-ahead assertion. For example C</foo(?!bar)/> |
a0d0e21e |
479 | matches any occurrence of "foo" that isn't followed by "bar". Note |
19799a22 |
480 | however that look-ahead and look-behind are NOT the same thing. You cannot |
481 | use this for look-behind. |
7b8d334a |
482 | |
5a964f20 |
483 | If you are looking for a "bar" that isn't preceded by a "foo", C</(?!foo)bar/> |
7b8d334a |
484 | will not do what you want. That's because the C<(?!foo)> is just saying that |
485 | the next thing cannot be "foo"--and it's not, it's a "bar", so "foobar" will |
486 | match. You would have to do something like C</(?!foo)...bar/> for that. We |
487 | say "like" because there's the case of your "bar" not having three characters |
488 | before it. You could cover that this way: C</(?:(?!foo)...|^.{0,2})bar/>. |
489 | Sometimes it's still easier just to say: |
a0d0e21e |
490 | |
a3cb178b |
491 | if (/bar/ && $` !~ /foo$/) |
a0d0e21e |
492 | |
19799a22 |
493 | For look-behind see below. |
c277df42 |
494 | |
5a964f20 |
495 | =item C<(?E<lt>=pattern)> |
c277df42 |
496 | |
19799a22 |
497 | A zero-width positive look-behind assertion. For example, C</(?E<lt>=\t)\w+/> |
498 | matches a word that follows a tab, without including the tab in C<$&>. |
499 | Works only for fixed-width look-behind. |
c277df42 |
500 | |
5a964f20 |
501 | =item C<(?<!pattern)> |
c277df42 |
502 | |
19799a22 |
503 | A zero-width negative look-behind assertion. For example C</(?<!bar)foo/> |
504 | matches any occurrence of "foo" that does not follow "bar". Works |
505 | only for fixed-width look-behind. |
c277df42 |
506 | |
cc6b7395 |
507 | =item C<(?{ code })> |
c277df42 |
508 | |
19799a22 |
509 | B<WARNING>: This extended regular expression feature is considered |
510 | highly experimental, and may be changed or deleted without notice. |
c277df42 |
511 | |
19799a22 |
512 | This zero-width assertion evaluate any embedded Perl code. It |
513 | always succeeds, and its C<code> is not interpolated. Currently, |
514 | the rules to determine where the C<code> ends are somewhat convoluted. |
515 | |
516 | The C<code> is properly scoped in the following sense: If the assertion |
517 | is backtracked (compare L<"Backtracking">), all changes introduced after |
518 | C<local>ization are undone, so that |
b9ac3b5b |
519 | |
520 | $_ = 'a' x 8; |
521 | m< |
522 | (?{ $cnt = 0 }) # Initialize $cnt. |
523 | ( |
524 | a |
525 | (?{ |
526 | local $cnt = $cnt + 1; # Update $cnt, backtracking-safe. |
527 | }) |
528 | )* |
529 | aaaa |
530 | (?{ $res = $cnt }) # On success copy to non-localized |
531 | # location. |
532 | >x; |
533 | |
19799a22 |
534 | will set C<$res = 4>. Note that after the match, $cnt returns to the globally |
14218588 |
535 | introduced value, because the scopes that restrict C<local> operators |
b9ac3b5b |
536 | are unwound. |
537 | |
19799a22 |
538 | This assertion may be used as a C<(?(condition)yes-pattern|no-pattern)> |
539 | switch. If I<not> used in this way, the result of evaluation of |
540 | C<code> is put into the special variable C<$^R>. This happens |
541 | immediately, so C<$^R> can be used from other C<(?{ code })> assertions |
542 | inside the same regular expression. |
b9ac3b5b |
543 | |
19799a22 |
544 | The assignment to C<$^R> above is properly localized, so the old |
545 | value of C<$^R> is restored if the assertion is backtracked; compare |
546 | L<"Backtracking">. |
b9ac3b5b |
547 | |
19799a22 |
548 | For reasons of security, this construct is forbidden if the regular |
549 | expression involves run-time interpolation of variables, unless the |
550 | perilous C<use re 'eval'> pragma has been used (see L<re>), or the |
551 | variables contain results of C<qr//> operator (see |
552 | L<perlop/"qr/STRING/imosx">). |
871b0233 |
553 | |
14218588 |
554 | This restriction is because of the wide-spread and remarkably convenient |
19799a22 |
