[inseparable changes from patch from perl-5.003_97d to perl-5.003_97e]
[p5sagit/p5-mst-13.2.git] / pod / perlguts.pod
CommitLineData
a0d0e21e 1=head1 NAME
2
3perlguts - Perl's Internal Functions
4
5=head1 DESCRIPTION
6
7This document attempts to describe some of the internal functions of the
8Perl executable. It is far from complete and probably contains many errors.
9Please refer any questions or comments to the author below.
10
0a753a76 11=head1 Variables
12
5f05dabc 13=head2 Datatypes
a0d0e21e 14
15Perl has three typedefs that handle Perl's three main data types:
16
17 SV Scalar Value
18 AV Array Value
19 HV Hash Value
20
d1b91892 21Each typedef has specific routines that manipulate the various data types.
a0d0e21e 22
23=head2 What is an "IV"?
24
5f05dabc 25Perl uses a special typedef IV which is a simple integer type that is
26guaranteed to be large enough to hold a pointer (as well as an integer).
a0d0e21e 27
d1b91892 28Perl also uses two special typedefs, I32 and I16, which will always be at
29least 32-bits and 16-bits long, respectively.
a0d0e21e 30
54310121 31=head2 Working with SVs
a0d0e21e 32
33An SV can be created and loaded with one command. There are four types of
34values that can be loaded: an integer value (IV), a double (NV), a string,
35(PV), and another scalar (SV).
36
37The four routines are:
38
39 SV* newSViv(IV);
40 SV* newSVnv(double);
41 SV* newSVpv(char*, int);
42 SV* newSVsv(SV*);
43
5fb8527f 44To change the value of an *already-existing* SV, there are five routines:
a0d0e21e 45
46 void sv_setiv(SV*, IV);
47 void sv_setnv(SV*, double);
48 void sv_setpvn(SV*, char*, int)
49 void sv_setpv(SV*, char*);
50 void sv_setsv(SV*, SV*);
51
52Notice that you can choose to specify the length of the string to be
d1b91892 53assigned by using C<sv_setpvn> or C<newSVpv>, or you may allow Perl to
cb1a09d0 54calculate the length by using C<sv_setpv> or by specifying 0 as the second
d1b91892 55argument to C<newSVpv>. Be warned, though, that Perl will determine the
a0d0e21e 56string's length by using C<strlen>, which depends on the string terminating
57with a NUL character.
58
54310121 59All SVs that will contain strings should, but need not, be terminated
5f05dabc 60with a NUL character. If it is not NUL-terminated there is a risk of
61core dumps and corruptions from code which passes the string to C
62functions or system calls which expect a NUL-terminated string.
63Perl's own functions typically add a trailing NUL for this reason.
64Nevertheless, you should be very careful when you pass a string stored
65in an SV to a C function or system call.
66
a0d0e21e 67To access the actual value that an SV points to, you can use the macros:
68
69 SvIV(SV*)
70 SvNV(SV*)
71 SvPV(SV*, STRLEN len)
72
73which will automatically coerce the actual scalar type into an IV, double,
74or string.
75
76In the C<SvPV> macro, the length of the string returned is placed into the
77variable C<len> (this is a macro, so you do I<not> use C<&len>). If you do not
78care what the length of the data is, use the global variable C<na>. Remember,
79however, that Perl allows arbitrary strings of data that may both contain
54310121 80NULs and might not be terminated by a NUL.
a0d0e21e 81
07fa94a1 82If you want to know if the scalar value is TRUE, you can use:
a0d0e21e 83
84 SvTRUE(SV*)
85
86Although Perl will automatically grow strings for you, if you need to force
87Perl to allocate more memory for your SV, you can use the macro
88
89 SvGROW(SV*, STRLEN newlen)
90
91which will determine if more memory needs to be allocated. If so, it will
92call the function C<sv_grow>. Note that C<SvGROW> can only increase, not
5f05dabc 93decrease, the allocated memory of an SV and that it does not automatically
94add a byte for the a trailing NUL (perl's own string functions typically do
8ebc5c01 95C<SvGROW(sv, len + 1)>).
a0d0e21e 96
97If you have an SV and want to know what kind of data Perl thinks is stored
98in it, you can use the following macros to check the type of SV you have.
99
100 SvIOK(SV*)
101 SvNOK(SV*)
102 SvPOK(SV*)
103
104You can get and set the current length of the string stored in an SV with
105the following macros:
106
107 SvCUR(SV*)
108 SvCUR_set(SV*, I32 val)
109
cb1a09d0 110You can also get a pointer to the end of the string stored in the SV
111with the macro:
112
113 SvEND(SV*)
114
115But note that these last three macros are valid only if C<SvPOK()> is true.
a0d0e21e 116
d1b91892 117If you want to append something to the end of string stored in an C<SV*>,
118you can use the following functions:
119
120 void sv_catpv(SV*, char*);
121 void sv_catpvn(SV*, char*, int);
122 void sv_catsv(SV*, SV*);
123
124The first function calculates the length of the string to be appended by
125using C<strlen>. In the second, you specify the length of the string
126yourself. The third function extends the string stored in the first SV
127with the string stored in the second SV. It also forces the second SV to
128be interpreted as a string.
129
a0d0e21e 130If you know the name of a scalar variable, you can get a pointer to its SV
131by using the following:
132
5f05dabc 133 SV* perl_get_sv("package::varname", FALSE);
a0d0e21e 134
135This returns NULL if the variable does not exist.
136
d1b91892 137If you want to know if this variable (or any other SV) is actually C<defined>,
a0d0e21e 138you can call:
139
140 SvOK(SV*)
141
142The scalar C<undef> value is stored in an SV instance called C<sv_undef>. Its
143address can be used whenever an C<SV*> is needed.
144
145There are also the two values C<sv_yes> and C<sv_no>, which contain Boolean
146TRUE and FALSE values, respectively. Like C<sv_undef>, their addresses can
147be used whenever an C<SV*> is needed.
148
149Do not be fooled into thinking that C<(SV *) 0> is the same as C<&sv_undef>.
150Take this code:
151
152 SV* sv = (SV*) 0;
153 if (I-am-to-return-a-real-value) {
154 sv = sv_2mortal(newSViv(42));
155 }
156 sv_setsv(ST(0), sv);
157
158This code tries to return a new SV (which contains the value 42) if it should
159return a real value, or undef otherwise. Instead it has returned a null
160pointer which, somewhere down the line, will cause a segmentation violation,
5f05dabc 161bus error, or just weird results. Change the zero to C<&sv_undef> in the first
162line and all will be well.
a0d0e21e 163
164To free an SV that you've created, call C<SvREFCNT_dec(SV*)>. Normally this
3fe9a6f1 165call is not necessary (see L<Reference Counts and Mortality>).
a0d0e21e 166
d1b91892 167=head2 What's Really Stored in an SV?
a0d0e21e 168
169Recall that the usual method of determining the type of scalar you have is
5f05dabc 170to use C<Sv*OK> macros. Because a scalar can be both a number and a string,
d1b91892 171usually these macros will always return TRUE and calling the C<Sv*V>
a0d0e21e 172macros will do the appropriate conversion of string to integer/double or
173integer/double to string.
174
175If you I<really> need to know if you have an integer, double, or string
176pointer in an SV, you can use the following three macros instead:
177
178 SvIOKp(SV*)
179 SvNOKp(SV*)
180 SvPOKp(SV*)
181
182These will tell you if you truly have an integer, double, or string pointer
d1b91892 183stored in your SV. The "p" stands for private.
a0d0e21e 184
07fa94a1 185In general, though, it's best to use the C<Sv*V> macros.
a0d0e21e 186
54310121 187=head2 Working with AVs
a0d0e21e 188
07fa94a1 189There are two ways to create and load an AV. The first method creates an
190empty AV:
a0d0e21e 191
192 AV* newAV();
193
54310121 194The second method both creates the AV and initially populates it with SVs:
a0d0e21e 195
196 AV* av_make(I32 num, SV **ptr);
197
5f05dabc 198The second argument points to an array containing C<num> C<SV*>'s. Once the
54310121 199AV has been created, the SVs can be destroyed, if so desired.
a0d0e21e 200
54310121 201Once the AV has been created, the following operations are possible on AVs:
a0d0e21e 202
203 void av_push(AV*, SV*);
204 SV* av_pop(AV*);
205 SV* av_shift(AV*);
206 void av_unshift(AV*, I32 num);
207
208These should be familiar operations, with the exception of C<av_unshift>.
209This routine adds C<num> elements at the front of the array with the C<undef>
210value. You must then use C<av_store> (described below) to assign values
211to these new elements.
212
213Here are some other functions:
214
5f05dabc 215 I32 av_len(AV*);
a0d0e21e 216 SV** av_fetch(AV*, I32 key, I32 lval);
a0d0e21e 217 SV** av_store(AV*, I32 key, SV* val);
a0d0e21e 218
5f05dabc 219The C<av_len> function returns the highest index value in array (just
220like $#array in Perl). If the array is empty, -1 is returned. The
221C<av_fetch> function returns the value at index C<key>, but if C<lval>
222is non-zero, then C<av_fetch> will store an undef value at that index.
223The C<av_store> function stores the value C<val> at index C<key>.
224note that C<av_fetch> and C<av_store> both return C<SV**>'s, not C<SV*>'s
225as their return value.
d1b91892 226
a0d0e21e 227 void av_clear(AV*);
a0d0e21e 228 void av_undef(AV*);
cb1a09d0 229 void av_extend(AV*, I32 key);
5f05dabc 230
231The C<av_clear> function deletes all the elements in the AV* array, but
232does not actually delete the array itself. The C<av_undef> function will
233delete all the elements in the array plus the array itself. The
234C<av_extend> function extends the array so that it contains C<key>
235elements. If C<key> is less than the current length of the array, then
236nothing is done.
a0d0e21e 237
238If you know the name of an array variable, you can get a pointer to its AV
239by using the following:
240
5f05dabc 241 AV* perl_get_av("package::varname", FALSE);
a0d0e21e 242
243This returns NULL if the variable does not exist.
244
54310121 245=head2 Working with HVs
a0d0e21e 246
247To create an HV, you use the following routine:
248
249 HV* newHV();
250
54310121 251Once the HV has been created, the following operations are possible on HVs:
a0d0e21e 252
253 SV** hv_store(HV*, char* key, U32 klen, SV* val, U32 hash);
254 SV** hv_fetch(HV*, char* key, U32 klen, I32 lval);
255
5f05dabc 256The C<klen> parameter is the length of the key being passed in (Note that
257you cannot pass 0 in as a value of C<klen> to tell Perl to measure the
258length of the key). The C<val> argument contains the SV pointer to the
54310121 259scalar being stored, and C<hash> is the precomputed hash value (zero if
5f05dabc 260you want C<hv_store> to calculate it for you). The C<lval> parameter
261indicates whether this fetch is actually a part of a store operation, in
262which case a new undefined value will be added to the HV with the supplied
263key and C<hv_fetch> will return as if the value had already existed.
a0d0e21e 264
5f05dabc 265Remember that C<hv_store> and C<hv_fetch> return C<SV**>'s and not just
266C<SV*>. To access the scalar value, you must first dereference the return
267value. However, you should check to make sure that the return value is
268not NULL before dereferencing it.
a0d0e21e 269
270These two functions check if a hash table entry exists, and deletes it.
271
272 bool hv_exists(HV*, char* key, U32 klen);
d1b91892 273 SV* hv_delete(HV*, char* key, U32 klen, I32 flags);
a0d0e21e 274
5f05dabc 275If C<flags> does not include the C<G_DISCARD> flag then C<hv_delete> will
276create and return a mortal copy of the deleted value.
277
a0d0e21e 278And more miscellaneous functions:
279
280 void hv_clear(HV*);
a0d0e21e 281 void hv_undef(HV*);
5f05dabc 282
283Like their AV counterparts, C<hv_clear> deletes all the entries in the hash
284table but does not actually delete the hash table. The C<hv_undef> deletes
285both the entries and the hash table itself.
a0d0e21e 286
d1b91892 287Perl keeps the actual data in linked list of structures with a typedef of HE.
288These contain the actual key and value pointers (plus extra administrative
289overhead). The key is a string pointer; the value is an C<SV*>. However,
290once you have an C<HE*>, to get the actual key and value, use the routines
291specified below.
292
a0d0e21e 293 I32 hv_iterinit(HV*);
294 /* Prepares starting point to traverse hash table */
295 HE* hv_iternext(HV*);
296 /* Get the next entry, and return a pointer to a
297 structure that has both the key and value */
298 char* hv_iterkey(HE* entry, I32* retlen);
299 /* Get the key from an HE structure and also return
300 the length of the key string */
cb1a09d0 301 SV* hv_iterval(HV*, HE* entry);
a0d0e21e 302 /* Return a SV pointer to the value of the HE
303 structure */
cb1a09d0 304 SV* hv_iternextsv(HV*, char** key, I32* retlen);
d1b91892 305 /* This convenience routine combines hv_iternext,
306 hv_iterkey, and hv_iterval. The key and retlen
307 arguments are return values for the key and its
308 length. The value is returned in the SV* argument */
a0d0e21e 309
310If you know the name of a hash variable, you can get a pointer to its HV
311by using the following:
312
5f05dabc 313 HV* perl_get_hv("package::varname", FALSE);
a0d0e21e 314
315This returns NULL if the variable does not exist.
