XSUB's doc fix
[p5sagit/p5-mst-13.2.git] / pod / perlguts.pod
CommitLineData
a0d0e21e 1=head1 NAME
2
3perlguts - Perl's Internal Functions
4
5=head1 DESCRIPTION
6
7This document attempts to describe some of the internal functions of the
8Perl executable. It is far from complete and probably contains many errors.
9Please refer any questions or comments to the author below.
10
0a753a76 11=head1 Variables
12
5f05dabc 13=head2 Datatypes
a0d0e21e 14
15Perl has three typedefs that handle Perl's three main data types:
16
17 SV Scalar Value
18 AV Array Value
19 HV Hash Value
20
d1b91892 21Each typedef has specific routines that manipulate the various data types.
a0d0e21e 22
23=head2 What is an "IV"?
24
5f05dabc 25Perl uses a special typedef IV which is a simple integer type that is
26guaranteed to be large enough to hold a pointer (as well as an integer).
a0d0e21e 27
d1b91892 28Perl also uses two special typedefs, I32 and I16, which will always be at
29least 32-bits and 16-bits long, respectively.
a0d0e21e 30
5f05dabc 31=head2 Working with SV's
a0d0e21e 32
33An SV can be created and loaded with one command. There are four types of
34values that can be loaded: an integer value (IV), a double (NV), a string,
35(PV), and another scalar (SV).
36
37The four routines are:
38
39 SV* newSViv(IV);
40 SV* newSVnv(double);
41 SV* newSVpv(char*, int);
42 SV* newSVsv(SV*);
43
5fb8527f 44To change the value of an *already-existing* SV, there are five routines:
a0d0e21e 45
46 void sv_setiv(SV*, IV);
47 void sv_setnv(SV*, double);
48 void sv_setpvn(SV*, char*, int)
49 void sv_setpv(SV*, char*);
50 void sv_setsv(SV*, SV*);
51
52Notice that you can choose to specify the length of the string to be
d1b91892 53assigned by using C<sv_setpvn> or C<newSVpv>, or you may allow Perl to
cb1a09d0 54calculate the length by using C<sv_setpv> or by specifying 0 as the second
d1b91892 55argument to C<newSVpv>. Be warned, though, that Perl will determine the
a0d0e21e 56string's length by using C<strlen>, which depends on the string terminating
57with a NUL character.
58
5f05dabc 59All SV's that will contain strings should, but need not, be terminated
60with a NUL character. If it is not NUL-terminated there is a risk of
61core dumps and corruptions from code which passes the string to C
62functions or system calls which expect a NUL-terminated string.
63Perl's own functions typically add a trailing NUL for this reason.
64Nevertheless, you should be very careful when you pass a string stored
65in an SV to a C function or system call.
66
a0d0e21e 67To access the actual value that an SV points to, you can use the macros:
68
69 SvIV(SV*)
70 SvNV(SV*)
71 SvPV(SV*, STRLEN len)
72
73which will automatically coerce the actual scalar type into an IV, double,
74or string.
75
76In the C<SvPV> macro, the length of the string returned is placed into the
77variable C<len> (this is a macro, so you do I<not> use C<&len>). If you do not
78care what the length of the data is, use the global variable C<na>. Remember,
79however, that Perl allows arbitrary strings of data that may both contain
5f05dabc 80NUL's and might not be terminated by a NUL.
a0d0e21e 81
07fa94a1 82If you want to know if the scalar value is TRUE, you can use:
a0d0e21e 83
84 SvTRUE(SV*)
85
86Although Perl will automatically grow strings for you, if you need to force
87Perl to allocate more memory for your SV, you can use the macro
88
89 SvGROW(SV*, STRLEN newlen)
90
91which will determine if more memory needs to be allocated. If so, it will
92call the function C<sv_grow>. Note that C<SvGROW> can only increase, not
5f05dabc 93decrease, the allocated memory of an SV and that it does not automatically
94add a byte for the a trailing NUL (perl's own string functions typically do
8ebc5c01 95C<SvGROW(sv, len + 1)>).
a0d0e21e 96
97If you have an SV and want to know what kind of data Perl thinks is stored
98in it, you can use the following macros to check the type of SV you have.
99
100 SvIOK(SV*)
101 SvNOK(SV*)
102 SvPOK(SV*)
103
104You can get and set the current length of the string stored in an SV with
105the following macros:
106
107 SvCUR(SV*)
108 SvCUR_set(SV*, I32 val)
109
cb1a09d0 110You can also get a pointer to the end of the string stored in the SV
111with the macro:
112
113 SvEND(SV*)
114
115But note that these last three macros are valid only if C<SvPOK()> is true.
a0d0e21e 116
d1b91892 117If you want to append something to the end of string stored in an C<SV*>,
118you can use the following functions:
119
120 void sv_catpv(SV*, char*);
121 void sv_catpvn(SV*, char*, int);
122 void sv_catsv(SV*, SV*);
123
124The first function calculates the length of the string to be appended by
125using C<strlen>. In the second, you specify the length of the string
126yourself. The third function extends the string stored in the first SV
127with the string stored in the second SV. It also forces the second SV to
128be interpreted as a string.
129
a0d0e21e 130If you know the name of a scalar variable, you can get a pointer to its SV
131by using the following:
132
5f05dabc 133 SV* perl_get_sv("package::varname", FALSE);
a0d0e21e 134
135This returns NULL if the variable does not exist.
136
d1b91892 137If you want to know if this variable (or any other SV) is actually C<defined>,
a0d0e21e 138you can call:
139
140 SvOK(SV*)
141
142The scalar C<undef> value is stored in an SV instance called C<sv_undef>. Its
143address can be used whenever an C<SV*> is needed.
144
145There are also the two values C<sv_yes> and C<sv_no>, which contain Boolean
146TRUE and FALSE values, respectively. Like C<sv_undef>, their addresses can
147be used whenever an C<SV*> is needed.
148
149Do not be fooled into thinking that C<(SV *) 0> is the same as C<&sv_undef>.
150Take this code:
151
152 SV* sv = (SV*) 0;
153 if (I-am-to-return-a-real-value) {
154 sv = sv_2mortal(newSViv(42));
155 }
156 sv_setsv(ST(0), sv);
157
158This code tries to return a new SV (which contains the value 42) if it should
159return a real value, or undef otherwise. Instead it has returned a null
160pointer which, somewhere down the line, will cause a segmentation violation,
5f05dabc 161bus error, or just weird results. Change the zero to C<&sv_undef> in the first
162line and all will be well.
a0d0e21e 163
164To free an SV that you've created, call C<SvREFCNT_dec(SV*)>. Normally this
2ae324a7 165call is not necessary (see the section on L<Reference Counts and Mortality>).
a0d0e21e 166
d1b91892 167=head2 What's Really Stored in an SV?
a0d0e21e 168
169Recall that the usual method of determining the type of scalar you have is
5f05dabc 170to use C<Sv*OK> macros. Because a scalar can be both a number and a string,
d1b91892 171usually these macros will always return TRUE and calling the C<Sv*V>
a0d0e21e 172macros will do the appropriate conversion of string to integer/double or
173integer/double to string.
174
175If you I<really> need to know if you have an integer, double, or string
176pointer in an SV, you can use the following three macros instead:
177
178 SvIOKp(SV*)
179 SvNOKp(SV*)
180 SvPOKp(SV*)
181
182These will tell you if you truly have an integer, double, or string pointer
d1b91892 183stored in your SV. The "p" stands for private.
a0d0e21e 184
07fa94a1 185In general, though, it's best to use the C<Sv*V> macros.
a0d0e21e 186
5f05dabc 187=head2 Working with AV's
a0d0e21e 188
07fa94a1 189There are two ways to create and load an AV. The first method creates an
190empty AV:
a0d0e21e 191
192 AV* newAV();
193
5f05dabc 194The second method both creates the AV and initially populates it with SV's:
a0d0e21e 195
196 AV* av_make(I32 num, SV **ptr);
197
5f05dabc 198The second argument points to an array containing C<num> C<SV*>'s. Once the
199AV has been created, the SV's can be destroyed, if so desired.
a0d0e21e 200
5f05dabc 201Once the AV has been created, the following operations are possible on AV's:
a0d0e21e 202
203 void av_push(AV*, SV*);
204 SV* av_pop(AV*);
205 SV* av_shift(AV*);
206 void av_unshift(AV*, I32 num);
207
208These should be familiar operations, with the exception of C<av_unshift>.
209This routine adds C<num> elements at the front of the array with the C<undef>
210value. You must then use C<av_store> (described below) to assign values
211to these new elements.
212
213Here are some other functions:
214
5f05dabc 215 I32 av_len(AV*);
a0d0e21e 216 SV** av_fetch(AV*, I32 key, I32 lval);
a0d0e21e 217 SV** av_store(AV*, I32 key, SV* val);
a0d0e21e 218
5f05dabc 219The C<av_len> function returns the highest index value in array (just
220like $#array in Perl). If the array is empty, -1 is returned. The
221C<av_fetch> function returns the value at index C<key>, but if C<lval>
222is non-zero, then C<av_fetch> will store an undef value at that index.
223The C<av_store> function stores the value C<val> at index C<key>.
224note that C<av_fetch> and C<av_store> both return C<SV**>'s, not C<SV*>'s
225as their return value.
d1b91892 226
a0d0e21e 227 void av_clear(AV*);
a0d0e21e 228 void av_undef(AV*);
cb1a09d0 229 void av_extend(AV*, I32 key);
5f05dabc 230
231The C<av_clear> function deletes all the elements in the AV* array, but
232does not actually delete the array itself. The C<av_undef> function will
233delete all the elements in the array plus the array itself. The
234C<av_extend> function extends the array so that it contains C<key>
235elements. If C<key> is less than the current length of the array, then
236nothing is done.
a0d0e21e 237
238If you know the name of an array variable, you can get a pointer to its AV
239by using the following:
240
5f05dabc 241 AV* perl_get_av("package::varname", FALSE);
a0d0e21e 242
243This returns NULL if the variable does not exist.
244
5f05dabc 245=head2 Working with HV's
a0d0e21e 246
247To create an HV, you use the following routine:
248
249 HV* newHV();
250
5f05dabc 251Once the HV has been created, the following operations are possible on HV's:
a0d0e21e 252
253 SV** hv_store(HV*, char* key, U32 klen, SV* val, U32 hash);
254 SV** hv_fetch(HV*, char* key, U32 klen, I32 lval);
255
5f05dabc 256The C<klen> parameter is the length of the key being passed in (Note that
257you cannot pass 0 in as a value of C<klen> to tell Perl to measure the
258length of the key). The C<val> argument contains the SV pointer to the
259scalar being stored, and C<hash> is the pre-computed hash value (zero if
260you want C<hv_store> to calculate it for you). The C<lval> parameter
261indicates whether this fetch is actually a part of a store operation, in
262which case a new undefined value will be added to the HV with the supplied
263key and C<hv_fetch> will return as if the value had already existed.
a0d0e21e 264
5f05dabc 265Remember that C<hv_store> and C<hv_fetch> return C<SV**>'s and not just
266C<SV*>. To access the scalar value, you must first dereference the return
267value. However, you should check to make sure that the return value is
268not NULL before dereferencing it.
a0d0e21e 269
270These two functions check if a hash table entry exists, and deletes it.
271
272 bool hv_exists(HV*, char* key, U32 klen);
d1b91892 273 SV* hv_delete(HV*, char* key, U32 klen, I32 flags);
a0d0e21e 274
5f05dabc 275If C<flags> does not include the C<G_DISCARD> flag then C<hv_delete> will
276create and return a mortal copy of the deleted value.
277
a0d0e21e 278And more miscellaneous functions:
279
280 void hv_clear(HV*);
a0d0e21e 281 void hv_undef(HV*);
5f05dabc 282
283Like their AV counterparts, C<hv_clear> deletes all the entries in the hash
284table but does not actually delete the hash table. The C<hv_undef> deletes
285both the entries and the hash table itself.
a0d0e21e 286
d1b91892 287Perl keeps the actual data in linked list of structures with a typedef of HE.
288These contain the actual key and value pointers (plus extra administrative
289overhead). The key is a string pointer; the value is an C<SV*>. However,
290once you have an C<HE*>, to get the actual key and value, use the routines
291specified below.
292
a0d0e21e 293 I32 hv_iterinit(HV*);
294 /* Prepares starting point to traverse hash table */
295 HE* hv_iternext(HV*);
296 /* Get the next entry, and return a pointer to a
297 structure that has both the key and value */
298 char* hv_iterkey(HE* entry, I32* retlen);
299 /* Get the key from an HE structure and also return
300 the length of the key string */
cb1a09d0 301 SV* hv_iterval(HV*, HE* entry);
a0d0e21e 302 /* Return a SV pointer to the value of the HE
303 structure */
cb1a09d0 304 SV* hv_iternextsv(HV*, char** key, I32* retlen);
d1b91892 305 /* This convenience routine combines hv_iternext,
306 hv_iterkey, and hv_iterval. The key and retlen
307 arguments are return values for the key and its
308 length. The value is returned in the SV* argument */
a0d0e21e 309
310If you know the name of a hash variable, you can get a pointer to its HV
311by using the following:
312
5f05dabc 313 HV* perl_get_hv("package::varname", FALSE);
a0d0e21e 314
315This returns NULL if the variable does not exist.
