added patch for -i'foo*bar', made code somewhat simpler, tweaked doc
[p5sagit/p5-mst-13.2.git] / pod / perlguts.pod
CommitLineData
a0d0e21e 1=head1 NAME
2
3perlguts - Perl's Internal Functions
4
5=head1 DESCRIPTION
6
7This document attempts to describe some of the internal functions of the
8Perl executable. It is far from complete and probably contains many errors.
9Please refer any questions or comments to the author below.
10
0a753a76 11=head1 Variables
12
5f05dabc 13=head2 Datatypes
a0d0e21e 14
15Perl has three typedefs that handle Perl's three main data types:
16
17 SV Scalar Value
18 AV Array Value
19 HV Hash Value
20
d1b91892 21Each typedef has specific routines that manipulate the various data types.
a0d0e21e 22
23=head2 What is an "IV"?
24
5f05dabc 25Perl uses a special typedef IV which is a simple integer type that is
26guaranteed to be large enough to hold a pointer (as well as an integer).
a0d0e21e 27
d1b91892 28Perl also uses two special typedefs, I32 and I16, which will always be at
29least 32-bits and 16-bits long, respectively.
a0d0e21e 30
54310121 31=head2 Working with SVs
a0d0e21e 32
33An SV can be created and loaded with one command. There are four types of
34values that can be loaded: an integer value (IV), a double (NV), a string,
35(PV), and another scalar (SV).
36
9da1e3b5 37The six routines are:
a0d0e21e 38
39 SV* newSViv(IV);
40 SV* newSVnv(double);
41 SV* newSVpv(char*, int);
9da1e3b5 42 SV* newSVpvn(char*, int);
46fc3d4c 43 SV* newSVpvf(const char*, ...);
a0d0e21e 44 SV* newSVsv(SV*);
45
deb3007b 46To change the value of an *already-existing* SV, there are seven routines:
a0d0e21e 47
48 void sv_setiv(SV*, IV);
deb3007b 49 void sv_setuv(SV*, UV);
a0d0e21e 50 void sv_setnv(SV*, double);
a0d0e21e 51 void sv_setpv(SV*, char*);
46fc3d4c 52 void sv_setpvn(SV*, char*, int)
53 void sv_setpvf(SV*, const char*, ...);
9abd00ed 54 void sv_setpvfn(SV*, const char*, STRLEN, va_list *, SV **, I32, bool);
a0d0e21e 55 void sv_setsv(SV*, SV*);
56
57Notice that you can choose to specify the length of the string to be
9da1e3b5 58assigned by using C<sv_setpvn>, C<newSVpvn>, or C<newSVpv>, or you may
59allow Perl to calculate the length by using C<sv_setpv> or by specifying
600 as the second argument to C<newSVpv>. Be warned, though, that Perl will
61determine the string's length by using C<strlen>, which depends on the
9abd00ed 62string terminating with a NUL character.
63
64The arguments of C<sv_setpvf> are processed like C<sprintf>, and the
65formatted output becomes the value.
66
67C<sv_setpvfn> is an analogue of C<vsprintf>, but it allows you to specify
68either a pointer to a variable argument list or the address and length of
69an array of SVs. The last argument points to a boolean; on return, if that
70boolean is true, then locale-specific information has been used to format
71the string, and the string's contents are therefore untrustworty (see
72L<perlsec>). This pointer may be NULL if that information is not
73important. Note that this function requires you to specify the length of
74the format.
75
9da1e3b5 76The C<sv_set*()> functions are not generic enough to operate on values
77that have "magic". See L<Magic Virtual Tables> later in this document.
a0d0e21e 78
a3cb178b 79All SVs that contain strings should be terminated with a NUL character.
80If it is not NUL-terminated there is a risk of
5f05dabc 81core dumps and corruptions from code which passes the string to C
82functions or system calls which expect a NUL-terminated string.
83Perl's own functions typically add a trailing NUL for this reason.
84Nevertheless, you should be very careful when you pass a string stored
85in an SV to a C function or system call.
86
a0d0e21e 87To access the actual value that an SV points to, you can use the macros:
88
89 SvIV(SV*)
90 SvNV(SV*)
91 SvPV(SV*, STRLEN len)
92
93which will automatically coerce the actual scalar type into an IV, double,
94or string.
95
96In the C<SvPV> macro, the length of the string returned is placed into the
97variable C<len> (this is a macro, so you do I<not> use C<&len>). If you do not
98care what the length of the data is, use the global variable C<na>. Remember,
99however, that Perl allows arbitrary strings of data that may both contain
54310121 100NULs and might not be terminated by a NUL.
a0d0e21e 101
07fa94a1 102If you want to know if the scalar value is TRUE, you can use:
a0d0e21e 103
104 SvTRUE(SV*)
105
106Although Perl will automatically grow strings for you, if you need to force
107Perl to allocate more memory for your SV, you can use the macro
108
109 SvGROW(SV*, STRLEN newlen)
110
111which will determine if more memory needs to be allocated. If so, it will
112call the function C<sv_grow>. Note that C<SvGROW> can only increase, not
5f05dabc 113decrease, the allocated memory of an SV and that it does not automatically
114add a byte for the a trailing NUL (perl's own string functions typically do
8ebc5c01 115C<SvGROW(sv, len + 1)>).
a0d0e21e 116
117If you have an SV and want to know what kind of data Perl thinks is stored
118in it, you can use the following macros to check the type of SV you have.
119
120 SvIOK(SV*)
121 SvNOK(SV*)
122 SvPOK(SV*)
123
124You can get and set the current length of the string stored in an SV with
125the following macros:
126
127 SvCUR(SV*)
128 SvCUR_set(SV*, I32 val)
129
cb1a09d0 130You can also get a pointer to the end of the string stored in the SV
131with the macro:
132
133 SvEND(SV*)
134
135But note that these last three macros are valid only if C<SvPOK()> is true.
a0d0e21e 136
d1b91892 137If you want to append something to the end of string stored in an C<SV*>,
138you can use the following functions:
139
140 void sv_catpv(SV*, char*);
141 void sv_catpvn(SV*, char*, int);
46fc3d4c 142 void sv_catpvf(SV*, const char*, ...);
9abd00ed 143 void sv_catpvfn(SV*, const char*, STRLEN, va_list *, SV **, I32, bool);
d1b91892 144 void sv_catsv(SV*, SV*);
145
146The first function calculates the length of the string to be appended by
147using C<strlen>. In the second, you specify the length of the string
46fc3d4c 148yourself. The third function processes its arguments like C<sprintf> and
9abd00ed 149appends the formatted output. The fourth function works like C<vsprintf>.
150You can specify the address and length of an array of SVs instead of the
151va_list argument. The fifth function extends the string stored in the first
152SV with the string stored in the second SV. It also forces the second SV
153to be interpreted as a string.
154
155The C<sv_cat*()> functions are not generic enough to operate on values that
156have "magic". See L<Magic Virtual Tables> later in this document.
d1b91892 157
a0d0e21e 158If you know the name of a scalar variable, you can get a pointer to its SV
159by using the following:
160
5f05dabc 161 SV* perl_get_sv("package::varname", FALSE);
a0d0e21e 162
163This returns NULL if the variable does not exist.
164
d1b91892 165If you want to know if this variable (or any other SV) is actually C<defined>,
a0d0e21e 166you can call:
167
168 SvOK(SV*)
169
170The scalar C<undef> value is stored in an SV instance called C<sv_undef>. Its
171address can be used whenever an C<SV*> is needed.
172
173There are also the two values C<sv_yes> and C<sv_no>, which contain Boolean
174TRUE and FALSE values, respectively. Like C<sv_undef>, their addresses can
175be used whenever an C<SV*> is needed.
176
177Do not be fooled into thinking that C<(SV *) 0> is the same as C<&sv_undef>.
178Take this code:
179
180 SV* sv = (SV*) 0;
181 if (I-am-to-return-a-real-value) {
182 sv = sv_2mortal(newSViv(42));
183 }
184 sv_setsv(ST(0), sv);
185
186This code tries to return a new SV (which contains the value 42) if it should
04343c6d 187return a real value, or undef otherwise. Instead it has returned a NULL
a0d0e21e 188pointer which, somewhere down the line, will cause a segmentation violation,
5f05dabc 189bus error, or just weird results. Change the zero to C<&sv_undef> in the first
190line and all will be well.
a0d0e21e 191
192To free an SV that you've created, call C<SvREFCNT_dec(SV*)>. Normally this
3fe9a6f1 193call is not necessary (see L<Reference Counts and Mortality>).
a0d0e21e 194
d1b91892 195=head2 What's Really Stored in an SV?
a0d0e21e 196
197Recall that the usual method of determining the type of scalar you have is
5f05dabc 198to use C<Sv*OK> macros. Because a scalar can be both a number and a string,
d1b91892 199usually these macros will always return TRUE and calling the C<Sv*V>
a0d0e21e 200macros will do the appropriate conversion of string to integer/double or
201integer/double to string.
202
203If you I<really> need to know if you have an integer, double, or string
204pointer in an SV, you can use the following three macros instead:
205
206 SvIOKp(SV*)
207 SvNOKp(SV*)
208 SvPOKp(SV*)
209
210These will tell you if you truly have an integer, double, or string pointer
d1b91892 211stored in your SV. The "p" stands for private.
a0d0e21e 212
07fa94a1 213In general, though, it's best to use the C<Sv*V> macros.
a0d0e21e 214
54310121 215=head2 Working with AVs
a0d0e21e 216
07fa94a1 217There are two ways to create and load an AV. The first method creates an
218empty AV:
a0d0e21e 219
220 AV* newAV();
221
54310121 222The second method both creates the AV and initially populates it with SVs:
a0d0e21e 223
224 AV* av_make(I32 num, SV **ptr);
225
5f05dabc 226The second argument points to an array containing C<num> C<SV*>'s. Once the
54310121 227AV has been created, the SVs can be destroyed, if so desired.
a0d0e21e 228
54310121 229Once the AV has been created, the following operations are possible on AVs:
a0d0e21e 230
231 void av_push(AV*, SV*);
232 SV* av_pop(AV*);
233 SV* av_shift(AV*);
234 void av_unshift(AV*, I32 num);
235
236These should be familiar operations, with the exception of C<av_unshift>.
237This routine adds C<num> elements at the front of the array with the C<undef>
238value. You must then use C<av_store> (described below) to assign values
239to these new elements.
240
241Here are some other functions:
242
5f05dabc 243 I32 av_len(AV*);
a0d0e21e 244 SV** av_fetch(AV*, I32 key, I32 lval);
a0d0e21e 245 SV** av_store(AV*, I32 key, SV* val);
a0d0e21e 246
5f05dabc 247The C<av_len> function returns the highest index value in array (just
248like $#array in Perl). If the array is empty, -1 is returned. The
249C<av_fetch> function returns the value at index C<key>, but if C<lval>
250is non-zero, then C<av_fetch> will store an undef value at that index.
04343c6d 251The C<av_store> function stores the value C<val> at index C<key>, and does
252not increment the reference count of C<val>. Thus the caller is responsible
253for taking care of that, and if C<av_store> returns NULL, the caller will
254have to decrement the reference count to avoid a memory leak. Note that
255C<av_fetch> and C<av_store> both return C<SV**>'s, not C<SV*>'s as their
256return value.
d1b91892 257
a0d0e21e 258 void av_clear(AV*);
a0d0e21e 259 void av_undef(AV*);
cb1a09d0 260 void av_extend(AV*, I32 key);
5f05dabc 261
262The C<av_clear> function deletes all the elements in the AV* array, but
263does not actually delete the array itself. The C<av_undef> function will
264delete all the elements in the array plus the array itself. The
265C<av_extend> function extends the array so that it contains C<key>
266elements. If C<key> is less than the current length of the array, then
267nothing is done.
a0d0e21e 268
269If you know the name of an array variable, you can get a pointer to its AV
270by using the following:
271
5f05dabc 272 AV* perl_get_av("package::varname", FALSE);
a0d0e21e 273
274This returns NULL if the variable does not exist.
275
04343c6d 276See L<Understanding the Magic of Tied Hashes and Arrays> for more
277information on how to use the array access functions on tied arrays.
278
54310121 279=head2 Working with HVs
a0d0e21e 280
281To create an HV, you use the following routine:
282
283 HV* newHV();
284
54310121 285Once the HV has been created, the following operations are possible on HVs:
a0d0e21e 286
287 SV** hv_store(HV*, char* key, U32 klen, SV* val, U32 hash);
288 SV** hv_fetch(HV*, char* key, U32 klen, I32 lval);
289
5f05dabc 290The C<klen> parameter is the length of the key being passed in (Note that
291you cannot pass 0 in as a value of C<klen> to tell Perl to measure the
292length of the key). The C<val> argument contains the SV pointer to the
54310121 293scalar being stored, and C<hash> is the precomputed hash value (zero if
5f05dabc 294you want C<hv_store> to calculate it for you). The C<lval> parameter
295indicates whether this fetch is actually a part of a store operation, in
296which case a new undefined value will be added to the HV with the supplied
297key and C<hv_fetch> will return as if the value had already existed.
a0d0e21e 298
5f05dabc 299Remember that C<hv_store> and C<hv_fetch> return C<SV**>'s and not just
300C<SV*>. To access the scalar value, you must first dereference the return
301value. However, you should check to make sure that the return value is
302not NULL before dereferencing it.
a0d0e21e 303
304These two functions check if a hash table entry exists, and deletes it.
305
306 bool hv_exists(HV*, char* key, U32 klen);
d1b91892 307 SV* hv_delete(HV*, char* key, U32 klen, I32 flags);
a0d0e21e 308
5f05dabc 309If C<flags> does not include the C<G_DISCARD> flag then C<hv_delete> will
310create and return a mortal copy of the deleted value.
311
a0d0e21e 312And more miscellaneous functions:
313
314 void hv_clear(HV*);
a0d0e21e 315 void hv_undef(HV*);
5f05dabc 316
317Like their AV counterparts, C<hv_clear> deletes all the entries in the hash
318table but does not actually delete the hash table. The C<hv_undef> deletes
319both the entries and the hash table itself.
a0d0e21e 320
d1b91892 321Perl keeps the actual data in linked list of structures with a typedef of HE.
322These contain the actual key and value pointers (plus extra administrative
323overhead). The key is a string pointer; the value is an C<SV*>. However,
324once you have an C<HE*>, to get the actual key and value, use the routines
325specified below.
326
a0d0e21e 327 I32 hv_iterinit(HV*);
328 /* Prepares starting point to traverse hash table */
329 HE* hv_iternext(HV*);
330 /* Get the next entry, and return a pointer to a
331 structure that has both the key and value */
332 char* hv_iterkey(HE* entry, I32* retlen);
333 /* Get the key from an HE structure and also return
334 the length of the key string */
cb1a09d0 335 SV* hv_iterval(HV*, HE* entry);
a0d0e21e 336 /* Return a SV pointer to the value of the HE
337 structure */
cb1a09d0 338 SV* hv_iternextsv(HV*, char** key, I32* retlen);
d1b91892 339 /* This convenience routine combines hv_iternext,
340 hv_iterkey, and hv_iterval. The key and retlen
341 arguments are return values for the key and its
342 length. The value is returned in the SV* argument */
a0d0e21e 343
344If you know the name of a hash variable, you can get a pointer to its HV
345by using the following:
346
5f05dabc 347 HV* perl_get_hv("package::varname", FALSE);
a0d0e21e 348
349This returns NULL if the variable does not exist.
350
8ebc5c01 351The hash algorithm is defined in the C<PERL_HASH(hash, key, klen)> macro:
a0d0e21e 352
353 i = klen;
354 hash = 0;
355 s = key;
356 while (i--)
357 hash = hash * 33 + *s++;
358
04343c6d 359See L<Understanding the Magic of Tied Hashes and Arrays> for more
360information on how to use the hash access functions on tied hashes.
361
1e422769 362=head2 Hash API Extensions
363
364Beginning with version 5.004, the following functions are also supported:
365
366 HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash);
367 HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash);
368
369 bool hv_exists_ent (HV* tb, SV* key, U32 hash);
370 SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash);
371
372 SV* hv_iterkeysv (HE* entry);
373
374Note that these functions take C<SV*> keys, which simplifies writing
375of extension code that deals with hash structures. These functions
376also allow passing of C<SV*> keys to C<tie> functions without forcing
377you to stringify the keys (unlike the previous set of functions).
378
379They also return and accept whole hash entries (C<HE*>), making their
380use more efficient (since the hash number for a particular string
381doesn't have to be recomputed every time). See L<API LISTING> later in
382this document for detailed descriptions.
383
384The following macros must always be used to access the contents of hash
385entries. Note that the arguments to these macros must be simple
386variables, since they may get evaluated more than once. See
387L<API LISTING> later in this document for detailed descriptions of these
388macros.
389
390 HePV(HE* he, STRLEN len)
391 HeVAL(HE* he)
392 HeHASH(HE* he)
393 HeSVKEY(HE* he)
394 HeSVKEY_force(HE* he)
395 HeSVKEY_set(HE* he, SV* sv)
396
397These two lower level macros are defined, but must only be used when
398dealing with keys that are not C<SV*>s:
399
400 HeKEY(HE* he)
401 HeKLEN(HE* he)
402
04343c6d 403Note that both C<hv_store> and C<hv_store_ent> do not increment the
404reference count of the stored C<val>, which is the caller's responsibility.
405If these functions return a NULL value, the caller will usually have to
406decrement the reference count of C<val> to avoid a memory leak.