555 | custom of using run-time determined strings as patterns. For example: |
871b0233 |
556 | |
557 | $re = <>; |
558 | chomp $re; |
559 | $string =~ /$re/; |
560 | |
14218588 |
561 | Before Perl knew how to execute interpolated code within a pattern, |
562 | this operation was completely safe from a security point of view, |
563 | although it could raise an exception from an illegal pattern. If |
564 | you turn on the C<use re 'eval'>, though, it is no longer secure, |
565 | so you should only do so if you are also using taint checking. |
566 | Better yet, use the carefully constrained evaluation within a Safe |
567 | module. See L<perlsec> for details about both these mechanisms. |
871b0233 |
568 | |
0f5d15d6 |
569 | =item C<(?p{ code })> |
570 | |
19799a22 |
571 | B<WARNING>: This extended regular expression feature is considered |
572 | highly experimental, and may be changed or deleted without notice. |
0f5d15d6 |
573 | |
19799a22 |
574 | This is a "postponed" regular subexpression. The C<code> is evaluated |
575 | at run time, at the moment this subexpression may match. The result |
576 | of evaluation is considered as a regular expression and matched as |
577 | if it were inserted instead of this construct. |
0f5d15d6 |
578 | |
428594d9 |
579 | The C<code> is not interpolated. As before, the rules to determine |
19799a22 |
580 | where the C<code> ends are currently somewhat convoluted. |
581 | |
582 | The following pattern matches a parenthesized group: |
0f5d15d6 |
583 | |
584 | $re = qr{ |
585 | \( |
586 | (?: |
587 | (?> [^()]+ ) # Non-parens without backtracking |
588 | | |
589 | (?p{ $re }) # Group with matching parens |
590 | )* |
591 | \) |
592 | }x; |
593 | |
5a964f20 |
594 | =item C<(?E<gt>pattern)> |
595 | |
19799a22 |
596 | B<WARNING>: This extended regular expression feature is considered |
597 | highly experimental, and may be changed or deleted without notice. |
598 | |
599 | An "independent" subexpression, one which matches the substring |
600 | that a I<standalone> C<pattern> would match if anchored at the given |
14218588 |
601 | position--but it matches no more than this substring. This |
19799a22 |
602 | construct is useful for optimizations of what would otherwise be |
603 | "eternal" matches, because it will not backtrack (see L<"Backtracking">). |
604 | |
605 | For example: C<^(?E<gt>a*)ab> will never match, since C<(?E<gt>a*)> |
606 | (anchored at the beginning of string, as above) will match I<all> |
607 | characters C<a> at the beginning of string, leaving no C<a> for |
608 | C<ab> to match. In contrast, C<a*ab> will match the same as C<a+b>, |
609 | since the match of the subgroup C<a*> is influenced by the following |
610 | group C<ab> (see L<"Backtracking">). In particular, C<a*> inside |
611 | C<a*ab> will match fewer characters than a standalone C<a*>, since |
612 | this makes the tail match. |
613 | |
614 | An effect similar to C<(?E<gt>pattern)> may be achieved by writing |
615 | C<(?=(pattern))\1>. This matches the same substring as a standalone |
616 | C<a+>, and the following C<\1> eats the matched string; it therefore |
617 | makes a zero-length assertion into an analogue of C<(?E<gt>...)>. |
618 | (The difference between these two constructs is that the second one |
619 | uses a capturing group, thus shifting ordinals of backreferences |
620 | in the rest of a regular expression.) |
621 | |
622 | Consider this pattern: |
c277df42 |
623 | |
871b0233 |
624 | m{ \( |
625 | ( |
626 | [^()]+ |
627 | | |
628 | \( [^()]* \) |
629 | )+ |
630 | \) |
631 | }x |
5a964f20 |
632 | |
19799a22 |
633 | That will efficiently match a nonempty group with matching parentheses |
634 | two levels deep or less. However, if there is no such group, it |
635 | will take virtually forever on a long string. That's because there |
636 | are so many different ways to split a long string into several |