316
8ebc5c01 317The hash algorithm is defined in the C<PERL_HASH(hash, key, klen)> macro:
a0d0e21e 318
319 i = klen;
320 hash = 0;
321 s = key;
322 while (i--)
323 hash = hash * 33 + *s++;
324
1e422769 325=head2 Hash API Extensions
326
327Beginning with version 5.004, the following functions are also supported:
328
329 HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash);
330 HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash);
331
332 bool hv_exists_ent (HV* tb, SV* key, U32 hash);
333 SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash);
334
335 SV* hv_iterkeysv (HE* entry);
336
337Note that these functions take C<SV*> keys, which simplifies writing
338of extension code that deals with hash structures. These functions
339also allow passing of C<SV*> keys to C<tie> functions without forcing
340you to stringify the keys (unlike the previous set of functions).
341
342They also return and accept whole hash entries (C<HE*>), making their
343use more efficient (since the hash number for a particular string
344doesn't have to be recomputed every time). See L<API LISTING> later in
345this document for detailed descriptions.
346
347The following macros must always be used to access the contents of hash
348entries. Note that the arguments to these macros must be simple
349variables, since they may get evaluated more than once. See
350L<API LISTING> later in this document for detailed descriptions of these
351macros.
352
353 HePV(HE* he, STRLEN len)
354 HeVAL(HE* he)
355 HeHASH(HE* he)
356 HeSVKEY(HE* he)
357 HeSVKEY_force(HE* he)
358 HeSVKEY_set(HE* he, SV* sv)
359
360These two lower level macros are defined, but must only be used when
361dealing with keys that are not C<SV*>s:
362
363 HeKEY(HE* he)
364 HeKLEN(HE* he)
365
366
a0d0e21e 367=head2 References
368
d1b91892 369References are a special type of scalar that point to other data types
370(including references).
a0d0e21e 371
07fa94a1 372To create a reference, use either of the following functions:
a0d0e21e 373
5f05dabc 374 SV* newRV_inc((SV*) thing);
375 SV* newRV_noinc((SV*) thing);
a0d0e21e 376
5f05dabc 377The C<thing> argument can be any of an C<SV*>, C<AV*>, or C<HV*>. The
07fa94a1 378functions are identical except that C<newRV_inc> increments the reference
379count of the C<thing>, while C<newRV_noinc> does not. For historical
380reasons, C<newRV> is a synonym for C<newRV_inc>.
381
382Once you have a reference, you can use the following macro to dereference
383the reference:
a0d0e21e 384
385 SvRV(SV*)
386
387then call the appropriate routines, casting the returned C<SV*> to either an
d1b91892 388C<AV*> or C<HV*>, if required.
a0d0e21e 389
d1b91892 390To determine if an SV is a reference, you can use the following macro:
a0d0e21e 391
392 SvROK(SV*)
393
07fa94a1 394To discover what type of value the reference refers to, use the following
395macro and then check the return value.
d1b91892 396
397 SvTYPE(SvRV(SV*))
398
399The most useful types that will be returned are:
400
401 SVt_IV Scalar
402 SVt_NV Scalar
403 SVt_PV Scalar
5f05dabc 404 SVt_RV Scalar
d1b91892 405 SVt_PVAV Array
406 SVt_PVHV Hash
407 SVt_PVCV Code
5f05dabc 408 SVt_PVGV Glob (possible a file handle)
409 SVt_PVMG Blessed or Magical Scalar
410
411 See the sv.h header file for more details.
d1b91892 412
cb1a09d0 413=head2 Blessed References and Class Objects
414
415References are also used to support object-oriented programming. In the
416OO lexicon, an object is simply a reference that has been blessed into a
417package (or class). Once blessed, the programmer may now use the reference
418to access the various methods in the class.
419
420A reference can be blessed into a package with the following function:
421
422 SV* sv_bless(SV* sv, HV* stash);
423
424The C<sv> argument must be a reference. The C<stash> argument specifies
2ae324a7 425which class the reference will belong to. See the section on
426L<Stashes and Globs> for information on converting class names into stashes.
cb1a09d0 427
428/* Still under construction */
429
430Upgrades rv to reference if not already one. Creates new SV for rv to
8ebc5c01 431point to. If C<classname> is non-null, the SV is blessed into the specified
432class. SV is returned.
cb1a09d0 433
434 SV* newSVrv(SV* rv, char* classname);
435
8ebc5c01 436Copies integer or double into an SV whose reference is C<rv>. SV is blessed
437if C<classname> is non-null.
cb1a09d0 438
439 SV* sv_setref_iv(SV* rv, char* classname, IV iv);
440 SV* sv_setref_nv(SV* rv, char* classname, NV iv);
441
5f05dabc 442Copies the pointer value (I<the address, not the string!>) into an SV whose
8ebc5c01 443reference is rv. SV is blessed if C<classname> is non-null.
cb1a09d0 444
445 SV* sv_setref_pv(SV* rv, char* classname, PV iv);
446
8ebc5c01 447Copies string into an SV whose reference is C<rv>. Set length to 0 to let
448Perl calculate the string length. SV is blessed if C<classname> is non-null.
cb1a09d0 449
450 SV* sv_setref_pvn(SV* rv, char* classname, PV iv, int length);
451
452 int sv_isa(SV* sv, char* name);
453 int sv_isobject(SV* sv);
454
5f05dabc 455=head2 Creating New Variables
cb1a09d0 456
5f05dabc 457To create a new Perl variable with an undef value which can be accessed from
458your Perl script, use the following routines, depending on the variable type.
cb1a09d0 459
5f05dabc 460 SV* perl_get_sv("package::varname", TRUE);
461 AV* perl_get_av("package::varname", TRUE);
462 HV* perl_get_hv("package::varname", TRUE);
cb1a09d0 463
464Notice the use of TRUE as the second parameter. The new variable can now
465be set, using the routines appropriate to the data type.
466
5f05dabc 467There are additional macros whose values may be bitwise OR'ed with the
468C<TRUE> argument to enable certain extra features. Those bits are:
cb1a09d0 469
5f05dabc 470 GV_ADDMULTI Marks the variable as multiply defined, thus preventing the
471 "Indentifier <varname> used only once: possible typo" warning.
07fa94a1 472 GV_ADDWARN Issues the warning "Had to create <varname> unexpectedly" if
473 the variable did not exist before the function was called.
cb1a09d0 474
07fa94a1 475If you do not specify a package name, the variable is created in the current
476package.
cb1a09d0 477
5f05dabc 478=head2 Reference Counts and Mortality
a0d0e21e 479
55497cff 480Perl uses an reference count-driven garbage collection mechanism. SV's,
481AV's, or HV's (xV for short in the following) start their life with a
482reference count of 1. If the reference count of an xV ever drops to 0,
07fa94a1 483then it will be destroyed and its memory made available for reuse.
55497cff 484
485This normally doesn't happen at the Perl level unless a variable is
5f05dabc 486undef'ed or the last variable holding a reference to it is changed or
487overwritten. At the internal level, however, reference counts can be
55497cff 488manipulated with the following macros:
489
490 int SvREFCNT(SV* sv);
5f05dabc 491 SV* SvREFCNT_inc(SV* sv);
55497cff 492 void SvREFCNT_dec(SV* sv);
493
494However, there is one other function which manipulates the reference
07fa94a1 495count of its argument. The C<newRV_inc> function, you will recall,
496creates a reference to the specified argument. As a side effect,
497it increments the argument's reference count. If this is not what
498you want, use C<newRV_noinc> instead.
499
500For example, imagine you want to return a reference from an XSUB function.
501Inside the XSUB routine, you create an SV which initially has a reference
502count of one. Then you call C<newRV_inc>, passing it the just-created SV.
5f05dabc 503This returns the reference as a new SV, but the reference count of the
504SV you passed to C<newRV_inc> has been incremented to two. Now you
07fa94a1 505return the reference from the XSUB routine and forget about the SV.
506But Perl hasn't! Whenever the returned reference is destroyed, the
507reference count of the original SV is decreased to one and nothing happens.
508The SV will hang around without any way to access it until Perl itself
509terminates. This is a memory leak.
5f05dabc 510
511The correct procedure, then, is to use C<newRV_noinc> instead of
faed5253 512C<newRV_inc>. Then, if and when the last reference is destroyed,
513the reference count of the SV will go to zero and it will be destroyed,
07fa94a1 514stopping any memory leak.
55497cff 515
5f05dabc 516There are some convenience functions available that can help with the
07fa94a1 517destruction of xV's. These functions introduce the concept of "mortality".
518An xV that is mortal has had its reference count marked to be decremented,
519but not actually decremented, until "a short time later". Generally the
520term "short time later" means a single Perl statement, such as a call to
521an XSUB function. The actual determinant for when mortal xV's have their
522reference count decremented depends on two macros, SAVETMPS and FREETMPS.
523See L<perlcall> and L<perlxs> for more details on these macros.
55497cff 524
525"Mortalization" then is at its simplest a deferred C<SvREFCNT_dec>.
526However, if you mortalize a variable twice, the reference count will
527later be decremented twice.
528
529You should be careful about creating mortal variables. Strange things
530can happen if you make the same value mortal within multiple contexts,
5f05dabc 531or if you make a variable mortal multiple times.
a0d0e21e 532
533To create a mortal variable, use the functions:
534
535 SV* sv_newmortal()
536 SV* sv_2mortal(SV*)
537 SV* sv_mortalcopy(SV*)
538
5f05dabc 539The first call creates a mortal SV, the second converts an existing
540SV to a mortal SV (and thus defers a call to C<SvREFCNT_dec>), and the
541third creates a mortal copy of an existing SV.
a0d0e21e 542
faed5253 543The mortal routines are not just for SV's -- AV's and HV's can be
544made mortal by passing their address (type-casted to C<SV*>) to the
07fa94a1 545C<sv_2mortal> or C<sv_mortalcopy> routines.
a0d0e21e 546
5f05dabc 547=head2 Stashes and Globs
a0d0e21e 548
aa689395 549A "stash" is a hash that contains all of the different objects that
550are contained within a package. Each key of the stash is a symbol
551name (shared by all the different types of objects that have the same
552name), and each value in the hash table is a GV (Glob Value). This GV
553in turn contains references to the various objects of that name,
554including (but not limited to) the following:
cb1a09d0 555
a0d0e21e 556 Scalar Value
557 Array Value
558 Hash Value
559 File Handle
560 Directory Handle
561 Format
562 Subroutine
563
5f05dabc 564There is a single stash called "defstash" that holds the items that exist
565in the "main" package. To get at the items in other packages, append the
566string "::" to the package name. The items in the "Foo" package are in
567the stash "Foo::" in defstash. The items in the "Bar::Baz" package are
568in the stash "Baz::" in "Bar::"'s stash.
a0d0e21e 569
d1b91892 570To get the stash pointer for a particular package, use the function:
a0d0e21e 571
572 HV* gv_stashpv(char* name, I32 create)
573 HV* gv_stashsv(SV*, I32 create)
574
575The first function takes a literal string, the second uses the string stored
d1b91892 576in the SV. Remember that a stash is just a hash table, so you get back an
cb1a09d0 577C<HV*>. The C<create> flag will create a new package if it is set.
a0d0e21e 578
579The name that C<gv_stash*v> wants is the name of the package whose symbol table
580you want. The default package is called C<main>. If you have multiply nested
d1b91892 581packages, pass their names to C<gv_stash*v>, separated by C<::> as in the Perl
582language itself.
a0d0e21e 583
584Alternately, if you have an SV that is a blessed reference, you can find
585out the stash pointer by using:
586
587 HV* SvSTASH(SvRV(SV*));
588
589then use the following to get the package name itself:
590
591 char* HvNAME(HV* stash);
592
5f05dabc 593If you need to bless or re-bless an object you can use the following
594function:
a0d0e21e 595
596 SV* sv_bless(SV*, HV* stash)
597
598where the first argument, an C<SV*>, must be a reference, and the second
599argument is a stash. The returned C<SV*> can now be used in the same way
600as any other SV.
601
d1b91892 602For more information on references and blessings, consult L<perlref>.
603
0a753a76 604=head2 Double-Typed SV's
605
606Scalar variables normally contain only one type of value, an integer,
607double, pointer, or reference. Perl will automatically convert the
608actual scalar data from the stored type into the requested type.
609
610Some scalar variables contain more than one type of scalar data. For
611example, the variable C<$!> contains either the numeric value of C<errno>
612or its string equivalent from either C<strerror> or C<sys_errlist[]>.
