splitpod broken in 5.004_01
[p5sagit/p5-mst-13.2.git] / pod / perlguts.pod
CommitLineData
a0d0e21e 1=head1 NAME
2
3perlguts - Perl's Internal Functions
4
5=head1 DESCRIPTION
6
7This document attempts to describe some of the internal functions of the
8Perl executable. It is far from complete and probably contains many errors.
9Please refer any questions or comments to the author below.
10
0a753a76 11=head1 Variables
12
5f05dabc 13=head2 Datatypes
a0d0e21e 14
15Perl has three typedefs that handle Perl's three main data types:
16
17 SV Scalar Value
18 AV Array Value
19 HV Hash Value
20
d1b91892 21Each typedef has specific routines that manipulate the various data types.
a0d0e21e 22
23=head2 What is an "IV"?
24
5f05dabc 25Perl uses a special typedef IV which is a simple integer type that is
26guaranteed to be large enough to hold a pointer (as well as an integer).
a0d0e21e 27
d1b91892 28Perl also uses two special typedefs, I32 and I16, which will always be at
29least 32-bits and 16-bits long, respectively.
a0d0e21e 30
54310121 31=head2 Working with SVs
a0d0e21e 32
33An SV can be created and loaded with one command. There are four types of
34values that can be loaded: an integer value (IV), a double (NV), a string,
35(PV), and another scalar (SV).
36
46fc3d4c 37The five routines are:
a0d0e21e 38
39 SV* newSViv(IV);
40 SV* newSVnv(double);
41 SV* newSVpv(char*, int);
46fc3d4c 42 SV* newSVpvf(const char*, ...);
a0d0e21e 43 SV* newSVsv(SV*);
44
46fc3d4c 45To change the value of an *already-existing* SV, there are six routines:
a0d0e21e 46
47 void sv_setiv(SV*, IV);
48 void sv_setnv(SV*, double);
a0d0e21e 49 void sv_setpv(SV*, char*);
46fc3d4c 50 void sv_setpvn(SV*, char*, int)
51 void sv_setpvf(SV*, const char*, ...);
a0d0e21e 52 void sv_setsv(SV*, SV*);
53
54Notice that you can choose to specify the length of the string to be
d1b91892 55assigned by using C<sv_setpvn> or C<newSVpv>, or you may allow Perl to
cb1a09d0 56calculate the length by using C<sv_setpv> or by specifying 0 as the second
d1b91892 57argument to C<newSVpv>. Be warned, though, that Perl will determine the
a0d0e21e 58string's length by using C<strlen>, which depends on the string terminating
46fc3d4c 59with a NUL character. The arguments of C<sv_setpvf> are processed like
60C<sprintf>, and the formatted output becomes the value.
a0d0e21e 61
54310121 62All SVs that will contain strings should, but need not, be terminated
5f05dabc 63with a NUL character. If it is not NUL-terminated there is a risk of
64core dumps and corruptions from code which passes the string to C
65functions or system calls which expect a NUL-terminated string.
66Perl's own functions typically add a trailing NUL for this reason.
67Nevertheless, you should be very careful when you pass a string stored
68in an SV to a C function or system call.
69
a0d0e21e 70To access the actual value that an SV points to, you can use the macros:
71
72 SvIV(SV*)
73 SvNV(SV*)
74 SvPV(SV*, STRLEN len)
75
76which will automatically coerce the actual scalar type into an IV, double,
77or string.
78
79In the C<SvPV> macro, the length of the string returned is placed into the
80variable C<len> (this is a macro, so you do I<not> use C<&len>). If you do not
81care what the length of the data is, use the global variable C<na>. Remember,
82however, that Perl allows arbitrary strings of data that may both contain
54310121 83NULs and might not be terminated by a NUL.
a0d0e21e 84
07fa94a1 85If you want to know if the scalar value is TRUE, you can use:
a0d0e21e 86
87 SvTRUE(SV*)
88
89Although Perl will automatically grow strings for you, if you need to force
90Perl to allocate more memory for your SV, you can use the macro
91
92 SvGROW(SV*, STRLEN newlen)
93
94which will determine if more memory needs to be allocated. If so, it will
95call the function C<sv_grow>. Note that C<SvGROW> can only increase, not
5f05dabc 96decrease, the allocated memory of an SV and that it does not automatically
97add a byte for the a trailing NUL (perl's own string functions typically do
8ebc5c01 98C<SvGROW(sv, len + 1)>).
a0d0e21e 99
100If you have an SV and want to know what kind of data Perl thinks is stored
101in it, you can use the following macros to check the type of SV you have.
102
103 SvIOK(SV*)
104 SvNOK(SV*)
105 SvPOK(SV*)
106
107You can get and set the current length of the string stored in an SV with
108the following macros:
109
110 SvCUR(SV*)
111 SvCUR_set(SV*, I32 val)
112
cb1a09d0 113You can also get a pointer to the end of the string stored in the SV
114with the macro:
115
116 SvEND(SV*)
117
118But note that these last three macros are valid only if C<SvPOK()> is true.
a0d0e21e 119
d1b91892 120If you want to append something to the end of string stored in an C<SV*>,
121you can use the following functions:
122
123 void sv_catpv(SV*, char*);
124 void sv_catpvn(SV*, char*, int);
46fc3d4c 125 void sv_catpvf(SV*, const char*, ...);
d1b91892 126 void sv_catsv(SV*, SV*);
127
128The first function calculates the length of the string to be appended by
129using C<strlen>. In the second, you specify the length of the string
46fc3d4c 130yourself. The third function processes its arguments like C<sprintf> and
131appends the formatted output. The fourth function extends the string
132stored in the first SV with the string stored in the second SV. It also
133forces the second SV to be interpreted as a string.
d1b91892 134
a0d0e21e 135If you know the name of a scalar variable, you can get a pointer to its SV
136by using the following:
137
5f05dabc 138 SV* perl_get_sv("package::varname", FALSE);
a0d0e21e 139
140This returns NULL if the variable does not exist.
141
d1b91892 142If you want to know if this variable (or any other SV) is actually C<defined>,
a0d0e21e 143you can call:
144
145 SvOK(SV*)
146
147The scalar C<undef> value is stored in an SV instance called C<sv_undef>. Its
148address can be used whenever an C<SV*> is needed.
149
150There are also the two values C<sv_yes> and C<sv_no>, which contain Boolean
151TRUE and FALSE values, respectively. Like C<sv_undef>, their addresses can
152be used whenever an C<SV*> is needed.
153
154Do not be fooled into thinking that C<(SV *) 0> is the same as C<&sv_undef>.
155Take this code:
156
157 SV* sv = (SV*) 0;
158 if (I-am-to-return-a-real-value) {
159 sv = sv_2mortal(newSViv(42));
160 }
161 sv_setsv(ST(0), sv);
162
163This code tries to return a new SV (which contains the value 42) if it should
04343c6d 164return a real value, or undef otherwise. Instead it has returned a NULL
a0d0e21e 165pointer which, somewhere down the line, will cause a segmentation violation,
5f05dabc 166bus error, or just weird results. Change the zero to C<&sv_undef> in the first
167line and all will be well.
a0d0e21e 168
169To free an SV that you've created, call C<SvREFCNT_dec(SV*)>. Normally this
3fe9a6f1 170call is not necessary (see L<Reference Counts and Mortality>).
a0d0e21e 171
d1b91892 172=head2 What's Really Stored in an SV?
a0d0e21e 173
174Recall that the usual method of determining the type of scalar you have is
5f05dabc 175to use C<Sv*OK> macros. Because a scalar can be both a number and a string,
d1b91892 176usually these macros will always return TRUE and calling the C<Sv*V>
a0d0e21e 177macros will do the appropriate conversion of string to integer/double or
178integer/double to string.
179
180If you I<really> need to know if you have an integer, double, or string
181pointer in an SV, you can use the following three macros instead:
182
183 SvIOKp(SV*)
184 SvNOKp(SV*)
185 SvPOKp(SV*)
186
187These will tell you if you truly have an integer, double, or string pointer
d1b91892 188stored in your SV. The "p" stands for private.
a0d0e21e 189
07fa94a1 190In general, though, it's best to use the C<Sv*V> macros.
a0d0e21e 191
54310121 192=head2 Working with AVs
a0d0e21e 193
07fa94a1 194There are two ways to create and load an AV. The first method creates an
195empty AV:
a0d0e21e 196
197 AV* newAV();
198
54310121 199The second method both creates the AV and initially populates it with SVs:
a0d0e21e 200
201 AV* av_make(I32 num, SV **ptr);
202
5f05dabc 203The second argument points to an array containing C<num> C<SV*>'s. Once the
54310121 204AV has been created, the SVs can be destroyed, if so desired.
a0d0e21e 205
54310121 206Once the AV has been created, the following operations are possible on AVs:
a0d0e21e 207
208 void av_push(AV*, SV*);
209 SV* av_pop(AV*);
210 SV* av_shift(AV*);
211 void av_unshift(AV*, I32 num);
212
213These should be familiar operations, with the exception of C<av_unshift>.