316
8ebc5c01 317The hash algorithm is defined in the C<PERL_HASH(hash, key, klen)> macro:
a0d0e21e 318
319 i = klen;
320 hash = 0;
321 s = key;
322 while (i--)
323 hash = hash * 33 + *s++;
324
1e422769 325=head2 Hash API Extensions
326
327Beginning with version 5.004, the following functions are also supported:
328
329 HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash);
330 HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash);
331
332 bool hv_exists_ent (HV* tb, SV* key, U32 hash);
333 SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash);
334
335 SV* hv_iterkeysv (HE* entry);
336
337Note that these functions take C<SV*> keys, which simplifies writing
338of extension code that deals with hash structures. These functions
339also allow passing of C<SV*> keys to C<tie> functions without forcing
340you to stringify the keys (unlike the previous set of functions).
341
342They also return and accept whole hash entries (C<HE*>), making their
343use more efficient (since the hash number for a particular string
344doesn't have to be recomputed every time). See L<API LISTING> later in
345this document for detailed descriptions.
346
347The following macros must always be used to access the contents of hash
348entries. Note that the arguments to these macros must be simple
349variables, since they may get evaluated more than once. See
350L<API LISTING> later in this document for detailed descriptions of these
351macros.
352
353 HePV(HE* he, STRLEN len)
354 HeVAL(HE* he)
355 HeHASH(HE* he)
356 HeSVKEY(HE* he)
357 HeSVKEY_force(HE* he)
358 HeSVKEY_set(HE* he, SV* sv)
359
360These two lower level macros are defined, but must only be used when
361dealing with keys that are not C<SV*>s:
362
363 HeKEY(HE* he)
364 HeKLEN(HE* he)
365
366
a0d0e21e 367=head2 References
368
d1b91892 369References are a special type of scalar that point to other data types
370(including references).
a0d0e21e 371
07fa94a1 372To create a reference, use either of the following functions:
a0d0e21e 373
5f05dabc 374 SV* newRV_inc((SV*) thing);
375 SV* newRV_noinc((SV*) thing);
a0d0e21e 376
5f05dabc 377The C<thing> argument can be any of an C<SV*>, C<AV*>, or C<HV*>. The
07fa94a1 378functions are identical except that C<newRV_inc> increments the reference
379count of the C<thing>, while C<newRV_noinc> does not. For historical
380reasons, C<newRV> is a synonym for C<newRV_inc>.
381
382Once you have a reference, you can use the following macro to dereference
383the reference:
a0d0e21e 384
385 SvRV(SV*)
386
387then call the appropriate routines, casting the returned C<SV*> to either an
d1b91892 388C<AV*> or C<HV*>, if required.
a0d0e21e 389
d1b91892 390To determine if an SV is a reference, you can use the following macro:
a0d0e21e 391
392 SvROK(SV*)
393
07fa94a1 394To discover what type of value the reference refers to, use the following
395macro and then check the return value.
d1b91892 396
397 SvTYPE(SvRV(SV*))
398
399The most useful types that will be returned are:
400
401 SVt_IV Scalar
402 SVt_NV Scalar
403 SVt_PV Scalar
5f05dabc 404 SVt_RV Scalar
d1b91892 405 SVt_PVAV Array
406 SVt_PVHV Hash
407 SVt_PVCV Code
5f05dabc 408 SVt_PVGV Glob (possible a file handle)
409 SVt_PVMG Blessed or Magical Scalar
410
411 See the sv.h header file for more details.
d1b91892 412
cb1a09d0 413=head2 Blessed References and Class Objects
414
415References are also used to support object-oriented programming. In the
416OO lexicon, an object is simply a reference that has been blessed into a
417package (or class). Once blessed, the programmer may now use the reference
418to access the various methods in the class.
419
420A reference can be blessed into a package with the following function:
421
422 SV* sv_bless(SV* sv, HV* stash);
423
424The C<sv> argument must be a reference. The C<stash> argument specifies
3fe9a6f1 425which class the reference will belong to. See
2ae324a7 426L<Stashes and Globs> for information on converting class names into stashes.
cb1a09d0 427
428/* Still under construction */
429
430Upgrades rv to reference if not already one. Creates new SV for rv to
8ebc5c01 431point to. If C<classname> is non-null, the SV is blessed into the specified
432class. SV is returned.
cb1a09d0 433
434 SV* newSVrv(SV* rv, char* classname);
435
8ebc5c01 436Copies integer or double into an SV whose reference is C<rv>. SV is blessed
437if C<classname> is non-null.
cb1a09d0 438
439 SV* sv_setref_iv(SV* rv, char* classname, IV iv);
440 SV* sv_setref_nv(SV* rv, char* classname, NV iv);
441
5f05dabc 442Copies the pointer value (I<the address, not the string!>) into an SV whose
8ebc5c01 443reference is rv. SV is blessed if C<classname> is non-null.
cb1a09d0 444
445 SV* sv_setref_pv(SV* rv, char* classname, PV iv);
446
8ebc5c01 447Copies string into an SV whose reference is C<rv>. Set length to 0 to let
448Perl calculate the string length. SV is blessed if C<classname> is non-null.
cb1a09d0 449
450 SV* sv_setref_pvn(SV* rv, char* classname, PV iv, int length);
451
452 int sv_isa(SV* sv, char* name);
453 int sv_isobject(SV* sv);
454
5f05dabc 455=head2 Creating New Variables
cb1a09d0 456
5f05dabc 457To create a new Perl variable with an undef value which can be accessed from
458your Perl script, use the following routines, depending on the variable type.
cb1a09d0 459
5f05dabc 460 SV* perl_get_sv("package::varname", TRUE);
461 AV* perl_get_av("package::varname", TRUE);
462 HV* perl_get_hv("package::varname", TRUE);
cb1a09d0 463
464Notice the use of TRUE as the second parameter. The new variable can now
465be set, using the routines appropriate to the data type.
466
5f05dabc 467There are additional macros whose values may be bitwise OR'ed with the
468C<TRUE> argument to enable certain extra features. Those bits are:
cb1a09d0 469
5f05dabc 470 GV_ADDMULTI Marks the variable as multiply defined, thus preventing the
54310121 471 "Name <varname> used only once: possible typo" warning.
07fa94a1 472 GV_ADDWARN Issues the warning "Had to create <varname> unexpectedly" if
473 the variable did not exist before the function was called.
cb1a09d0 474
07fa94a1 475If you do not specify a package name, the variable is created in the current
476package.
cb1a09d0 477
5f05dabc 478=head2 Reference Counts and Mortality
a0d0e21e 479
54310121 480Perl uses an reference count-driven garbage collection mechanism. SVs,
481AVs, or HVs (xV for short in the following) start their life with a
55497cff 482reference count of 1. If the reference count of an xV ever drops to 0,
07fa94a1 483then it will be destroyed and its memory made available for reuse.
55497cff 484
485This normally doesn't happen at the Perl level unless a variable is
5f05dabc 486undef'ed or the last variable holding a reference to it is changed or
487overwritten. At the internal level, however, reference counts can be
55497cff 488manipulated with the following macros:
489
490 int SvREFCNT(SV* sv);
5f05dabc 491 SV* SvREFCNT_inc(SV* sv);
55497cff 492 void SvREFCNT_dec(SV* sv);
493
494However, there is one other function which manipulates the reference
07fa94a1 495count of its argument. The C<newRV_inc> function, you will recall,
496creates a reference to the specified argument. As a side effect,
497it increments the argument's reference count. If this is not what
498you want, use C<newRV_noinc> instead.
499
500For example, imagine you want to return a reference from an XSUB function.
501Inside the XSUB routine, you create an SV which initially has a reference
502count of one. Then you call C<newRV_inc>, passing it the just-created SV.
5f05dabc 503This returns the reference as a new SV, but the reference count of the
504SV you passed to C<newRV_inc> has been incremented to two. Now you
07fa94a1 505return the reference from the XSUB routine and forget about the SV.
506But Perl hasn't! Whenever the returned reference is destroyed, the
507reference count of the original SV is decreased to one and nothing happens.
508The SV will hang around without any way to access it until Perl itself
509terminates. This is a memory leak.
5f05dabc 510
511The correct procedure, then, is to use C<newRV_noinc> instead of
faed5253 512C<newRV_inc>. Then, if and when the last reference is destroyed,
513the reference count of the SV will go to zero and it will be destroyed,
07fa94a1 514stopping any memory leak.
55497cff 515
5f05dabc 516There are some convenience functions available that can help with the
54310121 517destruction of xVs. These functions introduce the concept of "mortality".
07fa94a1 518An xV that is mortal has had its reference count marked to be decremented,
519but not actually decremented, until "a short time later". Generally the
520term "short time later" means a single Perl statement, such as a call to
54310121 521an XSUB function. The actual determinant for when mortal xVs have their
07fa94a1 522reference count decremented depends on two macros, SAVETMPS and FREETMPS.
523See L<perlcall> and L<perlxs> for more details on these macros.
55497cff 524
525"Mortalization" then is at its simplest a deferred C<SvREFCNT_dec>.
526However, if you mortalize a variable twice, the reference count will
527later be decremented twice.
528
529You should be careful about creating mortal variables. Strange things
530can happen if you make the same value mortal within multiple contexts,
5f05dabc 531or if you make a variable mortal multiple times.
a0d0e21e 532
533To create a mortal variable, use the functions:
534
535 SV* sv_newmortal()
536 SV* sv_2mortal(SV*)
537 SV* sv_mortalcopy(SV*)
538
5f05dabc 539The first call creates a mortal SV, the second converts an existing
540SV to a mortal SV (and thus defers a call to C<SvREFCNT_dec>), and the
541third creates a mortal copy of an existing SV.
a0d0e21e 542
54310121 543The mortal routines are not just for SVs -- AVs and HVs can be
faed5253 544made mortal by passing their address (type-casted to C<SV*>) to the
07fa94a1 545C<sv_2mortal> or C<sv_mortalcopy> routines.
a0d0e21e 546
5f05dabc 547=head2 Stashes and Globs
a0d0e21e 548
aa689395 549A "stash" is a hash that contains all of the different objects that
550are contained within a package. Each key of the stash is a symbol
551name (shared by all the different types of objects that have the same
552name), and each value in the hash table is a GV (Glob Value). This GV
553in turn contains references to the various objects of that name,
554including (but not limited to) the following:
cb1a09d0 555
a0d0e21e 556 Scalar Value
557 Array Value
558 Hash Value
559 File Handle
560 Directory Handle
561 Format
562 Subroutine
563
5f05dabc 564There is a single stash called "defstash" that holds the items that exist
565in the "main" package. To get at the items in other packages, append the
566string "::" to the package name. The items in the "Foo" package are in
567the stash "Foo::" in defstash. The items in the "Bar::Baz" package are
568in the stash "Baz::" in "Bar::"'s stash.
a0d0e21e 569
d1b91892 570To get the stash pointer for a particular package, use the function:
a0d0e21e 571
572 HV* gv_stashpv(char* name, I32 create)
573 HV* gv_stashsv(SV*, I32 create)
574
575The first function takes a literal string, the second uses the string stored
d1b91892 576in the SV. Remember that a stash is just a hash table, so you get back an
cb1a09d0 577C<HV*>. The C<create> flag will create a new package if it is set.
a0d0e21e 578
579The name that C<gv_stash*v> wants is the name of the package whose symbol table
580you want. The default package is called C<main>. If you have multiply nested
d1b91892 581packages, pass their names to C<gv_stash*v>, separated by C<::> as in the Perl
582language itself.
a0d0e21e 583
584Alternately, if you have an SV that is a blessed reference, you can find
585out the stash pointer by using:
586
587 HV* SvSTASH(SvRV(SV*));
588
589then use the following to get the package name itself:
590
591 char* HvNAME(HV* stash);
592
5f05dabc 593If you need to bless or re-bless an object you can use the following
594function:
a0d0e21e 595
596 SV* sv_bless(SV*, HV* stash)
597
598where the first argument, an C<SV*>, must be a reference, and the second
599argument is a stash. The returned C<SV*> can now be used in the same way
600as any other SV.
601
d1b91892 602For more information on references and blessings, consult L<perlref>.
603
54310121 604=head2 Double-Typed SVs
0a753a76 605
606Scalar variables normally contain only one type of value, an integer,
607double, pointer, or reference. Perl will automatically convert the
608actual scalar data from the stored type into the requested type.
609
610Some scalar variables contain more than one type of scalar data. For
611example, the variable C<$!> contains either the numeric value of C<errno>
612or its string equivalent from either C<strerror> or C<sys_errlist[]>.
613
614To force multiple data values into an SV, you must do two things: use the
615C<sv_set*v> routines to add the additional scalar type, then set a flag
616so that Perl will believe it contains more than one type of data. The
617four macros to set the flags are:
618
619 SvIOK_on
620 SvNOK_on
621 SvPOK_on
622 SvROK_on
623
624The particular macro you must use depends on which C<sv_set*v> routine
625you called first. This is because every C<sv_set*v> routine turns on
626only the bit for the particular type of data being set, and turns off
627all the rest.