637 | substrings. This is what C<(.+)+> is doing, and C<(.+)+> is similar |
638 | to a subpattern of the above pattern. Consider how the pattern |
639 | above detects no-match on C<((()aaaaaaaaaaaaaaaaaa> in several |
640 | seconds, but that each extra letter doubles this time. This |
641 | exponential performance will make it appear that your program has |
14218588 |
642 | hung. However, a tiny change to this pattern |
5a964f20 |
643 | |
871b0233 |
644 | m{ \( |
645 | ( |
646 | (?> [^()]+ ) |
647 | | |
648 | \( [^()]* \) |
649 | )+ |
650 | \) |
651 | }x |
c277df42 |
652 | |
5a964f20 |
653 | which uses C<(?E<gt>...)> matches exactly when the one above does (verifying |
654 | this yourself would be a productive exercise), but finishes in a fourth |
655 | the time when used on a similar string with 1000000 C<a>s. Be aware, |
656 | however, that this pattern currently triggers a warning message under |
657 | B<-w> saying it C<"matches the null string many times">): |
c277df42 |
658 | |
8d300b32 |
659 | On simple groups, such as the pattern C<(?E<gt> [^()]+ )>, a comparable |
19799a22 |
660 | effect may be achieved by negative look-ahead, as in C<[^()]+ (?! [^()] )>. |
c277df42 |
661 | This was only 4 times slower on a string with 1000000 C<a>s. |
662 | |
5a964f20 |
663 | =item C<(?(condition)yes-pattern|no-pattern)> |
c277df42 |
664 | |
5a964f20 |
665 | =item C<(?(condition)yes-pattern)> |
c277df42 |
666 | |
19799a22 |
667 | B<WARNING>: This extended regular expression feature is considered |
668 | highly experimental, and may be changed or deleted without notice. |
669 | |
c277df42 |
670 | Conditional expression. C<(condition)> should be either an integer in |
671 | parentheses (which is valid if the corresponding pair of parentheses |
19799a22 |
672 | matched), or look-ahead/look-behind/evaluate zero-width assertion. |
c277df42 |
673 | |
19799a22 |
674 | For example: |
c277df42 |
675 | |
5a964f20 |
676 | m{ ( \( )? |
871b0233 |
677 | [^()]+ |
5a964f20 |
678 | (?(1) \) ) |
871b0233 |
679 | }x |
c277df42 |
680 | |
681 | matches a chunk of non-parentheses, possibly included in parentheses |
682 | themselves. |
a0d0e21e |
683 | |
a0d0e21e |
684 | =back |
685 | |
c07a80fd |
686 | =head2 Backtracking |
687 | |
c277df42 |
688 | A fundamental feature of regular expression matching involves the |
5a964f20 |
689 | notion called I<backtracking>, which is currently used (when needed) |
c277df42 |
690 | by all regular expression quantifiers, namely C<*>, C<*?>, C<+>, |
691 | C<+?>, C<{n,m}>, and C<{n,m}?>. |
c07a80fd |
692 | |
693 | For a regular expression to match, the I<entire> regular expression must |
694 | match, not just part of it. So if the beginning of a pattern containing a |
695 | quantifier succeeds in a way that causes later parts in the pattern to |
696 | fail, the matching engine backs up and recalculates the beginning |
697 | part--that's why it's called backtracking. |
698 | |
699 | Here is an example of backtracking: Let's say you want to find the |
700 | word following "foo" in the string "Food is on the foo table.": |
701 | |
702 | $_ = "Food is on the foo table."; |
703 | if ( /\b(foo)\s+(\w+)/i ) { |
704 | print "$2 follows $1.\n"; |
705 | } |
706 | |
707 | When the match runs, the first part of the regular expression (C<\b(foo)>) |
708 | finds a possible match right at the beginning of the string, and loads up |
709 | $1 with "Foo". However, as soon as the matching engine sees that there's |
710 | no whitespace following the "Foo" that it had saved in $1, it realizes its |
68dc0745 |
711 | mistake and starts over again one character after where it had the |
c07a80fd |
712 | tentative match. This time it goes all the way until the next occurrence |
713 | of "foo". The complete regular expression matches this time, and you get |
714 | the expected output of "table follows foo." |
715 | |
716 | Sometimes minimal matching can help a lot. Imagine you'd like to match |