214This routine adds C<num> elements at the front of the array with the C<undef>
215value. You must then use C<av_store> (described below) to assign values
216to these new elements.
217
218Here are some other functions:
219
5f05dabc 220 I32 av_len(AV*);
a0d0e21e 221 SV** av_fetch(AV*, I32 key, I32 lval);
a0d0e21e 222 SV** av_store(AV*, I32 key, SV* val);
a0d0e21e 223
5f05dabc 224The C<av_len> function returns the highest index value in array (just
225like $#array in Perl). If the array is empty, -1 is returned. The
226C<av_fetch> function returns the value at index C<key>, but if C<lval>
227is non-zero, then C<av_fetch> will store an undef value at that index.
04343c6d 228The C<av_store> function stores the value C<val> at index C<key>, and does
229not increment the reference count of C<val>. Thus the caller is responsible
230for taking care of that, and if C<av_store> returns NULL, the caller will
231have to decrement the reference count to avoid a memory leak. Note that
232C<av_fetch> and C<av_store> both return C<SV**>'s, not C<SV*>'s as their
233return value.
d1b91892 234
a0d0e21e 235 void av_clear(AV*);
a0d0e21e 236 void av_undef(AV*);
cb1a09d0 237 void av_extend(AV*, I32 key);
5f05dabc 238
239The C<av_clear> function deletes all the elements in the AV* array, but
240does not actually delete the array itself. The C<av_undef> function will
241delete all the elements in the array plus the array itself. The
242C<av_extend> function extends the array so that it contains C<key>
243elements. If C<key> is less than the current length of the array, then
244nothing is done.
a0d0e21e 245
246If you know the name of an array variable, you can get a pointer to its AV
247by using the following:
248
5f05dabc 249 AV* perl_get_av("package::varname", FALSE);
a0d0e21e 250
251This returns NULL if the variable does not exist.
252
04343c6d 253See L<Understanding the Magic of Tied Hashes and Arrays> for more
254information on how to use the array access functions on tied arrays.
255
54310121 256=head2 Working with HVs
a0d0e21e 257
258To create an HV, you use the following routine:
259
260 HV* newHV();
261
54310121 262Once the HV has been created, the following operations are possible on HVs:
a0d0e21e 263
264 SV** hv_store(HV*, char* key, U32 klen, SV* val, U32 hash);
265 SV** hv_fetch(HV*, char* key, U32 klen, I32 lval);
266
5f05dabc 267The C<klen> parameter is the length of the key being passed in (Note that
268you cannot pass 0 in as a value of C<klen> to tell Perl to measure the
269length of the key). The C<val> argument contains the SV pointer to the
54310121 270scalar being stored, and C<hash> is the precomputed hash value (zero if
5f05dabc 271you want C<hv_store> to calculate it for you). The C<lval> parameter
272indicates whether this fetch is actually a part of a store operation, in
273which case a new undefined value will be added to the HV with the supplied
274key and C<hv_fetch> will return as if the value had already existed.
a0d0e21e 275
5f05dabc 276Remember that C<hv_store> and C<hv_fetch> return C<SV**>'s and not just
277C<SV*>. To access the scalar value, you must first dereference the return
278value. However, you should check to make sure that the return value is
279not NULL before dereferencing it.
a0d0e21e 280
281These two functions check if a hash table entry exists, and deletes it.
282
283 bool hv_exists(HV*, char* key, U32 klen);
d1b91892 284 SV* hv_delete(HV*, char* key, U32 klen, I32 flags);
a0d0e21e 285
5f05dabc 286If C<flags> does not include the C<G_DISCARD> flag then C<hv_delete> will
287create and return a mortal copy of the deleted value.
288
a0d0e21e 289And more miscellaneous functions:
290
291 void hv_clear(HV*);
a0d0e21e 292 void hv_undef(HV*);
5f05dabc 293
294Like their AV counterparts, C<hv_clear> deletes all the entries in the hash
295table but does not actually delete the hash table. The C<hv_undef> deletes
296both the entries and the hash table itself.
a0d0e21e 297
d1b91892 298Perl keeps the actual data in linked list of structures with a typedef of HE.
299These contain the actual key and value pointers (plus extra administrative
300overhead). The key is a string pointer; the value is an C<SV*>. However,
301once you have an C<HE*>, to get the actual key and value, use the routines
302specified below.
303
a0d0e21e 304 I32 hv_iterinit(HV*);
305 /* Prepares starting point to traverse hash table */
306 HE* hv_iternext(HV*);
307 /* Get the next entry, and return a pointer to a
308 structure that has both the key and value */
309 char* hv_iterkey(HE* entry, I32* retlen);
310 /* Get the key from an HE structure and also return
311 the length of the key string */
cb1a09d0 312 SV* hv_iterval(HV*, HE* entry);
a0d0e21e 313 /* Return a SV pointer to the value of the HE
314 structure */
cb1a09d0 315 SV* hv_iternextsv(HV*, char** key, I32* retlen);
d1b91892 316 /* This convenience routine combines hv_iternext,
317 hv_iterkey, and hv_iterval. The key and retlen
318 arguments are return values for the key and its
319 length. The value is returned in the SV* argument */
a0d0e21e 320
321If you know the name of a hash variable, you can get a pointer to its HV
322by using the following:
323
5f05dabc 324 HV* perl_get_hv("package::varname", FALSE);
a0d0e21e 325
326This returns NULL if the variable does not exist.
327
8ebc5c01 328The hash algorithm is defined in the C<PERL_HASH(hash, key, klen)> macro:
a0d0e21e 329
330 i = klen;
331 hash = 0;
332 s = key;
333 while (i--)
334 hash = hash * 33 + *s++;
335
04343c6d 336See L<Understanding the Magic of Tied Hashes and Arrays> for more
337information on how to use the hash access functions on tied hashes.
338
1e422769 339=head2 Hash API Extensions
340
341Beginning with version 5.004, the following functions are also supported:
342
343 HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash);
344 HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash);
345
346 bool hv_exists_ent (HV* tb, SV* key, U32 hash);
347 SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash);
348
349 SV* hv_iterkeysv (HE* entry);
350
351Note that these functions take C<SV*> keys, which simplifies writing
352of extension code that deals with hash structures. These functions
353also allow passing of C<SV*> keys to C<tie> functions without forcing
354you to stringify the keys (unlike the previous set of functions).
355
356They also return and accept whole hash entries (C<HE*>), making their
357use more efficient (since the hash number for a particular string
358doesn't have to be recomputed every time). See L<API LISTING> later in
359this document for detailed descriptions.
360
361The following macros must always be used to access the contents of hash
362entries. Note that the arguments to these macros must be simple
363variables, since they may get evaluated more than once. See
364L<API LISTING> later in this document for detailed descriptions of these
365macros.
366
367 HePV(HE* he, STRLEN len)
368 HeVAL(HE* he)
369 HeHASH(HE* he)
370 HeSVKEY(HE* he)
371 HeSVKEY_force(HE* he)
372 HeSVKEY_set(HE* he, SV* sv)
373
374These two lower level macros are defined, but must only be used when
375dealing with keys that are not C<SV*>s:
376
377 HeKEY(HE* he)
378 HeKLEN(HE* he)
379
04343c6d 380Note that both C<hv_store> and C<hv_store_ent> do not increment the
381reference count of the stored C<val>, which is the caller's responsibility.
382If these functions return a NULL value, the caller will usually have to
383decrement the reference count of C<val> to avoid a memory leak.
1e422769 384
a0d0e21e 385=head2 References
386
d1b91892 387References are a special type of scalar that point to other data types
388(including references).
a0d0e21e 389
07fa94a1 390To create a reference, use either of the following functions:
a0d0e21e 391
5f05dabc 392 SV* newRV_inc((SV*) thing);
393 SV* newRV_noinc((SV*) thing);
a0d0e21e 394
5f05dabc 395The C<thing> argument can be any of an C<SV*>, C<AV*>, or C<HV*>. The
07fa94a1 396functions are identical except that C<newRV_inc> increments the reference
397count of the C<thing>, while C<newRV_noinc> does not. For historical
398reasons, C<newRV> is a synonym for C<newRV_inc>.