628
629For example, to create a new Perl variable called "dberror" that contains
630both the numeric and descriptive string error values, you could use the
631following code:
632
633 extern int dberror;
634 extern char *dberror_list;
635
636 SV* sv = perl_get_sv("dberror", TRUE);
637 sv_setiv(sv, (IV) dberror);
638 sv_setpv(sv, dberror_list[dberror]);
639 SvIOK_on(sv);
640
641If the order of C<sv_setiv> and C<sv_setpv> had been reversed, then the
642macro C<SvPOK_on> would need to be called instead of C<SvIOK_on>.
643
644=head2 Magic Variables
a0d0e21e 645
d1b91892 646[This section still under construction. Ignore everything here. Post no
647bills. Everything not permitted is forbidden.]
648
d1b91892 649Any SV may be magical, that is, it has special features that a normal
650SV does not have. These features are stored in the SV structure in a
5f05dabc 651linked list of C<struct magic>'s, typedef'ed to C<MAGIC>.
d1b91892 652
653 struct magic {
654 MAGIC* mg_moremagic;
655 MGVTBL* mg_virtual;
656 U16 mg_private;
657 char mg_type;
658 U8 mg_flags;
659 SV* mg_obj;
660 char* mg_ptr;
661 I32 mg_len;
662 };
663
664Note this is current as of patchlevel 0, and could change at any time.
665
666=head2 Assigning Magic
667
668Perl adds magic to an SV using the sv_magic function:
669
670 void sv_magic(SV* sv, SV* obj, int how, char* name, I32 namlen);
671
672The C<sv> argument is a pointer to the SV that is to acquire a new magical
673feature.
674
675If C<sv> is not already magical, Perl uses the C<SvUPGRADE> macro to
676set the C<SVt_PVMG> flag for the C<sv>. Perl then continues by adding
677it to the beginning of the linked list of magical features. Any prior
678entry of the same type of magic is deleted. Note that this can be
5fb8527f 679overridden, and multiple instances of the same type of magic can be
d1b91892 680associated with an SV.
681
54310121 682The C<name> and C<namlen> arguments are used to associate a string with
683the magic, typically the name of a variable. C<namlen> is stored in the
684C<mg_len> field and if C<name> is non-null and C<namlen> >= 0 a malloc'd
d1b91892 685copy of the name is stored in C<mg_ptr> field.
686
687The sv_magic function uses C<how> to determine which, if any, predefined
688"Magic Virtual Table" should be assigned to the C<mg_virtual> field.
cb1a09d0 689See the "Magic Virtual Table" section below. The C<how> argument is also
690stored in the C<mg_type> field.
d1b91892 691
692The C<obj> argument is stored in the C<mg_obj> field of the C<MAGIC>
693structure. If it is not the same as the C<sv> argument, the reference
694count of the C<obj> object is incremented. If it is the same, or if
695the C<how> argument is "#", or if it is a null pointer, then C<obj> is
696merely stored, without the reference count being incremented.
697
cb1a09d0 698There is also a function to add magic to an C<HV>:
699
700 void hv_magic(HV *hv, GV *gv, int how);
701
702This simply calls C<sv_magic> and coerces the C<gv> argument into an C<SV>.
703
704To remove the magic from an SV, call the function sv_unmagic:
705
706 void sv_unmagic(SV *sv, int type);
707
708The C<type> argument should be equal to the C<how> value when the C<SV>
709was initially made magical.
710
d1b91892 711=head2 Magic Virtual Tables
712
713The C<mg_virtual> field in the C<MAGIC> structure is a pointer to a
714C<MGVTBL>, which is a structure of function pointers and stands for
715"Magic Virtual Table" to handle the various operations that might be
716applied to that variable.
717
718The C<MGVTBL> has five pointers to the following routine types:
719
720 int (*svt_get)(SV* sv, MAGIC* mg);
721 int (*svt_set)(SV* sv, MAGIC* mg);
722 U32 (*svt_len)(SV* sv, MAGIC* mg);
723 int (*svt_clear)(SV* sv, MAGIC* mg);
724 int (*svt_free)(SV* sv, MAGIC* mg);
725
726This MGVTBL structure is set at compile-time in C<perl.h> and there are
727currently 19 types (or 21 with overloading turned on). These different
728structures contain pointers to various routines that perform additional
729actions depending on which function is being called.
730
731 Function pointer Action taken
732 ---------------- ------------
733 svt_get Do something after the value of the SV is retrieved.
734 svt_set Do something after the SV is assigned a value.
735 svt_len Report on the SV's length.
736 svt_clear Clear something the SV represents.
737 svt_free Free any extra storage associated with the SV.
738
739For instance, the MGVTBL structure called C<vtbl_sv> (which corresponds
740to an C<mg_type> of '\0') contains:
741
742 { magic_get, magic_set, magic_len, 0, 0 }
743
744Thus, when an SV is determined to be magical and of type '\0', if a get
745operation is being performed, the routine C<magic_get> is called. All
746the various routines for the various magical types begin with C<magic_>.
747
748The current kinds of Magic Virtual Tables are:
749
07fa94a1 750 mg_type MGVTBL Type of magical
5f05dabc 751 ------- ------ ----------------------------
d1b91892 752 \0 vtbl_sv Regexp???
753 A vtbl_amagic Operator Overloading
754 a vtbl_amagicelem Operator Overloading
755 c 0 Used in Operator Overloading
756 B vtbl_bm Boyer-Moore???
757 E vtbl_env %ENV hash
758 e vtbl_envelem %ENV hash element
759 g vtbl_mglob Regexp /g flag???
760 I vtbl_isa @ISA array
761 i vtbl_isaelem @ISA array element
762 L 0 (but sets RMAGICAL) Perl Module/Debugger???
763 l vtbl_dbline Debugger?
44a8e56a 764 o vtbl_collxfrm Locale transformation
d1b91892 765 P vtbl_pack Tied Array or Hash
766 p vtbl_packelem Tied Array or Hash element
767 q vtbl_packelem Tied Scalar or Handle
768 S vtbl_sig Signal Hash
769 s vtbl_sigelem Signal Hash element
770 t vtbl_taint Taintedness
771 U vtbl_uvar ???
772 v vtbl_vec Vector
773 x vtbl_substr Substring???
e616eb7b 774 y vtbl_itervar Shadow "foreach" iterator variable
d1b91892 775 * vtbl_glob GV???
776 # vtbl_arylen Array Length
777 . vtbl_pos $. scalar variable
5f05dabc 778 ~ None Used by certain extensions
d1b91892 779
68dc0745 780When an uppercase and lowercase letter both exist in the table, then the
781uppercase letter is used to represent some kind of composite type (a list
782or a hash), and the lowercase letter is used to represent an element of
d1b91892 783that composite type.
784
5f05dabc 785The '~' magic type is defined specifically for use by extensions and
786will not be used by perl itself. Extensions can use ~ magic to 'attach'
787private information to variables (typically objects). This is especially
788useful because there is no way for normal perl code to corrupt this
789private information (unlike using extra elements of a hash object).
790
791Note that because multiple extensions may be using ~ magic it is
792important for extensions to take extra care with it. Typically only
793using it on objects blessed into the same class as the extension
794is sufficient. It may also be appropriate to add an I32 'signature'
795at the top of the private data area and check that.
796
d1b91892 797=head2 Finding Magic
798
799 MAGIC* mg_find(SV*, int type); /* Finds the magic pointer of that type */
800
801This routine returns a pointer to the C<MAGIC> structure stored in the SV.
802If the SV does not have that magical feature, C<NULL> is returned. Also,
54310121 803if the SV is not of type SVt_PVMG, Perl may core dump.
d1b91892 804
805 int mg_copy(SV* sv, SV* nsv, char* key, STRLEN klen);
806
807This routine checks to see what types of magic C<sv> has. If the mg_type
68dc0745 808field is an uppercase letter, then the mg_obj is copied to C<nsv>, but
809the mg_type field is changed to be the lowercase letter.
a0d0e21e 810
0a753a76 811=head1 Subroutines
a0d0e21e 812
68dc0745 813=head2 XSUBs and the Argument Stack
5f05dabc 814
815The XSUB mechanism is a simple way for Perl programs to access C subroutines.
816An XSUB routine will have a stack that contains the arguments from the Perl
817program, and a way to map from the Perl data structures to a C equivalent.
818
819The stack arguments are accessible through the C<ST(n)> macro, which returns
820the C<n>'th stack argument. Argument 0 is the first argument passed in the
821Perl subroutine call. These arguments are C<SV*>, and can be used anywhere
822an C<SV*> is used.
823
824Most of the time, output from the C routine can be handled through use of
825the RETVAL and OUTPUT directives. However, there are some cases where the
826argument stack is not already long enough to handle all the return values.
827An example is the POSIX tzname() call, which takes no arguments, but returns
828two, the local time zone's standard and summer time abbreviations.
829
830To handle this situation, the PPCODE directive is used and the stack is
831extended using the macro:
832
833 EXTEND(sp, num);
834
835where C<sp> is the stack pointer, and C<num> is the number of elements the
836stack should be extended by.
837
838Now that there is room on the stack, values can be pushed on it using the
54310121 839macros to push IVs, doubles, strings, and SV pointers respectively:
5f05dabc 840
841 PUSHi(IV)
842 PUSHn(double)
843 PUSHp(char*, I32)
844 PUSHs(SV*)
845
846And now the Perl program calling C<tzname>, the two values will be assigned
847as in:
848
849 ($standard_abbrev, $summer_abbrev) = POSIX::tzname;
850
851An alternate (and possibly simpler) method to pushing values on the stack is
852to use the macros:
853
854 XPUSHi(IV)
855 XPUSHn(double)
856 XPUSHp(char*, I32)
857 XPUSHs(SV*)
858
859These macros automatically adjust the stack for you, if needed. Thus, you
860do not need to call C<EXTEND> to extend the stack.
861
862For more information, consult L<perlxs> and L<perlxstut>.
863
864=head2 Calling Perl Routines from within C Programs
a0d0e21e 865
866There are four routines that can be used to call a Perl subroutine from
867within a C program. These four are:
868
869 I32 perl_call_sv(SV*, I32);
870 I32 perl_call_pv(char*, I32);
871 I32 perl_call_method(char*, I32);
872 I32 perl_call_argv(char*, I32, register char**);
873
d1b91892 874The routine most often used is C<perl_call_sv>. The C<SV*> argument
875contains either the name of the Perl subroutine to be called, or a
876reference to the subroutine. The second argument consists of flags
877that control the context in which the subroutine is called, whether
878or not the subroutine is being passed arguments, how errors should be
879trapped, and how to treat return values.
a0d0e21e 880
881All four routines return the number of arguments that the subroutine returned
882on the Perl stack.
883
d1b91892 884When using any of these routines (except C<perl_call_argv>), the programmer
885must manipulate the Perl stack. These include the following macros and
886functions:
a0d0e21e 887
888 dSP
889 PUSHMARK()
890 PUTBACK
891 SPAGAIN
892 ENTER
893 SAVETMPS
894 FREETMPS
895 LEAVE
896 XPUSH*()
cb1a09d0 897 POP*()
a0d0e21e 898
5f05dabc 899For a detailed description of calling conventions from C to Perl,
900consult L<perlcall>.
a0d0e21e 901
5f05dabc 902=head2 Memory Allocation
a0d0e21e 903
5f05dabc 904It is suggested that you use the version of malloc that is distributed
905with Perl. It keeps pools of various sizes of unallocated memory in
07fa94a1 906order to satisfy allocation requests more quickly. However, on some
907platforms, it may cause spurious malloc or free errors.
d1b91892 908
909 New(x, pointer, number, type);
910 Newc(x, pointer, number, type, cast);
911 Newz(x, pointer, number, type);
912
07fa94a1 913These three macros are used to initially allocate memory.
5f05dabc 914
915The first argument C<x> was a "magic cookie" that was used to keep track
916of who called the macro, to help when debugging memory problems. However,
07fa94a1 917the current code makes no use of this feature (most Perl developers now
918use run-time memory checkers), so this argument can be any number.
5f05dabc 919
920The second argument C<pointer> should be the name of a variable that will
921point to the newly allocated memory.
d1b91892 922
d1b91892 923The third and fourth arguments C<number> and C<type> specify how many of
924the specified type of data structure should be allocated. The argument
925C<type> is passed to C<sizeof>. The final argument to C<Newc>, C<cast>,
926should be used if the C<pointer> argument is different from the C<type>
927argument.
928
929Unlike the C<New> and C<Newc> macros, the C<Newz> macro calls C<memzero>
930to zero out all the newly allocated memory.
931
932 Renew(pointer, number, type);
933 Renewc(pointer, number, type, cast);
934 Safefree(pointer)
935
936These three macros are used to change a memory buffer size or to free a
937piece of memory no longer needed. The arguments to C<Renew> and C<Renewc>
938match those of C<New> and C<Newc> with the exception of not needing the
939"magic cookie" argument.