717 | everything between "foo" and "bar". Initially, you write something |
718 | like this: |
719 | |
720 | $_ = "The food is under the bar in the barn."; |
721 | if ( /foo(.*)bar/ ) { |
722 | print "got <$1>\n"; |
723 | } |
724 | |
725 | Which perhaps unexpectedly yields: |
726 | |
727 | got <d is under the bar in the > |
728 | |
729 | That's because C<.*> was greedy, so you get everything between the |
14218588 |
730 | I<first> "foo" and the I<last> "bar". Here it's more effective |
c07a80fd |
731 | to use minimal matching to make sure you get the text between a "foo" |
732 | and the first "bar" thereafter. |
733 | |
734 | if ( /foo(.*?)bar/ ) { print "got <$1>\n" } |
735 | got <d is under the > |
736 | |
737 | Here's another example: let's say you'd like to match a number at the end |
738 | of a string, and you also want to keep the preceding part the match. |
739 | So you write this: |
740 | |
741 | $_ = "I have 2 numbers: 53147"; |
742 | if ( /(.*)(\d*)/ ) { # Wrong! |
743 | print "Beginning is <$1>, number is <$2>.\n"; |
744 | } |
745 | |
746 | That won't work at all, because C<.*> was greedy and gobbled up the |
747 | whole string. As C<\d*> can match on an empty string the complete |
748 | regular expression matched successfully. |
749 | |
8e1088bc |
750 | Beginning is <I have 2 numbers: 53147>, number is <>. |
c07a80fd |
751 | |
752 | Here are some variants, most of which don't work: |
753 | |
754 | $_ = "I have 2 numbers: 53147"; |
755 | @pats = qw{ |
756 | (.*)(\d*) |
757 | (.*)(\d+) |
758 | (.*?)(\d*) |
759 | (.*?)(\d+) |
760 | (.*)(\d+)$ |
761 | (.*?)(\d+)$ |
762 | (.*)\b(\d+)$ |
763 | (.*\D)(\d+)$ |
764 | }; |
765 | |
766 | for $pat (@pats) { |
767 | printf "%-12s ", $pat; |
768 | if ( /$pat/ ) { |
769 | print "<$1> <$2>\n"; |
770 | } else { |
771 | print "FAIL\n"; |
772 | } |
773 | } |
774 | |
775 | That will print out: |
776 | |
777 | (.*)(\d*) <I have 2 numbers: 53147> <> |
778 | (.*)(\d+) <I have 2 numbers: 5314> <7> |
779 | (.*?)(\d*) <> <> |
780 | (.*?)(\d+) <I have > <2> |
781 | (.*)(\d+)$ <I have 2 numbers: 5314> <7> |
782 | (.*?)(\d+)$ <I have 2 numbers: > <53147> |
783 | (.*)\b(\d+)$ <I have 2 numbers: > <53147> |
784 | (.*\D)(\d+)$ <I have 2 numbers: > <53147> |
785 | |
786 | As you see, this can be a bit tricky. It's important to realize that a |
787 | regular expression is merely a set of assertions that gives a definition |
788 | of success. There may be 0, 1, or several different ways that the |
789 | definition might succeed against a particular string. And if there are |
5a964f20 |
790 | multiple ways it might succeed, you need to understand backtracking to |
791 | know which variety of success you will achieve. |
c07a80fd |
792 | |
19799a22 |
793 | When using look-ahead assertions and negations, this can all get even |
54310121 |
794 | tricker. Imagine you'd like to find a sequence of non-digits not |
c07a80fd |
795 | followed by "123". You might try to write that as |
796 | |
871b0233 |
797 | $_ = "ABC123"; |
798 | if ( /^\D*(?!123)/ ) { # Wrong! |
799 | print "Yup, no 123 in $_\n"; |
800 | } |
c07a80fd |
801 | |
802 | But that isn't going to match; at least, not the way you're hoping. It |
803 | claims that there is no 123 in the string. Here's a clearer picture of |
804 | why it that pattern matches, contrary to popular expectations: |
805 | |
806 | $x = 'ABC123' ; |
807 | $y = 'ABC445' ; |
808 | |
809 | print "1: got $1\n" if $x =~ /^(ABC)(?!123)/ ; |
810 | print "2: got $1\n" if $y =~ /^(ABC)(?!123)/ ; |
811 | |
812 | print "3: got $1\n" if $x =~ /^(\D*)(?!123)/ ; |
813 | print "4: got $1\n" if $y =~ /^(\D*)(?!123)/ ; |
814 | |
815 | This prints |
816 | |
817 | 2: got ABC |
818 | 3: got AB |
819 | 4: got ABC |
820 | |
5f05dabc |
821 | You might have expected test 3 to fail because it seems to a more |
c07a80fd |
822 | general purpose version of test 1. The important difference between |