399
400Once you have a reference, you can use the following macro to dereference
401the reference:
a0d0e21e 402
403 SvRV(SV*)
404
405then call the appropriate routines, casting the returned C<SV*> to either an
d1b91892 406C<AV*> or C<HV*>, if required.
a0d0e21e 407
d1b91892 408To determine if an SV is a reference, you can use the following macro:
a0d0e21e 409
410 SvROK(SV*)
411
07fa94a1 412To discover what type of value the reference refers to, use the following
413macro and then check the return value.
d1b91892 414
415 SvTYPE(SvRV(SV*))
416
417The most useful types that will be returned are:
418
419 SVt_IV Scalar
420 SVt_NV Scalar
421 SVt_PV Scalar
5f05dabc 422 SVt_RV Scalar
d1b91892 423 SVt_PVAV Array
424 SVt_PVHV Hash
425 SVt_PVCV Code
5f05dabc 426 SVt_PVGV Glob (possible a file handle)
427 SVt_PVMG Blessed or Magical Scalar
428
429 See the sv.h header file for more details.
d1b91892 430
cb1a09d0 431=head2 Blessed References and Class Objects
432
433References are also used to support object-oriented programming. In the
434OO lexicon, an object is simply a reference that has been blessed into a
435package (or class). Once blessed, the programmer may now use the reference
436to access the various methods in the class.
437
438A reference can be blessed into a package with the following function:
439
440 SV* sv_bless(SV* sv, HV* stash);
441
442The C<sv> argument must be a reference. The C<stash> argument specifies
3fe9a6f1 443which class the reference will belong to. See
2ae324a7 444L<Stashes and Globs> for information on converting class names into stashes.
cb1a09d0 445
446/* Still under construction */
447
448Upgrades rv to reference if not already one. Creates new SV for rv to
8ebc5c01 449point to. If C<classname> is non-null, the SV is blessed into the specified
450class. SV is returned.
cb1a09d0 451
452 SV* newSVrv(SV* rv, char* classname);
453
8ebc5c01 454Copies integer or double into an SV whose reference is C<rv>. SV is blessed
455if C<classname> is non-null.
cb1a09d0 456
457 SV* sv_setref_iv(SV* rv, char* classname, IV iv);
458 SV* sv_setref_nv(SV* rv, char* classname, NV iv);
459
5f05dabc 460Copies the pointer value (I<the address, not the string!>) into an SV whose
8ebc5c01 461reference is rv. SV is blessed if C<classname> is non-null.
cb1a09d0 462
463 SV* sv_setref_pv(SV* rv, char* classname, PV iv);
464
8ebc5c01 465Copies string into an SV whose reference is C<rv>. Set length to 0 to let
466Perl calculate the string length. SV is blessed if C<classname> is non-null.
cb1a09d0 467
468 SV* sv_setref_pvn(SV* rv, char* classname, PV iv, int length);
469
470 int sv_isa(SV* sv, char* name);
471 int sv_isobject(SV* sv);
472
5f05dabc 473=head2 Creating New Variables
cb1a09d0 474
5f05dabc 475To create a new Perl variable with an undef value which can be accessed from
476your Perl script, use the following routines, depending on the variable type.
cb1a09d0 477
5f05dabc 478 SV* perl_get_sv("package::varname", TRUE);
479 AV* perl_get_av("package::varname", TRUE);
480 HV* perl_get_hv("package::varname", TRUE);
cb1a09d0 481
482Notice the use of TRUE as the second parameter. The new variable can now
483be set, using the routines appropriate to the data type.
484
5f05dabc 485There are additional macros whose values may be bitwise OR'ed with the
486C<TRUE> argument to enable certain extra features. Those bits are:
cb1a09d0 487
5f05dabc 488 GV_ADDMULTI Marks the variable as multiply defined, thus preventing the
54310121 489 "Name <varname> used only once: possible typo" warning.
07fa94a1 490 GV_ADDWARN Issues the warning "Had to create <varname> unexpectedly" if
491 the variable did not exist before the function was called.
cb1a09d0 492
07fa94a1 493If you do not specify a package name, the variable is created in the current
494package.
cb1a09d0 495
5f05dabc 496=head2 Reference Counts and Mortality
a0d0e21e 497
54310121 498Perl uses an reference count-driven garbage collection mechanism. SVs,
499AVs, or HVs (xV for short in the following) start their life with a
55497cff 500reference count of 1. If the reference count of an xV ever drops to 0,
07fa94a1 501then it will be destroyed and its memory made available for reuse.
55497cff 502
503This normally doesn't happen at the Perl level unless a variable is
5f05dabc 504undef'ed or the last variable holding a reference to it is changed or
505overwritten. At the internal level, however, reference counts can be
55497cff 506manipulated with the following macros:
507
508 int SvREFCNT(SV* sv);
5f05dabc 509 SV* SvREFCNT_inc(SV* sv);
55497cff 510 void SvREFCNT_dec(SV* sv);
511
512However, there is one other function which manipulates the reference
07fa94a1 513count of its argument. The C<newRV_inc> function, you will recall,
514creates a reference to the specified argument. As a side effect,
515it increments the argument's reference count. If this is not what
516you want, use C<newRV_noinc> instead.
517
518For example, imagine you want to return a reference from an XSUB function.
519Inside the XSUB routine, you create an SV which initially has a reference
520count of one. Then you call C<newRV_inc>, passing it the just-created SV.
5f05dabc 521This returns the reference as a new SV, but the reference count of the
522SV you passed to C<newRV_inc> has been incremented to two. Now you
07fa94a1 523return the reference from the XSUB routine and forget about the SV.
524But Perl hasn't! Whenever the returned reference is destroyed, the
525reference count of the original SV is decreased to one and nothing happens.
526The SV will hang around without any way to access it until Perl itself
527terminates. This is a memory leak.
5f05dabc 528
529The correct procedure, then, is to use C<newRV_noinc> instead of
faed5253 530C<newRV_inc>. Then, if and when the last reference is destroyed,
531the reference count of the SV will go to zero and it will be destroyed,
07fa94a1 532stopping any memory leak.
55497cff 533
5f05dabc 534There are some convenience functions available that can help with the
54310121 535destruction of xVs. These functions introduce the concept of "mortality".
07fa94a1 536An xV that is mortal has had its reference count marked to be decremented,
537but not actually decremented, until "a short time later". Generally the
538term "short time later" means a single Perl statement, such as a call to
54310121 539an XSUB function. The actual determinant for when mortal xVs have their
07fa94a1 540reference count decremented depends on two macros, SAVETMPS and FREETMPS.
541See L<perlcall> and L<perlxs> for more details on these macros.
55497cff 542
543"Mortalization" then is at its simplest a deferred C<SvREFCNT_dec>.
544However, if you mortalize a variable twice, the reference count will
545later be decremented twice.
546
547You should be careful about creating mortal variables. Strange things
548can happen if you make the same value mortal within multiple contexts,
5f05dabc 549or if you make a variable mortal multiple times.
a0d0e21e 550
551To create a mortal variable, use the functions:
552
553 SV* sv_newmortal()
554 SV* sv_2mortal(SV*)
555 SV* sv_mortalcopy(SV*)
556
5f05dabc 557The first call creates a mortal SV, the second converts an existing
558SV to a mortal SV (and thus defers a call to C<SvREFCNT_dec>), and the
559third creates a mortal copy of an existing SV.
a0d0e21e 560
54310121 561The mortal routines are not just for SVs -- AVs and HVs can be
faed5253 562made mortal by passing their address (type-casted to C<SV*>) to the
07fa94a1 563C<sv_2mortal> or C<sv_mortalcopy> routines.
a0d0e21e 564
5f05dabc 565=head2 Stashes and Globs
a0d0e21e 566
aa689395 567A "stash" is a hash that contains all of the different objects that
568are contained within a package. Each key of the stash is a symbol
569name (shared by all the different types of objects that have the same
570name), and each value in the hash table is a GV (Glob Value). This GV
571in turn contains references to the various objects of that name,
572including (but not limited to) the following:
cb1a09d0 573
a0d0e21e 574 Scalar Value
575 Array Value
576 Hash Value
577 File Handle
578 Directory Handle
579 Format
580 Subroutine
581
5f05dabc 582There is a single stash called "defstash" that holds the items that exist
583in the "main" package. To get at the items in other packages, append the
584string "::" to the package name. The items in the "Foo" package are in
585the stash "Foo::" in defstash. The items in the "Bar::Baz" package are
586in the stash "Baz::" in "Bar::"'s stash.
a0d0e21e 587
d1b91892 588To get the stash pointer for a particular package, use the function:
a0d0e21e 589
590 HV* gv_stashpv(char* name, I32 create)
591 HV* gv_stashsv(SV*, I32 create)
592
593The first function takes a literal string, the second uses the string stored
d1b91892 594in the SV. Remember that a stash is just a hash table, so you get back an
cb1a09d0 595C<HV*>. The C<create> flag will create a new package if it is set.
a0d0e21e 596
597The name that C<gv_stash*v> wants is the name of the package whose symbol table
598you want. The default package is called C<main>. If you have multiply nested
d1b91892 599packages, pass their names to C<gv_stash*v>, separated by C<::> as in the Perl
600language itself.
a0d0e21e 601
602Alternately, if you have an SV that is a blessed reference, you can find
603out the stash pointer by using:
604
605 HV* SvSTASH(SvRV(SV*));
606
607then use the following to get the package name itself:
608
609 char* HvNAME(HV* stash);
610
5f05dabc 611If you need to bless or re-bless an object you can use the following
612function:
a0d0e21e 613
614 SV* sv_bless(SV*, HV* stash)
615
616where the first argument, an C<SV*>, must be a reference, and the second
617argument is a stash. The returned C<SV*> can now be used in the same way
618as any other SV.