1e422769 407
a0d0e21e 408=head2 References
409
d1b91892 410References are a special type of scalar that point to other data types
411(including references).
a0d0e21e 412
07fa94a1 413To create a reference, use either of the following functions:
a0d0e21e 414
5f05dabc 415 SV* newRV_inc((SV*) thing);
416 SV* newRV_noinc((SV*) thing);
a0d0e21e 417
5f05dabc 418The C<thing> argument can be any of an C<SV*>, C<AV*>, or C<HV*>. The
07fa94a1 419functions are identical except that C<newRV_inc> increments the reference
420count of the C<thing>, while C<newRV_noinc> does not. For historical
421reasons, C<newRV> is a synonym for C<newRV_inc>.
422
423Once you have a reference, you can use the following macro to dereference
424the reference:
a0d0e21e 425
426 SvRV(SV*)
427
428then call the appropriate routines, casting the returned C<SV*> to either an
d1b91892 429C<AV*> or C<HV*>, if required.
a0d0e21e 430
d1b91892 431To determine if an SV is a reference, you can use the following macro:
a0d0e21e 432
433 SvROK(SV*)
434
07fa94a1 435To discover what type of value the reference refers to, use the following
436macro and then check the return value.
d1b91892 437
438 SvTYPE(SvRV(SV*))
439
440The most useful types that will be returned are:
441
442 SVt_IV Scalar
443 SVt_NV Scalar
444 SVt_PV Scalar
5f05dabc 445 SVt_RV Scalar
d1b91892 446 SVt_PVAV Array
447 SVt_PVHV Hash
448 SVt_PVCV Code
5f05dabc 449 SVt_PVGV Glob (possible a file handle)
450 SVt_PVMG Blessed or Magical Scalar
451
452 See the sv.h header file for more details.
d1b91892 453
cb1a09d0 454=head2 Blessed References and Class Objects
455
456References are also used to support object-oriented programming. In the
457OO lexicon, an object is simply a reference that has been blessed into a
458package (or class). Once blessed, the programmer may now use the reference
459to access the various methods in the class.
460
461A reference can be blessed into a package with the following function:
462
463 SV* sv_bless(SV* sv, HV* stash);
464
465The C<sv> argument must be a reference. The C<stash> argument specifies
3fe9a6f1 466which class the reference will belong to. See
2ae324a7 467L<Stashes and Globs> for information on converting class names into stashes.
cb1a09d0 468
469/* Still under construction */
470
471Upgrades rv to reference if not already one. Creates new SV for rv to
8ebc5c01 472point to. If C<classname> is non-null, the SV is blessed into the specified
473class. SV is returned.
cb1a09d0 474
475 SV* newSVrv(SV* rv, char* classname);
476
8ebc5c01 477Copies integer or double into an SV whose reference is C<rv>. SV is blessed
478if C<classname> is non-null.
cb1a09d0 479
480 SV* sv_setref_iv(SV* rv, char* classname, IV iv);
481 SV* sv_setref_nv(SV* rv, char* classname, NV iv);
482
5f05dabc 483Copies the pointer value (I<the address, not the string!>) into an SV whose
8ebc5c01 484reference is rv. SV is blessed if C<classname> is non-null.
cb1a09d0 485
486 SV* sv_setref_pv(SV* rv, char* classname, PV iv);
487
8ebc5c01 488Copies string into an SV whose reference is C<rv>. Set length to 0 to let
489Perl calculate the string length. SV is blessed if C<classname> is non-null.
cb1a09d0 490
491 SV* sv_setref_pvn(SV* rv, char* classname, PV iv, int length);
492
9abd00ed 493Tests whether the SV is blessed into the specified class. It does not
494check inheritance relationships.
495
496 int sv_isa(SV* sv, char* name);
497
498Tests whether the SV is a reference to a blessed object.
499
500 int sv_isobject(SV* sv);
501
502Tests whether the SV is derived from the specified class. SV can be either
503a reference to a blessed object or a string containing a class name. This
504is the function implementing the C<UNIVERSAL::isa> functionality.
505
506 bool sv_derived_from(SV* sv, char* name);
507
508To check if you've got an object derived from a specific class you have
509to write:
510
511 if (sv_isobject(sv) && sv_derived_from(sv, class)) { ... }
cb1a09d0 512
5f05dabc 513=head2 Creating New Variables
cb1a09d0 514
5f05dabc 515To create a new Perl variable with an undef value which can be accessed from
516your Perl script, use the following routines, depending on the variable type.
cb1a09d0 517
5f05dabc 518 SV* perl_get_sv("package::varname", TRUE);
519 AV* perl_get_av("package::varname", TRUE);
520 HV* perl_get_hv("package::varname", TRUE);
cb1a09d0 521
522Notice the use of TRUE as the second parameter. The new variable can now
523be set, using the routines appropriate to the data type.
524
5f05dabc 525There are additional macros whose values may be bitwise OR'ed with the
526C<TRUE> argument to enable certain extra features. Those bits are:
cb1a09d0 527
5f05dabc 528 GV_ADDMULTI Marks the variable as multiply defined, thus preventing the
54310121 529 "Name <varname> used only once: possible typo" warning.
07fa94a1 530 GV_ADDWARN Issues the warning "Had to create <varname> unexpectedly" if
531 the variable did not exist before the function was called.
cb1a09d0 532
07fa94a1 533If you do not specify a package name, the variable is created in the current
534package.
cb1a09d0 535
5f05dabc 536=head2 Reference Counts and Mortality
a0d0e21e 537
54310121 538Perl uses an reference count-driven garbage collection mechanism. SVs,
539AVs, or HVs (xV for short in the following) start their life with a
55497cff 540reference count of 1. If the reference count of an xV ever drops to 0,
07fa94a1 541then it will be destroyed and its memory made available for reuse.
55497cff 542
543This normally doesn't happen at the Perl level unless a variable is
5f05dabc 544undef'ed or the last variable holding a reference to it is changed or
545overwritten. At the internal level, however, reference counts can be
55497cff 546manipulated with the following macros:
547
548 int SvREFCNT(SV* sv);
5f05dabc 549 SV* SvREFCNT_inc(SV* sv);
55497cff 550 void SvREFCNT_dec(SV* sv);
551
552However, there is one other function which manipulates the reference
07fa94a1 553count of its argument. The C<newRV_inc> function, you will recall,
554creates a reference to the specified argument. As a side effect,
555it increments the argument's reference count. If this is not what
556you want, use C<newRV_noinc> instead.
557
558For example, imagine you want to return a reference from an XSUB function.
559Inside the XSUB routine, you create an SV which initially has a reference
560count of one. Then you call C<newRV_inc>, passing it the just-created SV.
5f05dabc 561This returns the reference as a new SV, but the reference count of the
562SV you passed to C<newRV_inc> has been incremented to two. Now you
07fa94a1 563return the reference from the XSUB routine and forget about the SV.
564But Perl hasn't! Whenever the returned reference is destroyed, the
565reference count of the original SV is decreased to one and nothing happens.
566The SV will hang around without any way to access it until Perl itself
567terminates. This is a memory leak.
5f05dabc 568
569The correct procedure, then, is to use C<newRV_noinc> instead of
faed5253 570C<newRV_inc>. Then, if and when the last reference is destroyed,
571the reference count of the SV will go to zero and it will be destroyed,
07fa94a1 572stopping any memory leak.
55497cff 573
5f05dabc 574There are some convenience functions available that can help with the
54310121 575destruction of xVs. These functions introduce the concept of "mortality".
07fa94a1 576An xV that is mortal has had its reference count marked to be decremented,
577but not actually decremented, until "a short time later". Generally the
578term "short time later" means a single Perl statement, such as a call to
54310121 579an XSUB function. The actual determinant for when mortal xVs have their
07fa94a1 580reference count decremented depends on two macros, SAVETMPS and FREETMPS.
581See L<perlcall> and L<perlxs> for more details on these macros.
55497cff 582
583"Mortalization" then is at its simplest a deferred C<SvREFCNT_dec>.
584However, if you mortalize a variable twice, the reference count will
585later be decremented twice.
586
587You should be careful about creating mortal variables. Strange things
588can happen if you make the same value mortal within multiple contexts,
5f05dabc 589or if you make a variable mortal multiple times.
a0d0e21e 590
591To create a mortal variable, use the functions:
592
593 SV* sv_newmortal()
594 SV* sv_2mortal(SV*)
595 SV* sv_mortalcopy(SV*)
596
5f05dabc 597The first call creates a mortal SV, the second converts an existing
598SV to a mortal SV (and thus defers a call to C<SvREFCNT_dec>), and the
599third creates a mortal copy of an existing SV.
a0d0e21e 600
54310121 601The mortal routines are not just for SVs -- AVs and HVs can be
faed5253 602made mortal by passing their address (type-casted to C<SV*>) to the
07fa94a1 603C<sv_2mortal> or C<sv_mortalcopy> routines.
a0d0e21e 604
5f05dabc 605=head2 Stashes and Globs
a0d0e21e 606
aa689395 607A "stash" is a hash that contains all of the different objects that
608are contained within a package. Each key of the stash is a symbol
609name (shared by all the different types of objects that have the same
610name), and each value in the hash table is a GV (Glob Value). This GV
611in turn contains references to the various objects of that name,
612including (but not limited to) the following:
cb1a09d0 613
a0d0e21e 614 Scalar Value
615 Array Value
616 Hash Value
a3cb178b 617 I/O Handle
a0d0e21e 618 Format
619 Subroutine
620
5f05dabc 621There is a single stash called "defstash" that holds the items that exist
622in the "main" package. To get at the items in other packages, append the
623string "::" to the package name. The items in the "Foo" package are in
624the stash "Foo::" in defstash. The items in the "Bar::Baz" package are
625in the stash "Baz::" in "Bar::"'s stash.
a0d0e21e 626
d1b91892 627To get the stash pointer for a particular package, use the function:
a0d0e21e 628
629 HV* gv_stashpv(char* name, I32 create)
630 HV* gv_stashsv(SV*, I32 create)
631
632The first function takes a literal string, the second uses the string stored
d1b91892 633in the SV. Remember that a stash is just a hash table, so you get back an
cb1a09d0 634C<HV*>. The C<create> flag will create a new package if it is set.
a0d0e21e 635
636The name that C<gv_stash*v> wants is the name of the package whose symbol table
637you want. The default package is called C<main>. If you have multiply nested
d1b91892 638packages, pass their names to C<gv_stash*v>, separated by C<::> as in the Perl
639language itself.
a0d0e21e 640
641Alternately, if you have an SV that is a blessed reference, you can find
642out the stash pointer by using:
643
644 HV* SvSTASH(SvRV(SV*));
645
646then use the following to get the package name itself:
647
648 char* HvNAME(HV* stash);
649
5f05dabc 650If you need to bless or re-bless an object you can use the following
651function:
a0d0e21e 652
653 SV* sv_bless(SV*, HV* stash)
654
655where the first argument, an C<SV*>, must be a reference, and the second
656argument is a stash. The returned C<SV*> can now be used in the same way
657as any other SV.
658
d1b91892 659For more information on references and blessings, consult L<perlref>.
660
54310121 661=head2 Double-Typed SVs
0a753a76 662
663Scalar variables normally contain only one type of value, an integer,
664double, pointer, or reference. Perl will automatically convert the
665actual scalar data from the stored type into the requested type.
666
667Some scalar variables contain more than one type of scalar data. For
668example, the variable C<$!> contains either the numeric value of C<errno>
669or its string equivalent from either C<strerror> or C<sys_errlist[]>.
670
671To force multiple data values into an SV, you must do two things: use the
672C<sv_set*v> routines to add the additional scalar type, then set a flag
673so that Perl will believe it contains more than one type of data. The
674four macros to set the flags are:
675
676 SvIOK_on
677 SvNOK_on
678 SvPOK_on
679 SvROK_on
680
681The particular macro you must use depends on which C<sv_set*v> routine
682you called first. This is because every C<sv_set*v> routine turns on
683only the bit for the particular type of data being set, and turns off
684all the rest.
685
686For example, to create a new Perl variable called "dberror" that contains
687both the numeric and descriptive string error values, you could use the
688following code:
689
690 extern int dberror;
691 extern char *dberror_list;
692
693 SV* sv = perl_get_sv("dberror", TRUE);
694 sv_setiv(sv, (IV) dberror);
695 sv_setpv(sv, dberror_list[dberror]);
696 SvIOK_on(sv);
697
698If the order of C<sv_setiv> and C<sv_setpv> had been reversed, then the
699macro C<SvPOK_on> would need to be called instead of C<SvIOK_on>.
700
701=head2 Magic Variables
a0d0e21e 702
d1b91892 703[This section still under construction. Ignore everything here. Post no
704bills. Everything not permitted is forbidden.]
705
d1b91892 706Any SV may be magical, that is, it has special features that a normal
707SV does not have. These features are stored in the SV structure in a
5f05dabc 708linked list of C<struct magic>'s, typedef'ed to C<MAGIC>.
d1b91892 709
710 struct magic {
711 MAGIC* mg_moremagic;
712 MGVTBL* mg_virtual;
713 U16 mg_private;
714 char mg_type;
715 U8 mg_flags;
716 SV* mg_obj;
717 char* mg_ptr;
718 I32 mg_len;
719 };
720
721Note this is current as of patchlevel 0, and could change at any time.
722
723=head2 Assigning Magic
724
725Perl adds magic to an SV using the sv_magic function:
726
727 void sv_magic(SV* sv, SV* obj, int how, char* name, I32 namlen);
728
729The C<sv> argument is a pointer to the SV that is to acquire a new magical
730feature.
731
732If C<sv> is not already magical, Perl uses the C<SvUPGRADE> macro to
733set the C<SVt_PVMG> flag for the C<sv>. Perl then continues by adding
734it to the beginning of the linked list of magical features. Any prior
735entry of the same type of magic is deleted. Note that this can be
5fb8527f 736overridden, and multiple instances of the same type of magic can be
d1b91892 737associated with an SV.
738
54310121 739The C<name> and C<namlen> arguments are used to associate a string with
740the magic, typically the name of a variable. C<namlen> is stored in the
741C<mg_len> field and if C<name> is non-null and C<namlen> >= 0 a malloc'd
d1b91892 742copy of the name is stored in C<mg_ptr> field.
743
744The sv_magic function uses C<how> to determine which, if any, predefined
745"Magic Virtual Table" should be assigned to the C<mg_virtual> field.
cb1a09d0 746See the "Magic Virtual Table" section below. The C<how> argument is also
747stored in the C<mg_type> field.
d1b91892 748
749The C<obj> argument is stored in the C<mg_obj> field of the C<MAGIC>
750structure. If it is not the same as the C<sv> argument, the reference
751count of the C<obj> object is incremented. If it is the same, or if
04343c6d 752the C<how> argument is "#", or if it is a NULL pointer, then C<obj> is
d1b91892 753merely stored, without the reference count being incremented.
754
cb1a09d0 755There is also a function to add magic to an C<HV>:
756
757 void hv_magic(HV *hv, GV *gv, int how);
758
759This simply calls C<sv_magic> and coerces the C<gv> argument into an C<SV>.
760
761To remove the magic from an SV, call the function sv_unmagic:
762
763 void sv_unmagic(SV *sv, int type);
764
765The C<type> argument should be equal to the C<how> value when the C<SV>
766was initially made magical.
767
d1b91892 768=head2 Magic Virtual Tables
769
770The C<mg_virtual> field in the C<MAGIC> structure is a pointer to a
771C<MGVTBL>, which is a structure of function pointers and stands for
772"Magic Virtual Table" to handle the various operations that might be
773applied to that variable.
774
775The C<MGVTBL> has five pointers to the following routine types:
776
777 int (*svt_get)(SV* sv, MAGIC* mg);
778 int (*svt_set)(SV* sv, MAGIC* mg);
779 U32 (*svt_len)(SV* sv, MAGIC* mg);
780 int (*svt_clear)(SV* sv, MAGIC* mg);
781 int (*svt_free)(SV* sv, MAGIC* mg);
782
783This MGVTBL structure is set at compile-time in C<perl.h> and there are
784currently 19 types (or 21 with overloading turned on). These different
785structures contain pointers to various routines that perform additional
786actions depending on which function is being called.
787
788 Function pointer Action taken
789 ---------------- ------------
790 svt_get Do something after the value of the SV is retrieved.
791 svt_set Do something after the SV is assigned a value.
792 svt_len Report on the SV's length.
793 svt_clear Clear something the SV represents.
794 svt_free Free any extra storage associated with the SV.
795
796For instance, the MGVTBL structure called C<vtbl_sv> (which corresponds
797to an C<mg_type> of '\0') contains:
798
799 { magic_get, magic_set, magic_len, 0, 0 }
800
801Thus, when an SV is determined to be magical and of type '\0', if a get
802operation is being performed, the routine C<magic_get> is called. All
803the various routines for the various magical types begin with C<magic_>.