940
941 Move(source, dest, number, type);
942 Copy(source, dest, number, type);
943 Zero(dest, number, type);
944
945These three macros are used to move, copy, or zero out previously allocated
946memory. The C<source> and C<dest> arguments point to the source and
947destination starting points. Perl will move, copy, or zero out C<number>
948instances of the size of the C<type> data structure (using the C<sizeof>
949function).
a0d0e21e 950
5f05dabc 951=head2 PerlIO
ce3d39e2 952
5f05dabc 953The most recent development releases of Perl has been experimenting with
954removing Perl's dependency on the "normal" standard I/O suite and allowing
955other stdio implementations to be used. This involves creating a new
956abstraction layer that then calls whichever implementation of stdio Perl
68dc0745 957was compiled with. All XSUBs should now use the functions in the PerlIO
5f05dabc 958abstraction layer and not make any assumptions about what kind of stdio
959is being used.
960
961For a complete description of the PerlIO abstraction, consult L<perlapio>.
962
8ebc5c01 963=head2 Putting a C value on Perl stack
ce3d39e2 964
965A lot of opcodes (this is an elementary operation in the internal perl
966stack machine) put an SV* on the stack. However, as an optimization
967the corresponding SV is (usually) not recreated each time. The opcodes
968reuse specially assigned SVs (I<target>s) which are (as a corollary)
969not constantly freed/created.
970
0a753a76 971Each of the targets is created only once (but see
ce3d39e2 972L<Scratchpads and recursion> below), and when an opcode needs to put
973an integer, a double, or a string on stack, it just sets the
974corresponding parts of its I<target> and puts the I<target> on stack.
975
976The macro to put this target on stack is C<PUSHTARG>, and it is
977directly used in some opcodes, as well as indirectly in zillions of
978others, which use it via C<(X)PUSH[pni]>.
979
8ebc5c01 980=head2 Scratchpads
ce3d39e2 981
54310121 982The question remains on when the SVs which are I<target>s for opcodes
5f05dabc 983are created. The answer is that they are created when the current unit --
984a subroutine or a file (for opcodes for statements outside of
985subroutines) -- is compiled. During this time a special anonymous Perl
ce3d39e2 986array is created, which is called a scratchpad for the current
987unit.
988
54310121 989A scratchpad keeps SVs which are lexicals for the current unit and are
ce3d39e2 990targets for opcodes. One can deduce that an SV lives on a scratchpad
991by looking on its flags: lexicals have C<SVs_PADMY> set, and
992I<target>s have C<SVs_PADTMP> set.
993
54310121 994The correspondence between OPs and I<target>s is not 1-to-1. Different
995OPs in the compile tree of the unit can use the same target, if this
ce3d39e2 996would not conflict with the expected life of the temporary.
997
2ae324a7 998=head2 Scratchpads and recursion
ce3d39e2 999
1000In fact it is not 100% true that a compiled unit contains a pointer to
1001the scratchpad AV. In fact it contains a pointer to an AV of
1002(initially) one element, and this element is the scratchpad AV. Why do
1003we need an extra level of indirection?
1004
1005The answer is B<recursion>, and maybe (sometime soon) B<threads>. Both
1006these can create several execution pointers going into the same
1007subroutine. For the subroutine-child not write over the temporaries
1008for the subroutine-parent (lifespan of which covers the call to the
1009child), the parent and the child should have different
1010scratchpads. (I<And> the lexicals should be separate anyway!)
1011
5f05dabc 1012So each subroutine is born with an array of scratchpads (of length 1).
1013On each entry to the subroutine it is checked that the current
ce3d39e2 1014depth of the recursion is not more than the length of this array, and
1015if it is, new scratchpad is created and pushed into the array.
1016
1017The I<target>s on this scratchpad are C<undef>s, but they are already
1018marked with correct flags.
1019
0a753a76 1020=head1 Compiled code
1021
1022=head2 Code tree
1023
1024Here we describe the internal form your code is converted to by
1025Perl. Start with a simple example:
1026
1027 $a = $b + $c;
1028
1029This is converted to a tree similar to this one:
1030
1031 assign-to
1032 / \
1033 + $a
1034 / \
1035 $b $c
1036
1037(but slightly more complicated). This tree reflect the way Perl
1038parsed your code, but has nothing to do with the execution order.
1039There is an additional "thread" going through the nodes of the tree
1040which shows the order of execution of the nodes. In our simplified
1041example above it looks like:
1042
1043 $b ---> $c ---> + ---> $a ---> assign-to
1044
1045But with the actual compile tree for C<$a = $b + $c> it is different:
1046some nodes I<optimized away>. As a corollary, though the actual tree
1047contains more nodes than our simplified example, the execution order
1048is the same as in our example.
1049
1050=head2 Examining the tree
1051
1052If you have your perl compiled for debugging (usually done with C<-D
1053optimize=-g> on C<Configure> command line), you may examine the
1054compiled tree by specifying C<-Dx> on the Perl command line. The
1055output takes several lines per node, and for C<$b+$c> it looks like
1056this:
1057
1058 5 TYPE = add ===> 6
1059 TARG = 1
1060 FLAGS = (SCALAR,KIDS)
1061 {
1062 TYPE = null ===> (4)
1063 (was rv2sv)
1064 FLAGS = (SCALAR,KIDS)
1065 {
1066 3 TYPE = gvsv ===> 4
1067 FLAGS = (SCALAR)
1068 GV = main::b
1069 }
1070 }
1071 {
1072 TYPE = null ===> (5)
1073 (was rv2sv)
1074 FLAGS = (SCALAR,KIDS)
1075 {
1076 4 TYPE = gvsv ===> 5
1077 FLAGS = (SCALAR)
1078 GV = main::c
1079 }
1080 }
1081
1082This tree has 5 nodes (one per C<TYPE> specifier), only 3 of them are
1083not optimized away (one per number in the left column). The immediate
1084children of the given node correspond to C<{}> pairs on the same level
1085of indentation, thus this listing corresponds to the tree:
1086
1087 add
1088 / \
1089 null null
1090 | |
1091 gvsv gvsv
1092
1093The execution order is indicated by C<===E<gt>> marks, thus it is C<3
10944 5 6> (node C<6> is not included into above listing), i.e.,
1095C<gvsv gvsv add whatever>.
1096
1097=head2 Compile pass 1: check routines
1098
1099The tree is created by the I<pseudo-compiler> while yacc code feeds it
1100the constructions it recognizes. Since yacc works bottom-up, so does
1101the first pass of perl compilation.
1102
1103What makes this pass interesting for perl developers is that some
1104optimization may be performed on this pass. This is optimization by
1105so-called I<check routines>. The correspondence between node names
1106and corresponding check routines is described in F<opcode.pl> (do not
1107forget to run C<make regen_headers> if you modify this file).
1108
1109A check routine is called when the node is fully constructed except
1110for the execution-order thread. Since at this time there is no
1111back-links to the currently constructed node, one can do most any
1112operation to the top-level node, including freeing it and/or creating
1113new nodes above/below it.
1114
1115The check routine returns the node which should be inserted into the
1116tree (if the top-level node was not modified, check routine returns
1117its argument).
1118
1119By convention, check routines have names C<ck_*>. They are usually
1120called from C<new*OP> subroutines (or C<convert>) (which in turn are
1121called from F<perly.y>).
1122
1123=head2 Compile pass 1a: constant folding
1124
1125Immediately after the check routine is called the returned node is
1126checked for being compile-time executable. If it is (the value is
1127judged to be constant) it is immediately executed, and a I<constant>
1128node with the "return value" of the corresponding subtree is
1129substituted instead. The subtree is deleted.
1130
1131If constant folding was not performed, the execution-order thread is
1132created.
1133
1134=head2 Compile pass 2: context propagation
1135
1136When a context for a part of compile tree is known, it is propagated
1137down through the tree. Aat this time the context can have 5 values
1138(instead of 2 for runtime context): void, boolean, scalar, list, and
1139lvalue. In contrast with the pass 1 this pass is processed from top
1140to bottom: a node's context determines the context for its children.
1141
1142Additional context-dependent optimizations are performed at this time.
1143Since at this moment the compile tree contains back-references (via
1144"thread" pointers), nodes cannot be free()d now. To allow
1145optimized-away nodes at this stage, such nodes are null()ified instead
1146of free()ing (i.e. their type is changed to OP_NULL).
1147
1148=head2 Compile pass 3: peephole optimization
1149
1150After the compile tree for a subroutine (or for an C<eval> or a file)
1151is created, an additional pass over the code is performed. This pass
1152is neither top-down or bottom-up, but in the execution order (with
1153additional compilications for conditionals). These optimizations are
1154done in the subroutine peep(). Optimizations performed at this stage
1155are subject to the same restrictions as in the pass 2.
1156
1157=head1 API LISTING
a0d0e21e 1158
cb1a09d0 1159This is a listing of functions, macros, flags, and variables that may be
1160useful to extension writers or that may be found while reading other
1161extensions.
a0d0e21e 1162
cb1a09d0 1163=over 8
a0d0e21e 1164
cb1a09d0 1165=item AvFILL
1166
1167See C<av_len>.
1168
1169=item av_clear
1170
1171Clears an array, making it empty.
1172
1173 void av_clear _((AV* ar));
1174
1175=item av_extend
1176
1177Pre-extend an array. The C<key> is the index to which the array should be
1178extended.
1179
1180 void av_extend _((AV* ar, I32 key));
1181
1182=item av_fetch
1183
1184Returns the SV at the specified index in the array. The C<key> is the
1185index. If C<lval> is set then the fetch will be part of a store. Check
1186that the return value is non-null before dereferencing it to a C<SV*>.
1187
1188 SV** av_fetch _((AV* ar, I32 key, I32 lval));
1189
1190=item av_len
1191
1192Returns the highest index in the array. Returns -1 if the array is empty.
1193
1194 I32 av_len _((AV* ar));
1195
1196=item av_make
1197
5fb8527f 1198Creates a new AV and populates it with a list of SVs. The SVs are copied
1199into the array, so they may be freed after the call to av_make. The new AV
5f05dabc 1200will have a reference count of 1.
cb1a09d0 1201
1202 AV* av_make _((I32 size, SV** svp));
1203
1204=item av_pop
1205
1206Pops an SV off the end of the array. Returns C<&sv_undef> if the array is
1207empty.
1208
1209 SV* av_pop _((AV* ar));
1210
1211=item av_push
1212
5fb8527f 1213Pushes an SV onto the end of the array. The array will grow automatically
1214to accommodate the addition.
cb1a09d0 1215
1216 void av_push _((AV* ar, SV* val));
1217
1218=item av_shift
1219
1220Shifts an SV off the beginning of the array.
1221
1222 SV* av_shift _((AV* ar));
1223
1224=item av_store
1225
1226Stores an SV in an array. The array index is specified as C<key>. The
1227return value will be null if the operation failed, otherwise it can be
1228dereferenced to get the original C<SV*>.
1229
1230 SV** av_store _((AV* ar, I32 key, SV* val));
1231
1232=item av_undef
1233
1234Undefines the array.
1235
1236 void av_undef _((AV* ar));
1237
1238=item av_unshift
1239
5fb8527f 1240Unshift an SV onto the beginning of the array. The array will grow
1241automatically to accommodate the addition.
cb1a09d0 1242
1243 void av_unshift _((AV* ar, I32 num));
1244
1245=item CLASS
1246
1247Variable which is setup by C<xsubpp> to indicate the class name for a C++ XS
5fb8527f 1248constructor. This is always a C<char*>. See C<THIS> and
1249L<perlxs/"Using XS With C++">.
cb1a09d0 1250
1251=item Copy
1252
1253The XSUB-writer's interface to the C C<memcpy> function. The C<s> is the
1254source, C<d> is the destination, C<n> is the number of items, and C<t> is
1255the type.
1256
1257 (void) Copy( s, d, n, t );
1258
1259=item croak
1260
1261This is the XSUB-writer's interface to Perl's C<die> function. Use this
1262function the same way you use the C C<printf> function. See C<warn>.
1263
1264=item CvSTASH
1265
1266Returns the stash of the CV.
1267
1268 HV * CvSTASH( SV* sv )
1269
1270=item DBsingle
1271
1272When Perl is run in debugging mode, with the B<-d> switch, this SV is a
1273boolean which indicates whether subs are being single-stepped.
5fb8527f 1274Single-stepping is automatically turned on after every step. This is the C
1275variable which corresponds to Perl's $DB::single variable. See C<DBsub>.
cb1a09d0 1276
1277=item DBsub
1278
1279When Perl is run in debugging mode, with the B<-d> switch, this GV contains
5fb8527f 1280the SV which holds the name of the sub being debugged. This is the C
1281variable which corresponds to Perl's $DB::sub variable. See C<DBsingle>.
cb1a09d0 1282The sub name can be found by
1283
1284 SvPV( GvSV( DBsub ), na )
1285
5fb8527f 1286=item DBtrace
1287
1288Trace variable used when Perl is run in debugging mode, with the B<-d>
1289switch. This is the C variable which corresponds to Perl's $DB::trace
1290variable. See C<DBsingle>.