619
d1b91892 620For more information on references and blessings, consult L<perlref>.
621
54310121 622=head2 Double-Typed SVs
0a753a76 623
624Scalar variables normally contain only one type of value, an integer,
625double, pointer, or reference. Perl will automatically convert the
626actual scalar data from the stored type into the requested type.
627
628Some scalar variables contain more than one type of scalar data. For
629example, the variable C<$!> contains either the numeric value of C<errno>
630or its string equivalent from either C<strerror> or C<sys_errlist[]>.
631
632To force multiple data values into an SV, you must do two things: use the
633C<sv_set*v> routines to add the additional scalar type, then set a flag
634so that Perl will believe it contains more than one type of data. The
635four macros to set the flags are:
636
637 SvIOK_on
638 SvNOK_on
639 SvPOK_on
640 SvROK_on
641
642The particular macro you must use depends on which C<sv_set*v> routine
643you called first. This is because every C<sv_set*v> routine turns on
644only the bit for the particular type of data being set, and turns off
645all the rest.
646
647For example, to create a new Perl variable called "dberror" that contains
648both the numeric and descriptive string error values, you could use the
649following code:
650
651 extern int dberror;
652 extern char *dberror_list;
653
654 SV* sv = perl_get_sv("dberror", TRUE);
655 sv_setiv(sv, (IV) dberror);
656 sv_setpv(sv, dberror_list[dberror]);
657 SvIOK_on(sv);
658
659If the order of C<sv_setiv> and C<sv_setpv> had been reversed, then the
660macro C<SvPOK_on> would need to be called instead of C<SvIOK_on>.
661
662=head2 Magic Variables
a0d0e21e 663
d1b91892 664[This section still under construction. Ignore everything here. Post no
665bills. Everything not permitted is forbidden.]
666
d1b91892 667Any SV may be magical, that is, it has special features that a normal
668SV does not have. These features are stored in the SV structure in a
5f05dabc 669linked list of C<struct magic>'s, typedef'ed to C<MAGIC>.
d1b91892 670
671 struct magic {
672 MAGIC* mg_moremagic;
673 MGVTBL* mg_virtual;
674 U16 mg_private;
675 char mg_type;
676 U8 mg_flags;
677 SV* mg_obj;
678 char* mg_ptr;
679 I32 mg_len;
680 };
681
682Note this is current as of patchlevel 0, and could change at any time.
683
684=head2 Assigning Magic
685
686Perl adds magic to an SV using the sv_magic function:
687
688 void sv_magic(SV* sv, SV* obj, int how, char* name, I32 namlen);
689
690The C<sv> argument is a pointer to the SV that is to acquire a new magical
691feature.
692
693If C<sv> is not already magical, Perl uses the C<SvUPGRADE> macro to
694set the C<SVt_PVMG> flag for the C<sv>. Perl then continues by adding
695it to the beginning of the linked list of magical features. Any prior
696entry of the same type of magic is deleted. Note that this can be
5fb8527f 697overridden, and multiple instances of the same type of magic can be
d1b91892 698associated with an SV.
699
54310121 700The C<name> and C<namlen> arguments are used to associate a string with
701the magic, typically the name of a variable. C<namlen> is stored in the
702C<mg_len> field and if C<name> is non-null and C<namlen> >= 0 a malloc'd
d1b91892 703copy of the name is stored in C<mg_ptr> field.
704
705The sv_magic function uses C<how> to determine which, if any, predefined
706"Magic Virtual Table" should be assigned to the C<mg_virtual> field.
cb1a09d0 707See the "Magic Virtual Table" section below. The C<how> argument is also
708stored in the C<mg_type> field.
d1b91892 709
710The C<obj> argument is stored in the C<mg_obj> field of the C<MAGIC>
711structure. If it is not the same as the C<sv> argument, the reference
712count of the C<obj> object is incremented. If it is the same, or if
04343c6d 713the C<how> argument is "#", or if it is a NULL pointer, then C<obj> is
d1b91892 714merely stored, without the reference count being incremented.
715
cb1a09d0 716There is also a function to add magic to an C<HV>:
717
718 void hv_magic(HV *hv, GV *gv, int how);
719
720This simply calls C<sv_magic> and coerces the C<gv> argument into an C<SV>.
721
722To remove the magic from an SV, call the function sv_unmagic:
723
724 void sv_unmagic(SV *sv, int type);
725
726The C<type> argument should be equal to the C<how> value when the C<SV>
727was initially made magical.
728
d1b91892 729=head2 Magic Virtual Tables
730
731The C<mg_virtual> field in the C<MAGIC> structure is a pointer to a
732C<MGVTBL>, which is a structure of function pointers and stands for
733"Magic Virtual Table" to handle the various operations that might be
734applied to that variable.
735
736The C<MGVTBL> has five pointers to the following routine types:
737
738 int (*svt_get)(SV* sv, MAGIC* mg);
739 int (*svt_set)(SV* sv, MAGIC* mg);
740 U32 (*svt_len)(SV* sv, MAGIC* mg);
741 int (*svt_clear)(SV* sv, MAGIC* mg);
742 int (*svt_free)(SV* sv, MAGIC* mg);
743
744This MGVTBL structure is set at compile-time in C<perl.h> and there are
745currently 19 types (or 21 with overloading turned on). These different
746structures contain pointers to various routines that perform additional
747actions depending on which function is being called.
748
749 Function pointer Action taken
750 ---------------- ------------
751 svt_get Do something after the value of the SV is retrieved.
752 svt_set Do something after the SV is assigned a value.
753 svt_len Report on the SV's length.
754 svt_clear Clear something the SV represents.
755 svt_free Free any extra storage associated with the SV.
756
757For instance, the MGVTBL structure called C<vtbl_sv> (which corresponds
758to an C<mg_type> of '\0') contains:
759
760 { magic_get, magic_set, magic_len, 0, 0 }
761
762Thus, when an SV is determined to be magical and of type '\0', if a get
763operation is being performed, the routine C<magic_get> is called. All
764the various routines for the various magical types begin with C<magic_>.
765
766The current kinds of Magic Virtual Tables are:
767
07fa94a1 768 mg_type MGVTBL Type of magical
5f05dabc 769 ------- ------ ----------------------------
d1b91892 770 \0 vtbl_sv Regexp???
771 A vtbl_amagic Operator Overloading
772 a vtbl_amagicelem Operator Overloading
773 c 0 Used in Operator Overloading
774 B vtbl_bm Boyer-Moore???
775 E vtbl_env %ENV hash
776 e vtbl_envelem %ENV hash element
777 g vtbl_mglob Regexp /g flag???
778 I vtbl_isa @ISA array
779 i vtbl_isaelem @ISA array element
780 L 0 (but sets RMAGICAL) Perl Module/Debugger???
781 l vtbl_dbline Debugger?
44a8e56a 782 o vtbl_collxfrm Locale transformation
d1b91892 783 P vtbl_pack Tied Array or Hash
784 p vtbl_packelem Tied Array or Hash element
785 q vtbl_packelem Tied Scalar or Handle
786 S vtbl_sig Signal Hash
787 s vtbl_sigelem Signal Hash element
788 t vtbl_taint Taintedness
789 U vtbl_uvar ???
790 v vtbl_vec Vector
791 x vtbl_substr Substring???
e616eb7b 792 y vtbl_itervar Shadow "foreach" iterator variable
d1b91892 793 * vtbl_glob GV???
794 # vtbl_arylen Array Length
795 . vtbl_pos $. scalar variable
5f05dabc 796 ~ None Used by certain extensions
d1b91892 797
68dc0745 798When an uppercase and lowercase letter both exist in the table, then the
799uppercase letter is used to represent some kind of composite type (a list
800or a hash), and the lowercase letter is used to represent an element of
d1b91892 801that composite type.
802
5f05dabc 803The '~' magic type is defined specifically for use by extensions and
804will not be used by perl itself. Extensions can use ~ magic to 'attach'
805private information to variables (typically objects). This is especially
806useful because there is no way for normal perl code to corrupt this
807private information (unlike using extra elements of a hash object).
808
809Note that because multiple extensions may be using ~ magic it is
810important for extensions to take extra care with it. Typically only
811using it on objects blessed into the same class as the extension
812is sufficient. It may also be appropriate to add an I32 'signature'
813at the top of the private data area and check that.
814
d1b91892 815=head2 Finding Magic
816
817 MAGIC* mg_find(SV*, int type); /* Finds the magic pointer of that type */
818
819This routine returns a pointer to the C<MAGIC> structure stored in the SV.