804
805The current kinds of Magic Virtual Tables are:
806
bdbeb323 807 mg_type MGVTBL Type of magic
5f05dabc 808 ------- ------ ----------------------------
bdbeb323 809 \0 vtbl_sv Special scalar variable
810 A vtbl_amagic %OVERLOAD hash
811 a vtbl_amagicelem %OVERLOAD hash element
812 c (none) Holds overload table (AMT) on stash
813 B vtbl_bm Boyer-Moore (fast string search)
d1b91892 814 E vtbl_env %ENV hash
815 e vtbl_envelem %ENV hash element
bdbeb323 816 f vtbl_fm Formline ('compiled' format)
817 g vtbl_mglob m//g target / study()ed string
d1b91892 818 I vtbl_isa @ISA array
819 i vtbl_isaelem @ISA array element
bdbeb323 820 k vtbl_nkeys scalar(keys()) lvalue
821 L (none) Debugger %_<filename
822 l vtbl_dbline Debugger %_<filename element
44a8e56a 823 o vtbl_collxfrm Locale transformation
bdbeb323 824 P vtbl_pack Tied array or hash
825 p vtbl_packelem Tied array or hash element
826 q vtbl_packelem Tied scalar or handle
827 S vtbl_sig %SIG hash
828 s vtbl_sigelem %SIG hash element
d1b91892 829 t vtbl_taint Taintedness
bdbeb323 830 U vtbl_uvar Available for use by extensions
831 v vtbl_vec vec() lvalue
832 x vtbl_substr substr() lvalue
833 y vtbl_defelem Shadow "foreach" iterator variable /
834 smart parameter vivification
835 * vtbl_glob GV (typeglob)
836 # vtbl_arylen Array length ($#ary)
837 . vtbl_pos pos() lvalue
838 ~ (none) Available for use by extensions
d1b91892 839
68dc0745 840When an uppercase and lowercase letter both exist in the table, then the
841uppercase letter is used to represent some kind of composite type (a list
842or a hash), and the lowercase letter is used to represent an element of
d1b91892 843that composite type.
844
bdbeb323 845The '~' and 'U' magic types are defined specifically for use by
846extensions and will not be used by perl itself. Extensions can use
847'~' magic to 'attach' private information to variables (typically
848objects). This is especially useful because there is no way for
849normal perl code to corrupt this private information (unlike using
850extra elements of a hash object).
851
852Similarly, 'U' magic can be used much like tie() to call a C function
853any time a scalar's value is used or changed. The C<MAGIC>'s
854C<mg_ptr> field points to a C<ufuncs> structure:
855
856 struct ufuncs {
857 I32 (*uf_val)(IV, SV*);
858 I32 (*uf_set)(IV, SV*);
859 IV uf_index;
860 };
861
862When the SV is read from or written to, the C<uf_val> or C<uf_set>
863function will be called with C<uf_index> as the first arg and a
864pointer to the SV as the second.
5f05dabc 865
bdbeb323 866Note that because multiple extensions may be using '~' or 'U' magic,
867it is important for extensions to take extra care to avoid conflict.
868Typically only using the magic on objects blessed into the same class
869as the extension is sufficient. For '~' magic, it may also be
870appropriate to add an I32 'signature' at the top of the private data
871area and check that.
5f05dabc 872
ef50df4b 873Also note that the C<sv_set*()> and C<sv_cat*()> functions described
874earlier do B<not> invoke 'set' magic on their targets. This must
875be done by the user either by calling the C<SvSETMAGIC()> macro after
876calling these functions, or by using one of the C<sv_set*_mg()> or
877C<sv_cat*_mg()> functions. Similarly, generic C code must call the
878C<SvGETMAGIC()> macro to invoke any 'get' magic if they use an SV
879obtained from external sources in functions that don't handle magic.
880L<API LISTING> later in this document identifies such functions.
189b2af5 881For example, calls to the C<sv_cat*()> functions typically need to be
882followed by C<SvSETMAGIC()>, but they don't need a prior C<SvGETMAGIC()>
883since their implementation handles 'get' magic.
884
d1b91892 885=head2 Finding Magic
886
887 MAGIC* mg_find(SV*, int type); /* Finds the magic pointer of that type */
888
889This routine returns a pointer to the C<MAGIC> structure stored in the SV.
890If the SV does not have that magical feature, C<NULL> is returned. Also,
54310121 891if the SV is not of type SVt_PVMG, Perl may core dump.
d1b91892 892
893 int mg_copy(SV* sv, SV* nsv, char* key, STRLEN klen);
894
895This routine checks to see what types of magic C<sv> has. If the mg_type
68dc0745 896field is an uppercase letter, then the mg_obj is copied to C<nsv>, but
897the mg_type field is changed to be the lowercase letter.
a0d0e21e 898
04343c6d 899=head2 Understanding the Magic of Tied Hashes and Arrays
900
901Tied hashes and arrays are magical beasts of the 'P' magic type.
9edb2b46 902
903WARNING: As of the 5.004 release, proper usage of the array and hash
904access functions requires understanding a few caveats. Some
905of these caveats are actually considered bugs in the API, to be fixed
906in later releases, and are bracketed with [MAYCHANGE] below. If
907you find yourself actually applying such information in this section, be
908aware that the behavior may change in the future, umm, without warning.
04343c6d 909
910The C<av_store> function, when given a tied array argument, merely
911copies the magic of the array onto the value to be "stored", using
912C<mg_copy>. It may also return NULL, indicating that the value did not
9edb2b46 913actually need to be stored in the array. [MAYCHANGE] After a call to
914C<av_store> on a tied array, the caller will usually need to call
915C<mg_set(val)> to actually invoke the perl level "STORE" method on the
916TIEARRAY object. If C<av_store> did return NULL, a call to
917C<SvREFCNT_dec(val)> will also be usually necessary to avoid a memory
918leak. [/MAYCHANGE]
04343c6d 919
920The previous paragraph is applicable verbatim to tied hash access using the
921C<hv_store> and C<hv_store_ent> functions as well.
922
923C<av_fetch> and the corresponding hash functions C<hv_fetch> and
924C<hv_fetch_ent> actually return an undefined mortal value whose magic
925has been initialized using C<mg_copy>. Note the value so returned does not
9edb2b46 926need to be deallocated, as it is already mortal. [MAYCHANGE] But you will
927need to call C<mg_get()> on the returned value in order to actually invoke
928the perl level "FETCH" method on the underlying TIE object. Similarly,
04343c6d 929you may also call C<mg_set()> on the return value after possibly assigning
930a suitable value to it using C<sv_setsv>, which will invoke the "STORE"
9edb2b46 931method on the TIE object. [/MAYCHANGE]
04343c6d 932
9edb2b46 933[MAYCHANGE]
04343c6d 934In other words, the array or hash fetch/store functions don't really
935fetch and store actual values in the case of tied arrays and hashes. They
936merely call C<mg_copy> to attach magic to the values that were meant to be
937"stored" or "fetched". Later calls to C<mg_get> and C<mg_set> actually
938do the job of invoking the TIE methods on the underlying objects. Thus
9edb2b46 939the magic mechanism currently implements a kind of lazy access to arrays
04343c6d 940and hashes.
941
942Currently (as of perl version 5.004), use of the hash and array access
943functions requires the user to be aware of whether they are operating on
9edb2b46 944"normal" hashes and arrays, or on their tied variants. The API may be
945changed to provide more transparent access to both tied and normal data
946types in future versions.
947[/MAYCHANGE]
04343c6d 948
949You would do well to understand that the TIEARRAY and TIEHASH interfaces
950are mere sugar to invoke some perl method calls while using the uniform hash
951and array syntax. The use of this sugar imposes some overhead (typically
952about two to four extra opcodes per FETCH/STORE operation, in addition to
953the creation of all the mortal variables required to invoke the methods).
954This overhead will be comparatively small if the TIE methods are themselves
955substantial, but if they are only a few statements long, the overhead
956will not be insignificant.
957
d1c897a1 958=head2 Localizing changes
959
960Perl has a very handy construction
961
962 {
963 local $var = 2;
964 ...
965 }
966
967This construction is I<approximately> equivalent to
968
969 {
970 my $oldvar = $var;
971 $var = 2;
972 ...
973 $var = $oldvar;
974 }
975
976The biggest difference is that the first construction would
977reinstate the initial value of $var, irrespective of how control exits
978the block: C<goto>, C<return>, C<die>/C<eval> etc. It is a little bit
979more efficient as well.
980
981There is a way to achieve a similar task from C via Perl API: create a
982I<pseudo-block>, and arrange for some changes to be automatically
983undone at the end of it, either explicit, or via a non-local exit (via
984die()). A I<block>-like construct is created by a pair of
985C<ENTER>/C<LEAVE> macros (see L<perlcall/EXAMPLE/"Returning a
986Scalar">). Such a construct may be created specially for some
987important localized task, or an existing one (like boundaries of
988enclosing Perl subroutine/block, or an existing pair for freeing TMPs)
989may be used. (In the second case the overhead of additional
990localization must be almost negligible.) Note that any XSUB is
991automatically enclosed in an C<ENTER>/C<LEAVE> pair.
992
993Inside such a I<pseudo-block> the following service is available:
994
995=over
996
997=item C<SAVEINT(int i)>
998
999=item C<SAVEIV(IV i)>
1000
1001=item C<SAVEI32(I32 i)>
1002
1003=item C<SAVELONG(long i)>
1004
1005These macros arrange things to restore the value of integer variable
1006C<i> at the end of enclosing I<pseudo-block>.
1007
1008=item C<SAVESPTR(s)>
1009
1010=item C<SAVEPPTR(p)>
1011
1012These macros arrange things to restore the value of pointers C<s> and
1013C<p>. C<s> must be a pointer of a type which survives conversion to
1014C<SV*> and back, C<p> should be able to survive conversion to C<char*>
1015and back.
1016
1017=item C<SAVEFREESV(SV *sv)>
1018
1019The refcount of C<sv> would be decremented at the end of
1020I<pseudo-block>. This is similar to C<sv_2mortal>, which should (?) be
1021used instead.
1022
1023=item C<SAVEFREEOP(OP *op)>
1024
1025The C<OP *> is op_free()ed at the end of I<pseudo-block>.
1026
1027=item C<SAVEFREEPV(p)>
1028
1029The chunk of memory which is pointed to by C<p> is Safefree()ed at the
1030end of I<pseudo-block>.
1031
1032=item C<SAVECLEARSV(SV *sv)>
1033
1034Clears a slot in the current scratchpad which corresponds to C<sv> at
1035the end of I<pseudo-block>.
1036
1037=item C<SAVEDELETE(HV *hv, char *key, I32 length)>
1038
1039The key C<key> of C<hv> is deleted at the end of I<pseudo-block>. The
1040string pointed to by C<key> is Safefree()ed. If one has a I<key> in
1041short-lived storage, the corresponding string may be reallocated like
1042this:
1043
1044 SAVEDELETE(defstash, savepv(tmpbuf), strlen(tmpbuf));
1045
1046=item C<SAVEDESTRUCTOR(f,p)>
1047
1048At the end of I<pseudo-block> the function C<f> is called with the
1049only argument (of type C<void*>) C<p>.
1050
1051=item C<SAVESTACK_POS()>
1052
1053The current offset on the Perl internal stack (cf. C<SP>) is restored
1054at the end of I<pseudo-block>.
1055
1056=back
1057
1058The following API list contains functions, thus one needs to
1059provide pointers to the modifiable data explicitly (either C pointers,
1060or Perlish C<GV *>s). Where the above macros take C<int>, a similar
1061function takes C<int *>.
1062
1063=over
1064
1065=item C<SV* save_scalar(GV *gv)>
1066
1067Equivalent to Perl code C<local $gv>.
1068
1069=item C<AV* save_ary(GV *gv)>
1070
1071=item C<HV* save_hash(GV *gv)>
1072
1073Similar to C<save_scalar>, but localize C<@gv> and C<%gv>.
1074
1075=item C<void save_item(SV *item)>
1076
1077Duplicates the current value of C<SV>, on the exit from the current
1078C<ENTER>/C<LEAVE> I<pseudo-block> will restore the value of C<SV>
1079using the stored value.
1080
1081=item C<void save_list(SV **sarg, I32 maxsarg)>
1082
1083A variant of C<save_item> which takes multiple arguments via an array
1084C<sarg> of C<SV*> of length C<maxsarg>.
1085
1086=item C<SV* save_svref(SV **sptr)>
1087
1088Similar to C<save_scalar>, but will reinstate a C<SV *>.
1089
1090=item C<void save_aptr(AV **aptr)>
1091
1092=item C<void save_hptr(HV **hptr)>
1093
1094Similar to C<save_svref>, but localize C<AV *> and C<HV *>.
1095
1096=back
1097
1098The C<Alias> module implements localization of the basic types within the
1099I<caller's scope>. People who are interested in how to localize things in
1100the containing scope should take a look there too.
1101
0a753a76 1102=head1 Subroutines
a0d0e21e 1103
68dc0745 1104=head2 XSUBs and the Argument Stack
5f05dabc 1105
1106The XSUB mechanism is a simple way for Perl programs to access C subroutines.
1107An XSUB routine will have a stack that contains the arguments from the Perl
1108program, and a way to map from the Perl data structures to a C equivalent.
1109
1110The stack arguments are accessible through the C<ST(n)> macro, which returns
1111the C<n>'th stack argument. Argument 0 is the first argument passed in the
1112Perl subroutine call. These arguments are C<SV*>, and can be used anywhere
1113an C<SV*> is used.
1114
1115Most of the time, output from the C routine can be handled through use of
1116the RETVAL and OUTPUT directives. However, there are some cases where the
1117argument stack is not already long enough to handle all the return values.
1118An example is the POSIX tzname() call, which takes no arguments, but returns
1119two, the local time zone's standard and summer time abbreviations.
1120
1121To handle this situation, the PPCODE directive is used and the stack is
1122extended using the macro:
1123
924508f0 1124 EXTEND(SP, num);
5f05dabc 1125
924508f0 1126where C<SP> is the macro that represents the local copy of the stack pointer,
1127and C<num> is the number of elements the stack should be extended by.
5f05dabc 1128
1129Now that there is room on the stack, values can be pushed on it using the
54310121 1130macros to push IVs, doubles, strings, and SV pointers respectively:
5f05dabc 1131
1132 PUSHi(IV)
1133 PUSHn(double)
1134 PUSHp(char*, I32)
1135 PUSHs(SV*)
1136
1137And now the Perl program calling C<tzname>, the two values will be assigned
1138as in:
1139
1140 ($standard_abbrev, $summer_abbrev) = POSIX::tzname;
1141
1142An alternate (and possibly simpler) method to pushing values on the stack is
1143to use the macros:
1144
1145 XPUSHi(IV)
1146 XPUSHn(double)
1147 XPUSHp(char*, I32)
1148 XPUSHs(SV*)
1149
1150These macros automatically adjust the stack for you, if needed. Thus, you
1151do not need to call C<EXTEND> to extend the stack.
1152
1153For more information, consult L<perlxs> and L<perlxstut>.
1154
1155=head2 Calling Perl Routines from within C Programs
a0d0e21e 1156
1157There are four routines that can be used to call a Perl subroutine from
1158within a C program. These four are:
1159
1160 I32 perl_call_sv(SV*, I32);
1161 I32 perl_call_pv(char*, I32);
1162 I32 perl_call_method(char*, I32);
1163 I32 perl_call_argv(char*, I32, register char**);
1164
d1b91892 1165The routine most often used is C<perl_call_sv>. The C<SV*> argument
1166contains either the name of the Perl subroutine to be called, or a
1167reference to the subroutine. The second argument consists of flags
1168that control the context in which the subroutine is called, whether
1169or not the subroutine is being passed arguments, how errors should be
1170trapped, and how to treat return values.
a0d0e21e 1171
1172All four routines return the number of arguments that the subroutine returned
1173on the Perl stack.
1174
d1b91892 1175When using any of these routines (except C<perl_call_argv>), the programmer
1176must manipulate the Perl stack. These include the following macros and
1177functions:
a0d0e21e 1178
1179 dSP
924508f0 1180 SP
a0d0e21e 1181 PUSHMARK()
1182 PUTBACK
1183 SPAGAIN
1184 ENTER
1185 SAVETMPS
1186 FREETMPS
1187 LEAVE
1188 XPUSH*()
cb1a09d0 1189 POP*()
a0d0e21e 1190
5f05dabc 1191For a detailed description of calling conventions from C to Perl,
1192consult L<perlcall>.
a0d0e21e 1193
5f05dabc 1194=head2 Memory Allocation
a0d0e21e 1195
5f05dabc 1196It is suggested that you use the version of malloc that is distributed
1197with Perl. It keeps pools of various sizes of unallocated memory in
07fa94a1 1198order to satisfy allocation requests more quickly. However, on some
1199platforms, it may cause spurious malloc or free errors.
d1b91892 1200
1201 New(x, pointer, number, type);
1202 Newc(x, pointer, number, type, cast);
1203 Newz(x, pointer, number, type);
1204
07fa94a1 1205These three macros are used to initially allocate memory.
5f05dabc 1206
1207The first argument C<x> was a "magic cookie" that was used to keep track
1208of who called the macro, to help when debugging memory problems. However,
07fa94a1 1209the current code makes no use of this feature (most Perl developers now
1210use run-time memory checkers), so this argument can be any number.
5f05dabc 1211
1212The second argument C<pointer> should be the name of a variable that will
1213point to the newly allocated memory.
d1b91892 1214
d1b91892 1215The third and fourth arguments C<number> and C<type> specify how many of
1216the specified type of data structure should be allocated. The argument
1217C<type> is passed to C<sizeof>. The final argument to C<Newc>, C<cast>,
1218should be used if the C<pointer> argument is different from the C<type>
1219argument.
1220
1221Unlike the C<New> and C<Newc> macros, the C<Newz> macro calls C<memzero>
1222to zero out all the newly allocated memory.