823 | them is that test 3 contains a quantifier (C<\D*>) and so can use |
824 | backtracking, whereas test 1 will not. What's happening is |
825 | that you've asked "Is it true that at the start of $x, following 0 or more |
5f05dabc |
826 | non-digits, you have something that's not 123?" If the pattern matcher had |
c07a80fd |
827 | let C<\D*> expand to "ABC", this would have caused the whole pattern to |
54310121 |
828 | fail. |
14218588 |
829 | |
c07a80fd |
830 | The search engine will initially match C<\D*> with "ABC". Then it will |
14218588 |
831 | try to match C<(?!123> with "123", which fails. But because |
c07a80fd |
832 | a quantifier (C<\D*>) has been used in the regular expression, the |
833 | search engine can backtrack and retry the match differently |
54310121 |
834 | in the hope of matching the complete regular expression. |
c07a80fd |
835 | |
5a964f20 |
836 | The pattern really, I<really> wants to succeed, so it uses the |
837 | standard pattern back-off-and-retry and lets C<\D*> expand to just "AB" this |
c07a80fd |
838 | time. Now there's indeed something following "AB" that is not |
14218588 |
839 | "123". It's "C123", which suffices. |
c07a80fd |
840 | |
14218588 |
841 | We can deal with this by using both an assertion and a negation. |
842 | We'll say that the first part in $1 must be followed both by a digit |
843 | and by something that's not "123". Remember that the look-aheads |
844 | are zero-width expressions--they only look, but don't consume any |
845 | of the string in their match. So rewriting this way produces what |
c07a80fd |
846 | you'd expect; that is, case 5 will fail, but case 6 succeeds: |
847 | |
848 | print "5: got $1\n" if $x =~ /^(\D*)(?=\d)(?!123)/ ; |
849 | print "6: got $1\n" if $y =~ /^(\D*)(?=\d)(?!123)/ ; |
850 | |
851 | 6: got ABC |
852 | |
5a964f20 |
853 | In other words, the two zero-width assertions next to each other work as though |
19799a22 |
854 | they're ANDed together, just as you'd use any built-in assertions: C</^$/> |
c07a80fd |
855 | matches only if you're at the beginning of the line AND the end of the |
856 | line simultaneously. The deeper underlying truth is that juxtaposition in |
857 | regular expressions always means AND, except when you write an explicit OR |
858 | using the vertical bar. C</ab/> means match "a" AND (then) match "b", |
859 | although the attempted matches are made at different positions because "a" |
860 | is not a zero-width assertion, but a one-width assertion. |
861 | |
19799a22 |
862 | B<WARNING>: particularly complicated regular expressions can take |
14218588 |
863 | exponential time to solve because of the immense number of possible |
19799a22 |
864 | ways they can use backtracking to try match. For example, this will |
14218588 |
865 | take a painfully long time to run |
c07a80fd |
866 | |
867 | /((a{0,5}){0,5}){0,5}/ |
868 | |
14218588 |
869 | And if you used C<*>'s instead of limiting it to 0 through 5 matches, |
870 | then it would take forever--or until you ran out of stack space. |
c07a80fd |
871 | |
c277df42 |
872 | A powerful tool for optimizing such beasts is "independent" groups, |
5a964f20 |
873 | which do not backtrace (see L<C<(?E<gt>pattern)>>). Note also that |
19799a22 |
874 | zero-length look-ahead/look-behind assertions will not backtrace to make |
14218588 |
875 | the tail match, since they are in "logical" context: only |
876 | whether they match is considered relevant. For an example |
19799a22 |
877 | where side-effects of a look-ahead I<might> have influenced the |
5a964f20 |
878 | following match, see L<C<(?E<gt>pattern)>>. |
c277df42 |
879 | |
a0d0e21e |
880 | =head2 Version 8 Regular Expressions |
881 | |
5a964f20 |
882 | In case you're not familiar with the "regular" Version 8 regex |
a0d0e21e |
883 | routines, here are the pattern-matching rules not described above. |
884 | |
54310121 |