820If the SV does not have that magical feature, C<NULL> is returned. Also,
54310121 821if the SV is not of type SVt_PVMG, Perl may core dump.
d1b91892 822
823 int mg_copy(SV* sv, SV* nsv, char* key, STRLEN klen);
824
825This routine checks to see what types of magic C<sv> has. If the mg_type
68dc0745 826field is an uppercase letter, then the mg_obj is copied to C<nsv>, but
827the mg_type field is changed to be the lowercase letter.
a0d0e21e 828
04343c6d 829=head2 Understanding the Magic of Tied Hashes and Arrays
830
831Tied hashes and arrays are magical beasts of the 'P' magic type.
9edb2b46 832
833WARNING: As of the 5.004 release, proper usage of the array and hash
834access functions requires understanding a few caveats. Some
835of these caveats are actually considered bugs in the API, to be fixed
836in later releases, and are bracketed with [MAYCHANGE] below. If
837you find yourself actually applying such information in this section, be
838aware that the behavior may change in the future, umm, without warning.
04343c6d 839
840The C<av_store> function, when given a tied array argument, merely
841copies the magic of the array onto the value to be "stored", using
842C<mg_copy>. It may also return NULL, indicating that the value did not
9edb2b46 843actually need to be stored in the array. [MAYCHANGE] After a call to
844C<av_store> on a tied array, the caller will usually need to call
845C<mg_set(val)> to actually invoke the perl level "STORE" method on the
846TIEARRAY object. If C<av_store> did return NULL, a call to
847C<SvREFCNT_dec(val)> will also be usually necessary to avoid a memory
848leak. [/MAYCHANGE]
04343c6d 849
850The previous paragraph is applicable verbatim to tied hash access using the
851C<hv_store> and C<hv_store_ent> functions as well.
852
853C<av_fetch> and the corresponding hash functions C<hv_fetch> and
854C<hv_fetch_ent> actually return an undefined mortal value whose magic
855has been initialized using C<mg_copy>. Note the value so returned does not
9edb2b46 856need to be deallocated, as it is already mortal. [MAYCHANGE] But you will
857need to call C<mg_get()> on the returned value in order to actually invoke
858the perl level "FETCH" method on the underlying TIE object. Similarly,
04343c6d 859you may also call C<mg_set()> on the return value after possibly assigning
860a suitable value to it using C<sv_setsv>, which will invoke the "STORE"
9edb2b46 861method on the TIE object. [/MAYCHANGE]
04343c6d 862
9edb2b46 863[MAYCHANGE]
04343c6d 864In other words, the array or hash fetch/store functions don't really
865fetch and store actual values in the case of tied arrays and hashes. They
866merely call C<mg_copy> to attach magic to the values that were meant to be
867"stored" or "fetched". Later calls to C<mg_get> and C<mg_set> actually
868do the job of invoking the TIE methods on the underlying objects. Thus
9edb2b46 869the magic mechanism currently implements a kind of lazy access to arrays
04343c6d 870and hashes.
871
872Currently (as of perl version 5.004), use of the hash and array access
873functions requires the user to be aware of whether they are operating on
9edb2b46 874"normal" hashes and arrays, or on their tied variants. The API may be
875changed to provide more transparent access to both tied and normal data
876types in future versions.
877[/MAYCHANGE]
04343c6d 878
879You would do well to understand that the TIEARRAY and TIEHASH interfaces
880are mere sugar to invoke some perl method calls while using the uniform hash
881and array syntax. The use of this sugar imposes some overhead (typically
882about two to four extra opcodes per FETCH/STORE operation, in addition to
883the creation of all the mortal variables required to invoke the methods).
884This overhead will be comparatively small if the TIE methods are themselves
885substantial, but if they are only a few statements long, the overhead
886will not be insignificant.
887
0a753a76 888=head1 Subroutines
a0d0e21e 889
68dc0745 890=head2 XSUBs and the Argument Stack
5f05dabc 891
892The XSUB mechanism is a simple way for Perl programs to access C subroutines.
893An XSUB routine will have a stack that contains the arguments from the Perl
894program, and a way to map from the Perl data structures to a C equivalent.
895
896The stack arguments are accessible through the C<ST(n)> macro, which returns
897the C<n>'th stack argument. Argument 0 is the first argument passed in the
898Perl subroutine call. These arguments are C<SV*>, and can be used anywhere
899an C<SV*> is used.
900
901Most of the time, output from the C routine can be handled through use of
902the RETVAL and OUTPUT directives. However, there are some cases where the
903argument stack is not already long enough to handle all the return values.
904An example is the POSIX tzname() call, which takes no arguments, but returns
905two, the local time zone's standard and summer time abbreviations.
906
907To handle this situation, the PPCODE directive is used and the stack is
908extended using the macro:
909
910 EXTEND(sp, num);
911
912where C<sp> is the stack pointer, and C<num> is the number of elements the
913stack should be extended by.
914
915Now that there is room on the stack, values can be pushed on it using the
54310121 916macros to push IVs, doubles, strings, and SV pointers respectively:
5f05dabc 917
918 PUSHi(IV)
919 PUSHn(double)
920 PUSHp(char*, I32)
921 PUSHs(SV*)
922
923And now the Perl program calling C<tzname>, the two values will be assigned
924as in:
925
926 ($standard_abbrev, $summer_abbrev) = POSIX::tzname;
927
928An alternate (and possibly simpler) method to pushing values on the stack is
929to use the macros:
930
931 XPUSHi(IV)
932 XPUSHn(double)
933 XPUSHp(char*, I32)
934 XPUSHs(SV*)
935
936These macros automatically adjust the stack for you, if needed. Thus, you
937do not need to call C<EXTEND> to extend the stack.
938
939For more information, consult L<perlxs> and L<perlxstut>.
940
941=head2 Calling Perl Routines from within C Programs
a0d0e21e 942
943There are four routines that can be used to call a Perl subroutine from
944within a C program. These four are:
945
946 I32 perl_call_sv(SV*, I32);
947 I32 perl_call_pv(char*, I32);
948 I32 perl_call_method(char*, I32);
949 I32 perl_call_argv(char*, I32, register char**);
950
d1b91892 951The routine most often used is C<perl_call_sv>. The C<SV*> argument
952contains either the name of the Perl subroutine to be called, or a
953reference to the subroutine. The second argument consists of flags
954that control the context in which the subroutine is called, whether
955or not the subroutine is being passed arguments, how errors should be
956trapped, and how to treat return values.
a0d0e21e 957
958All four routines return the number of arguments that the subroutine returned
959on the Perl stack.
960
d1b91892 961When using any of these routines (except C<perl_call_argv>), the programmer
962must manipulate the Perl stack. These include the following macros and
963functions:
a0d0e21e 964
965 dSP
966 PUSHMARK()
967 PUTBACK
968 SPAGAIN
969 ENTER
970 SAVETMPS
971 FREETMPS
972 LEAVE
973 XPUSH*()
cb1a09d0 974 POP*()
a0d0e21e 975
5f05dabc 976For a detailed description of calling conventions from C to Perl,
977consult L<perlcall>.
a0d0e21e 978
5f05dabc 979=head2 Memory Allocation
a0d0e21e 980
5f05dabc 981It is suggested that you use the version of malloc that is distributed
982with Perl. It keeps pools of various sizes of unallocated memory in
07fa94a1 983order to satisfy allocation requests more quickly. However, on some
984platforms, it may cause spurious malloc or free errors.
d1b91892 985
986 New(x, pointer, number, type);
987 Newc(x, pointer, number, type, cast);
988 Newz(x, pointer, number, type);
989
07fa94a1 990These three macros are used to initially allocate memory.
5f05dabc 991
992The first argument C<x> was a "magic cookie" that was used to keep track
993of who called the macro, to help when debugging memory problems. However,
07fa94a1 994the current code makes no use of this feature (most Perl developers now
995use run-time memory checkers), so this argument can be any number.
5f05dabc 996
997The second argument C<pointer> should be the name of a variable that will
998point to the newly allocated memory.
d1b91892 999
d1b91892 1000The third and fourth arguments C<number> and C<type> specify how many of
1001the specified type of data structure should be allocated. The argument
1002C<type> is passed to C<sizeof>. The final argument to C<Newc>, C<cast>,
1003should be used if the C<pointer> argument is different from the C<type>
1004argument.
1005
1006Unlike the C<New> and C<Newc> macros, the C<Newz> macro calls C<memzero>
1007to zero out all the newly allocated memory.
1008
1009 Renew(pointer, number, type);
1010 Renewc(pointer, number, type, cast);
1011 Safefree(pointer)
1012
1013These three macros are used to change a memory buffer size or to free a
1014piece of memory no longer needed. The arguments to C<Renew> and C<Renewc>
1015match those of C<New> and C<Newc> with the exception of not needing the
1016"magic cookie" argument.