613
614To force multiple data values into an SV, you must do two things: use the
615C<sv_set*v> routines to add the additional scalar type, then set a flag
616so that Perl will believe it contains more than one type of data. The
617four macros to set the flags are:
618
619 SvIOK_on
620 SvNOK_on
621 SvPOK_on
622 SvROK_on
623
624The particular macro you must use depends on which C<sv_set*v> routine
625you called first. This is because every C<sv_set*v> routine turns on
626only the bit for the particular type of data being set, and turns off
627all the rest.
628
629For example, to create a new Perl variable called "dberror" that contains
630both the numeric and descriptive string error values, you could use the
631following code:
632
633 extern int dberror;
634 extern char *dberror_list;
635
636 SV* sv = perl_get_sv("dberror", TRUE);
637 sv_setiv(sv, (IV) dberror);
638 sv_setpv(sv, dberror_list[dberror]);
639 SvIOK_on(sv);
640
641If the order of C<sv_setiv> and C<sv_setpv> had been reversed, then the
642macro C<SvPOK_on> would need to be called instead of C<SvIOK_on>.
643
644=head2 Magic Variables
a0d0e21e 645
d1b91892 646[This section still under construction. Ignore everything here. Post no
647bills. Everything not permitted is forbidden.]
648
d1b91892 649Any SV may be magical, that is, it has special features that a normal
650SV does not have. These features are stored in the SV structure in a
5f05dabc 651linked list of C<struct magic>'s, typedef'ed to C<MAGIC>.
d1b91892 652
653 struct magic {
654 MAGIC* mg_moremagic;
655 MGVTBL* mg_virtual;
656 U16 mg_private;
657 char mg_type;
658 U8 mg_flags;
659 SV* mg_obj;
660 char* mg_ptr;
661 I32 mg_len;
662 };
663
664Note this is current as of patchlevel 0, and could change at any time.
665
666=head2 Assigning Magic
667
668Perl adds magic to an SV using the sv_magic function:
669
670 void sv_magic(SV* sv, SV* obj, int how, char* name, I32 namlen);
671
672The C<sv> argument is a pointer to the SV that is to acquire a new magical
673feature.
674
675If C<sv> is not already magical, Perl uses the C<SvUPGRADE> macro to
676set the C<SVt_PVMG> flag for the C<sv>. Perl then continues by adding
677it to the beginning of the linked list of magical features. Any prior
678entry of the same type of magic is deleted. Note that this can be
5fb8527f 679overridden, and multiple instances of the same type of magic can be
d1b91892 680associated with an SV.
681
682The C<name> and C<namlem> arguments are used to associate a string with
683the magic, typically the name of a variable. C<namlem> is stored in the
55497cff 684C<mg_len> field and if C<name> is non-null and C<namlem> >= 0 a malloc'd
d1b91892 685copy of the name is stored in C<mg_ptr> field.
686
687The sv_magic function uses C<how> to determine which, if any, predefined
688"Magic Virtual Table" should be assigned to the C<mg_virtual> field.
cb1a09d0 689See the "Magic Virtual Table" section below. The C<how> argument is also
690stored in the C<mg_type> field.
d1b91892 691
692The C<obj> argument is stored in the C<mg_obj> field of the C<MAGIC>
693structure. If it is not the same as the C<sv> argument, the reference
694count of the C<obj> object is incremented. If it is the same, or if
695the C<how> argument is "#", or if it is a null pointer, then C<obj> is
696merely stored, without the reference count being incremented.
697
cb1a09d0 698There is also a function to add magic to an C<HV>:
699
700 void hv_magic(HV *hv, GV *gv, int how);
701
702This simply calls C<sv_magic> and coerces the C<gv> argument into an C<SV>.
703
704To remove the magic from an SV, call the function sv_unmagic:
705
706 void sv_unmagic(SV *sv, int type);
707
708The C<type> argument should be equal to the C<how> value when the C<SV>
709was initially made magical.
710
d1b91892 711=head2 Magic Virtual Tables
712
713The C<mg_virtual> field in the C<MAGIC> structure is a pointer to a
714C<MGVTBL>, which is a structure of function pointers and stands for
715"Magic Virtual Table" to handle the various operations that might be
716applied to that variable.
717
718The C<MGVTBL> has five pointers to the following routine types:
719
720 int (*svt_get)(SV* sv, MAGIC* mg);
721 int (*svt_set)(SV* sv, MAGIC* mg);
722 U32 (*svt_len)(SV* sv, MAGIC* mg);
723 int (*svt_clear)(SV* sv, MAGIC* mg);
724 int (*svt_free)(SV* sv, MAGIC* mg);
725
726This MGVTBL structure is set at compile-time in C<perl.h> and there are
727currently 19 types (or 21 with overloading turned on). These different
728structures contain pointers to various routines that perform additional
729actions depending on which function is being called.
730
731 Function pointer Action taken
732 ---------------- ------------
733 svt_get Do something after the value of the SV is retrieved.
734 svt_set Do something after the SV is assigned a value.
735 svt_len Report on the SV's length.
736 svt_clear Clear something the SV represents.
737 svt_free Free any extra storage associated with the SV.
738
739For instance, the MGVTBL structure called C<vtbl_sv> (which corresponds
740to an C<mg_type> of '\0') contains:
741
742 { magic_get, magic_set, magic_len, 0, 0 }
743
744Thus, when an SV is determined to be magical and of type '\0', if a get
745operation is being performed, the routine C<magic_get> is called. All
746the various routines for the various magical types begin with C<magic_>.
747
748The current kinds of Magic Virtual Tables are:
749
07fa94a1 750 mg_type MGVTBL Type of magical
5f05dabc 751 ------- ------ ----------------------------
d1b91892 752 \0 vtbl_sv Regexp???
753 A vtbl_amagic Operator Overloading
754 a vtbl_amagicelem Operator Overloading
755 c 0 Used in Operator Overloading
756 B vtbl_bm Boyer-Moore???
757 E vtbl_env %ENV hash
758 e vtbl_envelem %ENV hash element
759 g vtbl_mglob Regexp /g flag???
760 I vtbl_isa @ISA array
761 i vtbl_isaelem @ISA array element
762 L 0 (but sets RMAGICAL) Perl Module/Debugger???
763 l vtbl_dbline Debugger?
44a8e56a 764 o vtbl_collxfrm Locale transformation
d1b91892 765 P vtbl_pack Tied Array or Hash
766 p vtbl_packelem Tied Array or Hash element
767 q vtbl_packelem Tied Scalar or Handle
768 S vtbl_sig Signal Hash
769 s vtbl_sigelem Signal Hash element
770 t vtbl_taint Taintedness
771 U vtbl_uvar ???
772 v vtbl_vec Vector
773 x vtbl_substr Substring???
e616eb7b 774 y vtbl_itervar Shadow "foreach" iterator variable
d1b91892 775 * vtbl_glob GV???
776 # vtbl_arylen Array Length
777 . vtbl_pos $. scalar variable
5f05dabc 778 ~ None Used by certain extensions
d1b91892 779
780When an upper-case and lower-case letter both exist in the table, then the
781upper-case letter is used to represent some kind of composite type (a list
782or a hash), and the lower-case letter is used to represent an element of
783that composite type.
784
5f05dabc 785The '~' magic type is defined specifically for use by extensions and
786will not be used by perl itself. Extensions can use ~ magic to 'attach'
787private information to variables (typically objects). This is especially
788useful because there is no way for normal perl code to corrupt this
789private information (unlike using extra elements of a hash object).
790
791Note that because multiple extensions may be using ~ magic it is
792important for extensions to take extra care with it. Typically only
793using it on objects blessed into the same class as the extension
794is sufficient. It may also be appropriate to add an I32 'signature'
795at the top of the private data area and check that.
796
d1b91892 797=head2 Finding Magic
798
799 MAGIC* mg_find(SV*, int type); /* Finds the magic pointer of that type */
800
801This routine returns a pointer to the C<MAGIC> structure stored in the SV.
802If the SV does not have that magical feature, C<NULL> is returned. Also,
803if the SV is not of type SVt_PVMG, Perl may core-dump.
804
805 int mg_copy(SV* sv, SV* nsv, char* key, STRLEN klen);
806
807This routine checks to see what types of magic C<sv> has. If the mg_type
808field is an upper-case letter, then the mg_obj is copied to C<nsv>, but
809the mg_type field is changed to be the lower-case letter.
a0d0e21e 810
0a753a76 811=head1 Subroutines
a0d0e21e 812
5f432370 813=head2 XSUBs and the Argument Stack
5f05dabc 814
815The XSUB mechanism is a simple way for Perl programs to access C subroutines.
816An XSUB routine will have a stack that contains the arguments from the Perl
817program, and a way to map from the Perl data structures to a C equivalent.
818
819The stack arguments are accessible through the C<ST(n)> macro, which returns
820the C<n>'th stack argument. Argument 0 is the first argument passed in the
821Perl subroutine call. These arguments are C<SV*>, and can be used anywhere
822an C<SV*> is used.
823
824Most of the time, output from the C routine can be handled through use of
825the RETVAL and OUTPUT directives. However, there are some cases where the
826argument stack is not already long enough to handle all the return values.
827An example is the POSIX tzname() call, which takes no arguments, but returns
828two, the local time zone's standard and summer time abbreviations.
829
830To handle this situation, the PPCODE directive is used and the stack is
831extended using the macro:
832
833 EXTEND(sp, num);
834
835where C<sp> is the stack pointer, and C<num> is the number of elements the
836stack should be extended by.
837
838Now that there is room on the stack, values can be pushed on it using the
839macros to push IV's, doubles, strings, and SV pointers respectively:
840
841 PUSHi(IV)
842 PUSHn(double)
843 PUSHp(char*, I32)
844 PUSHs(SV*)
845
846And now the Perl program calling C<tzname>, the two values will be assigned
847as in:
848
849 ($standard_abbrev, $summer_abbrev) = POSIX::tzname;
850
851An alternate (and possibly simpler) method to pushing values on the stack is
852to use the macros:
853
854 XPUSHi(IV)
855 XPUSHn(double)
856 XPUSHp(char*, I32)
857 XPUSHs(SV*)
858
859These macros automatically adjust the stack for you, if needed. Thus, you
860do not need to call C<EXTEND> to extend the stack.
861
862For more information, consult L<perlxs> and L<perlxstut>.
863
864=head2 Calling Perl Routines from within C Programs
a0d0e21e 865
866There are four routines that can be used to call a Perl subroutine from
867within a C program. These four are:
868
869 I32 perl_call_sv(SV*, I32);
870 I32 perl_call_pv(char*, I32);
871 I32 perl_call_method(char*, I32);
872 I32 perl_call_argv(char*, I32, register char**);
873
d1b91892 874The routine most often used is C<perl_call_sv>. The C<SV*> argument
875contains either the name of the Perl subroutine to be called, or a
876reference to the subroutine. The second argument consists of flags
877that control the context in which the subroutine is called, whether
878or not the subroutine is being passed arguments, how errors should be
879trapped, and how to treat return values.
a0d0e21e 880
881All four routines return the number of arguments that the subroutine returned
882on the Perl stack.
883
d1b91892 884When using any of these routines (except C<perl_call_argv>), the programmer
885must manipulate the Perl stack. These include the following macros and
886functions:
a0d0e21e 887
888 dSP
889 PUSHMARK()
890 PUTBACK
891 SPAGAIN
892 ENTER
893 SAVETMPS
894 FREETMPS
895 LEAVE
896 XPUSH*()
cb1a09d0 897 POP*()
a0d0e21e 898
5f05dabc 899For a detailed description of calling conventions from C to Perl,
900consult L<perlcall>.
a0d0e21e 901
5f05dabc 902=head2 Memory Allocation
a0d0e21e 903
5f05dabc 904It is suggested that you use the version of malloc that is distributed
905with Perl. It keeps pools of various sizes of unallocated memory in
07fa94a1 906order to satisfy allocation requests more quickly. However, on some
907platforms, it may cause spurious malloc or free errors.
d1b91892 908
909 New(x, pointer, number, type);
910 Newc(x, pointer, number, type, cast);
911 Newz(x, pointer, number, type);
912
07fa94a1 913These three macros are used to initially allocate memory.
5f05dabc 914
915The first argument C<x> was a "magic cookie" that was used to keep track
916of who called the macro, to help when debugging memory problems. However,
07fa94a1 917the current code makes no use of this feature (most Perl developers now
918use run-time memory checkers), so this argument can be any number.
5f05dabc 919
920The second argument C<pointer> should be the name of a variable that will
921point to the newly allocated memory.
d1b91892 922
d1b91892 923The third and fourth arguments C<number> and C<type> specify how many of
924the specified type of data structure should be allocated. The argument
925C<type> is passed to C<sizeof>. The final argument to C<Newc>, C<cast>,
926should be used if the C<pointer> argument is different from the C<type>
927argument.
928
929Unlike the C<New> and C<Newc> macros, the C<Newz> macro calls C<memzero>
930to zero out all the newly allocated memory.