1223
1224 Renew(pointer, number, type);
1225 Renewc(pointer, number, type, cast);
1226 Safefree(pointer)
1227
1228These three macros are used to change a memory buffer size or to free a
1229piece of memory no longer needed. The arguments to C<Renew> and C<Renewc>
1230match those of C<New> and C<Newc> with the exception of not needing the
1231"magic cookie" argument.
1232
1233 Move(source, dest, number, type);
1234 Copy(source, dest, number, type);
1235 Zero(dest, number, type);
1236
1237These three macros are used to move, copy, or zero out previously allocated
1238memory. The C<source> and C<dest> arguments point to the source and
1239destination starting points. Perl will move, copy, or zero out C<number>
1240instances of the size of the C<type> data structure (using the C<sizeof>
1241function).
a0d0e21e 1242
5f05dabc 1243=head2 PerlIO
ce3d39e2 1244
5f05dabc 1245The most recent development releases of Perl has been experimenting with
1246removing Perl's dependency on the "normal" standard I/O suite and allowing
1247other stdio implementations to be used. This involves creating a new
1248abstraction layer that then calls whichever implementation of stdio Perl
68dc0745 1249was compiled with. All XSUBs should now use the functions in the PerlIO
5f05dabc 1250abstraction layer and not make any assumptions about what kind of stdio
1251is being used.
1252
1253For a complete description of the PerlIO abstraction, consult L<perlapio>.
1254
8ebc5c01 1255=head2 Putting a C value on Perl stack
ce3d39e2 1256
1257A lot of opcodes (this is an elementary operation in the internal perl
1258stack machine) put an SV* on the stack. However, as an optimization
1259the corresponding SV is (usually) not recreated each time. The opcodes
1260reuse specially assigned SVs (I<target>s) which are (as a corollary)
1261not constantly freed/created.
1262
0a753a76 1263Each of the targets is created only once (but see
ce3d39e2 1264L<Scratchpads and recursion> below), and when an opcode needs to put
1265an integer, a double, or a string on stack, it just sets the
1266corresponding parts of its I<target> and puts the I<target> on stack.
1267
1268The macro to put this target on stack is C<PUSHTARG>, and it is
1269directly used in some opcodes, as well as indirectly in zillions of
1270others, which use it via C<(X)PUSH[pni]>.
1271
8ebc5c01 1272=head2 Scratchpads
ce3d39e2 1273
54310121 1274The question remains on when the SVs which are I<target>s for opcodes
5f05dabc 1275are created. The answer is that they are created when the current unit --
1276a subroutine or a file (for opcodes for statements outside of
1277subroutines) -- is compiled. During this time a special anonymous Perl
ce3d39e2 1278array is created, which is called a scratchpad for the current
1279unit.
1280
54310121 1281A scratchpad keeps SVs which are lexicals for the current unit and are
ce3d39e2 1282targets for opcodes. One can deduce that an SV lives on a scratchpad
1283by looking on its flags: lexicals have C<SVs_PADMY> set, and
1284I<target>s have C<SVs_PADTMP> set.
1285
54310121 1286The correspondence between OPs and I<target>s is not 1-to-1. Different
1287OPs in the compile tree of the unit can use the same target, if this
ce3d39e2 1288would not conflict with the expected life of the temporary.
1289
2ae324a7 1290=head2 Scratchpads and recursion
ce3d39e2 1291
1292In fact it is not 100% true that a compiled unit contains a pointer to
1293the scratchpad AV. In fact it contains a pointer to an AV of
1294(initially) one element, and this element is the scratchpad AV. Why do
1295we need an extra level of indirection?
1296
1297The answer is B<recursion>, and maybe (sometime soon) B<threads>. Both
1298these can create several execution pointers going into the same
1299subroutine. For the subroutine-child not write over the temporaries
1300for the subroutine-parent (lifespan of which covers the call to the
1301child), the parent and the child should have different
1302scratchpads. (I<And> the lexicals should be separate anyway!)
1303
5f05dabc 1304So each subroutine is born with an array of scratchpads (of length 1).
1305On each entry to the subroutine it is checked that the current
ce3d39e2 1306depth of the recursion is not more than the length of this array, and
1307if it is, new scratchpad is created and pushed into the array.
1308
1309The I<target>s on this scratchpad are C<undef>s, but they are already
1310marked with correct flags.
1311
0a753a76 1312=head1 Compiled code
1313
1314=head2 Code tree
1315
1316Here we describe the internal form your code is converted to by
1317Perl. Start with a simple example:
1318
1319 $a = $b + $c;
1320
1321This is converted to a tree similar to this one:
1322
1323 assign-to
1324 / \
1325 + $a
1326 / \
1327 $b $c
1328
7b8d334a 1329(but slightly more complicated). This tree reflects the way Perl
0a753a76 1330parsed your code, but has nothing to do with the execution order.
1331There is an additional "thread" going through the nodes of the tree
1332which shows the order of execution of the nodes. In our simplified
1333example above it looks like:
1334
1335 $b ---> $c ---> + ---> $a ---> assign-to
1336
1337But with the actual compile tree for C<$a = $b + $c> it is different:
1338some nodes I<optimized away>. As a corollary, though the actual tree
1339contains more nodes than our simplified example, the execution order
1340is the same as in our example.
1341
1342=head2 Examining the tree
1343
1344If you have your perl compiled for debugging (usually done with C<-D
1345optimize=-g> on C<Configure> command line), you may examine the
1346compiled tree by specifying C<-Dx> on the Perl command line. The
1347output takes several lines per node, and for C<$b+$c> it looks like
1348this:
1349
1350 5 TYPE = add ===> 6
1351 TARG = 1
1352 FLAGS = (SCALAR,KIDS)
1353 {
1354 TYPE = null ===> (4)
1355 (was rv2sv)
1356 FLAGS = (SCALAR,KIDS)
1357 {
1358 3 TYPE = gvsv ===> 4
1359 FLAGS = (SCALAR)
1360 GV = main::b
1361 }
1362 }
1363 {
1364 TYPE = null ===> (5)
1365 (was rv2sv)
1366 FLAGS = (SCALAR,KIDS)
1367 {
1368 4 TYPE = gvsv ===> 5
1369 FLAGS = (SCALAR)
1370 GV = main::c
1371 }
1372 }
1373
1374This tree has 5 nodes (one per C<TYPE> specifier), only 3 of them are
1375not optimized away (one per number in the left column). The immediate
1376children of the given node correspond to C<{}> pairs on the same level
1377of indentation, thus this listing corresponds to the tree:
1378
1379 add
1380 / \
1381 null null
1382 | |
1383 gvsv gvsv
1384
1385The execution order is indicated by C<===E<gt>> marks, thus it is C<3
13864 5 6> (node C<6> is not included into above listing), i.e.,
1387C<gvsv gvsv add whatever>.
1388
1389=head2 Compile pass 1: check routines
1390
1391The tree is created by the I<pseudo-compiler> while yacc code feeds it
1392the constructions it recognizes. Since yacc works bottom-up, so does
1393the first pass of perl compilation.
1394
1395What makes this pass interesting for perl developers is that some
1396optimization may be performed on this pass. This is optimization by
1397so-called I<check routines>. The correspondence between node names
1398and corresponding check routines is described in F<opcode.pl> (do not
1399forget to run C<make regen_headers> if you modify this file).
1400
1401A check routine is called when the node is fully constructed except
7b8d334a 1402for the execution-order thread. Since at this time there are no
0a753a76 1403back-links to the currently constructed node, one can do most any
1404operation to the top-level node, including freeing it and/or creating
1405new nodes above/below it.
1406
1407The check routine returns the node which should be inserted into the
1408tree (if the top-level node was not modified, check routine returns
1409its argument).
1410
1411By convention, check routines have names C<ck_*>. They are usually
1412called from C<new*OP> subroutines (or C<convert>) (which in turn are
1413called from F<perly.y>).
1414
1415=head2 Compile pass 1a: constant folding
1416
1417Immediately after the check routine is called the returned node is
1418checked for being compile-time executable. If it is (the value is
1419judged to be constant) it is immediately executed, and a I<constant>
1420node with the "return value" of the corresponding subtree is
1421substituted instead. The subtree is deleted.
1422
1423If constant folding was not performed, the execution-order thread is
1424created.
1425
1426=head2 Compile pass 2: context propagation
1427
1428When a context for a part of compile tree is known, it is propagated
a3cb178b 1429down through the tree. At this time the context can have 5 values
0a753a76 1430(instead of 2 for runtime context): void, boolean, scalar, list, and
1431lvalue. In contrast with the pass 1 this pass is processed from top
1432to bottom: a node's context determines the context for its children.
1433
1434Additional context-dependent optimizations are performed at this time.
1435Since at this moment the compile tree contains back-references (via
1436"thread" pointers), nodes cannot be free()d now. To allow
1437optimized-away nodes at this stage, such nodes are null()ified instead
1438of free()ing (i.e. their type is changed to OP_NULL).
1439
1440=head2 Compile pass 3: peephole optimization
1441
1442After the compile tree for a subroutine (or for an C<eval> or a file)
1443is created, an additional pass over the code is performed. This pass
1444is neither top-down or bottom-up, but in the execution order (with
7b8d334a 1445additional complications for conditionals). These optimizations are
0a753a76 1446done in the subroutine peep(). Optimizations performed at this stage
1447are subject to the same restrictions as in the pass 2.
1448
1449=head1 API LISTING
a0d0e21e 1450
cb1a09d0 1451This is a listing of functions, macros, flags, and variables that may be
1452useful to extension writers or that may be found while reading other
1453extensions.
e89caa19 1454The sort order of the listing is case insensitive, with any
1455occurrences of '_' ignored for the the purpose of sorting.
a0d0e21e 1456
cb1a09d0 1457=over 8
a0d0e21e 1458
cb1a09d0 1459=item av_clear
1460
0146554f 1461Clears an array, making it empty. Does not free the memory used by the
1462array itself.
cb1a09d0 1463
ef50df4b 1464 void av_clear (AV* ar)
cb1a09d0 1465
1466=item av_extend
1467
1468Pre-extend an array. The C<key> is the index to which the array should be
1469extended.
1470
ef50df4b 1471 void av_extend (AV* ar, I32 key)
cb1a09d0 1472
1473=item av_fetch
1474
1475Returns the SV at the specified index in the array. The C<key> is the
1476index. If C<lval> is set then the fetch will be part of a store. Check
1477that the return value is non-null before dereferencing it to a C<SV*>.
1478
04343c6d 1479See L<Understanding the Magic of Tied Hashes and Arrays> for more
1480information on how to use this function on tied arrays.
1481
ef50df4b 1482 SV** av_fetch (AV* ar, I32 key, I32 lval)
cb1a09d0 1483
e89caa19 1484=item AvFILL
1485
1486Same as C<av_len>.
1487
cb1a09d0 1488=item av_len
1489
1490Returns the highest index in the array. Returns -1 if the array is empty.
1491
ef50df4b 1492 I32 av_len (AV* ar)
cb1a09d0 1493
1494=item av_make
1495
5fb8527f 1496Creates a new AV and populates it with a list of SVs. The SVs are copied
1497into the array, so they may be freed after the call to av_make. The new AV
5f05dabc 1498will have a reference count of 1.
cb1a09d0 1499
ef50df4b 1500 AV* av_make (I32 size, SV** svp)
cb1a09d0 1501
1502=item av_pop
1503
1504Pops an SV off the end of the array. Returns C<&sv_undef> if the array is
1505empty.
1506
ef50df4b 1507 SV* av_pop (AV* ar)
cb1a09d0 1508
1509=item av_push
1510
5fb8527f 1511Pushes an SV onto the end of the array. The array will grow automatically
1512to accommodate the addition.
cb1a09d0 1513
ef50df4b 1514 void av_push (AV* ar, SV* val)
cb1a09d0 1515
1516=item av_shift
1517
1518Shifts an SV off the beginning of the array.
1519
ef50df4b 1520 SV* av_shift (AV* ar)
cb1a09d0 1521
1522=item av_store
1523
1524Stores an SV in an array. The array index is specified as C<key>. The
04343c6d 1525return value will be NULL if the operation failed or if the value did not
1526need to be actually stored within the array (as in the case of tied arrays).
1527Otherwise it can be dereferenced to get the original C<SV*>. Note that the
1528caller is responsible for suitably incrementing the reference count of C<val>
1529before the call, and decrementing it if the function returned NULL.
1530
1531See L<Understanding the Magic of Tied Hashes and Arrays> for more
1532information on how to use this function on tied arrays.
cb1a09d0 1533
ef50df4b 1534 SV** av_store (AV* ar, I32 key, SV* val)
cb1a09d0 1535
1536=item av_undef
1537
0146554f 1538Undefines the array. Frees the memory used by the array itself.
cb1a09d0 1539
ef50df4b 1540 void av_undef (AV* ar)
cb1a09d0 1541
1542=item av_unshift
1543
0146554f 1544Unshift the given number of C<undef> values onto the beginning of the
1545array. The array will grow automatically to accommodate the addition.
1546You must then use C<av_store> to assign values to these new elements.
cb1a09d0 1547
ef50df4b 1548 void av_unshift (AV* ar, I32 num)
cb1a09d0 1549
1550=item CLASS
1551
1552Variable which is setup by C<xsubpp> to indicate the class name for a C++ XS
5fb8527f 1553constructor. This is always a C<char*>. See C<THIS> and
1554L<perlxs/"Using XS With C++">.
cb1a09d0 1555
1556=item Copy
1557
1558The XSUB-writer's interface to the C C<memcpy> function. The C<s> is the
1559source, C<d> is the destination, C<n> is the number of items, and C<t> is
0146554f 1560the type. May fail on overlapping copies. See also C<Move>.
cb1a09d0 1561
e89caa19 1562 void Copy( s, d, n, t )
cb1a09d0 1563
1564=item croak
1565
1566This is the XSUB-writer's interface to Perl's C<die> function. Use this
1567function the same way you use the C C<printf> function. See C<warn>.
1568
1569=item CvSTASH
1570
1571Returns the stash of the CV.
1572
e89caa19 1573 HV* CvSTASH( SV* sv )
cb1a09d0 1574
1575=item DBsingle
1576
1577When Perl is run in debugging mode, with the B<-d> switch, this SV is a
1578boolean which indicates whether subs are being single-stepped.
5fb8527f 1579Single-stepping is automatically turned on after every step. This is the C
1580variable which corresponds to Perl's $DB::single variable. See C<DBsub>.
cb1a09d0 1581
1582=item DBsub
1583
1584When Perl is run in debugging mode, with the B<-d> switch, this GV contains
5fb8527f 1585the SV which holds the name of the sub being debugged. This is the C
1586variable which corresponds to Perl's $DB::sub variable. See C<DBsingle>.
cb1a09d0 1587The sub name can be found by
1588
1589 SvPV( GvSV( DBsub ), na )
1590
5fb8527f 1591=item DBtrace
1592
1593Trace variable used when Perl is run in debugging mode, with the B<-d>
1594switch. This is the C variable which corresponds to Perl's $DB::trace
1595variable. See C<DBsingle>.
1596
cb1a09d0 1597=item dMARK
1598
5fb8527f 1599Declare a stack marker variable, C<mark>, for the XSUB. See C<MARK> and
1600C<dORIGMARK>.
cb1a09d0 1601
1602=item dORIGMARK
1603
1604Saves the original stack mark for the XSUB. See C<ORIGMARK>.
1605
5fb8527f 1606=item dowarn
1607
1608The C variable which corresponds to Perl's $^W warning variable.
1609
cb1a09d0 1610=item dSP
1611
924508f0 1612Declares a local copy of perl's stack pointer for the XSUB, available via
1613the C<SP> macro. See C<SP>.
cb1a09d0 1614
1615=item dXSARGS
1616
1617Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. This is
1618usually handled automatically by C<xsubpp>. Declares the C<items> variable
1619to indicate the number of items on the stack.
1620
5fb8527f 1621=item dXSI32
1622
1623Sets up the C<ix> variable for an XSUB which has aliases. This is usually
1624handled automatically by C<xsubpp>.
1625
491527d0 1626=item do_binmode
1627
1628Switches filehandle to binmode. C<iotype> is what C<IoTYPE(io)> would
1629contain.
1630
1631 do_binmode(fp, iotype, TRUE);
1632
cb1a09d0 1633=item ENTER
1634
1635Opening bracket on a callback. See C<LEAVE> and L<perlcall>.
1636
1637 ENTER;
1638
1639=item EXTEND
1640
1641Used to extend the argument stack for an XSUB's return values.
1642
ef50df4b 1643 EXTEND( sp, int x )
cb1a09d0 1644
e89caa19 1645=item fbm_compile
1646
1647Analyses the string in order to make fast searches on it using fbm_instr() --
1648the Boyer-Moore algorithm.
1649
411d5715 1650 void fbm_compile(SV* sv, U32 flags)
e89caa19 1651
1652=item fbm_instr
1653
1654Returns the location of the SV in the string delimited by C<str> and
1655C<strend>. It returns C<Nullch> if the string can't be found. The
1656C<sv> does not have to be fbm_compiled, but the search will not be as
1657fast then.
1658
411d5715 1659 char* fbm_instr(char *str, char *strend, SV *sv, U32 flags)
e89caa19 1660
cb1a09d0 1661=item FREETMPS
1662
1663Closing bracket for temporaries on a callback. See C<SAVETMPS> and
1664L<perlcall>.