1017
1018 Move(source, dest, number, type);
1019 Copy(source, dest, number, type);
1020 Zero(dest, number, type);
1021
1022These three macros are used to move, copy, or zero out previously allocated
1023memory. The C<source> and C<dest> arguments point to the source and
1024destination starting points. Perl will move, copy, or zero out C<number>
1025instances of the size of the C<type> data structure (using the C<sizeof>
1026function).
a0d0e21e 1027
5f05dabc 1028=head2 PerlIO
ce3d39e2 1029
5f05dabc 1030The most recent development releases of Perl has been experimenting with
1031removing Perl's dependency on the "normal" standard I/O suite and allowing
1032other stdio implementations to be used. This involves creating a new
1033abstraction layer that then calls whichever implementation of stdio Perl
68dc0745 1034was compiled with. All XSUBs should now use the functions in the PerlIO
5f05dabc 1035abstraction layer and not make any assumptions about what kind of stdio
1036is being used.
1037
1038For a complete description of the PerlIO abstraction, consult L<perlapio>.
1039
8ebc5c01 1040=head2 Putting a C value on Perl stack
ce3d39e2 1041
1042A lot of opcodes (this is an elementary operation in the internal perl
1043stack machine) put an SV* on the stack. However, as an optimization
1044the corresponding SV is (usually) not recreated each time. The opcodes
1045reuse specially assigned SVs (I<target>s) which are (as a corollary)
1046not constantly freed/created.
1047
0a753a76 1048Each of the targets is created only once (but see
ce3d39e2 1049L<Scratchpads and recursion> below), and when an opcode needs to put
1050an integer, a double, or a string on stack, it just sets the
1051corresponding parts of its I<target> and puts the I<target> on stack.
1052
1053The macro to put this target on stack is C<PUSHTARG>, and it is
1054directly used in some opcodes, as well as indirectly in zillions of
1055others, which use it via C<(X)PUSH[pni]>.
1056
8ebc5c01 1057=head2 Scratchpads
ce3d39e2 1058
54310121 1059The question remains on when the SVs which are I<target>s for opcodes
5f05dabc 1060are created. The answer is that they are created when the current unit --
1061a subroutine or a file (for opcodes for statements outside of
1062subroutines) -- is compiled. During this time a special anonymous Perl
ce3d39e2 1063array is created, which is called a scratchpad for the current
1064unit.
1065
54310121 1066A scratchpad keeps SVs which are lexicals for the current unit and are
ce3d39e2 1067targets for opcodes. One can deduce that an SV lives on a scratchpad
1068by looking on its flags: lexicals have C<SVs_PADMY> set, and
1069I<target>s have C<SVs_PADTMP> set.
1070
54310121 1071The correspondence between OPs and I<target>s is not 1-to-1. Different
1072OPs in the compile tree of the unit can use the same target, if this
ce3d39e2 1073would not conflict with the expected life of the temporary.
1074
2ae324a7 1075=head2 Scratchpads and recursion
ce3d39e2 1076
1077In fact it is not 100% true that a compiled unit contains a pointer to
1078the scratchpad AV. In fact it contains a pointer to an AV of
1079(initially) one element, and this element is the scratchpad AV. Why do
1080we need an extra level of indirection?
1081
1082The answer is B<recursion>, and maybe (sometime soon) B<threads>. Both
1083these can create several execution pointers going into the same
1084subroutine. For the subroutine-child not write over the temporaries
1085for the subroutine-parent (lifespan of which covers the call to the
1086child), the parent and the child should have different
1087scratchpads. (I<And> the lexicals should be separate anyway!)
1088
5f05dabc 1089So each subroutine is born with an array of scratchpads (of length 1).
1090On each entry to the subroutine it is checked that the current
ce3d39e2 1091depth of the recursion is not more than the length of this array, and
1092if it is, new scratchpad is created and pushed into the array.
1093
1094The I<target>s on this scratchpad are C<undef>s, but they are already
1095marked with correct flags.
1096
0a753a76 1097=head1 Compiled code
1098
1099=head2 Code tree
1100
1101Here we describe the internal form your code is converted to by
1102Perl. Start with a simple example:
1103
1104 $a = $b + $c;
1105
1106This is converted to a tree similar to this one:
1107
1108 assign-to
1109 / \
1110 + $a
1111 / \
1112 $b $c
1113
1114(but slightly more complicated). This tree reflect the way Perl
1115parsed your code, but has nothing to do with the execution order.
1116There is an additional "thread" going through the nodes of the tree
1117which shows the order of execution of the nodes. In our simplified
1118example above it looks like:
1119
1120 $b ---> $c ---> + ---> $a ---> assign-to
1121
1122But with the actual compile tree for C<$a = $b + $c> it is different:
1123some nodes I<optimized away>. As a corollary, though the actual tree
1124contains more nodes than our simplified example, the execution order
1125is the same as in our example.
1126
1127=head2 Examining the tree
1128
1129If you have your perl compiled for debugging (usually done with C<-D
1130optimize=-g> on C<Configure> command line), you may examine the
1131compiled tree by specifying C<-Dx> on the Perl command line. The
1132output takes several lines per node, and for C<$b+$c> it looks like
1133this:
1134
1135 5 TYPE = add ===> 6
1136 TARG = 1
1137 FLAGS = (SCALAR,KIDS)
1138 {
1139 TYPE = null ===> (4)
1140 (was rv2sv)
1141 FLAGS = (SCALAR,KIDS)
1142 {
1143 3 TYPE = gvsv ===> 4
1144 FLAGS = (SCALAR)
1145 GV = main::b
1146 }
1147 }
1148 {
1149 TYPE = null ===> (5)
1150 (was rv2sv)
1151 FLAGS = (SCALAR,KIDS)
1152 {
1153 4 TYPE = gvsv ===> 5
1154 FLAGS = (SCALAR)
1155 GV = main::c
1156 }
1157 }
1158
1159This tree has 5 nodes (one per C<TYPE> specifier), only 3 of them are
1160not optimized away (one per number in the left column). The immediate
1161children of the given node correspond to C<{}> pairs on the same level
1162of indentation, thus this listing corresponds to the tree:
1163
1164 add
1165 / \
1166 null null
1167 | |
1168 gvsv gvsv
1169
1170The execution order is indicated by C<===E<gt>> marks, thus it is C<3
11714 5 6> (node C<6> is not included into above listing), i.e.,
1172C<gvsv gvsv add whatever>.
1173
1174=head2 Compile pass 1: check routines
1175
1176The tree is created by the I<pseudo-compiler> while yacc code feeds it
1177the constructions it recognizes. Since yacc works bottom-up, so does
1178the first pass of perl compilation.
1179
1180What makes this pass interesting for perl developers is that some
1181optimization may be performed on this pass. This is optimization by
1182so-called I<check routines>. The correspondence between node names
1183and corresponding check routines is described in F<opcode.pl> (do not
1184forget to run C<make regen_headers> if you modify this file).
1185
1186A check routine is called when the node is fully constructed except
1187for the execution-order thread. Since at this time there is no
1188back-links to the currently constructed node, one can do most any
1189operation to the top-level node, including freeing it and/or creating
1190new nodes above/below it.
1191
1192The check routine returns the node which should be inserted into the
1193tree (if the top-level node was not modified, check routine returns
1194its argument).
1195
1196By convention, check routines have names C<ck_*>. They are usually
1197called from C<new*OP> subroutines (or C<convert>) (which in turn are
1198called from F<perly.y>).
1199
1200=head2 Compile pass 1a: constant folding
1201
1202Immediately after the check routine is called the returned node is
1203checked for being compile-time executable. If it is (the value is
1204judged to be constant) it is immediately executed, and a I<constant>
1205node with the "return value" of the corresponding subtree is
1206substituted instead. The subtree is deleted.
1207
1208If constant folding was not performed, the execution-order thread is
1209created.
1210
1211=head2 Compile pass 2: context propagation
1212
1213When a context for a part of compile tree is known, it is propagated
1214down through the tree. Aat this time the context can have 5 values
1215(instead of 2 for runtime context): void, boolean, scalar, list, and
1216lvalue. In contrast with the pass 1 this pass is processed from top
1217to bottom: a node's context determines the context for its children.
1218
1219Additional context-dependent optimizations are performed at this time.
1220Since at this moment the compile tree contains back-references (via
1221"thread" pointers), nodes cannot be free()d now. To allow
1222optimized-away nodes at this stage, such nodes are null()ified instead
1223of free()ing (i.e. their type is changed to OP_NULL).
1224
1225=head2 Compile pass 3: peephole optimization
1226
1227After the compile tree for a subroutine (or for an C<eval> or a file)
1228is created, an additional pass over the code is performed. This pass
1229is neither top-down or bottom-up, but in the execution order (with
1230additional compilications for conditionals). These optimizations are
1231done in the subroutine peep(). Optimizations performed at this stage
1232are subject to the same restrictions as in the pass 2.