931
932 Renew(pointer, number, type);
933 Renewc(pointer, number, type, cast);
934 Safefree(pointer)
935
936These three macros are used to change a memory buffer size or to free a
937piece of memory no longer needed. The arguments to C<Renew> and C<Renewc>
938match those of C<New> and C<Newc> with the exception of not needing the
939"magic cookie" argument.
940
941 Move(source, dest, number, type);
942 Copy(source, dest, number, type);
943 Zero(dest, number, type);
944
945These three macros are used to move, copy, or zero out previously allocated
946memory. The C<source> and C<dest> arguments point to the source and
947destination starting points. Perl will move, copy, or zero out C<number>
948instances of the size of the C<type> data structure (using the C<sizeof>
949function).
a0d0e21e 950
5f05dabc 951=head2 PerlIO
ce3d39e2 952
5f05dabc 953The most recent development releases of Perl has been experimenting with
954removing Perl's dependency on the "normal" standard I/O suite and allowing
955other stdio implementations to be used. This involves creating a new
956abstraction layer that then calls whichever implementation of stdio Perl
5f432370 957was compiled with. All XSUBs should now use the functions in the PerlIO
5f05dabc 958abstraction layer and not make any assumptions about what kind of stdio
959is being used.
960
961For a complete description of the PerlIO abstraction, consult L<perlapio>.
962
8ebc5c01 963=head2 Putting a C value on Perl stack
ce3d39e2 964
965A lot of opcodes (this is an elementary operation in the internal perl
966stack machine) put an SV* on the stack. However, as an optimization
967the corresponding SV is (usually) not recreated each time. The opcodes
968reuse specially assigned SVs (I<target>s) which are (as a corollary)
969not constantly freed/created.
970
0a753a76 971Each of the targets is created only once (but see
ce3d39e2 972L<Scratchpads and recursion> below), and when an opcode needs to put
973an integer, a double, or a string on stack, it just sets the
974corresponding parts of its I<target> and puts the I<target> on stack.
975
976The macro to put this target on stack is C<PUSHTARG>, and it is
977directly used in some opcodes, as well as indirectly in zillions of
978others, which use it via C<(X)PUSH[pni]>.
979
8ebc5c01 980=head2 Scratchpads
ce3d39e2 981
5f05dabc 982The question remains on when the SV's which are I<target>s for opcodes
983are created. The answer is that they are created when the current unit --
984a subroutine or a file (for opcodes for statements outside of
985subroutines) -- is compiled. During this time a special anonymous Perl
ce3d39e2 986array is created, which is called a scratchpad for the current
987unit.
988
5f05dabc 989A scratchpad keeps SV's which are lexicals for the current unit and are
ce3d39e2 990targets for opcodes. One can deduce that an SV lives on a scratchpad
991by looking on its flags: lexicals have C<SVs_PADMY> set, and
992I<target>s have C<SVs_PADTMP> set.
993
5f05dabc 994The correspondence between OP's and I<target>s is not 1-to-1. Different
995OP's in the compile tree of the unit can use the same target, if this
ce3d39e2 996would not conflict with the expected life of the temporary.
997
2ae324a7 998=head2 Scratchpads and recursion
ce3d39e2 999
1000In fact it is not 100% true that a compiled unit contains a pointer to
1001the scratchpad AV. In fact it contains a pointer to an AV of
1002(initially) one element, and this element is the scratchpad AV. Why do
1003we need an extra level of indirection?
1004
1005The answer is B<recursion>, and maybe (sometime soon) B<threads>. Both
1006these can create several execution pointers going into the same
1007subroutine. For the subroutine-child not write over the temporaries
1008for the subroutine-parent (lifespan of which covers the call to the
1009child), the parent and the child should have different
1010scratchpads. (I<And> the lexicals should be separate anyway!)
1011
5f05dabc 1012So each subroutine is born with an array of scratchpads (of length 1).
1013On each entry to the subroutine it is checked that the current
ce3d39e2 1014depth of the recursion is not more than the length of this array, and
1015if it is, new scratchpad is created and pushed into the array.
1016
1017The I<target>s on this scratchpad are C<undef>s, but they are already
1018marked with correct flags.
1019
0a753a76 1020=head1 Compiled code
1021
1022=head2 Code tree
1023
1024Here we describe the internal form your code is converted to by
1025Perl. Start with a simple example:
1026
1027 $a = $b + $c;
1028
1029This is converted to a tree similar to this one:
1030
1031 assign-to
1032 / \
1033 + $a
1034 / \
1035 $b $c
1036
1037(but slightly more complicated). This tree reflect the way Perl
1038parsed your code, but has nothing to do with the execution order.
1039There is an additional "thread" going through the nodes of the tree
1040which shows the order of execution of the nodes. In our simplified
1041example above it looks like:
1042
1043 $b ---> $c ---> + ---> $a ---> assign-to
1044
1045But with the actual compile tree for C<$a = $b + $c> it is different:
1046some nodes I<optimized away>. As a corollary, though the actual tree
1047contains more nodes than our simplified example, the execution order
1048is the same as in our example.
1049
1050=head2 Examining the tree
1051
1052If you have your perl compiled for debugging (usually done with C<-D
1053optimize=-g> on C<Configure> command line), you may examine the
1054compiled tree by specifying C<-Dx> on the Perl command line. The
1055output takes several lines per node, and for C<$b+$c> it looks like
1056this:
1057
1058 5 TYPE = add ===> 6
1059 TARG = 1
1060 FLAGS = (SCALAR,KIDS)
1061 {
1062 TYPE = null ===> (4)
1063 (was rv2sv)
1064 FLAGS = (SCALAR,KIDS)
1065 {
1066 3 TYPE = gvsv ===> 4
1067 FLAGS = (SCALAR)
1068 GV = main::b
1069 }
1070 }
1071 {
1072 TYPE = null ===> (5)
1073 (was rv2sv)
1074 FLAGS = (SCALAR,KIDS)
1075 {
1076 4 TYPE = gvsv ===> 5
1077 FLAGS = (SCALAR)
1078 GV = main::c
1079 }
1080 }
1081
1082This tree has 5 nodes (one per C<TYPE> specifier), only 3 of them are
1083not optimized away (one per number in the left column). The immediate
1084children of the given node correspond to C<{}> pairs on the same level
1085of indentation, thus this listing corresponds to the tree:
1086
1087 add
1088 / \
1089 null null
1090 | |
1091 gvsv gvsv
1092
1093The execution order is indicated by C<===E<gt>> marks, thus it is C<3
10944 5 6> (node C<6> is not included into above listing), i.e.,
1095C<gvsv gvsv add whatever>.
1096
1097=head2 Compile pass 1: check routines
1098
1099The tree is created by the I<pseudo-compiler> while yacc code feeds it
1100the constructions it recognizes. Since yacc works bottom-up, so does
1101the first pass of perl compilation.
1102
1103What makes this pass interesting for perl developers is that some
1104optimization may be performed on this pass. This is optimization by
1105so-called I<check routines>. The correspondence between node names
1106and corresponding check routines is described in F<opcode.pl> (do not
1107forget to run C<make regen_headers> if you modify this file).
1108
1109A check routine is called when the node is fully constructed except
1110for the execution-order thread. Since at this time there is no
1111back-links to the currently constructed node, one can do most any
1112operation to the top-level node, including freeing it and/or creating
1113new nodes above/below it.
1114
1115The check routine returns the node which should be inserted into the
1116tree (if the top-level node was not modified, check routine returns
1117its argument).
1118
1119By convention, check routines have names C<ck_*>. They are usually
1120called from C<new*OP> subroutines (or C<convert>) (which in turn are
1121called from F<perly.y>).
1122
1123=head2 Compile pass 1a: constant folding
1124
1125Immediately after the check routine is called the returned node is
1126checked for being compile-time executable. If it is (the value is
1127judged to be constant) it is immediately executed, and a I<constant>
1128node with the "return value" of the corresponding subtree is
1129substituted instead. The subtree is deleted.
1130
1131If constant folding was not performed, the execution-order thread is
1132created.
1133
1134=head2 Compile pass 2: context propagation
1135
1136When a context for a part of compile tree is known, it is propagated
1137down through the tree. Aat this time the context can have 5 values
1138(instead of 2 for runtime context): void, boolean, scalar, list, and
1139lvalue. In contrast with the pass 1 this pass is processed from top
1140to bottom: a node's context determines the context for its children.
1141
1142Additional context-dependent optimizations are performed at this time.
1143Since at this moment the compile tree contains back-references (via
1144"thread" pointers), nodes cannot be free()d now. To allow
1145optimized-away nodes at this stage, such nodes are null()ified instead
1146of free()ing (i.e. their type is changed to OP_NULL).
1147
1148=head2 Compile pass 3: peephole optimization
1149
1150After the compile tree for a subroutine (or for an C<eval> or a file)
1151is created, an additional pass over the code is performed. This pass
1152is neither top-down or bottom-up, but in the execution order (with
1153additional compilications for conditionals). These optimizations are
1154done in the subroutine peep(). Optimizations performed at this stage
1155are subject to the same restrictions as in the pass 2.
1156
1157=head1 API LISTING
a0d0e21e 1158
cb1a09d0 1159This is a listing of functions, macros, flags, and variables that may be
1160useful to extension writers or that may be found while reading other
1161extensions.
a0d0e21e 1162
cb1a09d0 1163=over 8
a0d0e21e 1164
cb1a09d0 1165=item AvFILL
1166
1167See C<av_len>.
1168
1169=item av_clear
1170
1171Clears an array, making it empty.
1172
1173 void av_clear _((AV* ar));
1174
1175=item av_extend
1176
1177Pre-extend an array. The C<key> is the index to which the array should be
1178extended.
1179
1180 void av_extend _((AV* ar, I32 key));
1181
1182=item av_fetch
1183
1184Returns the SV at the specified index in the array. The C<key> is the
1185index. If C<lval> is set then the fetch will be part of a store. Check
1186that the return value is non-null before dereferencing it to a C<SV*>.
1187
1188 SV** av_fetch _((AV* ar, I32 key, I32 lval));
1189
1190=item av_len
1191
1192Returns the highest index in the array. Returns -1 if the array is empty.
1193
1194 I32 av_len _((AV* ar));
1195
1196=item av_make
1197
5fb8527f 1198Creates a new AV and populates it with a list of SVs. The SVs are copied
1199into the array, so they may be freed after the call to av_make. The new AV
5f05dabc 1200will have a reference count of 1.
cb1a09d0 1201
1202 AV* av_make _((I32 size, SV** svp));
1203
1204=item av_pop
1205
1206Pops an SV off the end of the array. Returns C<&sv_undef> if the array is
1207empty.
1208
1209 SV* av_pop _((AV* ar));
1210
1211=item av_push
1212
5fb8527f 1213Pushes an SV onto the end of the array. The array will grow automatically
1214to accommodate the addition.
cb1a09d0 1215
1216 void av_push _((AV* ar, SV* val));
1217
1218=item av_shift
1219
1220Shifts an SV off the beginning of the array.
1221
1222 SV* av_shift _((AV* ar));
1223
1224=item av_store
1225
1226Stores an SV in an array. The array index is specified as C<key>. The
1227return value will be null if the operation failed, otherwise it can be
1228dereferenced to get the original C<SV*>.
1229
1230 SV** av_store _((AV* ar, I32 key, SV* val));
1231
1232=item av_undef
1233
1234Undefines the array.
1235
1236 void av_undef _((AV* ar));
1237
1238=item av_unshift
1239
5fb8527f 1240Unshift an SV onto the beginning of the array. The array will grow
1241automatically to accommodate the addition.
cb1a09d0 1242
1243 void av_unshift _((AV* ar, I32 num));
1244
1245=item CLASS
1246
1247Variable which is setup by C<xsubpp> to indicate the class name for a C++ XS
5fb8527f 1248constructor. This is always a C<char*>. See C<THIS> and
1249L<perlxs/"Using XS With C++">.
cb1a09d0 1250
1251=item Copy
1252
1253The XSUB-writer's interface to the C C<memcpy> function. The C<s> is the
1254source, C<d> is the destination, C<n> is the number of items, and C<t> is
1255the type.
1256
1257 (void) Copy( s, d, n, t );
1258
1259=item croak
1260
1261This is the XSUB-writer's interface to Perl's C<die> function. Use this
1262function the same way you use the C C<printf> function. See C<warn>.
1263
1264=item CvSTASH
1265
1266Returns the stash of the CV.
1267
1268 HV * CvSTASH( SV* sv )
1269
1270=item DBsingle
1271
1272When Perl is run in debugging mode, with the B<-d> switch, this SV is a
1273boolean which indicates whether subs are being single-stepped.