1665
1666 FREETMPS;
1667
1668=item G_ARRAY
1669
54310121 1670Used to indicate array context. See C<GIMME_V>, C<GIMME> and L<perlcall>.
cb1a09d0 1671
1672=item G_DISCARD
1673
1674Indicates that arguments returned from a callback should be discarded. See
1675L<perlcall>.
1676
1677=item G_EVAL
1678
1679Used to force a Perl C<eval> wrapper around a callback. See L<perlcall>.
1680
1681=item GIMME
1682
54310121 1683A backward-compatible version of C<GIMME_V> which can only return
1684C<G_SCALAR> or C<G_ARRAY>; in a void context, it returns C<G_SCALAR>.
1685
1686=item GIMME_V
1687
1688The XSUB-writer's equivalent to Perl's C<wantarray>. Returns
1689C<G_VOID>, C<G_SCALAR> or C<G_ARRAY> for void, scalar or array
1690context, respectively.
cb1a09d0 1691
1692=item G_NOARGS
1693
1694Indicates that no arguments are being sent to a callback. See L<perlcall>.
1695
1696=item G_SCALAR
1697
54310121 1698Used to indicate scalar context. See C<GIMME_V>, C<GIMME>, and L<perlcall>.
1699
faed5253 1700=item gv_fetchmeth
1701
1702Returns the glob with the given C<name> and a defined subroutine or
9607fc9c 1703C<NULL>. The glob lives in the given C<stash>, or in the stashes
7b8d334a 1704accessable via @ISA and @UNIVERSAL.
faed5253 1705
9607fc9c 1706The argument C<level> should be either 0 or -1. If C<level==0>, as a
0a753a76 1707side-effect creates a glob with the given C<name> in the given
1708C<stash> which in the case of success contains an alias for the
1709subroutine, and sets up caching info for this glob. Similarly for all
1710the searched stashes.
1711
9607fc9c 1712This function grants C<"SUPER"> token as a postfix of the stash name.
1713
0a753a76 1714The GV returned from C<gv_fetchmeth> may be a method cache entry,
1715which is not visible to Perl code. So when calling C<perl_call_sv>,
1716you should not use the GV directly; instead, you should use the
1717method's CV, which can be obtained from the GV with the C<GvCV> macro.
faed5253 1718
ef50df4b 1719 GV* gv_fetchmeth (HV* stash, char* name, STRLEN len, I32 level)
faed5253 1720
1721=item gv_fetchmethod
1722
dc848c6f 1723=item gv_fetchmethod_autoload
1724
faed5253 1725Returns the glob which contains the subroutine to call to invoke the
dc848c6f 1726method on the C<stash>. In fact in the presense of autoloading this may
1727be the glob for "AUTOLOAD". In this case the corresponding variable
faed5253 1728$AUTOLOAD is already setup.
1729
dc848c6f 1730The third parameter of C<gv_fetchmethod_autoload> determines whether AUTOLOAD
1731lookup is performed if the given method is not present: non-zero means
1732yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD. Calling
1733C<gv_fetchmethod> is equivalent to calling C<gv_fetchmethod_autoload> with a
1734non-zero C<autoload> parameter.
1735
1736These functions grant C<"SUPER"> token as a prefix of the method name.
1737
1738Note that if you want to keep the returned glob for a long time, you
1739need to check for it being "AUTOLOAD", since at the later time the call
faed5253 1740may load a different subroutine due to $AUTOLOAD changing its value.
1741Use the glob created via a side effect to do this.
1742
dc848c6f 1743These functions have the same side-effects and as C<gv_fetchmeth> with
1744C<level==0>. C<name> should be writable if contains C<':'> or C<'\''>.
0a753a76 1745The warning against passing the GV returned by C<gv_fetchmeth> to
dc848c6f 1746C<perl_call_sv> apply equally to these functions.
faed5253 1747
ef50df4b 1748 GV* gv_fetchmethod (HV* stash, char* name)
1749 GV* gv_fetchmethod_autoload (HV* stash, char* name, I32 autoload)
faed5253 1750
e89caa19 1751=item G_VOID
1752
1753Used to indicate void context. See C<GIMME_V> and L<perlcall>.
1754
cb1a09d0 1755=item gv_stashpv
1756
1757Returns a pointer to the stash for a specified package. If C<create> is set
1758then the package will be created if it does not already exist. If C<create>
1759is not set and the package does not exist then NULL is returned.
1760
ef50df4b 1761 HV* gv_stashpv (char* name, I32 create)
cb1a09d0 1762
1763=item gv_stashsv
1764
1765Returns a pointer to the stash for a specified package. See C<gv_stashpv>.
1766
ef50df4b 1767 HV* gv_stashsv (SV* sv, I32 create)
cb1a09d0 1768
e5581bf4 1769=item GvSV
cb1a09d0 1770
e5581bf4 1771Return the SV from the GV.
44a8e56a 1772
1e422769 1773=item HEf_SVKEY
1774
1775This flag, used in the length slot of hash entries and magic
1776structures, specifies the structure contains a C<SV*> pointer where a
1777C<char*> pointer is to be expected. (For information only--not to be used).
1778
1e422769 1779=item HeHASH
1780
e89caa19 1781Returns the computed hash stored in the hash entry.
1e422769 1782
e89caa19 1783 U32 HeHASH(HE* he)
1e422769 1784
1785=item HeKEY
1786
1787Returns the actual pointer stored in the key slot of the hash entry.
1788The pointer may be either C<char*> or C<SV*>, depending on the value of
1789C<HeKLEN()>. Can be assigned to. The C<HePV()> or C<HeSVKEY()> macros
1790are usually preferable for finding the value of a key.
1791
e89caa19 1792 char* HeKEY(HE* he)
1e422769 1793
1794=item HeKLEN
1795
1796If this is negative, and amounts to C<HEf_SVKEY>, it indicates the entry
1797holds an C<SV*> key. Otherwise, holds the actual length of the key.
1798Can be assigned to. The C<HePV()> macro is usually preferable for finding
1799key lengths.
1800
e89caa19 1801 int HeKLEN(HE* he)
1e422769 1802
1803=item HePV
1804
1805Returns the key slot of the hash entry as a C<char*> value, doing any
1806necessary dereferencing of possibly C<SV*> keys. The length of
1807the string is placed in C<len> (this is a macro, so do I<not> use
1808C<&len>). If you do not care about what the length of the key is,
1809you may use the global variable C<na>. Remember though, that hash
1810keys in perl are free to contain embedded nulls, so using C<strlen()>
1811or similar is not a good way to find the length of hash keys.
1812This is very similar to the C<SvPV()> macro described elsewhere in
1813this document.
1814
e89caa19 1815 char* HePV(HE* he, STRLEN len)
1e422769 1816
1817=item HeSVKEY
1818
1819Returns the key as an C<SV*>, or C<Nullsv> if the hash entry
1820does not contain an C<SV*> key.
1821
1822 HeSVKEY(HE* he)
1823
1824=item HeSVKEY_force
1825
1826Returns the key as an C<SV*>. Will create and return a temporary
1827mortal C<SV*> if the hash entry contains only a C<char*> key.
1828
1829 HeSVKEY_force(HE* he)
1830
1831=item HeSVKEY_set
1832
1833Sets the key to a given C<SV*>, taking care to set the appropriate flags
1834to indicate the presence of an C<SV*> key, and returns the same C<SV*>.
1835
1836 HeSVKEY_set(HE* he, SV* sv)
1837
1838=item HeVAL
1839
1840Returns the value slot (type C<SV*>) stored in the hash entry.
1841
1842 HeVAL(HE* he)
1843
cb1a09d0 1844=item hv_clear
1845
1846Clears a hash, making it empty.
1847
ef50df4b 1848 void hv_clear (HV* tb)
cb1a09d0 1849
68dc0745 1850=item hv_delayfree_ent
1851
1852Releases a hash entry, such as while iterating though the hash, but
1853delays actual freeing of key and value until the end of the current
1854statement (or thereabouts) with C<sv_2mortal>. See C<hv_iternext>
1855and C<hv_free_ent>.
1856
ef50df4b 1857 void hv_delayfree_ent (HV* hv, HE* entry)
68dc0745 1858
cb1a09d0 1859=item hv_delete
1860
1861Deletes a key/value pair in the hash. The value SV is removed from the hash
5fb8527f 1862and returned to the caller. The C<klen> is the length of the key. The
04343c6d 1863C<flags> value will normally be zero; if set to G_DISCARD then NULL will be
cb1a09d0 1864returned.
1865
ef50df4b 1866 SV* hv_delete (HV* tb, char* key, U32 klen, I32 flags)
cb1a09d0 1867
1e422769 1868=item hv_delete_ent
1869
1870Deletes a key/value pair in the hash. The value SV is removed from the hash
1871and returned to the caller. The C<flags> value will normally be zero; if set
04343c6d 1872to G_DISCARD then NULL will be returned. C<hash> can be a valid precomputed
1e422769 1873hash value, or 0 to ask for it to be computed.
1874
ef50df4b 1875 SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash)
1e422769 1876
cb1a09d0 1877=item hv_exists
1878
1879Returns a boolean indicating whether the specified hash key exists. The
5fb8527f 1880C<klen> is the length of the key.
cb1a09d0 1881
ef50df4b 1882 bool hv_exists (HV* tb, char* key, U32 klen)
cb1a09d0 1883
1e422769 1884=item hv_exists_ent
1885
1886Returns a boolean indicating whether the specified hash key exists. C<hash>
54310121 1887can be a valid precomputed hash value, or 0 to ask for it to be computed.
1e422769 1888
ef50df4b 1889 bool hv_exists_ent (HV* tb, SV* key, U32 hash)
1e422769 1890
cb1a09d0 1891=item hv_fetch
1892
1893Returns the SV which corresponds to the specified key in the hash. The
5fb8527f 1894C<klen> is the length of the key. If C<lval> is set then the fetch will be
cb1a09d0 1895part of a store. Check that the return value is non-null before
1896dereferencing it to a C<SV*>.
1897
04343c6d 1898See L<Understanding the Magic of Tied Hashes and Arrays> for more
1899information on how to use this function on tied hashes.
1900
ef50df4b 1901 SV** hv_fetch (HV* tb, char* key, U32 klen, I32 lval)
cb1a09d0 1902
1e422769 1903=item hv_fetch_ent
1904
1905Returns the hash entry which corresponds to the specified key in the hash.
54310121 1906C<hash> must be a valid precomputed hash number for the given C<key>, or
1e422769 19070 if you want the function to compute it. IF C<lval> is set then the
1908fetch will be part of a store. Make sure the return value is non-null
1909before accessing it. The return value when C<tb> is a tied hash
1910is a pointer to a static location, so be sure to make a copy of the
1911structure if you need to store it somewhere.
1912
04343c6d 1913See L<Understanding the Magic of Tied Hashes and Arrays> for more
1914information on how to use this function on tied hashes.
1915
ef50df4b 1916 HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash)
1e422769 1917
68dc0745 1918=item hv_free_ent
1919
1920Releases a hash entry, such as while iterating though the hash. See
1921C<hv_iternext> and C<hv_delayfree_ent>.
1922
ef50df4b 1923 void hv_free_ent (HV* hv, HE* entry)
68dc0745 1924
cb1a09d0 1925=item hv_iterinit
1926
1927Prepares a starting point to traverse a hash table.
1928
ef50df4b 1929 I32 hv_iterinit (HV* tb)
cb1a09d0 1930
c6601927 1931Returns the number of keys in the hash (i.e. the same as C<HvKEYS(tb)>).
1932The return value is currently only meaningful for hashes without tie
1933magic.
1934
1935NOTE: Before version 5.004_65, C<hv_iterinit> used to return the number
1936of hash buckets that happen to be in use. If you still need that
1937esoteric value, you can get it through the macro C<HvFILL(tb)>.
fb73857a 1938
cb1a09d0 1939=item hv_iterkey
1940
1941Returns the key from the current position of the hash iterator. See
1942C<hv_iterinit>.
1943
ef50df4b 1944 char* hv_iterkey (HE* entry, I32* retlen)
cb1a09d0 1945
1e422769 1946=item hv_iterkeysv
3fe9a6f1 1947
1e422769 1948Returns the key as an C<SV*> from the current position of the hash
1949iterator. The return value will always be a mortal copy of the
1950key. Also see C<hv_iterinit>.
1951
ef50df4b 1952 SV* hv_iterkeysv (HE* entry)
1e422769 1953
cb1a09d0 1954=item hv_iternext
1955
1956Returns entries from a hash iterator. See C<hv_iterinit>.
1957
ef50df4b 1958 HE* hv_iternext (HV* tb)
cb1a09d0 1959
1960=item hv_iternextsv
1961
1962Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
1963operation.
1964
e89caa19 1965 SV* hv_iternextsv (HV* hv, char** key, I32* retlen)
cb1a09d0 1966
1967=item hv_iterval
1968
1969Returns the value from the current position of the hash iterator. See
1970C<hv_iterkey>.
1971
ef50df4b 1972 SV* hv_iterval (HV* tb, HE* entry)
cb1a09d0 1973
1974=item hv_magic
1975
1976Adds magic to a hash. See C<sv_magic>.
1977
ef50df4b 1978 void hv_magic (HV* hv, GV* gv, int how)
cb1a09d0 1979
1980=item HvNAME
1981
1982Returns the package name of a stash. See C<SvSTASH>, C<CvSTASH>.
1983
e89caa19 1984 char* HvNAME (HV* stash)
cb1a09d0 1985
1986=item hv_store
1987
1988Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
54310121 1989the length of the key. The C<hash> parameter is the precomputed hash
cb1a09d0 1990value; if it is zero then Perl will compute it. The return value will be
04343c6d 1991NULL if the operation failed or if the value did not need to be actually
1992stored within the hash (as in the case of tied hashes). Otherwise it can
1993be dereferenced to get the original C<SV*>. Note that the caller is
1994responsible for suitably incrementing the reference count of C<val>
1995before the call, and decrementing it if the function returned NULL.
1996
1997See L<Understanding the Magic of Tied Hashes and Arrays> for more
1998information on how to use this function on tied hashes.
cb1a09d0 1999
ef50df4b 2000 SV** hv_store (HV* tb, char* key, U32 klen, SV* val, U32 hash)
cb1a09d0 2001
1e422769 2002=item hv_store_ent
2003
2004Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
54310121 2005parameter is the precomputed hash value; if it is zero then Perl will
1e422769 2006compute it. The return value is the new hash entry so created. It will be
04343c6d 2007NULL if the operation failed or if the value did not need to be actually
2008stored within the hash (as in the case of tied hashes). Otherwise the
2009contents of the return value can be accessed using the C<He???> macros
2010described here. Note that the caller is responsible for suitably
2011incrementing the reference count of C<val> before the call, and decrementing
2012it if the function returned NULL.
2013
2014See L<Understanding the Magic of Tied Hashes and Arrays> for more
2015information on how to use this function on tied hashes.
1e422769 2016
ef50df4b 2017 HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash)
1e422769 2018
cb1a09d0 2019=item hv_undef
2020
2021Undefines the hash.
2022
ef50df4b 2023 void hv_undef (HV* tb)
cb1a09d0 2024
2025=item isALNUM
2026
2027Returns a boolean indicating whether the C C<char> is an ascii alphanumeric
5f05dabc 2028character or digit.
cb1a09d0 2029
e89caa19 2030 int isALNUM (char c)
cb1a09d0 2031
2032=item isALPHA
2033
5fb8527f 2034Returns a boolean indicating whether the C C<char> is an ascii alphabetic
cb1a09d0 2035character.
2036
e89caa19 2037 int isALPHA (char c)
cb1a09d0 2038
2039=item isDIGIT
2040
2041Returns a boolean indicating whether the C C<char> is an ascii digit.
2042
e89caa19 2043 int isDIGIT (char c)
cb1a09d0 2044
2045=item isLOWER
2046
2047Returns a boolean indicating whether the C C<char> is a lowercase character.
2048
e89caa19 2049 int isLOWER (char c)
cb1a09d0 2050
2051=item isSPACE
2052
2053Returns a boolean indicating whether the C C<char> is whitespace.
2054
e89caa19 2055 int isSPACE (char c)
cb1a09d0 2056
2057=item isUPPER
2058
2059Returns a boolean indicating whether the C C<char> is an uppercase character.
2060
e89caa19 2061 int isUPPER (char c)
cb1a09d0 2062
2063=item items
2064
2065Variable which is setup by C<xsubpp> to indicate the number of items on the
5fb8527f 2066stack. See L<perlxs/"Variable-length Parameter Lists">.
2067
2068=item ix
2069
2070Variable which is setup by C<xsubpp> to indicate which of an XSUB's aliases
2071was used to invoke it. See L<perlxs/"The ALIAS: Keyword">.
cb1a09d0 2072
2073=item LEAVE
2074
2075Closing bracket on a callback. See C<ENTER> and L<perlcall>.
2076
2077 LEAVE;
2078
e89caa19 2079=item looks_like_number
2080
2081Test if an the content of an SV looks like a number (or is a number).
2082
2083 int looks_like_number(SV*)
2084
2085
cb1a09d0 2086=item MARK
2087
5fb8527f 2088Stack marker variable for the XSUB. See C<dMARK>.
cb1a09d0 2089
2090=item mg_clear
2091
2092Clear something magical that the SV represents. See C<sv_magic>.
2093
ef50df4b 2094 int mg_clear (SV* sv)
cb1a09d0 2095
2096=item mg_copy
2097
2098Copies the magic from one SV to another. See C<sv_magic>.