1291
cb1a09d0 1292=item dMARK
1293
5fb8527f 1294Declare a stack marker variable, C<mark>, for the XSUB. See C<MARK> and
1295C<dORIGMARK>.
cb1a09d0 1296
1297=item dORIGMARK
1298
1299Saves the original stack mark for the XSUB. See C<ORIGMARK>.
1300
5fb8527f 1301=item dowarn
1302
1303The C variable which corresponds to Perl's $^W warning variable.
1304
cb1a09d0 1305=item dSP
1306
5fb8527f 1307Declares a stack pointer variable, C<sp>, for the XSUB. See C<SP>.
cb1a09d0 1308
1309=item dXSARGS
1310
1311Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. This is
1312usually handled automatically by C<xsubpp>. Declares the C<items> variable
1313to indicate the number of items on the stack.
1314
5fb8527f 1315=item dXSI32
1316
1317Sets up the C<ix> variable for an XSUB which has aliases. This is usually
1318handled automatically by C<xsubpp>.
1319
1320=item dXSI32
1321
1322Sets up the C<ix> variable for an XSUB which has aliases. This is usually
1323handled automatically by C<xsubpp>.
1324
cb1a09d0 1325=item ENTER
1326
1327Opening bracket on a callback. See C<LEAVE> and L<perlcall>.
1328
1329 ENTER;
1330
1331=item EXTEND
1332
1333Used to extend the argument stack for an XSUB's return values.
1334
1335 EXTEND( sp, int x );
1336
1337=item FREETMPS
1338
1339Closing bracket for temporaries on a callback. See C<SAVETMPS> and
1340L<perlcall>.
1341
1342 FREETMPS;
1343
1344=item G_ARRAY
1345
54310121 1346Used to indicate array context. See C<GIMME_V>, C<GIMME> and L<perlcall>.
cb1a09d0 1347
1348=item G_DISCARD
1349
1350Indicates that arguments returned from a callback should be discarded. See
1351L<perlcall>.
1352
1353=item G_EVAL
1354
1355Used to force a Perl C<eval> wrapper around a callback. See L<perlcall>.
1356
1357=item GIMME
1358
54310121 1359A backward-compatible version of C<GIMME_V> which can only return
1360C<G_SCALAR> or C<G_ARRAY>; in a void context, it returns C<G_SCALAR>.
1361
1362=item GIMME_V
1363
1364The XSUB-writer's equivalent to Perl's C<wantarray>. Returns
1365C<G_VOID>, C<G_SCALAR> or C<G_ARRAY> for void, scalar or array
1366context, respectively.
cb1a09d0 1367
1368=item G_NOARGS
1369
1370Indicates that no arguments are being sent to a callback. See L<perlcall>.
1371
1372=item G_SCALAR
1373
54310121 1374Used to indicate scalar context. See C<GIMME_V>, C<GIMME>, and L<perlcall>.
1375
1376=item G_VOID
1377
1378Used to indicate void context. See C<GIMME_V> and L<perlcall>.
cb1a09d0 1379
faed5253 1380=item gv_fetchmeth
1381
1382Returns the glob with the given C<name> and a defined subroutine or
9607fc9c 1383C<NULL>. The glob lives in the given C<stash>, or in the stashes
1384accessable via @ISA and @<UNIVERSAL>.
faed5253 1385
9607fc9c 1386The argument C<level> should be either 0 or -1. If C<level==0>, as a
0a753a76 1387side-effect creates a glob with the given C<name> in the given
1388C<stash> which in the case of success contains an alias for the
1389subroutine, and sets up caching info for this glob. Similarly for all
1390the searched stashes.
1391
9607fc9c 1392This function grants C<"SUPER"> token as a postfix of the stash name.
1393
0a753a76 1394The GV returned from C<gv_fetchmeth> may be a method cache entry,
1395which is not visible to Perl code. So when calling C<perl_call_sv>,
1396you should not use the GV directly; instead, you should use the
1397method's CV, which can be obtained from the GV with the C<GvCV> macro.
faed5253 1398
1399 GV* gv_fetchmeth _((HV* stash, char* name, STRLEN len, I32 level));
1400
1401=item gv_fetchmethod
1402
dc848c6f 1403=item gv_fetchmethod_autoload
1404
faed5253 1405Returns the glob which contains the subroutine to call to invoke the
dc848c6f 1406method on the C<stash>. In fact in the presense of autoloading this may
1407be the glob for "AUTOLOAD". In this case the corresponding variable
faed5253 1408$AUTOLOAD is already setup.
1409
dc848c6f 1410The third parameter of C<gv_fetchmethod_autoload> determines whether AUTOLOAD
1411lookup is performed if the given method is not present: non-zero means
1412yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD. Calling
1413C<gv_fetchmethod> is equivalent to calling C<gv_fetchmethod_autoload> with a
1414non-zero C<autoload> parameter.
1415
1416These functions grant C<"SUPER"> token as a prefix of the method name.
1417
1418Note that if you want to keep the returned glob for a long time, you
1419need to check for it being "AUTOLOAD", since at the later time the call
faed5253 1420may load a different subroutine due to $AUTOLOAD changing its value.
1421Use the glob created via a side effect to do this.
1422
dc848c6f 1423These functions have the same side-effects and as C<gv_fetchmeth> with
1424C<level==0>. C<name> should be writable if contains C<':'> or C<'\''>.
0a753a76 1425The warning against passing the GV returned by C<gv_fetchmeth> to
dc848c6f 1426C<perl_call_sv> apply equally to these functions.
faed5253 1427
1428 GV* gv_fetchmethod _((HV* stash, char* name));
dc848c6f 1429 GV* gv_fetchmethod_autoload _((HV* stash, char* name,
1430 I32 autoload));
faed5253 1431
cb1a09d0 1432=item gv_stashpv
1433
1434Returns a pointer to the stash for a specified package. If C<create> is set
1435then the package will be created if it does not already exist. If C<create>
1436is not set and the package does not exist then NULL is returned.
1437
1438 HV* gv_stashpv _((char* name, I32 create));
1439
1440=item gv_stashsv
1441
1442Returns a pointer to the stash for a specified package. See C<gv_stashpv>.
1443
1444 HV* gv_stashsv _((SV* sv, I32 create));
1445
e5581bf4 1446=item GvSV
cb1a09d0 1447
e5581bf4 1448Return the SV from the GV.
44a8e56a 1449
1e422769 1450=item HEf_SVKEY
1451
1452This flag, used in the length slot of hash entries and magic
1453structures, specifies the structure contains a C<SV*> pointer where a
1454C<char*> pointer is to be expected. (For information only--not to be used).
1455
1e422769 1456=item HeHASH
1457
1458Returns the computed hash (type C<U32>) stored in the hash entry.
1459
1460 HeHASH(HE* he)
1461
1462=item HeKEY
1463
1464Returns the actual pointer stored in the key slot of the hash entry.
1465The pointer may be either C<char*> or C<SV*>, depending on the value of
1466C<HeKLEN()>. Can be assigned to. The C<HePV()> or C<HeSVKEY()> macros
1467are usually preferable for finding the value of a key.
1468
1469 HeKEY(HE* he)
1470
1471=item HeKLEN
1472
1473If this is negative, and amounts to C<HEf_SVKEY>, it indicates the entry
1474holds an C<SV*> key. Otherwise, holds the actual length of the key.
1475Can be assigned to. The C<HePV()> macro is usually preferable for finding
1476key lengths.
1477
1478 HeKLEN(HE* he)
1479
1480=item HePV
1481
1482Returns the key slot of the hash entry as a C<char*> value, doing any
1483necessary dereferencing of possibly C<SV*> keys. The length of
1484the string is placed in C<len> (this is a macro, so do I<not> use
1485C<&len>). If you do not care about what the length of the key is,
1486you may use the global variable C<na>. Remember though, that hash
1487keys in perl are free to contain embedded nulls, so using C<strlen()>
1488or similar is not a good way to find the length of hash keys.
1489This is very similar to the C<SvPV()> macro described elsewhere in
1490this document.
1491
1492 HePV(HE* he, STRLEN len)
1493
1494=item HeSVKEY
1495
1496Returns the key as an C<SV*>, or C<Nullsv> if the hash entry
1497does not contain an C<SV*> key.
1498
1499 HeSVKEY(HE* he)
1500
1501=item HeSVKEY_force
1502
1503Returns the key as an C<SV*>. Will create and return a temporary
1504mortal C<SV*> if the hash entry contains only a C<char*> key.
1505
1506 HeSVKEY_force(HE* he)
1507
1508=item HeSVKEY_set
1509
1510Sets the key to a given C<SV*>, taking care to set the appropriate flags
1511to indicate the presence of an C<SV*> key, and returns the same C<SV*>.
1512
1513 HeSVKEY_set(HE* he, SV* sv)
1514
1515=item HeVAL
1516
1517Returns the value slot (type C<SV*>) stored in the hash entry.
1518
1519 HeVAL(HE* he)
1520
cb1a09d0 1521=item hv_clear
1522
1523Clears a hash, making it empty.
1524
1525 void hv_clear _((HV* tb));
1526
68dc0745 1527=item hv_delayfree_ent
1528
1529Releases a hash entry, such as while iterating though the hash, but
1530delays actual freeing of key and value until the end of the current
1531statement (or thereabouts) with C<sv_2mortal>. See C<hv_iternext>
1532and C<hv_free_ent>.
1533
1534 void hv_delayfree_ent _((HV* hv, HE* entry));
1535
cb1a09d0 1536=item hv_delete
1537
1538Deletes a key/value pair in the hash. The value SV is removed from the hash
5fb8527f 1539and returned to the caller. The C<klen> is the length of the key. The
cb1a09d0 1540C<flags> value will normally be zero; if set to G_DISCARD then null will be
1541returned.
1542
1543 SV* hv_delete _((HV* tb, char* key, U32 klen, I32 flags));
1544
1e422769 1545=item hv_delete_ent
1546
1547Deletes a key/value pair in the hash. The value SV is removed from the hash
1548and returned to the caller. The C<flags> value will normally be zero; if set
54310121 1549to G_DISCARD then null will be returned. C<hash> can be a valid precomputed
1e422769 1550hash value, or 0 to ask for it to be computed.
1551
1552 SV* hv_delete_ent _((HV* tb, SV* key, I32 flags, U32 hash));
1553
cb1a09d0 1554=item hv_exists
1555
1556Returns a boolean indicating whether the specified hash key exists. The
5fb8527f 1557C<klen> is the length of the key.
cb1a09d0 1558
1559 bool hv_exists _((HV* tb, char* key, U32 klen));
1560
1e422769 1561=item hv_exists_ent
1562
1563Returns a boolean indicating whether the specified hash key exists. C<hash>
54310121 1564can be a valid precomputed hash value, or 0 to ask for it to be computed.
1e422769 1565
1566 bool hv_exists_ent _((HV* tb, SV* key, U32 hash));
1567
cb1a09d0 1568=item hv_fetch
1569
1570Returns the SV which corresponds to the specified key in the hash. The
5fb8527f 1571C<klen> is the length of the key. If C<lval> is set then the fetch will be
cb1a09d0 1572part of a store. Check that the return value is non-null before
1573dereferencing it to a C<SV*>.
1574
1575 SV** hv_fetch _((HV* tb, char* key, U32 klen, I32 lval));
1576
1e422769 1577=item hv_fetch_ent
1578
1579Returns the hash entry which corresponds to the specified key in the hash.
54310121 1580C<hash> must be a valid precomputed hash number for the given C<key>, or
1e422769 15810 if you want the function to compute it. IF C<lval> is set then the
1582fetch will be part of a store. Make sure the return value is non-null
1583before accessing it. The return value when C<tb> is a tied hash
1584is a pointer to a static location, so be sure to make a copy of the
1585structure if you need to store it somewhere.
1586
1587 HE* hv_fetch_ent _((HV* tb, SV* key, I32 lval, U32 hash));
1588
68dc0745 1589=item hv_free_ent
1590
1591Releases a hash entry, such as while iterating though the hash. See
1592C<hv_iternext> and C<hv_delayfree_ent>.
1593
1594 void hv_free_ent _((HV* hv, HE* entry));
1595
cb1a09d0 1596=item hv_iterinit
1597
1598Prepares a starting point to traverse a hash table.
1599
1600 I32 hv_iterinit _((HV* tb));
1601
1602=item hv_iterkey
1603
1604Returns the key from the current position of the hash iterator. See
1605C<hv_iterinit>.
1606
1607 char* hv_iterkey _((HE* entry, I32* retlen));
1608
1e422769 1609=item hv_iterkeysv
3fe9a6f1 1610
1e422769 1611Returns the key as an C<SV*> from the current position of the hash
1612iterator. The return value will always be a mortal copy of the
1613key. Also see C<hv_iterinit>.
1614
1615 SV* hv_iterkeysv _((HE* entry));
1616
cb1a09d0 1617=item hv_iternext
1618
1619Returns entries from a hash iterator. See C<hv_iterinit>.
1620
1621 HE* hv_iternext _((HV* tb));
1622
1623=item hv_iternextsv
1624
1625Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
1626operation.
1627
1628 SV * hv_iternextsv _((HV* hv, char** key, I32* retlen));
1629
1630=item hv_iterval
1631
1632Returns the value from the current position of the hash iterator. See
1633C<hv_iterkey>.