885 | Any single character matches itself, unless it is a I<metacharacter> |
a0d0e21e |
886 | with a special meaning described here or above. You can cause |
5a964f20 |
887 | characters that normally function as metacharacters to be interpreted |
5f05dabc |
888 | literally by prefixing them with a "\" (e.g., "\." matches a ".", not any |
a0d0e21e |
889 | character; "\\" matches a "\"). A series of characters matches that |
890 | series of characters in the target string, so the pattern C<blurfl> |
891 | would match "blurfl" in the target string. |
892 | |
893 | You can specify a character class, by enclosing a list of characters |
5a964f20 |
894 | in C<[]>, which will match any one character from the list. If the |
a0d0e21e |
895 | first character after the "[" is "^", the class matches any character not |
14218588 |
896 | in the list. Within a list, the "-" character specifies a |
5a964f20 |
897 | range, so that C<a-z> represents all characters between "a" and "z", |
84850974 |
898 | inclusive. If you want "-" itself to be a member of a class, put it |
899 | at the start or end of the list, or escape it with a backslash. (The |
900 | following all specify the same class of three characters: C<[-az]>, |
901 | C<[az-]>, and C<[a\-z]>. All are different from C<[a-z]>, which |
902 | specifies a class containing twenty-six characters.) |
a0d0e21e |
903 | |
8ada0baa |
904 | Note also that the whole range idea is rather unportable between |
905 | character sets--and even within character sets they may cause results |
906 | you probably didn't expect. A sound principle is to use only ranges |
907 | that begin from and end at either alphabets of equal case ([a-e], |
908 | [A-E]), or digits ([0-9]). Anything else is unsafe. If in doubt, |
909 | spell out the character sets in full. |
910 | |
54310121 |
911 | Characters may be specified using a metacharacter syntax much like that |
a0d0e21e |
912 | used in C: "\n" matches a newline, "\t" a tab, "\r" a carriage return, |
913 | "\f" a form feed, etc. More generally, \I<nnn>, where I<nnn> is a string |
914 | of octal digits, matches the character whose ASCII value is I<nnn>. |
0f36ee90 |
915 | Similarly, \xI<nn>, where I<nn> are hexadecimal digits, matches the |
a0d0e21e |
916 | character whose ASCII value is I<nn>. The expression \cI<x> matches the |
54310121 |
917 | ASCII character control-I<x>. Finally, the "." metacharacter matches any |
a0d0e21e |
918 | character except "\n" (unless you use C</s>). |
919 | |
920 | You can specify a series of alternatives for a pattern using "|" to |
921 | separate them, so that C<fee|fie|foe> will match any of "fee", "fie", |
5a964f20 |
922 | or "foe" in the target string (as would C<f(e|i|o)e>). The |
a0d0e21e |
923 | first alternative includes everything from the last pattern delimiter |
924 | ("(", "[", or the beginning of the pattern) up to the first "|", and |
925 | the last alternative contains everything from the last "|" to the next |
14218588 |
926 | pattern delimiter. That's why it's common practice to include |
927 | alternatives in parentheses: to minimize confusion about where they |
a3cb178b |
928 | start and end. |
929 | |
5a964f20 |
930 | Alternatives are tried from left to right, so the first |
a3cb178b |
931 | alternative found for which the entire expression matches, is the one that |
932 | is chosen. This means that alternatives are not necessarily greedy. For |
628afcb5 |
933 | example: when matching C<foo|foot> against "barefoot", only the "foo" |
a3cb178b |
934 | part will match, as that is the first alternative tried, and it successfully |
935 | matches the target string. (This might not seem important, but it is |
936 | important when you are capturing matched text using parentheses.) |
937 | |
5a964f20 |
938 | Also remember that "|" is interpreted as a literal within square brackets, |
a3cb178b |