1233
1234=head1 API LISTING
a0d0e21e 1235
cb1a09d0 1236This is a listing of functions, macros, flags, and variables that may be
1237useful to extension writers or that may be found while reading other
1238extensions.
a0d0e21e 1239
cb1a09d0 1240=over 8
a0d0e21e 1241
cb1a09d0 1242=item AvFILL
1243
1244See C<av_len>.
1245
1246=item av_clear
1247
0146554f 1248Clears an array, making it empty. Does not free the memory used by the
1249array itself.
cb1a09d0 1250
1251 void av_clear _((AV* ar));
1252
1253=item av_extend
1254
1255Pre-extend an array. The C<key> is the index to which the array should be
1256extended.
1257
1258 void av_extend _((AV* ar, I32 key));
1259
1260=item av_fetch
1261
1262Returns the SV at the specified index in the array. The C<key> is the
1263index. If C<lval> is set then the fetch will be part of a store. Check
1264that the return value is non-null before dereferencing it to a C<SV*>.
1265
04343c6d 1266See L<Understanding the Magic of Tied Hashes and Arrays> for more
1267information on how to use this function on tied arrays.
1268
cb1a09d0 1269 SV** av_fetch _((AV* ar, I32 key, I32 lval));
1270
1271=item av_len
1272
1273Returns the highest index in the array. Returns -1 if the array is empty.
1274
1275 I32 av_len _((AV* ar));
1276
1277=item av_make
1278
5fb8527f 1279Creates a new AV and populates it with a list of SVs. The SVs are copied
1280into the array, so they may be freed after the call to av_make. The new AV
5f05dabc 1281will have a reference count of 1.
cb1a09d0 1282
1283 AV* av_make _((I32 size, SV** svp));
1284
1285=item av_pop
1286
1287Pops an SV off the end of the array. Returns C<&sv_undef> if the array is
1288empty.
1289
1290 SV* av_pop _((AV* ar));
1291
1292=item av_push
1293
5fb8527f 1294Pushes an SV onto the end of the array. The array will grow automatically
1295to accommodate the addition.
cb1a09d0 1296
1297 void av_push _((AV* ar, SV* val));
1298
1299=item av_shift
1300
1301Shifts an SV off the beginning of the array.
1302
1303 SV* av_shift _((AV* ar));
1304
1305=item av_store
1306
1307Stores an SV in an array. The array index is specified as C<key>. The
04343c6d 1308return value will be NULL if the operation failed or if the value did not
1309need to be actually stored within the array (as in the case of tied arrays).
1310Otherwise it can be dereferenced to get the original C<SV*>. Note that the
1311caller is responsible for suitably incrementing the reference count of C<val>
1312before the call, and decrementing it if the function returned NULL.
1313
1314See L<Understanding the Magic of Tied Hashes and Arrays> for more
1315information on how to use this function on tied arrays.
cb1a09d0 1316
1317 SV** av_store _((AV* ar, I32 key, SV* val));
1318
1319=item av_undef
1320
0146554f 1321Undefines the array. Frees the memory used by the array itself.
cb1a09d0 1322
1323 void av_undef _((AV* ar));
1324
1325=item av_unshift
1326
0146554f 1327Unshift the given number of C<undef> values onto the beginning of the
1328array. The array will grow automatically to accommodate the addition.
1329You must then use C<av_store> to assign values to these new elements.
cb1a09d0 1330
1331 void av_unshift _((AV* ar, I32 num));
1332
1333=item CLASS
1334
1335Variable which is setup by C<xsubpp> to indicate the class name for a C++ XS
5fb8527f 1336constructor. This is always a C<char*>. See C<THIS> and
1337L<perlxs/"Using XS With C++">.
cb1a09d0 1338
1339=item Copy
1340
1341The XSUB-writer's interface to the C C<memcpy> function. The C<s> is the
1342source, C<d> is the destination, C<n> is the number of items, and C<t> is
0146554f 1343the type. May fail on overlapping copies. See also C<Move>.
cb1a09d0 1344
1345 (void) Copy( s, d, n, t );
1346
1347=item croak
1348
1349This is the XSUB-writer's interface to Perl's C<die> function. Use this
1350function the same way you use the C C<printf> function. See C<warn>.
1351
1352=item CvSTASH
1353
1354Returns the stash of the CV.
1355
1356 HV * CvSTASH( SV* sv )
1357
1358=item DBsingle
1359
1360When Perl is run in debugging mode, with the B<-d> switch, this SV is a
1361boolean which indicates whether subs are being single-stepped.
5fb8527f 1362Single-stepping is automatically turned on after every step. This is the C
1363variable which corresponds to Perl's $DB::single variable. See C<DBsub>.
cb1a09d0 1364
1365=item DBsub
1366
1367When Perl is run in debugging mode, with the B<-d> switch, this GV contains
5fb8527f 1368the SV which holds the name of the sub being debugged. This is the C
1369variable which corresponds to Perl's $DB::sub variable. See C<DBsingle>.
cb1a09d0 1370The sub name can be found by
1371
1372 SvPV( GvSV( DBsub ), na )
1373
5fb8527f 1374=item DBtrace
1375
1376Trace variable used when Perl is run in debugging mode, with the B<-d>
1377switch. This is the C variable which corresponds to Perl's $DB::trace
1378variable. See C<DBsingle>.
1379
cb1a09d0 1380=item dMARK
1381
5fb8527f 1382Declare a stack marker variable, C<mark>, for the XSUB. See C<MARK> and
1383C<dORIGMARK>.
cb1a09d0 1384
1385=item dORIGMARK
1386
1387Saves the original stack mark for the XSUB. See C<ORIGMARK>.
1388
5fb8527f 1389=item dowarn
1390
1391The C variable which corresponds to Perl's $^W warning variable.
1392
cb1a09d0 1393=item dSP
1394
5fb8527f 1395Declares a stack pointer variable, C<sp>, for the XSUB. See C<SP>.
cb1a09d0 1396
1397=item dXSARGS
1398
1399Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. This is
1400usually handled automatically by C<xsubpp>. Declares the C<items> variable
1401to indicate the number of items on the stack.
1402
5fb8527f 1403=item dXSI32
1404
1405Sets up the C<ix> variable for an XSUB which has aliases. This is usually
1406handled automatically by C<xsubpp>.
1407
1408=item dXSI32
1409
1410Sets up the C<ix> variable for an XSUB which has aliases. This is usually
1411handled automatically by C<xsubpp>.
1412
cb1a09d0 1413=item ENTER
1414
1415Opening bracket on a callback. See C<LEAVE> and L<perlcall>.
1416
1417 ENTER;
1418
1419=item EXTEND
1420
1421Used to extend the argument stack for an XSUB's return values.
1422
1423 EXTEND( sp, int x );
1424
1425=item FREETMPS
1426
1427Closing bracket for temporaries on a callback. See C<SAVETMPS> and
1428L<perlcall>.
1429
1430 FREETMPS;
1431
1432=item G_ARRAY
1433
54310121 1434Used to indicate array context. See C<GIMME_V>, C<GIMME> and L<perlcall>.
cb1a09d0 1435
1436=item G_DISCARD
1437
1438Indicates that arguments returned from a callback should be discarded. See
1439L<perlcall>.
1440
1441=item G_EVAL
1442
1443Used to force a Perl C<eval> wrapper around a callback. See L<perlcall>.
1444
1445=item GIMME
1446
54310121 1447A backward-compatible version of C<GIMME_V> which can only return
1448C<G_SCALAR> or C<G_ARRAY>; in a void context, it returns C<G_SCALAR>.
1449
1450=item GIMME_V
1451
1452The XSUB-writer's equivalent to Perl's C<wantarray>. Returns
1453C<G_VOID>, C<G_SCALAR> or C<G_ARRAY> for void, scalar or array
1454context, respectively.
cb1a09d0 1455
1456=item G_NOARGS
1457
1458Indicates that no arguments are being sent to a callback. See L<perlcall>.
1459
1460=item G_SCALAR
1461
54310121 1462Used to indicate scalar context. See C<GIMME_V>, C<GIMME>, and L<perlcall>.
1463
1464=item G_VOID
1465
1466Used to indicate void context. See C<GIMME_V> and L<perlcall>.
cb1a09d0 1467
faed5253 1468=item gv_fetchmeth
1469
1470Returns the glob with the given C<name> and a defined subroutine or
9607fc9c 1471C<NULL>. The glob lives in the given C<stash>, or in the stashes
1472accessable via @ISA and @<UNIVERSAL>.
faed5253 1473
9607fc9c 1474The argument C<level> should be either 0 or -1. If C<level==0>, as a
0a753a76 1475side-effect creates a glob with the given C<name> in the given
1476C<stash> which in the case of success contains an alias for the
1477subroutine, and sets up caching info for this glob. Similarly for all
1478the searched stashes.