2099
ef50df4b 2100 int mg_copy (SV *, SV *, char *, STRLEN)
cb1a09d0 2101
2102=item mg_find
2103
2104Finds the magic pointer for type matching the SV. See C<sv_magic>.
2105
ef50df4b 2106 MAGIC* mg_find (SV* sv, int type)
cb1a09d0 2107
2108=item mg_free
2109
2110Free any magic storage used by the SV. See C<sv_magic>.
2111
ef50df4b 2112 int mg_free (SV* sv)
cb1a09d0 2113
2114=item mg_get
2115
2116Do magic after a value is retrieved from the SV. See C<sv_magic>.
2117
ef50df4b 2118 int mg_get (SV* sv)
cb1a09d0 2119
2120=item mg_len
2121
2122Report on the SV's length. See C<sv_magic>.
2123
ef50df4b 2124 U32 mg_len (SV* sv)
cb1a09d0 2125
2126=item mg_magical
2127
2128Turns on the magical status of an SV. See C<sv_magic>.
2129
ef50df4b 2130 void mg_magical (SV* sv)
cb1a09d0 2131
2132=item mg_set
2133
2134Do magic after a value is assigned to the SV. See C<sv_magic>.
2135
ef50df4b 2136 int mg_set (SV* sv)
cb1a09d0 2137
2138=item Move
2139
2140The XSUB-writer's interface to the C C<memmove> function. The C<s> is the
2141source, C<d> is the destination, C<n> is the number of items, and C<t> is
0146554f 2142the type. Can do overlapping moves. See also C<Copy>.
cb1a09d0 2143
e89caa19 2144 void Move( s, d, n, t )
cb1a09d0 2145
2146=item na
2147
2148A variable which may be used with C<SvPV> to tell Perl to calculate the
2149string length.
2150
2151=item New
2152
2153The XSUB-writer's interface to the C C<malloc> function.
2154
e89caa19 2155 void* New( x, void *ptr, int size, type )
cb1a09d0 2156
2157=item newAV
2158
5f05dabc 2159Creates a new AV. The reference count is set to 1.
cb1a09d0 2160
ef50df4b 2161 AV* newAV (void)
cb1a09d0 2162
e89caa19 2163=item Newc
2164
2165The XSUB-writer's interface to the C C<malloc> function, with cast.
2166
2167 void* Newc( x, void *ptr, int size, type, cast )
2168
5476c433 2169=item newCONSTSUB
2170
2171Creates a constant sub equivalent to Perl C<sub FOO () { 123 }>
2172which is eligible for inlining at compile-time.
2173
2174 void newCONSTSUB(HV* stash, char* name, SV* sv)
2175
cb1a09d0 2176=item newHV
2177
5f05dabc 2178Creates a new HV. The reference count is set to 1.
cb1a09d0 2179
ef50df4b 2180 HV* newHV (void)
cb1a09d0 2181
5f05dabc 2182=item newRV_inc
cb1a09d0 2183
5f05dabc 2184Creates an RV wrapper for an SV. The reference count for the original SV is
cb1a09d0 2185incremented.
2186
ef50df4b 2187 SV* newRV_inc (SV* ref)
5f05dabc 2188
2189For historical reasons, "newRV" is a synonym for "newRV_inc".
2190
2191=item newRV_noinc
2192
2193Creates an RV wrapper for an SV. The reference count for the original
2194SV is B<not> incremented.
2195
ef50df4b 2196 SV* newRV_noinc (SV* ref)
cb1a09d0 2197
8c52afec 2198=item NEWSV
cb1a09d0 2199
e89caa19 2200Creates a new SV. A non-zero C<len> parameter indicates the number of
2201bytes of preallocated string space the SV should have. An extra byte
2202for a tailing NUL is also reserved. (SvPOK is not set for the SV even
2203if string space is allocated.) The reference count for the new SV is
2204set to 1. C<id> is an integer id between 0 and 1299 (used to identify
2205leaks).
cb1a09d0 2206
ef50df4b 2207 SV* NEWSV (int id, STRLEN len)
cb1a09d0 2208
2209=item newSViv
2210
07fa94a1 2211Creates a new SV and copies an integer into it. The reference count for the
2212SV is set to 1.
cb1a09d0 2213
ef50df4b 2214 SV* newSViv (IV i)
cb1a09d0 2215
2216=item newSVnv
2217
07fa94a1 2218Creates a new SV and copies a double into it. The reference count for the
2219SV is set to 1.
cb1a09d0 2220
ef50df4b 2221 SV* newSVnv (NV i)
cb1a09d0 2222
2223=item newSVpv
2224
07fa94a1 2225Creates a new SV and copies a string into it. The reference count for the
2226SV is set to 1. If C<len> is zero then Perl will compute the length.
cb1a09d0 2227
ef50df4b 2228 SV* newSVpv (char* s, STRLEN len)
cb1a09d0 2229
e89caa19 2230=item newSVpvf
2231
2232Creates a new SV an initialize it with the string formatted like
2233C<sprintf>.
2234
2235 SV* newSVpvf(const char* pat, ...);
2236
9da1e3b5 2237=item newSVpvn
2238
2239Creates a new SV and copies a string into it. The reference count for the
2240SV is set to 1. If C<len> is zero then Perl will create a zero length
2241string.
2242
ef50df4b 2243 SV* newSVpvn (char* s, STRLEN len)
9da1e3b5 2244
cb1a09d0 2245=item newSVrv
2246
2247Creates a new SV for the RV, C<rv>, to point to. If C<rv> is not an RV then
5fb8527f 2248it will be upgraded to one. If C<classname> is non-null then the new SV will
cb1a09d0 2249be blessed in the specified package. The new SV is returned and its
5f05dabc 2250reference count is 1.
8ebc5c01 2251
ef50df4b 2252 SV* newSVrv (SV* rv, char* classname)
cb1a09d0 2253
2254=item newSVsv
2255
5fb8527f 2256Creates a new SV which is an exact duplicate of the original SV.
cb1a09d0 2257
ef50df4b 2258 SV* newSVsv (SV* old)
cb1a09d0 2259
2260=item newXS
2261
2262Used by C<xsubpp> to hook up XSUBs as Perl subs.
2263
2264=item newXSproto
2265
2266Used by C<xsubpp> to hook up XSUBs as Perl subs. Adds Perl prototypes to
2267the subs.
2268
e89caa19 2269=item Newz
2270
2271The XSUB-writer's interface to the C C<malloc> function. The allocated
2272memory is zeroed with C<memzero>.
2273
2274 void* Newz( x, void *ptr, int size, type )
2275
cb1a09d0 2276=item Nullav
2277
2278Null AV pointer.
2279
2280=item Nullch
2281
2282Null character pointer.
2283
2284=item Nullcv
2285
2286Null CV pointer.
2287
2288=item Nullhv
2289
2290Null HV pointer.
2291
2292=item Nullsv
2293
2294Null SV pointer.
2295
2296=item ORIGMARK
2297
2298The original stack mark for the XSUB. See C<dORIGMARK>.
2299
2300=item perl_alloc
2301
2302Allocates a new Perl interpreter. See L<perlembed>.
2303
2304=item perl_call_argv
2305
2306Performs a callback to the specified Perl sub. See L<perlcall>.
2307
ef50df4b 2308 I32 perl_call_argv (char* subname, I32 flags, char** argv)
cb1a09d0 2309
2310=item perl_call_method
2311
2312Performs a callback to the specified Perl method. The blessed object must
2313be on the stack. See L<perlcall>.
2314
ef50df4b 2315 I32 perl_call_method (char* methname, I32 flags)
cb1a09d0 2316
2317=item perl_call_pv
2318
2319Performs a callback to the specified Perl sub. See L<perlcall>.
2320
ef50df4b 2321 I32 perl_call_pv (char* subname, I32 flags)
cb1a09d0 2322
2323=item perl_call_sv
2324
2325Performs a callback to the Perl sub whose name is in the SV. See
2326L<perlcall>.
2327
ef50df4b 2328 I32 perl_call_sv (SV* sv, I32 flags)
cb1a09d0 2329
2330=item perl_construct
2331
2332Initializes a new Perl interpreter. See L<perlembed>.
2333
2334=item perl_destruct
2335
2336Shuts down a Perl interpreter. See L<perlembed>.
2337
2338=item perl_eval_sv
2339
2340Tells Perl to C<eval> the string in the SV.
2341
ef50df4b 2342 I32 perl_eval_sv (SV* sv, I32 flags)
cb1a09d0 2343
137443ea 2344=item perl_eval_pv
2345
2346Tells Perl to C<eval> the given string and return an SV* result.
2347
ef50df4b 2348 SV* perl_eval_pv (char* p, I32 croak_on_error)
137443ea 2349
cb1a09d0 2350=item perl_free
2351
2352Releases a Perl interpreter. See L<perlembed>.
2353
2354=item perl_get_av
2355
2356Returns the AV of the specified Perl array. If C<create> is set and the
2357Perl variable does not exist then it will be created. If C<create> is not
04343c6d 2358set and the variable does not exist then NULL is returned.
cb1a09d0 2359
ef50df4b 2360 AV* perl_get_av (char* name, I32 create)
cb1a09d0 2361
2362=item perl_get_cv
2363
2364Returns the CV of the specified Perl sub. If C<create> is set and the Perl
2365variable does not exist then it will be created. If C<create> is not
04343c6d 2366set and the variable does not exist then NULL is returned.
cb1a09d0 2367
ef50df4b 2368 CV* perl_get_cv (char* name, I32 create)
cb1a09d0 2369
2370=item perl_get_hv
2371
2372Returns the HV of the specified Perl hash. If C<create> is set and the Perl
2373variable does not exist then it will be created. If C<create> is not
04343c6d 2374set and the variable does not exist then NULL is returned.
cb1a09d0 2375
ef50df4b 2376 HV* perl_get_hv (char* name, I32 create)
cb1a09d0 2377
2378=item perl_get_sv
2379
2380Returns the SV of the specified Perl scalar. If C<create> is set and the
2381Perl variable does not exist then it will be created. If C<create> is not
04343c6d 2382set and the variable does not exist then NULL is returned.
cb1a09d0 2383
ef50df4b 2384 SV* perl_get_sv (char* name, I32 create)
cb1a09d0 2385
2386=item perl_parse
2387
2388Tells a Perl interpreter to parse a Perl script. See L<perlembed>.
2389
2390=item perl_require_pv
2391
2392Tells Perl to C<require> a module.
2393
ef50df4b 2394 void perl_require_pv (char* pv)
cb1a09d0 2395
2396=item perl_run
2397
2398Tells a Perl interpreter to run. See L<perlembed>.
2399
2400=item POPi
2401
2402Pops an integer off the stack.
2403
e89caa19 2404 int POPi()
cb1a09d0 2405
2406=item POPl
2407
2408Pops a long off the stack.
2409
e89caa19 2410 long POPl()
cb1a09d0 2411
2412=item POPp
2413
2414Pops a string off the stack.
2415
e89caa19 2416 char* POPp()
cb1a09d0 2417
2418=item POPn
2419
2420Pops a double off the stack.
2421
e89caa19 2422 double POPn()
cb1a09d0 2423
2424=item POPs
2425
2426Pops an SV off the stack.
2427
e89caa19 2428 SV* POPs()
cb1a09d0 2429
2430=item PUSHMARK
2431
2432Opening bracket for arguments on a callback. See C<PUTBACK> and L<perlcall>.
2433
2434 PUSHMARK(p)
2435
2436=item PUSHi
2437
2438Push an integer onto the stack. The stack must have room for this element.
189b2af5 2439Handles 'set' magic. See C<XPUSHi>.
cb1a09d0 2440
e89caa19 2441 void PUSHi(int d)
cb1a09d0 2442
2443=item PUSHn
2444
2445Push a double onto the stack. The stack must have room for this element.
189b2af5 2446Handles 'set' magic. See C<XPUSHn>.
cb1a09d0 2447
e89caa19 2448 void PUSHn(double d)
cb1a09d0 2449
2450=item PUSHp
2451
2452Push a string onto the stack. The stack must have room for this element.
189b2af5 2453The C<len> indicates the length of the string. Handles 'set' magic. See
2454C<XPUSHp>.
cb1a09d0 2455
e89caa19 2456 void PUSHp(char *c, int len )
cb1a09d0 2457
2458=item PUSHs
2459
189b2af5 2460Push an SV onto the stack. The stack must have room for this element. Does
2461not handle 'set' magic. See C<XPUSHs>.
cb1a09d0 2462
e89caa19 2463 void PUSHs(sv)
2464
2465=item PUSHu
2466
2467Push an unsigned integer onto the stack. The stack must have room for
2468this element. See C<XPUSHu>.
2469
2470 void PUSHu(unsigned int d)
2471
cb1a09d0 2472
2473=item PUTBACK
2474
2475Closing bracket for XSUB arguments. This is usually handled by C<xsubpp>.
2476See C<PUSHMARK> and L<perlcall> for other uses.
2477
2478 PUTBACK;
2479
2480=item Renew
2481
2482The XSUB-writer's interface to the C C<realloc> function.
2483
e89caa19 2484 void* Renew( void *ptr, int size, type )
cb1a09d0 2485
2486=item Renewc
2487
2488The XSUB-writer's interface to the C C<realloc> function, with cast.
2489
e89caa19 2490 void* Renewc( void *ptr, int size, type, cast )
cb1a09d0 2491
2492=item RETVAL
2493
2494Variable which is setup by C<xsubpp> to hold the return value for an XSUB.
5fb8527f 2495This is always the proper type for the XSUB.
2496See L<perlxs/"The RETVAL Variable">.
cb1a09d0 2497
2498=item safefree
2499
2500The XSUB-writer's interface to the C C<free> function.
2501
2502=item safemalloc
2503
2504The XSUB-writer's interface to the C C<malloc> function.
2505
2506=item saferealloc
2507
2508The XSUB-writer's interface to the C C<realloc> function.
2509
2510=item savepv
2511
2512Copy a string to a safe spot. This does not use an SV.
2513
ef50df4b 2514 char* savepv (char* sv)
cb1a09d0 2515
2516=item savepvn
2517
2518Copy a string to a safe spot. The C<len> indicates number of bytes to
2519copy. This does not use an SV.
2520
ef50df4b 2521 char* savepvn (char* sv, I32 len)
cb1a09d0 2522
2523=item SAVETMPS
2524
2525Opening bracket for temporaries on a callback. See C<FREETMPS> and
2526L<perlcall>.
2527
2528 SAVETMPS;
2529
2530=item SP
2531
2532Stack pointer. This is usually handled by C<xsubpp>. See C<dSP> and
2533C<SPAGAIN>.
2534
2535=item SPAGAIN
2536
54310121 2537Refetch the stack pointer. Used after a callback. See L<perlcall>.
cb1a09d0 2538
2539 SPAGAIN;
2540
2541=item ST
2542
2543Used to access elements on the XSUB's stack.
2544
e89caa19 2545 SV* ST(int x)
cb1a09d0 2546
2547=item strEQ
2548
2549Test two strings to see if they are equal. Returns true or false.
2550
e89caa19 2551 int strEQ( char *s1, char *s2 )
cb1a09d0 2552
2553=item strGE
2554
2555Test two strings to see if the first, C<s1>, is greater than or equal to the
2556second, C<s2>. Returns true or false.
2557
e89caa19 2558 int strGE( char *s1, char *s2 )
cb1a09d0 2559
2560=item strGT
2561
2562Test two strings to see if the first, C<s1>, is greater than the second,
2563C<s2>. Returns true or false.
2564
e89caa19 2565 int strGT( char *s1, char *s2 )
cb1a09d0 2566
2567=item strLE
2568
2569Test two strings to see if the first, C<s1>, is less than or equal to the
2570second, C<s2>. Returns true or false.
2571
e89caa19 2572 int strLE( char *s1, char *s2 )
cb1a09d0 2573
2574=item strLT
2575
2576Test two strings to see if the first, C<s1>, is less than the second,
2577C<s2>. Returns true or false.
2578
e89caa19 2579 int strLT( char *s1, char *s2 )
cb1a09d0 2580
2581=item strNE
2582
2583Test two strings to see if they are different. Returns true or false.
2584
e89caa19 2585 int strNE( char *s1, char *s2 )
cb1a09d0 2586
2587=item strnEQ
2588
2589Test two strings to see if they are equal. The C<len> parameter indicates
2590the number of bytes to compare. Returns true or false.
2591
e89caa19 2592 int strnEQ( char *s1, char *s2 )
cb1a09d0 2593
2594=item strnNE
2595
2596Test two strings to see if they are different. The C<len> parameter
2597indicates the number of bytes to compare. Returns true or false.
2598
e89caa19 2599 int strnNE( char *s1, char *s2, int len )
cb1a09d0 2600
2601=item sv_2mortal
2602
2603Marks an SV as mortal. The SV will be destroyed when the current context
2604ends.
2605
ef50df4b 2606 SV* sv_2mortal (SV* sv)
cb1a09d0 2607
2608=item sv_bless
2609
2610Blesses an SV into a specified package. The SV must be an RV. The package
07fa94a1 2611must be designated by its stash (see C<gv_stashpv()>). The reference count
2612of the SV is unaffected.
cb1a09d0 2613
ef50df4b 2614 SV* sv_bless (SV* sv, HV* stash)
cb1a09d0 2615
ef50df4b 2616=item sv_catpv
189b2af5 2617
ef50df4b 2618Concatenates the string onto the end of the string which is in the SV.