5fb8527f 1274Single-stepping is automatically turned on after every step. This is the C
1275variable which corresponds to Perl's $DB::single variable. See C<DBsub>.
cb1a09d0 1276
1277=item DBsub
1278
1279When Perl is run in debugging mode, with the B<-d> switch, this GV contains
5fb8527f 1280the SV which holds the name of the sub being debugged. This is the C
1281variable which corresponds to Perl's $DB::sub variable. See C<DBsingle>.
cb1a09d0 1282The sub name can be found by
1283
1284 SvPV( GvSV( DBsub ), na )
1285
5fb8527f 1286=item DBtrace
1287
1288Trace variable used when Perl is run in debugging mode, with the B<-d>
1289switch. This is the C variable which corresponds to Perl's $DB::trace
1290variable. See C<DBsingle>.
1291
cb1a09d0 1292=item dMARK
1293
5fb8527f 1294Declare a stack marker variable, C<mark>, for the XSUB. See C<MARK> and
1295C<dORIGMARK>.
cb1a09d0 1296
1297=item dORIGMARK
1298
1299Saves the original stack mark for the XSUB. See C<ORIGMARK>.
1300
5fb8527f 1301=item dowarn
1302
1303The C variable which corresponds to Perl's $^W warning variable.
1304
cb1a09d0 1305=item dSP
1306
5fb8527f 1307Declares a stack pointer variable, C<sp>, for the XSUB. See C<SP>.
cb1a09d0 1308
1309=item dXSARGS
1310
1311Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. This is
1312usually handled automatically by C<xsubpp>. Declares the C<items> variable
1313to indicate the number of items on the stack.
1314
5fb8527f 1315=item dXSI32
1316
1317Sets up the C<ix> variable for an XSUB which has aliases. This is usually
1318handled automatically by C<xsubpp>.
1319
1320=item dXSI32
1321
1322Sets up the C<ix> variable for an XSUB which has aliases. This is usually
1323handled automatically by C<xsubpp>.
1324
cb1a09d0 1325=item ENTER
1326
1327Opening bracket on a callback. See C<LEAVE> and L<perlcall>.
1328
1329 ENTER;
1330
1331=item EXTEND
1332
1333Used to extend the argument stack for an XSUB's return values.
1334
1335 EXTEND( sp, int x );
1336
1337=item FREETMPS
1338
1339Closing bracket for temporaries on a callback. See C<SAVETMPS> and
1340L<perlcall>.
1341
1342 FREETMPS;
1343
1344=item G_ARRAY
1345
1346Used to indicate array context. See C<GIMME> and L<perlcall>.
1347
1348=item G_DISCARD
1349
1350Indicates that arguments returned from a callback should be discarded. See
1351L<perlcall>.
1352
1353=item G_EVAL
1354
1355Used to force a Perl C<eval> wrapper around a callback. See L<perlcall>.
1356
1357=item GIMME
1358
1359The XSUB-writer's equivalent to Perl's C<wantarray>. Returns C<G_SCALAR> or
1360C<G_ARRAY> for scalar or array context.
1361
1362=item G_NOARGS
1363
1364Indicates that no arguments are being sent to a callback. See L<perlcall>.
1365
1366=item G_SCALAR
1367
1368Used to indicate scalar context. See C<GIMME> and L<perlcall>.
1369
faed5253 1370=item gv_fetchmeth
1371
1372Returns the glob with the given C<name> and a defined subroutine or
9607fc9c 1373C<NULL>. The glob lives in the given C<stash>, or in the stashes
1374accessable via @ISA and @<UNIVERSAL>.
faed5253 1375
9607fc9c 1376The argument C<level> should be either 0 or -1. If C<level==0>, as a
0a753a76 1377side-effect creates a glob with the given C<name> in the given
1378C<stash> which in the case of success contains an alias for the
1379subroutine, and sets up caching info for this glob. Similarly for all
1380the searched stashes.
1381
9607fc9c 1382This function grants C<"SUPER"> token as a postfix of the stash name.
1383
0a753a76 1384The GV returned from C<gv_fetchmeth> may be a method cache entry,
1385which is not visible to Perl code. So when calling C<perl_call_sv>,
1386you should not use the GV directly; instead, you should use the
1387method's CV, which can be obtained from the GV with the C<GvCV> macro.
faed5253 1388
1389 GV* gv_fetchmeth _((HV* stash, char* name, STRLEN len, I32 level));
1390
1391=item gv_fetchmethod
1392
1393Returns the glob which contains the subroutine to call to invoke the
1394method on the C<stash>. In fact in the presense of autoloading this may
1395be the glob for "AUTOLOAD". In this case the corresponing variable
1396$AUTOLOAD is already setup.
1397
1398Note that if you want to keep this glob for a long time, you need to
1399check for it being "AUTOLOAD", since at the later time the the call
1400may load a different subroutine due to $AUTOLOAD changing its value.
1401Use the glob created via a side effect to do this.
1402
9607fc9c 1403This function grants C<"SUPER"> token as a prefix of the method name.
faed5253 1404
0a753a76 1405Has the same side-effects and as C<gv_fetchmeth> with C<level==0>.
1406C<name> should be writable if contains C<':'> or C<'\''>.
1407The warning against passing the GV returned by C<gv_fetchmeth> to
1408C<perl_call_sv> apply equally to C<gv_fetchmethod>.
faed5253 1409
1410 GV* gv_fetchmethod _((HV* stash, char* name));
1411
cb1a09d0 1412=item gv_stashpv
1413
1414Returns a pointer to the stash for a specified package. If C<create> is set
1415then the package will be created if it does not already exist. If C<create>
1416is not set and the package does not exist then NULL is returned.
1417
1418 HV* gv_stashpv _((char* name, I32 create));
1419
1420=item gv_stashsv
1421
1422Returns a pointer to the stash for a specified package. See C<gv_stashpv>.
1423
1424 HV* gv_stashsv _((SV* sv, I32 create));
1425
e5581bf4 1426=item GvSV
cb1a09d0 1427
e5581bf4 1428Return the SV from the GV.
44a8e56a 1429
1430=item he_delayfree
1431
1432Releases a hash entry, such as while iterating though the hash, but
1433delays actual freeing of key and value until the end of the current
1434statement (or thereabouts) with C<sv_2mortal>. See C<hv_iternext>.
cb1a09d0 1435
e5581bf4 1436 void he_delayfree _((HV* hv, HE* hent));
1437
1e422769 1438=item HEf_SVKEY
1439
1440This flag, used in the length slot of hash entries and magic
1441structures, specifies the structure contains a C<SV*> pointer where a
1442C<char*> pointer is to be expected. (For information only--not to be used).
1443
e5581bf4 1444=item he_free
1445
1446Releases a hash entry, such as while iterating though the hash. See
1447C<hv_iternext>.
1448
1449 void he_free _((HV* hv, HE* hent));
cb1a09d0 1450
1e422769 1451=item HeHASH
1452
1453Returns the computed hash (type C<U32>) stored in the hash entry.
1454
1455 HeHASH(HE* he)
1456
1457=item HeKEY
1458
1459Returns the actual pointer stored in the key slot of the hash entry.
1460The pointer may be either C<char*> or C<SV*>, depending on the value of
1461C<HeKLEN()>. Can be assigned to. The C<HePV()> or C<HeSVKEY()> macros
1462are usually preferable for finding the value of a key.
1463
1464 HeKEY(HE* he)
1465
1466=item HeKLEN
1467
1468If this is negative, and amounts to C<HEf_SVKEY>, it indicates the entry
1469holds an C<SV*> key. Otherwise, holds the actual length of the key.
1470Can be assigned to. The C<HePV()> macro is usually preferable for finding
1471key lengths.
1472
1473 HeKLEN(HE* he)
1474
1475=item HePV
1476
1477Returns the key slot of the hash entry as a C<char*> value, doing any
1478necessary dereferencing of possibly C<SV*> keys. The length of
1479the string is placed in C<len> (this is a macro, so do I<not> use
1480C<&len>). If you do not care about what the length of the key is,
1481you may use the global variable C<na>. Remember though, that hash
1482keys in perl are free to contain embedded nulls, so using C<strlen()>
1483or similar is not a good way to find the length of hash keys.
1484This is very similar to the C<SvPV()> macro described elsewhere in
1485this document.
1486
1487 HePV(HE* he, STRLEN len)
1488
1489=item HeSVKEY
1490
1491Returns the key as an C<SV*>, or C<Nullsv> if the hash entry
1492does not contain an C<SV*> key.
1493
1494 HeSVKEY(HE* he)
1495
1496=item HeSVKEY_force
1497
1498Returns the key as an C<SV*>. Will create and return a temporary
1499mortal C<SV*> if the hash entry contains only a C<char*> key.
1500
1501 HeSVKEY_force(HE* he)
1502
1503=item HeSVKEY_set
1504
1505Sets the key to a given C<SV*>, taking care to set the appropriate flags
1506to indicate the presence of an C<SV*> key, and returns the same C<SV*>.
1507
1508 HeSVKEY_set(HE* he, SV* sv)
1509
1510=item HeVAL
1511
1512Returns the value slot (type C<SV*>) stored in the hash entry.
1513
1514 HeVAL(HE* he)
1515
cb1a09d0 1516=item hv_clear
1517
1518Clears a hash, making it empty.
1519
1520 void hv_clear _((HV* tb));
1521
1522=item hv_delete
1523
1524Deletes a key/value pair in the hash. The value SV is removed from the hash
5fb8527f 1525and returned to the caller. The C<klen> is the length of the key. The
cb1a09d0 1526C<flags> value will normally be zero; if set to G_DISCARD then null will be
1527returned.
1528
1529 SV* hv_delete _((HV* tb, char* key, U32 klen, I32 flags));
1530
1e422769 1531=item hv_delete_ent
1532
1533Deletes a key/value pair in the hash. The value SV is removed from the hash
1534and returned to the caller. The C<flags> value will normally be zero; if set
1535to G_DISCARD then null will be returned. C<hash> can be a valid pre-computed
1536hash value, or 0 to ask for it to be computed.
1537
1538 SV* hv_delete_ent _((HV* tb, SV* key, I32 flags, U32 hash));
1539
cb1a09d0 1540=item hv_exists
1541
1542Returns a boolean indicating whether the specified hash key exists. The
5fb8527f 1543C<klen> is the length of the key.
cb1a09d0 1544
1545 bool hv_exists _((HV* tb, char* key, U32 klen));
1546
1e422769 1547=item hv_exists_ent
1548
1549Returns a boolean indicating whether the specified hash key exists. C<hash>
1550can be a valid pre-computed hash value, or 0 to ask for it to be computed.
1551
1552 bool hv_exists_ent _((HV* tb, SV* key, U32 hash));
1553
cb1a09d0 1554=item hv_fetch
1555
1556Returns the SV which corresponds to the specified key in the hash. The
5fb8527f 1557C<klen> is the length of the key. If C<lval> is set then the fetch will be
cb1a09d0 1558part of a store. Check that the return value is non-null before
1559dereferencing it to a C<SV*>.
1560
1561 SV** hv_fetch _((HV* tb, char* key, U32 klen, I32 lval));
1562
1e422769 1563=item hv_fetch_ent
1564
1565Returns the hash entry which corresponds to the specified key in the hash.
1566C<hash> must be a valid pre-computed hash number for the given C<key>, or
15670 if you want the function to compute it. IF C<lval> is set then the
1568fetch will be part of a store. Make sure the return value is non-null
1569before accessing it. The return value when C<tb> is a tied hash
1570is a pointer to a static location, so be sure to make a copy of the
1571structure if you need to store it somewhere.
1572
1573 HE* hv_fetch_ent _((HV* tb, SV* key, I32 lval, U32 hash));
1574
cb1a09d0 1575=item hv_iterinit
1576
1577Prepares a starting point to traverse a hash table.
1578
1579 I32 hv_iterinit _((HV* tb));
1580
1581=item hv_iterkey
1582
1583Returns the key from the current position of the hash iterator. See
1584C<hv_iterinit>.
1585
1586 char* hv_iterkey _((HE* entry, I32* retlen));
1587
1e422769 1588=item hv_iterkeysv
1589
1590Returns the key as an C<SV*> from the current position of the hash
1591iterator. The return value will always be a mortal copy of the
1592key. Also see C<hv_iterinit>.
1593
1594 SV* hv_iterkeysv _((HE* entry));
1595
cb1a09d0 1596=item hv_iternext
1597
1598Returns entries from a hash iterator. See C<hv_iterinit>.
1599
1600 HE* hv_iternext _((HV* tb));
1601
1602=item hv_iternextsv
1603
1604Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
1605operation.
1606
1607 SV * hv_iternextsv _((HV* hv, char** key, I32* retlen));
1608
1609=item hv_iterval
1610
1611Returns the value from the current position of the hash iterator. See
1612C<hv_iterkey>.
1613
1614 SV* hv_iterval _((HV* tb, HE* entry));
1615
1616=item hv_magic
1617
1618Adds magic to a hash. See C<sv_magic>.
1619
1620 void hv_magic _((HV* hv, GV* gv, int how));
1621
1622=item HvNAME
1623
1624Returns the package name of a stash. See C<SvSTASH>, C<CvSTASH>.