1634
1635 SV* hv_iterval _((HV* tb, HE* entry));
1636
1637=item hv_magic
1638
1639Adds magic to a hash. See C<sv_magic>.
1640
1641 void hv_magic _((HV* hv, GV* gv, int how));
1642
1643=item HvNAME
1644
1645Returns the package name of a stash. See C<SvSTASH>, C<CvSTASH>.
1646
1647 char *HvNAME (HV* stash)
1648
1649=item hv_store
1650
1651Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
54310121 1652the length of the key. The C<hash> parameter is the precomputed hash
cb1a09d0 1653value; if it is zero then Perl will compute it. The return value will be
1654null if the operation failed, otherwise it can be dereferenced to get the
1655original C<SV*>.
1656
1657 SV** hv_store _((HV* tb, char* key, U32 klen, SV* val, U32 hash));
1658
1e422769 1659=item hv_store_ent
1660
1661Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
54310121 1662parameter is the precomputed hash value; if it is zero then Perl will
1e422769 1663compute it. The return value is the new hash entry so created. It will be
1664null if the operation failed or if the entry was stored in a tied hash.
1665Otherwise the contents of the return value can be accessed using the
1666C<He???> macros described here.
1667
1668 HE* hv_store_ent _((HV* tb, SV* key, SV* val, U32 hash));
1669
cb1a09d0 1670=item hv_undef
1671
1672Undefines the hash.
1673
1674 void hv_undef _((HV* tb));
1675
1676=item isALNUM
1677
1678Returns a boolean indicating whether the C C<char> is an ascii alphanumeric
5f05dabc 1679character or digit.
cb1a09d0 1680
1681 int isALNUM (char c)
1682
1683=item isALPHA
1684
5fb8527f 1685Returns a boolean indicating whether the C C<char> is an ascii alphabetic
cb1a09d0 1686character.
1687
1688 int isALPHA (char c)
1689
1690=item isDIGIT
1691
1692Returns a boolean indicating whether the C C<char> is an ascii digit.
1693
1694 int isDIGIT (char c)
1695
1696=item isLOWER
1697
1698Returns a boolean indicating whether the C C<char> is a lowercase character.
1699
1700 int isLOWER (char c)
1701
1702=item isSPACE
1703
1704Returns a boolean indicating whether the C C<char> is whitespace.
1705
1706 int isSPACE (char c)
1707
1708=item isUPPER
1709
1710Returns a boolean indicating whether the C C<char> is an uppercase character.
1711
1712 int isUPPER (char c)
1713
1714=item items
1715
1716Variable which is setup by C<xsubpp> to indicate the number of items on the
5fb8527f 1717stack. See L<perlxs/"Variable-length Parameter Lists">.
1718
1719=item ix
1720
1721Variable which is setup by C<xsubpp> to indicate which of an XSUB's aliases
1722was used to invoke it. See L<perlxs/"The ALIAS: Keyword">.
cb1a09d0 1723
1724=item LEAVE
1725
1726Closing bracket on a callback. See C<ENTER> and L<perlcall>.
1727
1728 LEAVE;
1729
1730=item MARK
1731
5fb8527f 1732Stack marker variable for the XSUB. See C<dMARK>.
cb1a09d0 1733
1734=item mg_clear
1735
1736Clear something magical that the SV represents. See C<sv_magic>.
1737
1738 int mg_clear _((SV* sv));
1739
1740=item mg_copy
1741
1742Copies the magic from one SV to another. See C<sv_magic>.
1743
1744 int mg_copy _((SV *, SV *, char *, STRLEN));
1745
1746=item mg_find
1747
1748Finds the magic pointer for type matching the SV. See C<sv_magic>.
1749
1750 MAGIC* mg_find _((SV* sv, int type));
1751
1752=item mg_free
1753
1754Free any magic storage used by the SV. See C<sv_magic>.
1755
1756 int mg_free _((SV* sv));
1757
1758=item mg_get
1759
1760Do magic after a value is retrieved from the SV. See C<sv_magic>.
1761
1762 int mg_get _((SV* sv));
1763
1764=item mg_len
1765
1766Report on the SV's length. See C<sv_magic>.
1767
1768 U32 mg_len _((SV* sv));
1769
1770=item mg_magical
1771
1772Turns on the magical status of an SV. See C<sv_magic>.
1773
1774 void mg_magical _((SV* sv));
1775
1776=item mg_set
1777
1778Do magic after a value is assigned to the SV. See C<sv_magic>.
1779
1780 int mg_set _((SV* sv));
1781
1782=item Move
1783
1784The XSUB-writer's interface to the C C<memmove> function. The C<s> is the
1785source, C<d> is the destination, C<n> is the number of items, and C<t> is
1786the type.
1787
1788 (void) Move( s, d, n, t );
1789
1790=item na
1791
1792A variable which may be used with C<SvPV> to tell Perl to calculate the
1793string length.
1794
1795=item New
1796
1797The XSUB-writer's interface to the C C<malloc> function.
1798
1799 void * New( x, void *ptr, int size, type )
1800
1801=item Newc
1802
1803The XSUB-writer's interface to the C C<malloc> function, with cast.
1804
1805 void * Newc( x, void *ptr, int size, type, cast )
1806
1807=item Newz
1808
1809The XSUB-writer's interface to the C C<malloc> function. The allocated
1810memory is zeroed with C<memzero>.
1811
1812 void * Newz( x, void *ptr, int size, type )
1813
1814=item newAV
1815
5f05dabc 1816Creates a new AV. The reference count is set to 1.
cb1a09d0 1817
1818 AV* newAV _((void));
1819
1820=item newHV
1821
5f05dabc 1822Creates a new HV. The reference count is set to 1.
cb1a09d0 1823
1824 HV* newHV _((void));
1825
5f05dabc 1826=item newRV_inc
cb1a09d0 1827
5f05dabc 1828Creates an RV wrapper for an SV. The reference count for the original SV is
cb1a09d0 1829incremented.
1830
5f05dabc 1831 SV* newRV_inc _((SV* ref));
1832
1833For historical reasons, "newRV" is a synonym for "newRV_inc".
1834
1835=item newRV_noinc
1836
1837Creates an RV wrapper for an SV. The reference count for the original
1838SV is B<not> incremented.
1839
07fa94a1 1840 SV* newRV_noinc _((SV* ref));
cb1a09d0 1841
1842=item newSV
1843
1844Creates a new SV. The C<len> parameter indicates the number of bytes of
68dc0745 1845preallocated string space the SV should have. The reference count for the
07fa94a1 1846new SV is set to 1.
cb1a09d0 1847
1848 SV* newSV _((STRLEN len));
1849
1850=item newSViv
1851
07fa94a1 1852Creates a new SV and copies an integer into it. The reference count for the
1853SV is set to 1.
cb1a09d0 1854
1855 SV* newSViv _((IV i));
1856
1857=item newSVnv
1858
07fa94a1 1859Creates a new SV and copies a double into it. The reference count for the
1860SV is set to 1.
cb1a09d0 1861
1862 SV* newSVnv _((NV i));
1863
1864=item newSVpv
1865
07fa94a1 1866Creates a new SV and copies a string into it. The reference count for the
1867SV is set to 1. If C<len> is zero then Perl will compute the length.
cb1a09d0 1868
1869 SV* newSVpv _((char* s, STRLEN len));
1870
1871=item newSVrv
1872
1873Creates a new SV for the RV, C<rv>, to point to. If C<rv> is not an RV then
5fb8527f 1874it will be upgraded to one. If C<classname> is non-null then the new SV will
cb1a09d0 1875be blessed in the specified package. The new SV is returned and its
5f05dabc 1876reference count is 1.
8ebc5c01 1877
cb1a09d0 1878 SV* newSVrv _((SV* rv, char* classname));
1879
1880=item newSVsv
1881
5fb8527f 1882Creates a new SV which is an exact duplicate of the original SV.
cb1a09d0 1883
1884 SV* newSVsv _((SV* old));
1885
1886=item newXS
1887
1888Used by C<xsubpp> to hook up XSUBs as Perl subs.
1889
1890=item newXSproto
1891
1892Used by C<xsubpp> to hook up XSUBs as Perl subs. Adds Perl prototypes to
1893the subs.
1894
1895=item Nullav
1896
1897Null AV pointer.
1898
1899=item Nullch
1900
1901Null character pointer.
1902
1903=item Nullcv
1904
1905Null CV pointer.
1906
1907=item Nullhv
1908
1909Null HV pointer.
1910
1911=item Nullsv
1912
1913Null SV pointer.
1914
1915=item ORIGMARK
1916
1917The original stack mark for the XSUB. See C<dORIGMARK>.
1918
1919=item perl_alloc
1920
1921Allocates a new Perl interpreter. See L<perlembed>.
1922
1923=item perl_call_argv
1924
1925Performs a callback to the specified Perl sub. See L<perlcall>.
1926
1927 I32 perl_call_argv _((char* subname, I32 flags, char** argv));
1928
1929=item perl_call_method
1930
1931Performs a callback to the specified Perl method. The blessed object must
1932be on the stack. See L<perlcall>.
1933
1934 I32 perl_call_method _((char* methname, I32 flags));
1935
1936=item perl_call_pv
1937
1938Performs a callback to the specified Perl sub. See L<perlcall>.
1939
1940 I32 perl_call_pv _((char* subname, I32 flags));
1941
1942=item perl_call_sv
1943
1944Performs a callback to the Perl sub whose name is in the SV. See
1945L<perlcall>.
1946
1947 I32 perl_call_sv _((SV* sv, I32 flags));
1948
1949=item perl_construct
1950
1951Initializes a new Perl interpreter. See L<perlembed>.
1952
1953=item perl_destruct
1954
1955Shuts down a Perl interpreter. See L<perlembed>.
1956
1957=item perl_eval_sv
1958
1959Tells Perl to C<eval> the string in the SV.
1960
1961 I32 perl_eval_sv _((SV* sv, I32 flags));
1962
137443ea 1963=item perl_eval_pv
1964
1965Tells Perl to C<eval> the given string and return an SV* result.
1966
1967 SV* perl_eval_pv _((char* p, I32 croak_on_error));
1968
cb1a09d0 1969=item perl_free
1970
1971Releases a Perl interpreter. See L<perlembed>.
1972
1973=item perl_get_av
1974
1975Returns the AV of the specified Perl array. If C<create> is set and the
1976Perl variable does not exist then it will be created. If C<create> is not
1977set and the variable does not exist then null is returned.
1978
1979 AV* perl_get_av _((char* name, I32 create));
1980
1981=item perl_get_cv
1982
1983Returns the CV of the specified Perl sub. If C<create> is set and the Perl
1984variable does not exist then it will be created. If C<create> is not
1985set and the variable does not exist then null is returned.
1986
1987 CV* perl_get_cv _((char* name, I32 create));
1988
1989=item perl_get_hv
1990
1991Returns the HV of the specified Perl hash. If C<create> is set and the Perl
1992variable does not exist then it will be created. If C<create> is not
1993set and the variable does not exist then null is returned.
1994
1995 HV* perl_get_hv _((char* name, I32 create));
1996
1997=item perl_get_sv
1998
1999Returns the SV of the specified Perl scalar. If C<create> is set and the
2000Perl variable does not exist then it will be created. If C<create> is not
2001set and the variable does not exist then null is returned.
2002
2003 SV* perl_get_sv _((char* name, I32 create));
2004
2005=item perl_parse
2006
2007Tells a Perl interpreter to parse a Perl script. See L<perlembed>.
2008
2009=item perl_require_pv
2010
2011Tells Perl to C<require> a module.
2012
2013 void perl_require_pv _((char* pv));
2014
2015=item perl_run
2016
2017Tells a Perl interpreter to run. See L<perlembed>.
2018
2019=item POPi
2020
2021Pops an integer off the stack.
2022
2023 int POPi();
2024
2025=item POPl
2026
2027Pops a long off the stack.
2028
2029 long POPl();
2030
2031=item POPp
2032
2033Pops a string off the stack.
2034
2035 char * POPp();
2036
2037=item POPn
2038
2039Pops a double off the stack.
2040
2041 double POPn();
2042
2043=item POPs
2044
2045Pops an SV off the stack.
2046
2047 SV* POPs();
2048
2049=item PUSHMARK
2050
2051Opening bracket for arguments on a callback. See C<PUTBACK> and L<perlcall>.
2052
2053 PUSHMARK(p)
2054
2055=item PUSHi
2056
2057Push an integer onto the stack. The stack must have room for this element.
2058See C<XPUSHi>.
2059
2060 PUSHi(int d)
2061
2062=item PUSHn
2063
2064Push a double onto the stack. The stack must have room for this element.
2065See C<XPUSHn>.
2066
2067 PUSHn(double d)
2068
2069=item PUSHp
2070
2071Push a string onto the stack. The stack must have room for this element.
2072The C<len> indicates the length of the string. See C<XPUSHp>.
2073
2074 PUSHp(char *c, int len )
2075
2076=item PUSHs
2077
2078Push an SV onto the stack. The stack must have room for this element. See
2079C<XPUSHs>.