2619Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
189b2af5 2620
ef50df4b 2621 void sv_catpv (SV* sv, char* ptr)
189b2af5 2622
ef50df4b 2623=item sv_catpv_mg
cb1a09d0 2624
ef50df4b 2625Like C<sv_catpv>, but also handles 'set' magic.
cb1a09d0 2626
ef50df4b 2627 void sv_catpvn (SV* sv, char* ptr)
cb1a09d0 2628
2629=item sv_catpvn
2630
2631Concatenates the string onto the end of the string which is in the SV. The
189b2af5 2632C<len> indicates number of bytes to copy. Handles 'get' magic, but not
ef50df4b 2633'set' magic. See C<sv_catpvn_mg>.
cb1a09d0 2634
ef50df4b 2635 void sv_catpvn (SV* sv, char* ptr, STRLEN len)
2636
2637=item sv_catpvn_mg
2638
2639Like C<sv_catpvn>, but also handles 'set' magic.
2640
2641 void sv_catpvn_mg (SV* sv, char* ptr, STRLEN len)
cb1a09d0 2642
46fc3d4c 2643=item sv_catpvf
2644
2645Processes its arguments like C<sprintf> and appends the formatted output
189b2af5 2646to an SV. Handles 'get' magic, but not 'set' magic. C<SvSETMAGIC()> must
2647typically be called after calling this function to handle 'set' magic.
46fc3d4c 2648
ef50df4b 2649 void sv_catpvf (SV* sv, const char* pat, ...)
2650
2651=item sv_catpvf_mg
2652
2653Like C<sv_catpvf>, but also handles 'set' magic.
2654
2655 void sv_catpvf_mg (SV* sv, const char* pat, ...)
46fc3d4c 2656
cb1a09d0 2657=item sv_catsv
2658
5fb8527f 2659Concatenates the string from SV C<ssv> onto the end of the string in SV
ef50df4b 2660C<dsv>. Handles 'get' magic, but not 'set' magic. See C<sv_catsv_mg>.
2661
2662 void sv_catsv (SV* dsv, SV* ssv)
2663
2664=item sv_catsv_mg
cb1a09d0 2665
ef50df4b 2666Like C<sv_catsv>, but also handles 'set' magic.
2667
2668 void sv_catsv_mg (SV* dsv, SV* ssv)
cb1a09d0 2669
e89caa19 2670=item sv_chop
2671
2672Efficient removal of characters from the beginning of the string
2673buffer. SvPOK(sv) must be true and the C<ptr> must be a pointer to
2674somewhere inside the string buffer. The C<ptr> becomes the first
2675character of the adjusted string.
2676
2677 void sv_chop(SV* sv, char *ptr)
2678
2679
5fb8527f 2680=item sv_cmp
2681
2682Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
2683string in C<sv1> is less than, equal to, or greater than the string in
2684C<sv2>.
2685
ef50df4b 2686 I32 sv_cmp (SV* sv1, SV* sv2)
5fb8527f 2687
cb1a09d0 2688=item SvCUR
2689
2690Returns the length of the string which is in the SV. See C<SvLEN>.
2691
e89caa19 2692 int SvCUR (SV* sv)
cb1a09d0 2693
2694=item SvCUR_set
2695
2696Set the length of the string which is in the SV. See C<SvCUR>.
2697
e89caa19 2698 void SvCUR_set (SV* sv, int val )
cb1a09d0 2699
5fb8527f 2700=item sv_dec
2701
5f05dabc 2702Auto-decrement of the value in the SV.
5fb8527f 2703
ef50df4b 2704 void sv_dec (SV* sv)
5fb8527f 2705
e89caa19 2706=item sv_derived_from
2707
2708Returns a boolean indicating whether the SV is a subclass of the
2709specified class.
2710
2711 int sv_derived_from(SV* sv, char* class)
2712
9abd00ed 2713=item sv_derived_from
2714
2715Returns a boolean indicating whether the SV is derived from the specified
2716class. This is the function that implements C<UNIVERSAL::isa>. It works
2717for class names as well as for objects.
2718
2719 bool sv_derived_from _((SV* sv, char* name));
2720
cb1a09d0 2721=item SvEND
2722
2723Returns a pointer to the last character in the string which is in the SV.
2724See C<SvCUR>. Access the character as
2725
e89caa19 2726 char* SvEND(sv)
cb1a09d0 2727
5fb8527f 2728=item sv_eq
2729
2730Returns a boolean indicating whether the strings in the two SVs are
2731identical.
2732
ef50df4b 2733 I32 sv_eq (SV* sv1, SV* sv2)
5fb8527f 2734
189b2af5 2735=item SvGETMAGIC
2736
2737Invokes C<mg_get> on an SV if it has 'get' magic. This macro evaluates
2738its argument more than once.
2739
2740 void SvGETMAGIC( SV *sv )
2741
cb1a09d0 2742=item SvGROW
2743
e89caa19 2744Expands the character buffer in the SV so that it has room for the
2745indicated number of bytes (remember to reserve space for an extra
2746trailing NUL character). Calls C<sv_grow> to perform the expansion if
2747necessary. Returns a pointer to the character buffer.
cb1a09d0 2748
e89caa19 2749 char* SvGROW( SV* sv, int len )
cb1a09d0 2750
5fb8527f 2751=item sv_grow
2752
2753Expands the character buffer in the SV. This will use C<sv_unref> and will
2754upgrade the SV to C<SVt_PV>. Returns a pointer to the character buffer.
2755Use C<SvGROW>.
2756
2757=item sv_inc
2758
07fa94a1 2759Auto-increment of the value in the SV.
5fb8527f 2760
ef50df4b 2761 void sv_inc (SV* sv)
5fb8527f 2762
e89caa19 2763=item sv_insert
2764
2765Inserts a string at the specified offset/length within the SV.
2766Similar to the Perl substr() function.
2767
2768 void sv_insert(SV *sv, STRLEN offset, STRLEN len,
2769 char *str, STRLEN strlen)
2770
cb1a09d0 2771=item SvIOK
2772
2773Returns a boolean indicating whether the SV contains an integer.
2774
e89caa19 2775 int SvIOK (SV* SV)
cb1a09d0 2776
2777=item SvIOK_off
2778
2779Unsets the IV status of an SV.
2780
e89caa19 2781 void SvIOK_off (SV* sv)
cb1a09d0 2782
2783=item SvIOK_on
2784
2785Tells an SV that it is an integer.
2786
e89caa19 2787 void SvIOK_on (SV* sv)
cb1a09d0 2788
5fb8527f 2789=item SvIOK_only
2790
2791Tells an SV that it is an integer and disables all other OK bits.
2792
e89caa19 2793 void SvIOK_only (SV* sv)
5fb8527f 2794
cb1a09d0 2795=item SvIOKp
2796
2797Returns a boolean indicating whether the SV contains an integer. Checks the
2798B<private> setting. Use C<SvIOK>.
2799
e89caa19 2800 int SvIOKp (SV* SV)
cb1a09d0 2801
2802=item sv_isa
2803
2804Returns a boolean indicating whether the SV is blessed into the specified
9abd00ed 2805class. This does not check for subtypes; use C<sv_derived_from> to verify
cb1a09d0 2806an inheritance relationship.
2807
ef50df4b 2808 int sv_isa (SV* sv, char* name)
cb1a09d0 2809
cb1a09d0 2810=item sv_isobject
2811
2812Returns a boolean indicating whether the SV is an RV pointing to a blessed
2813object. If the SV is not an RV, or if the object is not blessed, then this
2814will return false.
2815
ef50df4b 2816 int sv_isobject (SV* sv)
cb1a09d0 2817
e89caa19 2818=item SvIV
2819
2820Returns the integer which is in the SV.
2821
9abd00ed 2822 int SvIV (SV* sv)
a59f3522 2823
cb1a09d0 2824=item SvIVX
2825
2826Returns the integer which is stored in the SV.
2827
e89caa19 2828 int SvIVX (SV* sv)
cb1a09d0 2829
2830=item SvLEN
2831
2832Returns the size of the string buffer in the SV. See C<SvCUR>.
2833
e89caa19 2834 int SvLEN (SV* sv)
cb1a09d0 2835
5fb8527f 2836=item sv_len
2837
2838Returns the length of the string in the SV. Use C<SvCUR>.
2839
ef50df4b 2840 STRLEN sv_len (SV* sv)
5fb8527f 2841
cb1a09d0 2842=item sv_magic
2843
2844Adds magic to an SV.
2845
ef50df4b 2846 void sv_magic (SV* sv, SV* obj, int how, char* name, I32 namlen)
cb1a09d0 2847
2848=item sv_mortalcopy
2849
2850Creates a new SV which is a copy of the original SV. The new SV is marked
5f05dabc 2851as mortal.
cb1a09d0 2852
ef50df4b 2853 SV* sv_mortalcopy (SV* oldsv)
cb1a09d0 2854
cb1a09d0 2855=item sv_newmortal
2856
5f05dabc 2857Creates a new SV which is mortal. The reference count of the SV is set to 1.
cb1a09d0 2858
ef50df4b 2859 SV* sv_newmortal (void)
cb1a09d0 2860
cb1a09d0 2861=item SvNIOK
2862
2863Returns a boolean indicating whether the SV contains a number, integer or
2864double.
2865
e89caa19 2866 int SvNIOK (SV* SV)
cb1a09d0 2867
2868=item SvNIOK_off
2869
2870Unsets the NV/IV status of an SV.
2871
e89caa19 2872 void SvNIOK_off (SV* sv)
cb1a09d0 2873
2874=item SvNIOKp
2875
2876Returns a boolean indicating whether the SV contains a number, integer or
2877double. Checks the B<private> setting. Use C<SvNIOK>.
2878
e89caa19 2879 int SvNIOKp (SV* SV)
2880
2881=item sv_no
2882
2883This is the C<false> SV. See C<sv_yes>. Always refer to this as C<&sv_no>.
cb1a09d0 2884
2885=item SvNOK
2886
2887Returns a boolean indicating whether the SV contains a double.
2888
e89caa19 2889 int SvNOK (SV* SV)
cb1a09d0 2890
2891=item SvNOK_off
2892
2893Unsets the NV status of an SV.
2894
e89caa19 2895 void SvNOK_off (SV* sv)
cb1a09d0 2896
2897=item SvNOK_on
2898
2899Tells an SV that it is a double.
2900
e89caa19 2901 void SvNOK_on (SV* sv)
cb1a09d0 2902
5fb8527f 2903=item SvNOK_only
2904
2905Tells an SV that it is a double and disables all other OK bits.
2906
e89caa19 2907 void SvNOK_only (SV* sv)
5fb8527f 2908
cb1a09d0 2909=item SvNOKp
2910
2911Returns a boolean indicating whether the SV contains a double. Checks the
2912B<private> setting. Use C<SvNOK>.
2913
e89caa19 2914 int SvNOKp (SV* SV)
cb1a09d0 2915
2916=item SvNV
2917
2918Returns the double which is stored in the SV.
2919
e89caa19 2920 double SvNV (SV* sv)
cb1a09d0 2921
2922=item SvNVX
2923
2924Returns the double which is stored in the SV.
2925
e89caa19 2926 double SvNVX (SV* sv)
2927
2928=item SvOK
2929
2930Returns a boolean indicating whether the value is an SV.
2931
2932 int SvOK (SV* sv)
2933
2934=item SvOOK
2935
2936Returns a boolean indicating whether the SvIVX is a valid offset value
2937for the SvPVX. This hack is used internally to speed up removal of
2938characters from the beginning of a SvPV. When SvOOK is true, then the
2939start of the allocated string buffer is really (SvPVX - SvIVX).
2940
2941 int SvOOK(Sv* sv)
cb1a09d0 2942
2943=item SvPOK
2944
2945Returns a boolean indicating whether the SV contains a character string.
2946
e89caa19 2947 int SvPOK (SV* SV)
cb1a09d0 2948
2949=item SvPOK_off
2950
2951Unsets the PV status of an SV.
2952
e89caa19 2953 void SvPOK_off (SV* sv)
cb1a09d0 2954
2955=item SvPOK_on
2956
2957Tells an SV that it is a string.
2958
e89caa19 2959 void SvPOK_on (SV* sv)
cb1a09d0 2960
5fb8527f 2961=item SvPOK_only
2962
2963Tells an SV that it is a string and disables all other OK bits.
2964
e89caa19 2965 void SvPOK_only (SV* sv)
5fb8527f 2966
cb1a09d0 2967=item SvPOKp
2968
2969Returns a boolean indicating whether the SV contains a character string.
2970Checks the B<private> setting. Use C<SvPOK>.
2971
e89caa19 2972 int SvPOKp (SV* SV)
cb1a09d0 2973
2974=item SvPV
2975
2976Returns a pointer to the string in the SV, or a stringified form of the SV
2977if the SV does not contain a string. If C<len> is C<na> then Perl will
189b2af5 2978handle the length on its own. Handles 'get' magic.
cb1a09d0 2979
e89caa19 2980 char* SvPV (SV* sv, int len )
2981
2982=item SvPV_force
2983
2984Like <SvPV> but will force the SV into becoming a string (SvPOK). You
2985want force if you are going to update the SvPVX directly.
2986
2987 char* SvPV_force(SV* sv, int len)
2988
cb1a09d0 2989
2990=item SvPVX
2991
2992Returns a pointer to the string in the SV. The SV must contain a string.
2993
e89caa19 2994 char* SvPVX (SV* sv)
cb1a09d0 2995
2996=item SvREFCNT
2997
5f05dabc 2998Returns the value of the object's reference count.
cb1a09d0 2999
e89caa19 3000 int SvREFCNT (SV* sv)
cb1a09d0 3001
3002=item SvREFCNT_dec
3003
5f05dabc 3004Decrements the reference count of the given SV.
cb1a09d0 3005
e89caa19 3006 void SvREFCNT_dec (SV* sv)
cb1a09d0 3007
3008=item SvREFCNT_inc
3009
5f05dabc 3010Increments the reference count of the given SV.
cb1a09d0 3011
e89caa19 3012 void SvREFCNT_inc (SV* sv)
cb1a09d0 3013
3014=item SvROK
3015
3016Tests if the SV is an RV.
3017
e89caa19 3018 int SvROK (SV* sv)
cb1a09d0 3019
3020=item SvROK_off
3021
3022Unsets the RV status of an SV.
3023
e89caa19 3024 void SvROK_off (SV* sv)
cb1a09d0 3025
3026=item SvROK_on
3027
3028Tells an SV that it is an RV.
3029
e89caa19 3030 void SvROK_on (SV* sv)
cb1a09d0 3031
3032=item SvRV
3033
3034Dereferences an RV to return the SV.
3035
ef50df4b 3036 SV* SvRV (SV* sv)
cb1a09d0 3037
189b2af5 3038=item SvSETMAGIC
3039
3040Invokes C<mg_set> on an SV if it has 'set' magic. This macro evaluates
3041its argument more than once.
3042
3043 void SvSETMAGIC( SV *sv )
3044
ef50df4b 3045=item sv_setiv
189b2af5 3046
ef50df4b 3047Copies an integer into the given SV. Does not handle 'set' magic.
3048See C<sv_setiv_mg>.
189b2af5 3049
ef50df4b 3050 void sv_setiv (SV* sv, IV num)
189b2af5 3051
ef50df4b 3052=item sv_setiv_mg
189b2af5 3053
ef50df4b 3054Like C<sv_setiv>, but also handles 'set' magic.
189b2af5 3055
ef50df4b 3056 void sv_setiv_mg (SV* sv, IV num)
189b2af5 3057
ef50df4b 3058=item sv_setnv
189b2af5 3059
ef50df4b 3060Copies a double into the given SV. Does not handle 'set' magic.
3061See C<sv_setnv_mg>.
189b2af5 3062
ef50df4b 3063 void sv_setnv (SV* sv, double num)
189b2af5 3064
ef50df4b 3065=item sv_setnv_mg
189b2af5 3066
ef50df4b 3067Like C<sv_setnv>, but also handles 'set' magic.
189b2af5 3068
ef50df4b 3069 void sv_setnv_mg (SV* sv, double num)
189b2af5 3070
ef50df4b 3071=item sv_setpv
189b2af5 3072
ef50df4b 3073Copies a string into an SV. The string must be null-terminated.
3074Does not handle 'set' magic. See C<sv_setpv_mg>.
189b2af5 3075
ef50df4b 3076 void sv_setpv (SV* sv, char* ptr)
189b2af5 3077
ef50df4b 3078=item sv_setpv_mg
189b2af5 3079
ef50df4b 3080Like C<sv_setpv>, but also handles 'set' magic.
189b2af5 3081
ef50df4b 3082 void sv_setpv_mg (SV* sv, char* ptr)
189b2af5 3083
ef50df4b 3084=item sv_setpviv
cb1a09d0 3085
ef50df4b 3086Copies an integer into the given SV, also updating its string value.
3087Does not handle 'set' magic. See C<sv_setpviv_mg>.
cb1a09d0 3088
ef50df4b 3089 void sv_setpviv (SV* sv, IV num)
cb1a09d0 3090
ef50df4b 3091=item sv_setpviv_mg
cb1a09d0 3092
ef50df4b 3093Like C<sv_setpviv>, but also handles 'set' magic.
cb1a09d0 3094
ef50df4b 3095 void sv_setpviv_mg (SV* sv, IV num)
cb1a09d0 3096
ef50df4b 3097=item sv_setpvn
cb1a09d0 3098
ef50df4b 3099Copies a string into an SV. The C<len> parameter indicates the number of
3100bytes to be copied. Does not handle 'set' magic. See C<sv_setpvn_mg>.
cb1a09d0 3101
ef50df4b 3102 void sv_setpvn (SV* sv, char* ptr, STRLEN len)
cb1a09d0 3103
ef50df4b 3104=item sv_setpvn_mg
189b2af5 3105
ef50df4b 3106Like C<sv_setpvn>, but also handles 'set' magic.