1625
1626 char *HvNAME (HV* stash)
1627
1628=item hv_store
1629
1630Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
1631the length of the key. The C<hash> parameter is the pre-computed hash
1632value; if it is zero then Perl will compute it. The return value will be
1633null if the operation failed, otherwise it can be dereferenced to get the
1634original C<SV*>.
1635
1636 SV** hv_store _((HV* tb, char* key, U32 klen, SV* val, U32 hash));
1637
1e422769 1638=item hv_store_ent
1639
1640Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
1641parameter is the pre-computed hash value; if it is zero then Perl will
1642compute it. The return value is the new hash entry so created. It will be
1643null if the operation failed or if the entry was stored in a tied hash.
1644Otherwise the contents of the return value can be accessed using the
1645C<He???> macros described here.
1646
1647 HE* hv_store_ent _((HV* tb, SV* key, SV* val, U32 hash));
1648
cb1a09d0 1649=item hv_undef
1650
1651Undefines the hash.
1652
1653 void hv_undef _((HV* tb));
1654
1655=item isALNUM
1656
1657Returns a boolean indicating whether the C C<char> is an ascii alphanumeric
5f05dabc 1658character or digit.
cb1a09d0 1659
1660 int isALNUM (char c)
1661
1662=item isALPHA
1663
5fb8527f 1664Returns a boolean indicating whether the C C<char> is an ascii alphabetic
cb1a09d0 1665character.
1666
1667 int isALPHA (char c)
1668
1669=item isDIGIT
1670
1671Returns a boolean indicating whether the C C<char> is an ascii digit.
1672
1673 int isDIGIT (char c)
1674
1675=item isLOWER
1676
1677Returns a boolean indicating whether the C C<char> is a lowercase character.
1678
1679 int isLOWER (char c)
1680
1681=item isSPACE
1682
1683Returns a boolean indicating whether the C C<char> is whitespace.
1684
1685 int isSPACE (char c)
1686
1687=item isUPPER
1688
1689Returns a boolean indicating whether the C C<char> is an uppercase character.
1690
1691 int isUPPER (char c)
1692
1693=item items
1694
1695Variable which is setup by C<xsubpp> to indicate the number of items on the
5fb8527f 1696stack. See L<perlxs/"Variable-length Parameter Lists">.
1697
1698=item ix
1699
1700Variable which is setup by C<xsubpp> to indicate which of an XSUB's aliases
1701was used to invoke it. See L<perlxs/"The ALIAS: Keyword">.
cb1a09d0 1702
1703=item LEAVE
1704
1705Closing bracket on a callback. See C<ENTER> and L<perlcall>.
1706
1707 LEAVE;
1708
1709=item MARK
1710
5fb8527f 1711Stack marker variable for the XSUB. See C<dMARK>.
cb1a09d0 1712
1713=item mg_clear
1714
1715Clear something magical that the SV represents. See C<sv_magic>.
1716
1717 int mg_clear _((SV* sv));
1718
1719=item mg_copy
1720
1721Copies the magic from one SV to another. See C<sv_magic>.
1722
1723 int mg_copy _((SV *, SV *, char *, STRLEN));
1724
1725=item mg_find
1726
1727Finds the magic pointer for type matching the SV. See C<sv_magic>.
1728
1729 MAGIC* mg_find _((SV* sv, int type));
1730
1731=item mg_free
1732
1733Free any magic storage used by the SV. See C<sv_magic>.
1734
1735 int mg_free _((SV* sv));
1736
1737=item mg_get
1738
1739Do magic after a value is retrieved from the SV. See C<sv_magic>.
1740
1741 int mg_get _((SV* sv));
1742
1743=item mg_len
1744
1745Report on the SV's length. See C<sv_magic>.
1746
1747 U32 mg_len _((SV* sv));
1748
1749=item mg_magical
1750
1751Turns on the magical status of an SV. See C<sv_magic>.
1752
1753 void mg_magical _((SV* sv));
1754
1755=item mg_set
1756
1757Do magic after a value is assigned to the SV. See C<sv_magic>.
1758
1759 int mg_set _((SV* sv));
1760
1761=item Move
1762
1763The XSUB-writer's interface to the C C<memmove> function. The C<s> is the
1764source, C<d> is the destination, C<n> is the number of items, and C<t> is
1765the type.
1766
1767 (void) Move( s, d, n, t );
1768
1769=item na
1770
1771A variable which may be used with C<SvPV> to tell Perl to calculate the
1772string length.
1773
1774=item New
1775
1776The XSUB-writer's interface to the C C<malloc> function.
1777
1778 void * New( x, void *ptr, int size, type )
1779
1780=item Newc
1781
1782The XSUB-writer's interface to the C C<malloc> function, with cast.
1783
1784 void * Newc( x, void *ptr, int size, type, cast )
1785
1786=item Newz
1787
1788The XSUB-writer's interface to the C C<malloc> function. The allocated
1789memory is zeroed with C<memzero>.
1790
1791 void * Newz( x, void *ptr, int size, type )
1792
1793=item newAV
1794
5f05dabc 1795Creates a new AV. The reference count is set to 1.
cb1a09d0 1796
1797 AV* newAV _((void));
1798
1799=item newHV
1800
5f05dabc 1801Creates a new HV. The reference count is set to 1.
cb1a09d0 1802
1803 HV* newHV _((void));
1804
5f05dabc 1805=item newRV_inc
cb1a09d0 1806
5f05dabc 1807Creates an RV wrapper for an SV. The reference count for the original SV is
cb1a09d0 1808incremented.
1809
5f05dabc 1810 SV* newRV_inc _((SV* ref));
1811
1812For historical reasons, "newRV" is a synonym for "newRV_inc".
1813
1814=item newRV_noinc
1815
1816Creates an RV wrapper for an SV. The reference count for the original
1817SV is B<not> incremented.
1818
07fa94a1 1819 SV* newRV_noinc _((SV* ref));
cb1a09d0 1820
1821=item newSV
1822
1823Creates a new SV. The C<len> parameter indicates the number of bytes of
07fa94a1 1824pre-allocated string space the SV should have. The reference count for the
1825new SV is set to 1.
cb1a09d0 1826
1827 SV* newSV _((STRLEN len));
1828
1829=item newSViv
1830
07fa94a1 1831Creates a new SV and copies an integer into it. The reference count for the
1832SV is set to 1.
cb1a09d0 1833
1834 SV* newSViv _((IV i));
1835
1836=item newSVnv
1837
07fa94a1 1838Creates a new SV and copies a double into it. The reference count for the
1839SV is set to 1.
cb1a09d0 1840
1841 SV* newSVnv _((NV i));
1842
1843=item newSVpv
1844
07fa94a1 1845Creates a new SV and copies a string into it. The reference count for the
1846SV is set to 1. If C<len> is zero then Perl will compute the length.
cb1a09d0 1847
1848 SV* newSVpv _((char* s, STRLEN len));
1849
1850=item newSVrv
1851
1852Creates a new SV for the RV, C<rv>, to point to. If C<rv> is not an RV then
5fb8527f 1853it will be upgraded to one. If C<classname> is non-null then the new SV will
cb1a09d0 1854be blessed in the specified package. The new SV is returned and its
5f05dabc 1855reference count is 1.
8ebc5c01 1856
cb1a09d0 1857 SV* newSVrv _((SV* rv, char* classname));
1858
1859=item newSVsv
1860
5fb8527f 1861Creates a new SV which is an exact duplicate of the original SV.
cb1a09d0 1862
1863 SV* newSVsv _((SV* old));
1864
1865=item newXS
1866
1867Used by C<xsubpp> to hook up XSUBs as Perl subs.
1868
1869=item newXSproto
1870
1871Used by C<xsubpp> to hook up XSUBs as Perl subs. Adds Perl prototypes to
1872the subs.
1873
1874=item Nullav
1875
1876Null AV pointer.
1877
1878=item Nullch
1879
1880Null character pointer.
1881
1882=item Nullcv
1883
1884Null CV pointer.
1885
1886=item Nullhv
1887
1888Null HV pointer.
1889
1890=item Nullsv
1891
1892Null SV pointer.
1893
1894=item ORIGMARK
1895
1896The original stack mark for the XSUB. See C<dORIGMARK>.
1897
1898=item perl_alloc
1899
1900Allocates a new Perl interpreter. See L<perlembed>.
1901
1902=item perl_call_argv
1903
1904Performs a callback to the specified Perl sub. See L<perlcall>.
1905
1906 I32 perl_call_argv _((char* subname, I32 flags, char** argv));
1907
1908=item perl_call_method
1909
1910Performs a callback to the specified Perl method. The blessed object must
1911be on the stack. See L<perlcall>.
1912
1913 I32 perl_call_method _((char* methname, I32 flags));
1914
1915=item perl_call_pv
1916
1917Performs a callback to the specified Perl sub. See L<perlcall>.
1918
1919 I32 perl_call_pv _((char* subname, I32 flags));
1920
1921=item perl_call_sv
1922
1923Performs a callback to the Perl sub whose name is in the SV. See
1924L<perlcall>.
1925
1926 I32 perl_call_sv _((SV* sv, I32 flags));
1927
1928=item perl_construct
1929
1930Initializes a new Perl interpreter. See L<perlembed>.
1931
1932=item perl_destruct
1933
1934Shuts down a Perl interpreter. See L<perlembed>.
1935
1936=item perl_eval_sv
1937
1938Tells Perl to C<eval> the string in the SV.
1939
1940 I32 perl_eval_sv _((SV* sv, I32 flags));
1941
1942=item perl_free
1943
1944Releases a Perl interpreter. See L<perlembed>.
1945
1946=item perl_get_av
1947
1948Returns the AV of the specified Perl array. If C<create> is set and the
1949Perl variable does not exist then it will be created. If C<create> is not
1950set and the variable does not exist then null is returned.
1951
1952 AV* perl_get_av _((char* name, I32 create));
1953
1954=item perl_get_cv
1955
1956Returns the CV of the specified Perl sub. If C<create> is set and the Perl
1957variable does not exist then it will be created. If C<create> is not
1958set and the variable does not exist then null is returned.
1959
1960 CV* perl_get_cv _((char* name, I32 create));
1961
1962=item perl_get_hv
1963
1964Returns the HV of the specified Perl hash. If C<create> is set and the Perl
1965variable does not exist then it will be created. If C<create> is not
1966set and the variable does not exist then null is returned.
1967
1968 HV* perl_get_hv _((char* name, I32 create));
1969
1970=item perl_get_sv
1971
1972Returns the SV of the specified Perl scalar. If C<create> is set and the
1973Perl variable does not exist then it will be created. If C<create> is not
1974set and the variable does not exist then null is returned.
1975
1976 SV* perl_get_sv _((char* name, I32 create));
1977
1978=item perl_parse
1979
1980Tells a Perl interpreter to parse a Perl script. See L<perlembed>.
1981
1982=item perl_require_pv
1983
1984Tells Perl to C<require> a module.
1985
1986 void perl_require_pv _((char* pv));
1987
1988=item perl_run
1989
1990Tells a Perl interpreter to run. See L<perlembed>.
1991
1992=item POPi
1993
1994Pops an integer off the stack.
1995
1996 int POPi();
1997
1998=item POPl
1999
2000Pops a long off the stack.
2001
2002 long POPl();
2003
2004=item POPp
2005
2006Pops a string off the stack.
2007
2008 char * POPp();
2009
2010=item POPn
2011
2012Pops a double off the stack.
2013
2014 double POPn();
2015
2016=item POPs
2017
2018Pops an SV off the stack.
2019
2020 SV* POPs();
2021
2022=item PUSHMARK
2023
2024Opening bracket for arguments on a callback. See C<PUTBACK> and L<perlcall>.
2025
2026 PUSHMARK(p)
2027
2028=item PUSHi
2029
2030Push an integer onto the stack. The stack must have room for this element.
2031See C<XPUSHi>.
2032
2033 PUSHi(int d)
2034
2035=item PUSHn
2036
2037Push a double onto the stack. The stack must have room for this element.
2038See C<XPUSHn>.
2039
2040 PUSHn(double d)
2041
2042=item PUSHp
2043
2044Push a string onto the stack. The stack must have room for this element.
2045The C<len> indicates the length of the string. See C<XPUSHp>.
2046
2047 PUSHp(char *c, int len )
2048
2049=item PUSHs
2050
2051Push an SV onto the stack. The stack must have room for this element. See
2052C<XPUSHs>.
2053
2054 PUSHs(sv)
2055
2056=item PUTBACK
2057
2058Closing bracket for XSUB arguments. This is usually handled by C<xsubpp>.
2059See C<PUSHMARK> and L<perlcall> for other uses.
2060
2061 PUTBACK;
2062
2063=item Renew
2064
2065The XSUB-writer's interface to the C C<realloc> function.
2066
2067 void * Renew( void *ptr, int size, type )
2068
2069=item Renewc
2070
2071The XSUB-writer's interface to the C C<realloc> function, with cast.