2080
2081 PUSHs(sv)
2082
2083=item PUTBACK
2084
2085Closing bracket for XSUB arguments. This is usually handled by C<xsubpp>.
2086See C<PUSHMARK> and L<perlcall> for other uses.
2087
2088 PUTBACK;
2089
2090=item Renew
2091
2092The XSUB-writer's interface to the C C<realloc> function.
2093
2094 void * Renew( void *ptr, int size, type )
2095
2096=item Renewc
2097
2098The XSUB-writer's interface to the C C<realloc> function, with cast.
2099
2100 void * Renewc( void *ptr, int size, type, cast )
2101
2102=item RETVAL
2103
2104Variable which is setup by C<xsubpp> to hold the return value for an XSUB.
5fb8527f 2105This is always the proper type for the XSUB.
2106See L<perlxs/"The RETVAL Variable">.
cb1a09d0 2107
2108=item safefree
2109
2110The XSUB-writer's interface to the C C<free> function.
2111
2112=item safemalloc
2113
2114The XSUB-writer's interface to the C C<malloc> function.
2115
2116=item saferealloc
2117
2118The XSUB-writer's interface to the C C<realloc> function.
2119
2120=item savepv
2121
2122Copy a string to a safe spot. This does not use an SV.
2123
2124 char* savepv _((char* sv));
2125
2126=item savepvn
2127
2128Copy a string to a safe spot. The C<len> indicates number of bytes to
2129copy. This does not use an SV.
2130
2131 char* savepvn _((char* sv, I32 len));
2132
2133=item SAVETMPS
2134
2135Opening bracket for temporaries on a callback. See C<FREETMPS> and
2136L<perlcall>.
2137
2138 SAVETMPS;
2139
2140=item SP
2141
2142Stack pointer. This is usually handled by C<xsubpp>. See C<dSP> and
2143C<SPAGAIN>.
2144
2145=item SPAGAIN
2146
54310121 2147Refetch the stack pointer. Used after a callback. See L<perlcall>.
cb1a09d0 2148
2149 SPAGAIN;
2150
2151=item ST
2152
2153Used to access elements on the XSUB's stack.
2154
2155 SV* ST(int x)
2156
2157=item strEQ
2158
2159Test two strings to see if they are equal. Returns true or false.
2160
2161 int strEQ( char *s1, char *s2 )
2162
2163=item strGE
2164
2165Test two strings to see if the first, C<s1>, is greater than or equal to the
2166second, C<s2>. Returns true or false.
2167
2168 int strGE( char *s1, char *s2 )
2169
2170=item strGT
2171
2172Test two strings to see if the first, C<s1>, is greater than the second,
2173C<s2>. Returns true or false.
2174
2175 int strGT( char *s1, char *s2 )
2176
2177=item strLE
2178
2179Test two strings to see if the first, C<s1>, is less than or equal to the
2180second, C<s2>. Returns true or false.
2181
2182 int strLE( char *s1, char *s2 )
2183
2184=item strLT
2185
2186Test two strings to see if the first, C<s1>, is less than the second,
2187C<s2>. Returns true or false.
2188
2189 int strLT( char *s1, char *s2 )
2190
2191=item strNE
2192
2193Test two strings to see if they are different. Returns true or false.
2194
2195 int strNE( char *s1, char *s2 )
2196
2197=item strnEQ
2198
2199Test two strings to see if they are equal. The C<len> parameter indicates
2200the number of bytes to compare. Returns true or false.
2201
2202 int strnEQ( char *s1, char *s2 )
2203
2204=item strnNE
2205
2206Test two strings to see if they are different. The C<len> parameter
2207indicates the number of bytes to compare. Returns true or false.
2208
2209 int strnNE( char *s1, char *s2, int len )
2210
2211=item sv_2mortal
2212
2213Marks an SV as mortal. The SV will be destroyed when the current context
2214ends.
2215
2216 SV* sv_2mortal _((SV* sv));
2217
2218=item sv_bless
2219
2220Blesses an SV into a specified package. The SV must be an RV. The package
07fa94a1 2221must be designated by its stash (see C<gv_stashpv()>). The reference count
2222of the SV is unaffected.
cb1a09d0 2223
2224 SV* sv_bless _((SV* sv, HV* stash));
2225
2226=item sv_catpv
2227
2228Concatenates the string onto the end of the string which is in the SV.
2229
2230 void sv_catpv _((SV* sv, char* ptr));
2231
2232=item sv_catpvn
2233
2234Concatenates the string onto the end of the string which is in the SV. The
2235C<len> indicates number of bytes to copy.
2236
2237 void sv_catpvn _((SV* sv, char* ptr, STRLEN len));
2238
2239=item sv_catsv
2240
5fb8527f 2241Concatenates the string from SV C<ssv> onto the end of the string in SV
cb1a09d0 2242C<dsv>.
2243
2244 void sv_catsv _((SV* dsv, SV* ssv));
2245
5fb8527f 2246=item sv_cmp
2247
2248Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
2249string in C<sv1> is less than, equal to, or greater than the string in
2250C<sv2>.
2251
2252 I32 sv_cmp _((SV* sv1, SV* sv2));
2253
2254=item sv_cmp
2255
2256Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
2257string in C<sv1> is less than, equal to, or greater than the string in
2258C<sv2>.
2259
2260 I32 sv_cmp _((SV* sv1, SV* sv2));
2261
cb1a09d0 2262=item SvCUR
2263
2264Returns the length of the string which is in the SV. See C<SvLEN>.
2265
2266 int SvCUR (SV* sv)
2267
2268=item SvCUR_set
2269
2270Set the length of the string which is in the SV. See C<SvCUR>.
2271
2272 SvCUR_set (SV* sv, int val )
2273
5fb8527f 2274=item sv_dec
2275
5f05dabc 2276Auto-decrement of the value in the SV.
5fb8527f 2277
2278 void sv_dec _((SV* sv));
2279
2280=item sv_dec
2281
5f05dabc 2282Auto-decrement of the value in the SV.
5fb8527f 2283
2284 void sv_dec _((SV* sv));
2285
cb1a09d0 2286=item SvEND
2287
2288Returns a pointer to the last character in the string which is in the SV.
2289See C<SvCUR>. Access the character as
2290
2291 *SvEND(sv)
2292
5fb8527f 2293=item sv_eq
2294
2295Returns a boolean indicating whether the strings in the two SVs are
2296identical.
2297
2298 I32 sv_eq _((SV* sv1, SV* sv2));
2299
cb1a09d0 2300=item SvGROW
2301
5fb8527f 2302Expands the character buffer in the SV. Calls C<sv_grow> to perform the
2303expansion if necessary. Returns a pointer to the character buffer.
cb1a09d0 2304
2305 char * SvGROW( SV* sv, int len )
2306
5fb8527f 2307=item sv_grow
2308
2309Expands the character buffer in the SV. This will use C<sv_unref> and will
2310upgrade the SV to C<SVt_PV>. Returns a pointer to the character buffer.
2311Use C<SvGROW>.
2312
2313=item sv_inc
2314
07fa94a1 2315Auto-increment of the value in the SV.
5fb8527f 2316
2317 void sv_inc _((SV* sv));
2318
cb1a09d0 2319=item SvIOK
2320
2321Returns a boolean indicating whether the SV contains an integer.
2322
2323 int SvIOK (SV* SV)
2324
2325=item SvIOK_off
2326
2327Unsets the IV status of an SV.
2328
2329 SvIOK_off (SV* sv)
2330
2331=item SvIOK_on
2332
2333Tells an SV that it is an integer.
2334
2335 SvIOK_on (SV* sv)
2336
5fb8527f 2337=item SvIOK_only
2338
2339Tells an SV that it is an integer and disables all other OK bits.
2340
2341 SvIOK_on (SV* sv)
2342
2343=item SvIOK_only
2344
2345Tells an SV that it is an integer and disables all other OK bits.
2346
2347 SvIOK_on (SV* sv)
2348
cb1a09d0 2349=item SvIOKp
2350
2351Returns a boolean indicating whether the SV contains an integer. Checks the
2352B<private> setting. Use C<SvIOK>.
2353
2354 int SvIOKp (SV* SV)
2355
2356=item sv_isa
2357
2358Returns a boolean indicating whether the SV is blessed into the specified
2359class. This does not know how to check for subtype, so it doesn't work in
2360an inheritance relationship.
2361
2362 int sv_isa _((SV* sv, char* name));
2363
2364=item SvIV
2365
2366Returns the integer which is in the SV.
2367
2368 int SvIV (SV* sv)
2369
2370=item sv_isobject
2371
2372Returns a boolean indicating whether the SV is an RV pointing to a blessed
2373object. If the SV is not an RV, or if the object is not blessed, then this
2374will return false.
2375
2376 int sv_isobject _((SV* sv));
2377
2378=item SvIVX
2379
2380Returns the integer which is stored in the SV.
2381
2382 int SvIVX (SV* sv);
2383
2384=item SvLEN
2385
2386Returns the size of the string buffer in the SV. See C<SvCUR>.
2387
2388 int SvLEN (SV* sv)
2389
5fb8527f 2390=item sv_len
2391
2392Returns the length of the string in the SV. Use C<SvCUR>.
2393
2394 STRLEN sv_len _((SV* sv));
2395
2396=item sv_len
2397
2398Returns the length of the string in the SV. Use C<SvCUR>.
2399
2400 STRLEN sv_len _((SV* sv));
2401
cb1a09d0 2402=item sv_magic
2403
2404Adds magic to an SV.
2405
2406 void sv_magic _((SV* sv, SV* obj, int how, char* name, I32 namlen));
2407
2408=item sv_mortalcopy
2409
2410Creates a new SV which is a copy of the original SV. The new SV is marked
5f05dabc 2411as mortal.
cb1a09d0 2412
2413 SV* sv_mortalcopy _((SV* oldsv));
2414
2415=item SvOK
2416
2417Returns a boolean indicating whether the value is an SV.
2418
2419 int SvOK (SV* sv)
2420
2421=item sv_newmortal
2422
5f05dabc 2423Creates a new SV which is mortal. The reference count of the SV is set to 1.
cb1a09d0 2424
2425 SV* sv_newmortal _((void));
2426
2427=item sv_no
2428
2429This is the C<false> SV. See C<sv_yes>. Always refer to this as C<&sv_no>.
2430
2431=item SvNIOK
2432
2433Returns a boolean indicating whether the SV contains a number, integer or
2434double.
2435
2436 int SvNIOK (SV* SV)
2437
2438=item SvNIOK_off
2439
2440Unsets the NV/IV status of an SV.
2441
2442 SvNIOK_off (SV* sv)
2443
2444=item SvNIOKp
2445
2446Returns a boolean indicating whether the SV contains a number, integer or
2447double. Checks the B<private> setting. Use C<SvNIOK>.
2448
2449 int SvNIOKp (SV* SV)
2450
2451=item SvNOK
2452
2453Returns a boolean indicating whether the SV contains a double.
2454
2455 int SvNOK (SV* SV)
2456
2457=item SvNOK_off
2458
2459Unsets the NV status of an SV.
2460
2461 SvNOK_off (SV* sv)
2462
2463=item SvNOK_on
2464
2465Tells an SV that it is a double.
2466
2467 SvNOK_on (SV* sv)
2468
5fb8527f 2469=item SvNOK_only
2470
2471Tells an SV that it is a double and disables all other OK bits.
2472
2473 SvNOK_on (SV* sv)
2474
2475=item SvNOK_only
2476
2477Tells an SV that it is a double and disables all other OK bits.
2478
2479 SvNOK_on (SV* sv)
2480
cb1a09d0 2481=item SvNOKp
2482
2483Returns a boolean indicating whether the SV contains a double. Checks the
2484B<private> setting. Use C<SvNOK>.
2485
2486 int SvNOKp (SV* SV)
2487
2488=item SvNV
2489
2490Returns the double which is stored in the SV.
2491
2492 double SvNV (SV* sv);
2493
2494=item SvNVX
2495
2496Returns the double which is stored in the SV.
2497
2498 double SvNVX (SV* sv);
2499
2500=item SvPOK
2501
2502Returns a boolean indicating whether the SV contains a character string.
2503
2504 int SvPOK (SV* SV)
2505
2506=item SvPOK_off
2507
2508Unsets the PV status of an SV.
2509
2510 SvPOK_off (SV* sv)
2511
2512=item SvPOK_on
2513
2514Tells an SV that it is a string.
2515
2516 SvPOK_on (SV* sv)
2517
5fb8527f 2518=item SvPOK_only
2519
2520Tells an SV that it is a string and disables all other OK bits.
2521
2522 SvPOK_on (SV* sv)
2523
2524=item SvPOK_only
2525
2526Tells an SV that it is a string and disables all other OK bits.
2527
2528 SvPOK_on (SV* sv)
2529
cb1a09d0 2530=item SvPOKp
2531
2532Returns a boolean indicating whether the SV contains a character string.
2533Checks the B<private> setting. Use C<SvPOK>.
2534
2535 int SvPOKp (SV* SV)
2536
2537=item SvPV
2538
2539Returns a pointer to the string in the SV, or a stringified form of the SV
2540if the SV does not contain a string. If C<len> is C<na> then Perl will
2541handle the length on its own.