189b2af5 3107
ef50df4b 3108 void sv_setpvn_mg (SV* sv, char* ptr, STRLEN len)
189b2af5 3109
ef50df4b 3110=item sv_setpvf
cb1a09d0 3111
ef50df4b 3112Processes its arguments like C<sprintf> and sets an SV to the formatted
3113output. Does not handle 'set' magic. See C<sv_setpvf_mg>.
cb1a09d0 3114
ef50df4b 3115 void sv_setpvf (SV* sv, const char* pat, ...)
cb1a09d0 3116
ef50df4b 3117=item sv_setpvf_mg
46fc3d4c 3118
ef50df4b 3119Like C<sv_setpvf>, but also handles 'set' magic.
46fc3d4c 3120
ef50df4b 3121 void sv_setpvf_mg (SV* sv, const char* pat, ...)
46fc3d4c 3122
cb1a09d0 3123=item sv_setref_iv
3124
5fb8527f 3125Copies an integer into a new SV, optionally blessing the SV. The C<rv>
3126argument will be upgraded to an RV. That RV will be modified to point to
3127the new SV. The C<classname> argument indicates the package for the
3128blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 3129will be returned and will have a reference count of 1.
cb1a09d0 3130
ef50df4b 3131 SV* sv_setref_iv (SV *rv, char *classname, IV iv)
cb1a09d0 3132
3133=item sv_setref_nv
3134
5fb8527f 3135Copies a double into a new SV, optionally blessing the SV. The C<rv>
3136argument will be upgraded to an RV. That RV will be modified to point to
3137the new SV. The C<classname> argument indicates the package for the
3138blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 3139will be returned and will have a reference count of 1.
cb1a09d0 3140
ef50df4b 3141 SV* sv_setref_nv (SV *rv, char *classname, double nv)
cb1a09d0 3142
3143=item sv_setref_pv
3144
5fb8527f 3145Copies a pointer into a new SV, optionally blessing the SV. The C<rv>
3146argument will be upgraded to an RV. That RV will be modified to point to
3147the new SV. If the C<pv> argument is NULL then C<sv_undef> will be placed
3148into the SV. The C<classname> argument indicates the package for the
3149blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 3150will be returned and will have a reference count of 1.
cb1a09d0 3151
ef50df4b 3152 SV* sv_setref_pv (SV *rv, char *classname, void* pv)
cb1a09d0 3153
3154Do not use with integral Perl types such as HV, AV, SV, CV, because those
3155objects will become corrupted by the pointer copy process.
3156
3157Note that C<sv_setref_pvn> copies the string while this copies the pointer.
3158
3159=item sv_setref_pvn
3160
5fb8527f 3161Copies a string into a new SV, optionally blessing the SV. The length of the
3162string must be specified with C<n>. The C<rv> argument will be upgraded to
3163an RV. That RV will be modified to point to the new SV. The C<classname>
cb1a09d0 3164argument indicates the package for the blessing. Set C<classname> to
3165C<Nullch> to avoid the blessing. The new SV will be returned and will have
5f05dabc 3166a reference count of 1.
cb1a09d0 3167
ef50df4b 3168 SV* sv_setref_pvn (SV *rv, char *classname, char* pv, I32 n)
cb1a09d0 3169
3170Note that C<sv_setref_pv> copies the pointer while this copies the string.
3171
189b2af5 3172=item SvSetSV
3173
3174Calls C<sv_setsv> if dsv is not the same as ssv. May evaluate arguments
3175more than once.
3176
3177 void SvSetSV (SV* dsv, SV* ssv)
3178
3179=item SvSetSV_nosteal
3180
3181Calls a non-destructive version of C<sv_setsv> if dsv is not the same as ssv.
3182May evaluate arguments more than once.
3183
3184 void SvSetSV_nosteal (SV* dsv, SV* ssv)
3185
cb1a09d0 3186=item sv_setsv
3187
3188Copies the contents of the source SV C<ssv> into the destination SV C<dsv>.
189b2af5 3189The source SV may be destroyed if it is mortal. Does not handle 'set' magic.
ef50df4b 3190See the macro forms C<SvSetSV>, C<SvSetSV_nosteal> and C<sv_setsv_mg>.
3191
3192 void sv_setsv (SV* dsv, SV* ssv)
3193
3194=item sv_setsv_mg
3195
3196Like C<sv_setsv>, but also handles 'set' magic.
cb1a09d0 3197
ef50df4b 3198 void sv_setsv_mg (SV* dsv, SV* ssv)
cb1a09d0 3199
189b2af5 3200=item sv_setuv
3201
3202Copies an unsigned integer into the given SV. Does not handle 'set' magic.
ef50df4b 3203See C<sv_setuv_mg>.
189b2af5 3204
ef50df4b 3205 void sv_setuv (SV* sv, UV num)
3206
3207=item sv_setuv_mg
3208
3209Like C<sv_setuv>, but also handles 'set' magic.
3210
3211 void sv_setuv_mg (SV* sv, UV num)
189b2af5 3212
cb1a09d0 3213=item SvSTASH
3214
3215Returns the stash of the SV.
3216
e89caa19 3217 HV* SvSTASH (SV* sv)
3218
3219=item SvTAINT
3220
3221Taints an SV if tainting is enabled
3222
3223 void SvTAINT (SV* sv)
3224
3225=item SvTAINTED
3226
3227Checks to see if an SV is tainted. Returns TRUE if it is, FALSE if not.
3228
3229 int SvTAINTED (SV* sv)
3230
3231=item SvTAINTED_off
3232
3233Untaints an SV. Be I<very> careful with this routine, as it short-circuits
3234some of Perl's fundamental security features. XS module authors should
3235not use this function unless they fully understand all the implications
3236of unconditionally untainting the value. Untainting should be done in
3237the standard perl fashion, via a carefully crafted regexp, rather than
3238directly untainting variables.
3239
3240 void SvTAINTED_off (SV* sv)
3241
3242=item SvTAINTED_on
3243
3244Marks an SV as tainted.
3245
3246 void SvTAINTED_on (SV* sv)
cb1a09d0 3247
3248=item SVt_IV
3249
3250Integer type flag for scalars. See C<svtype>.
3251
3252=item SVt_PV
3253
3254Pointer type flag for scalars. See C<svtype>.
3255
3256=item SVt_PVAV
3257
3258Type flag for arrays. See C<svtype>.
3259
3260=item SVt_PVCV
3261
3262Type flag for code refs. See C<svtype>.
3263
3264=item SVt_PVHV
3265
3266Type flag for hashes. See C<svtype>.
3267
3268=item SVt_PVMG
3269
3270Type flag for blessed scalars. See C<svtype>.
3271
3272=item SVt_NV
3273
3274Double type flag for scalars. See C<svtype>.
3275
3276=item SvTRUE
3277
3278Returns a boolean indicating whether Perl would evaluate the SV as true or
189b2af5 3279false, defined or undefined. Does not handle 'get' magic.
cb1a09d0 3280
e89caa19 3281 int SvTRUE (SV* sv)
cb1a09d0 3282
3283=item SvTYPE
3284
3285Returns the type of the SV. See C<svtype>.
3286
3287 svtype SvTYPE (SV* sv)
3288
3289=item svtype
3290
3291An enum of flags for Perl types. These are found in the file B<sv.h> in the
3292C<svtype> enum. Test these flags with the C<SvTYPE> macro.
3293
cb1a09d0 3294=item sv_undef
3295
3296This is the C<undef> SV. Always refer to this as C<&sv_undef>.
3297
5fb8527f 3298=item sv_unref
3299
07fa94a1 3300Unsets the RV status of the SV, and decrements the reference count of
3301whatever was being referenced by the RV. This can almost be thought of
3302as a reversal of C<newSVrv>. See C<SvROK_off>.
5fb8527f 3303
ef50df4b 3304 void sv_unref (SV* sv)
189b2af5 3305
e89caa19 3306=item SvUPGRADE
3307
3308Used to upgrade an SV to a more complex form. Uses C<sv_upgrade> to perform
3309the upgrade if necessary. See C<svtype>.
3310
3311 bool SvUPGRADE (SV* sv, svtype mt)
3312
3313=item sv_upgrade
3314
3315Upgrade an SV to a more complex form. Use C<SvUPGRADE>. See C<svtype>.
3316
cb1a09d0 3317=item sv_usepvn
3318
3319Tells an SV to use C<ptr> to find its string value. Normally the string is
5fb8527f 3320stored inside the SV but sv_usepvn allows the SV to use an outside string.
3321The C<ptr> should point to memory that was allocated by C<malloc>. The
cb1a09d0 3322string length, C<len>, must be supplied. This function will realloc the
3323memory pointed to by C<ptr>, so that pointer should not be freed or used by
189b2af5 3324the programmer after giving it to sv_usepvn. Does not handle 'set' magic.
ef50df4b 3325See C<sv_usepvn_mg>.
3326
3327 void sv_usepvn (SV* sv, char* ptr, STRLEN len)
3328
3329=item sv_usepvn_mg
3330
3331Like C<sv_usepvn>, but also handles 'set' magic.
cb1a09d0 3332
ef50df4b 3333 void sv_usepvn_mg (SV* sv, char* ptr, STRLEN len)
cb1a09d0 3334
9abd00ed 3335=item sv_vcatpvfn(sv, pat, patlen, args, svargs, svmax, used_locale)
3336
3337Processes its arguments like C<vsprintf> and appends the formatted output
3338to an SV. Uses an array of SVs if the C style variable argument list is
3339missing (NULL). Indicates if locale information has been used for formatting.
3340
3341 void sv_catpvfn _((SV* sv, const char* pat, STRLEN patlen,
3342 va_list *args, SV **svargs, I32 svmax,
3343 bool *used_locale));
3344
3345=item sv_vsetpvfn(sv, pat, patlen, args, svargs, svmax, used_locale)
3346
3347Works like C<vcatpvfn> but copies the text into the SV instead of
3348appending it.
3349
3350 void sv_setpvfn _((SV* sv, const char* pat, STRLEN patlen,
3351 va_list *args, SV **svargs, I32 svmax,
3352 bool *used_locale));
3353
e89caa19 3354=item SvUV
3355
3356Returns the unsigned integer which is in the SV.
3357
3358 UV SvUV(SV* sv)
3359
3360=item SvUVX
3361
3362Returns the unsigned integer which is stored in the SV.
3363
3364 UV SvUVX(SV* sv)
3365
cb1a09d0 3366=item sv_yes
3367
3368This is the C<true> SV. See C<sv_no>. Always refer to this as C<&sv_yes>.
3369
3370=item THIS
3371
3372Variable which is setup by C<xsubpp> to designate the object in a C++ XSUB.
3373This is always the proper type for the C++ object. See C<CLASS> and
5fb8527f 3374L<perlxs/"Using XS With C++">.
cb1a09d0 3375
3376=item toLOWER
3377
3378Converts the specified character to lowercase.
3379
e89caa19 3380 int toLOWER (char c)
cb1a09d0 3381
3382=item toUPPER
3383
3384Converts the specified character to uppercase.
3385
e89caa19 3386 int toUPPER (char c)
cb1a09d0 3387
3388=item warn
3389
3390This is the XSUB-writer's interface to Perl's C<warn> function. Use this
3391function the same way you use the C C<printf> function. See C<croak()>.
3392
3393=item XPUSHi
3394
189b2af5 3395Push an integer onto the stack, extending the stack if necessary. Handles
3396'set' magic. See C<PUSHi>.
cb1a09d0 3397
3398 XPUSHi(int d)
3399
3400=item XPUSHn
3401
189b2af5 3402Push a double onto the stack, extending the stack if necessary. Handles 'set'
3403magic. See C<PUSHn>.
cb1a09d0 3404
3405 XPUSHn(double d)
3406
3407=item XPUSHp
3408
3409Push a string onto the stack, extending the stack if necessary. The C<len>
189b2af5 3410indicates the length of the string. Handles 'set' magic. See C<PUSHp>.
cb1a09d0 3411
3412 XPUSHp(char *c, int len)
3413
3414=item XPUSHs
3415
189b2af5 3416Push an SV onto the stack, extending the stack if necessary. Does not
3417handle 'set' magic. See C<PUSHs>.
cb1a09d0 3418
3419 XPUSHs(sv)
3420
e89caa19 3421=item XPUSHu
3422
3423Push an unsigned integer onto the stack, extending the stack if
3424necessary. See C<PUSHu>.
3425
5fb8527f 3426=item XS
3427
3428Macro to declare an XSUB and its C parameter list. This is handled by
3429C<xsubpp>.
3430
cb1a09d0 3431=item XSRETURN
3432
3433Return from XSUB, indicating number of items on the stack. This is usually
3434handled by C<xsubpp>.
3435
ef50df4b 3436 XSRETURN(int x)
cb1a09d0 3437
3438=item XSRETURN_EMPTY
3439
5fb8527f 3440Return an empty list from an XSUB immediately.
cb1a09d0 3441
3442 XSRETURN_EMPTY;
3443
5fb8527f 3444=item XSRETURN_IV
3445
3446Return an integer from an XSUB immediately. Uses C<XST_mIV>.
3447
ef50df4b 3448 XSRETURN_IV(IV v)
5fb8527f 3449
cb1a09d0 3450=item XSRETURN_NO
3451
5fb8527f 3452Return C<&sv_no> from an XSUB immediately. Uses C<XST_mNO>.
cb1a09d0 3453
3454 XSRETURN_NO;
3455
5fb8527f 3456=item XSRETURN_NV
3457
3458Return an double from an XSUB immediately. Uses C<XST_mNV>.
3459
ef50df4b 3460 XSRETURN_NV(NV v)
5fb8527f 3461
3462=item XSRETURN_PV
3463
3464Return a copy of a string from an XSUB immediately. Uses C<XST_mPV>.
3465
ef50df4b 3466 XSRETURN_PV(char *v)
5fb8527f 3467
cb1a09d0 3468=item XSRETURN_UNDEF
3469
5fb8527f 3470Return C<&sv_undef> from an XSUB immediately. Uses C<XST_mUNDEF>.
cb1a09d0 3471
3472 XSRETURN_UNDEF;
3473
3474=item XSRETURN_YES
3475
5fb8527f 3476Return C<&sv_yes> from an XSUB immediately. Uses C<XST_mYES>.
cb1a09d0 3477
3478 XSRETURN_YES;
3479
5fb8527f 3480=item XST_mIV
3481
3482Place an integer into the specified position C<i> on the stack. The value is
3483stored in a new mortal SV.
3484
ef50df4b 3485 XST_mIV( int i, IV v )
5fb8527f 3486
3487=item XST_mNV
3488
3489Place a double into the specified position C<i> on the stack. The value is
3490stored in a new mortal SV.
3491
ef50df4b 3492 XST_mNV( int i, NV v )
5fb8527f 3493
3494=item XST_mNO
3495
3496Place C<&sv_no> into the specified position C<i> on the stack.
3497
ef50df4b 3498 XST_mNO( int i )
5fb8527f 3499
3500=item XST_mPV
3501
3502Place a copy of a string into the specified position C<i> on the stack. The
3503value is stored in a new mortal SV.
3504
ef50df4b 3505 XST_mPV( int i, char *v )
5fb8527f 3506
3507=item XST_mUNDEF
3508
3509Place C<&sv_undef> into the specified position C<i> on the stack.
3510
ef50df4b 3511 XST_mUNDEF( int i )
5fb8527f 3512
3513=item XST_mYES
3514
3515Place C<&sv_yes> into the specified position C<i> on the stack.
3516
ef50df4b 3517 XST_mYES( int i )
5fb8527f 3518
3519=item XS_VERSION
3520
3521The version identifier for an XS module. This is usually handled
3522automatically by C<ExtUtils::MakeMaker>. See C<XS_VERSION_BOOTCHECK>.
3523
3524=item XS_VERSION_BOOTCHECK
3525
3526Macro to verify that a PM module's $VERSION variable matches the XS module's
3527C<XS_VERSION> variable. This is usually handled automatically by
3528C<xsubpp>. See L<perlxs/"The VERSIONCHECK: Keyword">.
3529
cb1a09d0 3530=item Zero
3531
3532The XSUB-writer's interface to the C C<memzero> function. The C<d> is the
3533destination, C<n> is the number of items, and C<t> is the type.
3534
e89caa19 3535 void Zero( d, n, t )
cb1a09d0 3536
3537=back
3538
9cecd9f2 3539=head1 AUTHORS
cb1a09d0 3540
9cecd9f2 3541Until May 1997, this document was maintained by Jeff Okamoto
3542<okamoto@corp.hp.com>. It is now maintained as part of Perl itself.
cb1a09d0 3543
3544With lots of help and suggestions from Dean Roehrich, Malcolm Beattie,
3545Andreas Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil
189b2af5 3546Bowers, Matthew Green, Tim Bunce, Spider Boardman, Ulrich Pfeifer,
3547Stephen McCamant, and Gurusamy Sarathy.
cb1a09d0 3548
9cecd9f2 3549API Listing originally by Dean Roehrich <roehrich@cray.com>.