2072
2073 void * Renewc( void *ptr, int size, type, cast )
2074
2075=item RETVAL
2076
2077Variable which is setup by C<xsubpp> to hold the return value for an XSUB.
5fb8527f 2078This is always the proper type for the XSUB.
2079See L<perlxs/"The RETVAL Variable">.
cb1a09d0 2080
2081=item safefree
2082
2083The XSUB-writer's interface to the C C<free> function.
2084
2085=item safemalloc
2086
2087The XSUB-writer's interface to the C C<malloc> function.
2088
2089=item saferealloc
2090
2091The XSUB-writer's interface to the C C<realloc> function.
2092
2093=item savepv
2094
2095Copy a string to a safe spot. This does not use an SV.
2096
2097 char* savepv _((char* sv));
2098
2099=item savepvn
2100
2101Copy a string to a safe spot. The C<len> indicates number of bytes to
2102copy. This does not use an SV.
2103
2104 char* savepvn _((char* sv, I32 len));
2105
2106=item SAVETMPS
2107
2108Opening bracket for temporaries on a callback. See C<FREETMPS> and
2109L<perlcall>.
2110
2111 SAVETMPS;
2112
2113=item SP
2114
2115Stack pointer. This is usually handled by C<xsubpp>. See C<dSP> and
2116C<SPAGAIN>.
2117
2118=item SPAGAIN
2119
5f05dabc 2120Re-fetch the stack pointer. Used after a callback. See L<perlcall>.
cb1a09d0 2121
2122 SPAGAIN;
2123
2124=item ST
2125
2126Used to access elements on the XSUB's stack.
2127
2128 SV* ST(int x)
2129
2130=item strEQ
2131
2132Test two strings to see if they are equal. Returns true or false.
2133
2134 int strEQ( char *s1, char *s2 )
2135
2136=item strGE
2137
2138Test two strings to see if the first, C<s1>, is greater than or equal to the
2139second, C<s2>. Returns true or false.
2140
2141 int strGE( char *s1, char *s2 )
2142
2143=item strGT
2144
2145Test two strings to see if the first, C<s1>, is greater than the second,
2146C<s2>. Returns true or false.
2147
2148 int strGT( char *s1, char *s2 )
2149
2150=item strLE
2151
2152Test two strings to see if the first, C<s1>, is less than or equal to the
2153second, C<s2>. Returns true or false.
2154
2155 int strLE( char *s1, char *s2 )
2156
2157=item strLT
2158
2159Test two strings to see if the first, C<s1>, is less than the second,
2160C<s2>. Returns true or false.
2161
2162 int strLT( char *s1, char *s2 )
2163
2164=item strNE
2165
2166Test two strings to see if they are different. Returns true or false.
2167
2168 int strNE( char *s1, char *s2 )
2169
2170=item strnEQ
2171
2172Test two strings to see if they are equal. The C<len> parameter indicates
2173the number of bytes to compare. Returns true or false.
2174
2175 int strnEQ( char *s1, char *s2 )
2176
2177=item strnNE
2178
2179Test two strings to see if they are different. The C<len> parameter
2180indicates the number of bytes to compare. Returns true or false.
2181
2182 int strnNE( char *s1, char *s2, int len )
2183
2184=item sv_2mortal
2185
2186Marks an SV as mortal. The SV will be destroyed when the current context
2187ends.
2188
2189 SV* sv_2mortal _((SV* sv));
2190
2191=item sv_bless
2192
2193Blesses an SV into a specified package. The SV must be an RV. The package
07fa94a1 2194must be designated by its stash (see C<gv_stashpv()>). The reference count
2195of the SV is unaffected.
cb1a09d0 2196
2197 SV* sv_bless _((SV* sv, HV* stash));
2198
2199=item sv_catpv
2200
2201Concatenates the string onto the end of the string which is in the SV.
2202
2203 void sv_catpv _((SV* sv, char* ptr));
2204
2205=item sv_catpvn
2206
2207Concatenates the string onto the end of the string which is in the SV. The
2208C<len> indicates number of bytes to copy.
2209
2210 void sv_catpvn _((SV* sv, char* ptr, STRLEN len));
2211
2212=item sv_catsv
2213
5fb8527f 2214Concatenates the string from SV C<ssv> onto the end of the string in SV
cb1a09d0 2215C<dsv>.
2216
2217 void sv_catsv _((SV* dsv, SV* ssv));
2218
5fb8527f 2219=item sv_cmp
2220
2221Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
2222string in C<sv1> is less than, equal to, or greater than the string in
2223C<sv2>.
2224
2225 I32 sv_cmp _((SV* sv1, SV* sv2));
2226
2227=item sv_cmp
2228
2229Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
2230string in C<sv1> is less than, equal to, or greater than the string in
2231C<sv2>.
2232
2233 I32 sv_cmp _((SV* sv1, SV* sv2));
2234
cb1a09d0 2235=item SvCUR
2236
2237Returns the length of the string which is in the SV. See C<SvLEN>.
2238
2239 int SvCUR (SV* sv)
2240
2241=item SvCUR_set
2242
2243Set the length of the string which is in the SV. See C<SvCUR>.
2244
2245 SvCUR_set (SV* sv, int val )
2246
5fb8527f 2247=item sv_dec
2248
5f05dabc 2249Auto-decrement of the value in the SV.
5fb8527f 2250
2251 void sv_dec _((SV* sv));
2252
2253=item sv_dec
2254
5f05dabc 2255Auto-decrement of the value in the SV.
5fb8527f 2256
2257 void sv_dec _((SV* sv));
2258
cb1a09d0 2259=item SvEND
2260
2261Returns a pointer to the last character in the string which is in the SV.
2262See C<SvCUR>. Access the character as
2263
2264 *SvEND(sv)
2265
5fb8527f 2266=item sv_eq
2267
2268Returns a boolean indicating whether the strings in the two SVs are
2269identical.
2270
2271 I32 sv_eq _((SV* sv1, SV* sv2));
2272
cb1a09d0 2273=item SvGROW
2274
5fb8527f 2275Expands the character buffer in the SV. Calls C<sv_grow> to perform the
2276expansion if necessary. Returns a pointer to the character buffer.
cb1a09d0 2277
2278 char * SvGROW( SV* sv, int len )
2279
5fb8527f 2280=item sv_grow
2281
2282Expands the character buffer in the SV. This will use C<sv_unref> and will
2283upgrade the SV to C<SVt_PV>. Returns a pointer to the character buffer.
2284Use C<SvGROW>.
2285
2286=item sv_inc
2287
07fa94a1 2288Auto-increment of the value in the SV.
5fb8527f 2289
2290 void sv_inc _((SV* sv));
2291
cb1a09d0 2292=item SvIOK
2293
2294Returns a boolean indicating whether the SV contains an integer.
2295
2296 int SvIOK (SV* SV)
2297
2298=item SvIOK_off
2299
2300Unsets the IV status of an SV.
2301
2302 SvIOK_off (SV* sv)
2303
2304=item SvIOK_on
2305
2306Tells an SV that it is an integer.
2307
2308 SvIOK_on (SV* sv)
2309
5fb8527f 2310=item SvIOK_only
2311
2312Tells an SV that it is an integer and disables all other OK bits.
2313
2314 SvIOK_on (SV* sv)
2315
2316=item SvIOK_only
2317
2318Tells an SV that it is an integer and disables all other OK bits.
2319
2320 SvIOK_on (SV* sv)
2321
cb1a09d0 2322=item SvIOKp
2323
2324Returns a boolean indicating whether the SV contains an integer. Checks the
2325B<private> setting. Use C<SvIOK>.
2326
2327 int SvIOKp (SV* SV)
2328
2329=item sv_isa
2330
2331Returns a boolean indicating whether the SV is blessed into the specified
2332class. This does not know how to check for subtype, so it doesn't work in
2333an inheritance relationship.
2334
2335 int sv_isa _((SV* sv, char* name));
2336
2337=item SvIV
2338
2339Returns the integer which is in the SV.
2340
2341 int SvIV (SV* sv)
2342
2343=item sv_isobject
2344
2345Returns a boolean indicating whether the SV is an RV pointing to a blessed
2346object. If the SV is not an RV, or if the object is not blessed, then this
2347will return false.
2348
2349 int sv_isobject _((SV* sv));
2350
2351=item SvIVX
2352
2353Returns the integer which is stored in the SV.
2354
2355 int SvIVX (SV* sv);
2356
2357=item SvLEN
2358
2359Returns the size of the string buffer in the SV. See C<SvCUR>.
2360
2361 int SvLEN (SV* sv)
2362
5fb8527f 2363=item sv_len
2364
2365Returns the length of the string in the SV. Use C<SvCUR>.
2366
2367 STRLEN sv_len _((SV* sv));
2368
2369=item sv_len
2370
2371Returns the length of the string in the SV. Use C<SvCUR>.
2372
2373 STRLEN sv_len _((SV* sv));
2374
cb1a09d0 2375=item sv_magic
2376
2377Adds magic to an SV.
2378
2379 void sv_magic _((SV* sv, SV* obj, int how, char* name, I32 namlen));
2380
2381=item sv_mortalcopy
2382
2383Creates a new SV which is a copy of the original SV. The new SV is marked
5f05dabc 2384as mortal.
cb1a09d0 2385
2386 SV* sv_mortalcopy _((SV* oldsv));
2387
2388=item SvOK
2389
2390Returns a boolean indicating whether the value is an SV.
2391
2392 int SvOK (SV* sv)
2393
2394=item sv_newmortal
2395
5f05dabc 2396Creates a new SV which is mortal. The reference count of the SV is set to 1.
cb1a09d0 2397
2398 SV* sv_newmortal _((void));
2399
2400=item sv_no
2401
2402This is the C<false> SV. See C<sv_yes>. Always refer to this as C<&sv_no>.
2403
2404=item SvNIOK
2405
2406Returns a boolean indicating whether the SV contains a number, integer or
2407double.
2408
2409 int SvNIOK (SV* SV)
2410
2411=item SvNIOK_off
2412
2413Unsets the NV/IV status of an SV.
2414
2415 SvNIOK_off (SV* sv)
2416
2417=item SvNIOKp
2418
2419Returns a boolean indicating whether the SV contains a number, integer or
2420double. Checks the B<private> setting. Use C<SvNIOK>.
2421
2422 int SvNIOKp (SV* SV)
2423
2424=item SvNOK
2425
2426Returns a boolean indicating whether the SV contains a double.
2427
2428 int SvNOK (SV* SV)
2429
2430=item SvNOK_off
2431
2432Unsets the NV status of an SV.
2433
2434 SvNOK_off (SV* sv)
2435
2436=item SvNOK_on
2437
2438Tells an SV that it is a double.
2439
2440 SvNOK_on (SV* sv)
2441
5fb8527f 2442=item SvNOK_only
2443
2444Tells an SV that it is a double and disables all other OK bits.
2445
2446 SvNOK_on (SV* sv)
2447
2448=item SvNOK_only
2449
2450Tells an SV that it is a double and disables all other OK bits.
2451
2452 SvNOK_on (SV* sv)
2453
cb1a09d0 2454=item SvNOKp
2455
2456Returns a boolean indicating whether the SV contains a double. Checks the
2457B<private> setting. Use C<SvNOK>.
2458
2459 int SvNOKp (SV* SV)
2460
2461=item SvNV
2462
2463Returns the double which is stored in the SV.
2464
2465 double SvNV (SV* sv);
2466
2467=item SvNVX
2468
2469Returns the double which is stored in the SV.
2470
2471 double SvNVX (SV* sv);
2472
2473=item SvPOK
2474
2475Returns a boolean indicating whether the SV contains a character string.
2476
2477 int SvPOK (SV* SV)
2478
2479=item SvPOK_off
2480
2481Unsets the PV status of an SV.
2482
2483 SvPOK_off (SV* sv)
2484
2485=item SvPOK_on
2486
2487Tells an SV that it is a string.
2488
2489 SvPOK_on (SV* sv)
2490
5fb8527f 2491=item SvPOK_only
2492
2493Tells an SV that it is a string and disables all other OK bits.
2494
2495 SvPOK_on (SV* sv)
2496
2497=item SvPOK_only
2498
2499Tells an SV that it is a string and disables all other OK bits.
2500
2501 SvPOK_on (SV* sv)
2502
cb1a09d0 2503=item SvPOKp
2504
2505Returns a boolean indicating whether the SV contains a character string.
2506Checks the B<private> setting. Use C<SvPOK>.
2507
2508 int SvPOKp (SV* SV)
2509
2510=item SvPV
2511
2512Returns a pointer to the string in the SV, or a stringified form of the SV
2513if the SV does not contain a string. If C<len> is C<na> then Perl will
2514handle the length on its own.
2515
2516 char * SvPV (SV* sv, int len )
2517
2518=item SvPVX
2519
2520Returns a pointer to the string in the SV. The SV must contain a string.