939 | so if you write C<[fee|fie|foe]> you're really only matching C<[feio|]>. |
a0d0e21e |
940 | |
14218588 |
941 | Within a pattern, you may designate subpatterns for later reference |
942 | by enclosing them in parentheses, and you may refer back to the |
943 | I<n>th subpattern later in the pattern using the metacharacter |
944 | \I<n>. Subpatterns are numbered based on the left to right order |
945 | of their opening parenthesis. A backreference matches whatever |
946 | actually matched the subpattern in the string being examined, not |
947 | the rules for that subpattern. Therefore, C<(0|0x)\d*\s\1\d*> will |
948 | match "0x1234 0x4321", but not "0x1234 01234", because subpattern |
949 | 1 matched "0x", even though the rule C<0|0x> could potentially match |
950 | the leading 0 in the second number. |
cb1a09d0 |
951 | |
19799a22 |
952 | =head2 Warning on \1 vs $1 |
cb1a09d0 |
953 | |
5a964f20 |
954 | Some people get too used to writing things like: |
cb1a09d0 |
955 | |
956 | $pattern =~ s/(\W)/\\\1/g; |
957 | |
958 | This is grandfathered for the RHS of a substitute to avoid shocking the |
959 | B<sed> addicts, but it's a dirty habit to get into. That's because in |
5f05dabc |
960 | PerlThink, the righthand side of a C<s///> is a double-quoted string. C<\1> in |
cb1a09d0 |
961 | the usual double-quoted string means a control-A. The customary Unix |
962 | meaning of C<\1> is kludged in for C<s///>. However, if you get into the habit |
963 | of doing that, you get yourself into trouble if you then add an C</e> |
964 | modifier. |
965 | |
5a964f20 |
966 | s/(\d+)/ \1 + 1 /eg; # causes warning under -w |
cb1a09d0 |
967 | |
968 | Or if you try to do |
969 | |
970 | s/(\d+)/\1000/; |
971 | |
972 | You can't disambiguate that by saying C<\{1}000>, whereas you can fix it with |
14218588 |
973 | C<${1}000>. The operation of interpolation should not be confused |
cb1a09d0 |
974 | with the operation of matching a backreference. Certainly they mean two |
975 | different things on the I<left> side of the C<s///>. |
9fa51da4 |
976 | |
c84d73f1 |
977 | =head2 Repeated patterns matching zero-length substring |
978 | |
19799a22 |
979 | B<WARNING>: Difficult material (and prose) ahead. This section needs a rewrite. |
c84d73f1 |
980 | |
981 | Regular expressions provide a terse and powerful programming language. As |
982 | with most other power tools, power comes together with the ability |
983 | to wreak havoc. |
984 | |
985 | A common abuse of this power stems from the ability to make infinite |
628afcb5 |
986 | loops using regular expressions, with something as innocuous as: |
c84d73f1 |
987 | |
988 | 'foo' =~ m{ ( o? )* }x; |
989 | |
990 | The C<o?> can match at the beginning of C<'foo'>, and since the position |
991 | in the string is not moved by the match, C<o?> would match again and again |
14218588 |
992 | because of the C<*> modifier. Another common way to create a similar cycle |
c84d73f1 |
993 | is with the looping modifier C<//g>: |
994 | |
995 | @matches = ( 'foo' =~ m{ o? }xg ); |
996 | |
997 | or |
998 | |
999 | print "match: <$&>\n" while 'foo' =~ m{ o? }xg; |
1000 | |
1001 | or the loop implied by split(). |
1002 | |
1003 | However, long experience has shown that many programming tasks may |
14218588 |
1004 | be significantly simplified by using repeated subexpressions that |
1005 | may match zero-length substrings. Here's a simple example being: |
c84d73f1 |
1006 | |
1007 | @chars = split //, $string; # // is not magic in split |
1008 | ($whitewashed = $string) =~ s/()/ /g; # parens avoid magic s// / |
1009 | |
1010 | Thus Perl allows the C</()/> construct, which I<forcefully breaks |
1011 | the infinite loop>. The rules for this are different for lower-level |
1012 | loops given by the greedy modifiers C<*+{}>, and for higher-level |
1013 | ones like the C</g> modifier or split() operator. |
1014 | |
19799a22 |
1015 | The lower-level loops are I<interrupted> (that is, the loop is |