2542
2543 char * SvPV (SV* sv, int len )
2544
2545=item SvPVX
2546
2547Returns a pointer to the string in the SV. The SV must contain a string.
2548
2549 char * SvPVX (SV* sv)
2550
2551=item SvREFCNT
2552
5f05dabc 2553Returns the value of the object's reference count.
cb1a09d0 2554
2555 int SvREFCNT (SV* sv);
2556
2557=item SvREFCNT_dec
2558
5f05dabc 2559Decrements the reference count of the given SV.
cb1a09d0 2560
2561 void SvREFCNT_dec (SV* sv)
2562
2563=item SvREFCNT_inc
2564
5f05dabc 2565Increments the reference count of the given SV.
cb1a09d0 2566
2567 void SvREFCNT_inc (SV* sv)
2568
2569=item SvROK
2570
2571Tests if the SV is an RV.
2572
2573 int SvROK (SV* sv)
2574
2575=item SvROK_off
2576
2577Unsets the RV status of an SV.
2578
2579 SvROK_off (SV* sv)
2580
2581=item SvROK_on
2582
2583Tells an SV that it is an RV.
2584
2585 SvROK_on (SV* sv)
2586
2587=item SvRV
2588
2589Dereferences an RV to return the SV.
2590
2591 SV* SvRV (SV* sv);
2592
2593=item sv_setiv
2594
2595Copies an integer into the given SV.
2596
2597 void sv_setiv _((SV* sv, IV num));
2598
2599=item sv_setnv
2600
2601Copies a double into the given SV.
2602
2603 void sv_setnv _((SV* sv, double num));
2604
2605=item sv_setpv
2606
2607Copies a string into an SV. The string must be null-terminated.
2608
2609 void sv_setpv _((SV* sv, char* ptr));
2610
2611=item sv_setpvn
2612
2613Copies a string into an SV. The C<len> parameter indicates the number of
2614bytes to be copied.
2615
2616 void sv_setpvn _((SV* sv, char* ptr, STRLEN len));
2617
2618=item sv_setref_iv
2619
5fb8527f 2620Copies an integer into a new SV, optionally blessing the SV. The C<rv>
2621argument will be upgraded to an RV. That RV will be modified to point to
2622the new SV. The C<classname> argument indicates the package for the
2623blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 2624will be returned and will have a reference count of 1.
cb1a09d0 2625
2626 SV* sv_setref_iv _((SV *rv, char *classname, IV iv));
2627
2628=item sv_setref_nv
2629
5fb8527f 2630Copies a double into a new SV, optionally blessing the SV. The C<rv>
2631argument will be upgraded to an RV. That RV will be modified to point to
2632the new SV. The C<classname> argument indicates the package for the
2633blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 2634will be returned and will have a reference count of 1.
cb1a09d0 2635
2636 SV* sv_setref_nv _((SV *rv, char *classname, double nv));
2637
2638=item sv_setref_pv
2639
5fb8527f 2640Copies a pointer into a new SV, optionally blessing the SV. The C<rv>
2641argument will be upgraded to an RV. That RV will be modified to point to
2642the new SV. If the C<pv> argument is NULL then C<sv_undef> will be placed
2643into the SV. The C<classname> argument indicates the package for the
2644blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 2645will be returned and will have a reference count of 1.
cb1a09d0 2646
2647 SV* sv_setref_pv _((SV *rv, char *classname, void* pv));
2648
2649Do not use with integral Perl types such as HV, AV, SV, CV, because those
2650objects will become corrupted by the pointer copy process.
2651
2652Note that C<sv_setref_pvn> copies the string while this copies the pointer.
2653
2654=item sv_setref_pvn
2655
5fb8527f 2656Copies a string into a new SV, optionally blessing the SV. The length of the
2657string must be specified with C<n>. The C<rv> argument will be upgraded to
2658an RV. That RV will be modified to point to the new SV. The C<classname>
cb1a09d0 2659argument indicates the package for the blessing. Set C<classname> to
2660C<Nullch> to avoid the blessing. The new SV will be returned and will have
5f05dabc 2661a reference count of 1.
cb1a09d0 2662
2663 SV* sv_setref_pvn _((SV *rv, char *classname, char* pv, I32 n));
2664
2665Note that C<sv_setref_pv> copies the pointer while this copies the string.
2666
2667=item sv_setsv
2668
2669Copies the contents of the source SV C<ssv> into the destination SV C<dsv>.
5f05dabc 2670The source SV may be destroyed if it is mortal.
cb1a09d0 2671
2672 void sv_setsv _((SV* dsv, SV* ssv));
2673
2674=item SvSTASH
2675
2676Returns the stash of the SV.
2677
2678 HV * SvSTASH (SV* sv)
2679
2680=item SVt_IV
2681
2682Integer type flag for scalars. See C<svtype>.
2683
2684=item SVt_PV
2685
2686Pointer type flag for scalars. See C<svtype>.
2687
2688=item SVt_PVAV
2689
2690Type flag for arrays. See C<svtype>.
2691
2692=item SVt_PVCV
2693
2694Type flag for code refs. See C<svtype>.
2695
2696=item SVt_PVHV
2697
2698Type flag for hashes. See C<svtype>.
2699
2700=item SVt_PVMG
2701
2702Type flag for blessed scalars. See C<svtype>.
2703
2704=item SVt_NV
2705
2706Double type flag for scalars. See C<svtype>.
2707
2708=item SvTRUE
2709
2710Returns a boolean indicating whether Perl would evaluate the SV as true or
2711false, defined or undefined.
2712
2713 int SvTRUE (SV* sv)
2714
2715=item SvTYPE
2716
2717Returns the type of the SV. See C<svtype>.
2718
2719 svtype SvTYPE (SV* sv)
2720
2721=item svtype
2722
2723An enum of flags for Perl types. These are found in the file B<sv.h> in the
2724C<svtype> enum. Test these flags with the C<SvTYPE> macro.
2725
2726=item SvUPGRADE
2727
5fb8527f 2728Used to upgrade an SV to a more complex form. Uses C<sv_upgrade> to perform
2729the upgrade if necessary. See C<svtype>.
2730
2731 bool SvUPGRADE _((SV* sv, svtype mt));
2732
2733=item sv_upgrade
2734
2735Upgrade an SV to a more complex form. Use C<SvUPGRADE>. See C<svtype>.
cb1a09d0 2736
2737=item sv_undef
2738
2739This is the C<undef> SV. Always refer to this as C<&sv_undef>.
2740
5fb8527f 2741=item sv_unref
2742
07fa94a1 2743Unsets the RV status of the SV, and decrements the reference count of
2744whatever was being referenced by the RV. This can almost be thought of
2745as a reversal of C<newSVrv>. See C<SvROK_off>.
5fb8527f 2746
2747 void sv_unref _((SV* sv));
2748
cb1a09d0 2749=item sv_usepvn
2750
2751Tells an SV to use C<ptr> to find its string value. Normally the string is
5fb8527f 2752stored inside the SV but sv_usepvn allows the SV to use an outside string.
2753The C<ptr> should point to memory that was allocated by C<malloc>. The
cb1a09d0 2754string length, C<len>, must be supplied. This function will realloc the
2755memory pointed to by C<ptr>, so that pointer should not be freed or used by
2756the programmer after giving it to sv_usepvn.
2757
2758 void sv_usepvn _((SV* sv, char* ptr, STRLEN len));
2759
2760=item sv_yes
2761
2762This is the C<true> SV. See C<sv_no>. Always refer to this as C<&sv_yes>.
2763
2764=item THIS
2765
2766Variable which is setup by C<xsubpp> to designate the object in a C++ XSUB.
2767This is always the proper type for the C++ object. See C<CLASS> and
5fb8527f 2768L<perlxs/"Using XS With C++">.
cb1a09d0 2769
2770=item toLOWER
2771
2772Converts the specified character to lowercase.
2773
2774 int toLOWER (char c)
2775
2776=item toUPPER
2777
2778Converts the specified character to uppercase.
2779
2780 int toUPPER (char c)
2781
2782=item warn
2783
2784This is the XSUB-writer's interface to Perl's C<warn> function. Use this
2785function the same way you use the C C<printf> function. See C<croak()>.
2786
2787=item XPUSHi
2788
2789Push an integer onto the stack, extending the stack if necessary. See
2790C<PUSHi>.
2791
2792 XPUSHi(int d)
2793
2794=item XPUSHn
2795
2796Push a double onto the stack, extending the stack if necessary. See
2797C<PUSHn>.
2798
2799 XPUSHn(double d)
2800
2801=item XPUSHp
2802
2803Push a string onto the stack, extending the stack if necessary. The C<len>
2804indicates the length of the string. See C<PUSHp>.
2805
2806 XPUSHp(char *c, int len)
2807
2808=item XPUSHs
2809
2810Push an SV onto the stack, extending the stack if necessary. See C<PUSHs>.
2811
2812 XPUSHs(sv)
2813
5fb8527f 2814=item XS
2815
2816Macro to declare an XSUB and its C parameter list. This is handled by
2817C<xsubpp>.
2818
cb1a09d0 2819=item XSRETURN
2820
2821Return from XSUB, indicating number of items on the stack. This is usually
2822handled by C<xsubpp>.
2823
5fb8527f 2824 XSRETURN(int x);
cb1a09d0 2825
2826=item XSRETURN_EMPTY
2827
5fb8527f 2828Return an empty list from an XSUB immediately.
cb1a09d0 2829
2830 XSRETURN_EMPTY;
2831
5fb8527f 2832=item XSRETURN_IV
2833
2834Return an integer from an XSUB immediately. Uses C<XST_mIV>.
2835
2836 XSRETURN_IV(IV v);
2837
cb1a09d0 2838=item XSRETURN_NO
2839
5fb8527f 2840Return C<&sv_no> from an XSUB immediately. Uses C<XST_mNO>.
cb1a09d0 2841
2842 XSRETURN_NO;
2843
5fb8527f 2844=item XSRETURN_NV
2845
2846Return an double from an XSUB immediately. Uses C<XST_mNV>.
2847
2848 XSRETURN_NV(NV v);
2849
2850=item XSRETURN_PV
2851
2852Return a copy of a string from an XSUB immediately. Uses C<XST_mPV>.
2853
2854 XSRETURN_PV(char *v);
2855
cb1a09d0 2856=item XSRETURN_UNDEF
2857
5fb8527f 2858Return C<&sv_undef> from an XSUB immediately. Uses C<XST_mUNDEF>.
cb1a09d0 2859
2860 XSRETURN_UNDEF;
2861
2862=item XSRETURN_YES
2863
5fb8527f 2864Return C<&sv_yes> from an XSUB immediately. Uses C<XST_mYES>.
cb1a09d0 2865
2866 XSRETURN_YES;
2867
5fb8527f 2868=item XST_mIV
2869
2870Place an integer into the specified position C<i> on the stack. The value is
2871stored in a new mortal SV.
2872
2873 XST_mIV( int i, IV v );
2874
2875=item XST_mNV
2876
2877Place a double into the specified position C<i> on the stack. The value is
2878stored in a new mortal SV.
2879
2880 XST_mNV( int i, NV v );
2881
2882=item XST_mNO
2883
2884Place C<&sv_no> into the specified position C<i> on the stack.
2885
2886 XST_mNO( int i );
2887
2888=item XST_mPV
2889
2890Place a copy of a string into the specified position C<i> on the stack. The
2891value is stored in a new mortal SV.
2892
2893 XST_mPV( int i, char *v );
2894
2895=item XST_mUNDEF
2896
2897Place C<&sv_undef> into the specified position C<i> on the stack.
2898
2899 XST_mUNDEF( int i );
2900
2901=item XST_mYES
2902
2903Place C<&sv_yes> into the specified position C<i> on the stack.
2904
2905 XST_mYES( int i );
2906
2907=item XS_VERSION
2908
2909The version identifier for an XS module. This is usually handled
2910automatically by C<ExtUtils::MakeMaker>. See C<XS_VERSION_BOOTCHECK>.
2911
2912=item XS_VERSION_BOOTCHECK
2913
2914Macro to verify that a PM module's $VERSION variable matches the XS module's
2915C<XS_VERSION> variable. This is usually handled automatically by
2916C<xsubpp>. See L<perlxs/"The VERSIONCHECK: Keyword">.
2917
cb1a09d0 2918=item Zero
2919
2920The XSUB-writer's interface to the C C<memzero> function. The C<d> is the
2921destination, C<n> is the number of items, and C<t> is the type.
2922
2923 (void) Zero( d, n, t );
2924
2925=back
2926
5f05dabc 2927=head1 EDITOR
cb1a09d0 2928
9607fc9c 2929Jeff Okamoto <F<okamoto@corp.hp.com>>
cb1a09d0 2930
2931With lots of help and suggestions from Dean Roehrich, Malcolm Beattie,
2932Andreas Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil
55497cff 2933Bowers, Matthew Green, Tim Bunce, Spider Boardman, and Ulrich Pfeifer.
cb1a09d0 2934
9607fc9c 2935API Listing by Dean Roehrich <F<roehrich@cray.com>>.
cb1a09d0 2936
2937=head1 DATE
2938
137443ea 2939Version 31.6: 1997/4/14