2521
2522 char * SvPVX (SV* sv)
2523
2524=item SvREFCNT
2525
5f05dabc 2526Returns the value of the object's reference count.
cb1a09d0 2527
2528 int SvREFCNT (SV* sv);
2529
2530=item SvREFCNT_dec
2531
5f05dabc 2532Decrements the reference count of the given SV.
cb1a09d0 2533
2534 void SvREFCNT_dec (SV* sv)
2535
2536=item SvREFCNT_inc
2537
5f05dabc 2538Increments the reference count of the given SV.
cb1a09d0 2539
2540 void SvREFCNT_inc (SV* sv)
2541
2542=item SvROK
2543
2544Tests if the SV is an RV.
2545
2546 int SvROK (SV* sv)
2547
2548=item SvROK_off
2549
2550Unsets the RV status of an SV.
2551
2552 SvROK_off (SV* sv)
2553
2554=item SvROK_on
2555
2556Tells an SV that it is an RV.
2557
2558 SvROK_on (SV* sv)
2559
2560=item SvRV
2561
2562Dereferences an RV to return the SV.
2563
2564 SV* SvRV (SV* sv);
2565
2566=item sv_setiv
2567
2568Copies an integer into the given SV.
2569
2570 void sv_setiv _((SV* sv, IV num));
2571
2572=item sv_setnv
2573
2574Copies a double into the given SV.
2575
2576 void sv_setnv _((SV* sv, double num));
2577
2578=item sv_setpv
2579
2580Copies a string into an SV. The string must be null-terminated.
2581
2582 void sv_setpv _((SV* sv, char* ptr));
2583
2584=item sv_setpvn
2585
2586Copies a string into an SV. The C<len> parameter indicates the number of
2587bytes to be copied.
2588
2589 void sv_setpvn _((SV* sv, char* ptr, STRLEN len));
2590
2591=item sv_setref_iv
2592
5fb8527f 2593Copies an integer into a new SV, optionally blessing the SV. The C<rv>
2594argument will be upgraded to an RV. That RV will be modified to point to
2595the new SV. The C<classname> argument indicates the package for the
2596blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 2597will be returned and will have a reference count of 1.
cb1a09d0 2598
2599 SV* sv_setref_iv _((SV *rv, char *classname, IV iv));
2600
2601=item sv_setref_nv
2602
5fb8527f 2603Copies a double into a new SV, optionally blessing the SV. The C<rv>
2604argument will be upgraded to an RV. That RV will be modified to point to
2605the new SV. The C<classname> argument indicates the package for the
2606blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 2607will be returned and will have a reference count of 1.
cb1a09d0 2608
2609 SV* sv_setref_nv _((SV *rv, char *classname, double nv));
2610
2611=item sv_setref_pv
2612
5fb8527f 2613Copies a pointer into a new SV, optionally blessing the SV. The C<rv>
2614argument will be upgraded to an RV. That RV will be modified to point to
2615the new SV. If the C<pv> argument is NULL then C<sv_undef> will be placed
2616into the SV. The C<classname> argument indicates the package for the
2617blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 2618will be returned and will have a reference count of 1.
cb1a09d0 2619
2620 SV* sv_setref_pv _((SV *rv, char *classname, void* pv));
2621
2622Do not use with integral Perl types such as HV, AV, SV, CV, because those
2623objects will become corrupted by the pointer copy process.
2624
2625Note that C<sv_setref_pvn> copies the string while this copies the pointer.
2626
2627=item sv_setref_pvn
2628
5fb8527f 2629Copies a string into a new SV, optionally blessing the SV. The length of the
2630string must be specified with C<n>. The C<rv> argument will be upgraded to
2631an RV. That RV will be modified to point to the new SV. The C<classname>
cb1a09d0 2632argument indicates the package for the blessing. Set C<classname> to
2633C<Nullch> to avoid the blessing. The new SV will be returned and will have
5f05dabc 2634a reference count of 1.
cb1a09d0 2635
2636 SV* sv_setref_pvn _((SV *rv, char *classname, char* pv, I32 n));
2637
2638Note that C<sv_setref_pv> copies the pointer while this copies the string.
2639
2640=item sv_setsv
2641
2642Copies the contents of the source SV C<ssv> into the destination SV C<dsv>.
5f05dabc 2643The source SV may be destroyed if it is mortal.
cb1a09d0 2644
2645 void sv_setsv _((SV* dsv, SV* ssv));
2646
2647=item SvSTASH
2648
2649Returns the stash of the SV.
2650
2651 HV * SvSTASH (SV* sv)
2652
2653=item SVt_IV
2654
2655Integer type flag for scalars. See C<svtype>.
2656
2657=item SVt_PV
2658
2659Pointer type flag for scalars. See C<svtype>.
2660
2661=item SVt_PVAV
2662
2663Type flag for arrays. See C<svtype>.
2664
2665=item SVt_PVCV
2666
2667Type flag for code refs. See C<svtype>.
2668
2669=item SVt_PVHV
2670
2671Type flag for hashes. See C<svtype>.
2672
2673=item SVt_PVMG
2674
2675Type flag for blessed scalars. See C<svtype>.
2676
2677=item SVt_NV
2678
2679Double type flag for scalars. See C<svtype>.
2680
2681=item SvTRUE
2682
2683Returns a boolean indicating whether Perl would evaluate the SV as true or
2684false, defined or undefined.
2685
2686 int SvTRUE (SV* sv)
2687
2688=item SvTYPE
2689
2690Returns the type of the SV. See C<svtype>.
2691
2692 svtype SvTYPE (SV* sv)
2693
2694=item svtype
2695
2696An enum of flags for Perl types. These are found in the file B<sv.h> in the
2697C<svtype> enum. Test these flags with the C<SvTYPE> macro.
2698
2699=item SvUPGRADE
2700
5fb8527f 2701Used to upgrade an SV to a more complex form. Uses C<sv_upgrade> to perform
2702the upgrade if necessary. See C<svtype>.
2703
2704 bool SvUPGRADE _((SV* sv, svtype mt));
2705
2706=item sv_upgrade
2707
2708Upgrade an SV to a more complex form. Use C<SvUPGRADE>. See C<svtype>.
cb1a09d0 2709
2710=item sv_undef
2711
2712This is the C<undef> SV. Always refer to this as C<&sv_undef>.
2713
5fb8527f 2714=item sv_unref
2715
07fa94a1 2716Unsets the RV status of the SV, and decrements the reference count of
2717whatever was being referenced by the RV. This can almost be thought of
2718as a reversal of C<newSVrv>. See C<SvROK_off>.
5fb8527f 2719
2720 void sv_unref _((SV* sv));
2721
cb1a09d0 2722=item sv_usepvn
2723
2724Tells an SV to use C<ptr> to find its string value. Normally the string is
5fb8527f 2725stored inside the SV but sv_usepvn allows the SV to use an outside string.
2726The C<ptr> should point to memory that was allocated by C<malloc>. The
cb1a09d0 2727string length, C<len>, must be supplied. This function will realloc the
2728memory pointed to by C<ptr>, so that pointer should not be freed or used by
2729the programmer after giving it to sv_usepvn.
2730
2731 void sv_usepvn _((SV* sv, char* ptr, STRLEN len));
2732
2733=item sv_yes
2734
2735This is the C<true> SV. See C<sv_no>. Always refer to this as C<&sv_yes>.
2736
2737=item THIS
2738
2739Variable which is setup by C<xsubpp> to designate the object in a C++ XSUB.
2740This is always the proper type for the C++ object. See C<CLASS> and
5fb8527f 2741L<perlxs/"Using XS With C++">.
cb1a09d0 2742
2743=item toLOWER
2744
2745Converts the specified character to lowercase.
2746
2747 int toLOWER (char c)
2748
2749=item toUPPER
2750
2751Converts the specified character to uppercase.
2752
2753 int toUPPER (char c)
2754
2755=item warn
2756
2757This is the XSUB-writer's interface to Perl's C<warn> function. Use this
2758function the same way you use the C C<printf> function. See C<croak()>.
2759
2760=item XPUSHi
2761
2762Push an integer onto the stack, extending the stack if necessary. See
2763C<PUSHi>.
2764
2765 XPUSHi(int d)
2766
2767=item XPUSHn
2768
2769Push a double onto the stack, extending the stack if necessary. See
2770C<PUSHn>.
2771
2772 XPUSHn(double d)
2773
2774=item XPUSHp
2775
2776Push a string onto the stack, extending the stack if necessary. The C<len>
2777indicates the length of the string. See C<PUSHp>.
2778
2779 XPUSHp(char *c, int len)
2780
2781=item XPUSHs
2782
2783Push an SV onto the stack, extending the stack if necessary. See C<PUSHs>.
2784
2785 XPUSHs(sv)
2786
5fb8527f 2787=item XS
2788
2789Macro to declare an XSUB and its C parameter list. This is handled by
2790C<xsubpp>.
2791
cb1a09d0 2792=item XSRETURN
2793
2794Return from XSUB, indicating number of items on the stack. This is usually
2795handled by C<xsubpp>.
2796
5fb8527f 2797 XSRETURN(int x);
cb1a09d0 2798
2799=item XSRETURN_EMPTY
2800
5fb8527f 2801Return an empty list from an XSUB immediately.
cb1a09d0 2802
2803 XSRETURN_EMPTY;
2804
5fb8527f 2805=item XSRETURN_IV
2806
2807Return an integer from an XSUB immediately. Uses C<XST_mIV>.
2808
2809 XSRETURN_IV(IV v);
2810
cb1a09d0 2811=item XSRETURN_NO
2812
5fb8527f 2813Return C<&sv_no> from an XSUB immediately. Uses C<XST_mNO>.
cb1a09d0 2814
2815 XSRETURN_NO;
2816
5fb8527f 2817=item XSRETURN_NV
2818
2819Return an double from an XSUB immediately. Uses C<XST_mNV>.
2820
2821 XSRETURN_NV(NV v);
2822
2823=item XSRETURN_PV
2824
2825Return a copy of a string from an XSUB immediately. Uses C<XST_mPV>.
2826
2827 XSRETURN_PV(char *v);
2828
cb1a09d0 2829=item XSRETURN_UNDEF
2830
5fb8527f 2831Return C<&sv_undef> from an XSUB immediately. Uses C<XST_mUNDEF>.
cb1a09d0 2832
2833 XSRETURN_UNDEF;
2834
2835=item XSRETURN_YES
2836
5fb8527f 2837Return C<&sv_yes> from an XSUB immediately. Uses C<XST_mYES>.
cb1a09d0 2838
2839 XSRETURN_YES;
2840
5fb8527f 2841=item XST_mIV
2842
2843Place an integer into the specified position C<i> on the stack. The value is
2844stored in a new mortal SV.
2845
2846 XST_mIV( int i, IV v );
2847
2848=item XST_mNV
2849
2850Place a double into the specified position C<i> on the stack. The value is
2851stored in a new mortal SV.
2852
2853 XST_mNV( int i, NV v );
2854
2855=item XST_mNO
2856
2857Place C<&sv_no> into the specified position C<i> on the stack.
2858
2859 XST_mNO( int i );
2860
2861=item XST_mPV
2862
2863Place a copy of a string into the specified position C<i> on the stack. The
2864value is stored in a new mortal SV.
2865
2866 XST_mPV( int i, char *v );
2867
2868=item XST_mUNDEF
2869
2870Place C<&sv_undef> into the specified position C<i> on the stack.
2871
2872 XST_mUNDEF( int i );
2873
2874=item XST_mYES
2875
2876Place C<&sv_yes> into the specified position C<i> on the stack.
2877
2878 XST_mYES( int i );
2879
2880=item XS_VERSION
2881
2882The version identifier for an XS module. This is usually handled
2883automatically by C<ExtUtils::MakeMaker>. See C<XS_VERSION_BOOTCHECK>.
2884
2885=item XS_VERSION_BOOTCHECK
2886
2887Macro to verify that a PM module's $VERSION variable matches the XS module's
2888C<XS_VERSION> variable. This is usually handled automatically by
2889C<xsubpp>. See L<perlxs/"The VERSIONCHECK: Keyword">.
2890
cb1a09d0 2891=item Zero
2892
2893The XSUB-writer's interface to the C C<memzero> function. The C<d> is the
2894destination, C<n> is the number of items, and C<t> is the type.
2895
2896 (void) Zero( d, n, t );
2897
2898=back
2899
5f05dabc 2900=head1 EDITOR
cb1a09d0 2901
9607fc9c 2902Jeff Okamoto <F<okamoto@corp.hp.com>>
cb1a09d0 2903
2904With lots of help and suggestions from Dean Roehrich, Malcolm Beattie,
2905Andreas Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil
55497cff 2906Bowers, Matthew Green, Tim Bunce, Spider Boardman, and Ulrich Pfeifer.
cb1a09d0 2907
9607fc9c 2908API Listing by Dean Roehrich <F<roehrich@cray.com>>.
cb1a09d0 2909
2910=head1 DATE
2911
9607fc9c 2912Version 31.2: 1997/3/5