1016 | broken) when Perl detects that a repeated expression matched a |
1017 | zero-length substring. Thus |
c84d73f1 |
1018 | |
1019 | m{ (?: NON_ZERO_LENGTH | ZERO_LENGTH )* }x; |
1020 | |
1021 | is made equivalent to |
1022 | |
1023 | m{ (?: NON_ZERO_LENGTH )* |
1024 | | |
1025 | (?: ZERO_LENGTH )? |
1026 | }x; |
1027 | |
1028 | The higher level-loops preserve an additional state between iterations: |
1029 | whether the last match was zero-length. To break the loop, the following |
1030 | match after a zero-length match is prohibited to have a length of zero. |
1031 | This prohibition interacts with backtracking (see L<"Backtracking">), |
1032 | and so the I<second best> match is chosen if the I<best> match is of |
1033 | zero length. |
1034 | |
19799a22 |
1035 | For example: |
c84d73f1 |
1036 | |
1037 | $_ = 'bar'; |
1038 | s/\w??/<$&>/g; |
1039 | |
1040 | results in C<"<><b><><a><><r><>">. At each position of the string the best |
1041 | match given by non-greedy C<??> is the zero-length match, and the I<second |
1042 | best> match is what is matched by C<\w>. Thus zero-length matches |
1043 | alternate with one-character-long matches. |
1044 | |
1045 | Similarly, for repeated C<m/()/g> the second-best match is the match at the |
1046 | position one notch further in the string. |
1047 | |
19799a22 |
1048 | The additional state of being I<matched with zero-length> is associated with |
c84d73f1 |
1049 | the matched string, and is reset by each assignment to pos(). |
1050 | |
1051 | =head2 Creating custom RE engines |
1052 | |
1053 | Overloaded constants (see L<overload>) provide a simple way to extend |
1054 | the functionality of the RE engine. |
1055 | |
1056 | Suppose that we want to enable a new RE escape-sequence C<\Y|> which |
1057 | matches at boundary between white-space characters and non-whitespace |
1058 | characters. Note that C<(?=\S)(?<!\S)|(?!\S)(?<=\S)> matches exactly |
1059 | at these positions, so we want to have each C<\Y|> in the place of the |
1060 | more complicated version. We can create a module C<customre> to do |
1061 | this: |
1062 | |
1063 | package customre; |
1064 | use overload; |
1065 | |
1066 | sub import { |
1067 | shift; |
1068 | die "No argument to customre::import allowed" if @_; |
1069 | overload::constant 'qr' => \&convert; |
1070 | } |
1071 | |
1072 | sub invalid { die "/$_[0]/: invalid escape '\\$_[1]'"} |
1073 | |
1074 | my %rules = ( '\\' => '\\', |
1075 | 'Y|' => qr/(?=\S)(?<!\S)|(?!\S)(?<=\S)/ ); |
1076 | sub convert { |
1077 | my $re = shift; |
1078 | $re =~ s{ |
1079 | \\ ( \\ | Y . ) |
1080 | } |
1081 | { $rules{$1} or invalid($re,$1) }sgex; |
1082 | return $re; |
1083 | } |
1084 | |
1085 | Now C<use customre> enables the new escape in constant regular |
1086 | expressions, i.e., those without any runtime variable interpolations. |
1087 | As documented in L<overload>, this conversion will work only over |
1088 | literal parts of regular expressions. For C<\Y|$re\Y|> the variable |
1089 | part of this regular expression needs to be converted explicitly |
1090 | (but only if the special meaning of C<\Y|> should be enabled inside $re): |
1091 | |
1092 | use customre; |
1093 | $re = <>; |
1094 | chomp $re; |
1095 | $re = customre::convert $re; |
1096 | /\Y|$re\Y|/; |
1097 | |
19799a22 |
1098 | =head1 BUGS |
1099 | |
1100 | This manpage is varies from difficult to understand to completely |
1101 | and utterly opaque. |
1102 | |
1103 | =head1 SEE ALSO |
9fa51da4 |
1104 | |
9b599b2a |
1105 | L<perlop/"Regexp Quote-Like Operators">. |
1106 | |
1e66bd83 |
1107 | L<perlop/"Gory details of parsing quoted constructs">. |
1108 | |
14218588 |
1109 | L<perlfaq6>. |
1110 | |
9b599b2a |
1111 | L<perlfunc/pos>. |
1112 | |
1113 | L<perllocale>. |
1114 | |
14218588 |
1115 | I<Mastering Regular Expressions> by Jeffrey Friedl, published |
1116 | by O'Reilly and Associates. |