1479
9607fc9c 1480This function grants C<"SUPER"> token as a postfix of the stash name.
1481
0a753a76 1482The GV returned from C<gv_fetchmeth> may be a method cache entry,
1483which is not visible to Perl code. So when calling C<perl_call_sv>,
1484you should not use the GV directly; instead, you should use the
1485method's CV, which can be obtained from the GV with the C<GvCV> macro.
faed5253 1486
1487 GV* gv_fetchmeth _((HV* stash, char* name, STRLEN len, I32 level));
1488
1489=item gv_fetchmethod
1490
dc848c6f 1491=item gv_fetchmethod_autoload
1492
faed5253 1493Returns the glob which contains the subroutine to call to invoke the
dc848c6f 1494method on the C<stash>. In fact in the presense of autoloading this may
1495be the glob for "AUTOLOAD". In this case the corresponding variable
faed5253 1496$AUTOLOAD is already setup.
1497
dc848c6f 1498The third parameter of C<gv_fetchmethod_autoload> determines whether AUTOLOAD
1499lookup is performed if the given method is not present: non-zero means
1500yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD. Calling
1501C<gv_fetchmethod> is equivalent to calling C<gv_fetchmethod_autoload> with a
1502non-zero C<autoload> parameter.
1503
1504These functions grant C<"SUPER"> token as a prefix of the method name.
1505
1506Note that if you want to keep the returned glob for a long time, you
1507need to check for it being "AUTOLOAD", since at the later time the call
faed5253 1508may load a different subroutine due to $AUTOLOAD changing its value.
1509Use the glob created via a side effect to do this.
1510
dc848c6f 1511These functions have the same side-effects and as C<gv_fetchmeth> with
1512C<level==0>. C<name> should be writable if contains C<':'> or C<'\''>.
0a753a76 1513The warning against passing the GV returned by C<gv_fetchmeth> to
dc848c6f 1514C<perl_call_sv> apply equally to these functions.
faed5253 1515
1516 GV* gv_fetchmethod _((HV* stash, char* name));
dc848c6f 1517 GV* gv_fetchmethod_autoload _((HV* stash, char* name,
1518 I32 autoload));
faed5253 1519
cb1a09d0 1520=item gv_stashpv
1521
1522Returns a pointer to the stash for a specified package. If C<create> is set
1523then the package will be created if it does not already exist. If C<create>
1524is not set and the package does not exist then NULL is returned.
1525
1526 HV* gv_stashpv _((char* name, I32 create));
1527
1528=item gv_stashsv
1529
1530Returns a pointer to the stash for a specified package. See C<gv_stashpv>.
1531
1532 HV* gv_stashsv _((SV* sv, I32 create));
1533
e5581bf4 1534=item GvSV
cb1a09d0 1535
e5581bf4 1536Return the SV from the GV.
44a8e56a 1537
1e422769 1538=item HEf_SVKEY
1539
1540This flag, used in the length slot of hash entries and magic
1541structures, specifies the structure contains a C<SV*> pointer where a
1542C<char*> pointer is to be expected. (For information only--not to be used).
1543
1e422769 1544=item HeHASH
1545
1546Returns the computed hash (type C<U32>) stored in the hash entry.
1547
1548 HeHASH(HE* he)
1549
1550=item HeKEY
1551
1552Returns the actual pointer stored in the key slot of the hash entry.
1553The pointer may be either C<char*> or C<SV*>, depending on the value of
1554C<HeKLEN()>. Can be assigned to. The C<HePV()> or C<HeSVKEY()> macros
1555are usually preferable for finding the value of a key.
1556
1557 HeKEY(HE* he)
1558
1559=item HeKLEN
1560
1561If this is negative, and amounts to C<HEf_SVKEY>, it indicates the entry
1562holds an C<SV*> key. Otherwise, holds the actual length of the key.
1563Can be assigned to. The C<HePV()> macro is usually preferable for finding
1564key lengths.
1565
1566 HeKLEN(HE* he)
1567
1568=item HePV
1569
1570Returns the key slot of the hash entry as a C<char*> value, doing any
1571necessary dereferencing of possibly C<SV*> keys. The length of
1572the string is placed in C<len> (this is a macro, so do I<not> use
1573C<&len>). If you do not care about what the length of the key is,
1574you may use the global variable C<na>. Remember though, that hash
1575keys in perl are free to contain embedded nulls, so using C<strlen()>
1576or similar is not a good way to find the length of hash keys.
1577This is very similar to the C<SvPV()> macro described elsewhere in
1578this document.
1579
1580 HePV(HE* he, STRLEN len)
1581
1582=item HeSVKEY
1583
1584Returns the key as an C<SV*>, or C<Nullsv> if the hash entry
1585does not contain an C<SV*> key.
1586
1587 HeSVKEY(HE* he)
1588
1589=item HeSVKEY_force
1590
1591Returns the key as an C<SV*>. Will create and return a temporary
1592mortal C<SV*> if the hash entry contains only a C<char*> key.
1593
1594 HeSVKEY_force(HE* he)
1595
1596=item HeSVKEY_set
1597
1598Sets the key to a given C<SV*>, taking care to set the appropriate flags
1599to indicate the presence of an C<SV*> key, and returns the same C<SV*>.
1600
1601 HeSVKEY_set(HE* he, SV* sv)
1602
1603=item HeVAL
1604
1605Returns the value slot (type C<SV*>) stored in the hash entry.
1606
1607 HeVAL(HE* he)
1608
cb1a09d0 1609=item hv_clear
1610
1611Clears a hash, making it empty.
1612
1613 void hv_clear _((HV* tb));
1614
68dc0745 1615=item hv_delayfree_ent
1616
1617Releases a hash entry, such as while iterating though the hash, but
1618delays actual freeing of key and value until the end of the current
1619statement (or thereabouts) with C<sv_2mortal>. See C<hv_iternext>
1620and C<hv_free_ent>.
1621
1622 void hv_delayfree_ent _((HV* hv, HE* entry));
1623
cb1a09d0 1624=item hv_delete
1625
1626Deletes a key/value pair in the hash. The value SV is removed from the hash
5fb8527f 1627and returned to the caller. The C<klen> is the length of the key. The
04343c6d 1628C<flags> value will normally be zero; if set to G_DISCARD then NULL will be
cb1a09d0 1629returned.
1630
1631 SV* hv_delete _((HV* tb, char* key, U32 klen, I32 flags));
1632
1e422769 1633=item hv_delete_ent
1634
1635Deletes a key/value pair in the hash. The value SV is removed from the hash
1636and returned to the caller. The C<flags> value will normally be zero; if set
04343c6d 1637to G_DISCARD then NULL will be returned. C<hash> can be a valid precomputed
1e422769 1638hash value, or 0 to ask for it to be computed.
1639
1640 SV* hv_delete_ent _((HV* tb, SV* key, I32 flags, U32 hash));
1641
cb1a09d0 1642=item hv_exists
1643
1644Returns a boolean indicating whether the specified hash key exists. The
5fb8527f 1645C<klen> is the length of the key.
cb1a09d0 1646
1647 bool hv_exists _((HV* tb, char* key, U32 klen));
1648
1e422769 1649=item hv_exists_ent
1650
1651Returns a boolean indicating whether the specified hash key exists. C<hash>
54310121 1652can be a valid precomputed hash value, or 0 to ask for it to be computed.
1e422769 1653
1654 bool hv_exists_ent _((HV* tb, SV* key, U32 hash));
1655
cb1a09d0 1656=item hv_fetch
1657
1658Returns the SV which corresponds to the specified key in the hash. The
5fb8527f 1659C<klen> is the length of the key. If C<lval> is set then the fetch will be
cb1a09d0 1660part of a store. Check that the return value is non-null before
1661dereferencing it to a C<SV*>.
1662
04343c6d 1663See L<Understanding the Magic of Tied Hashes and Arrays> for more
1664information on how to use this function on tied hashes.
1665
cb1a09d0 1666 SV** hv_fetch _((HV* tb, char* key, U32 klen, I32 lval));
1667
1e422769 1668=item hv_fetch_ent
1669
1670Returns the hash entry which corresponds to the specified key in the hash.
54310121 1671C<hash> must be a valid precomputed hash number for the given C<key>, or
1e422769 16720 if you want the function to compute it. IF C<lval> is set then the
1673fetch will be part of a store. Make sure the return value is non-null
1674before accessing it. The return value when C<tb> is a tied hash
1675is a pointer to a static location, so be sure to make a copy of the
1676structure if you need to store it somewhere.
1677
04343c6d 1678See L<Understanding the Magic of Tied Hashes and Arrays> for more
1679information on how to use this function on tied hashes.
1680
1e422769 1681 HE* hv_fetch_ent _((HV* tb, SV* key, I32 lval, U32 hash));
1682
68dc0745 1683=item hv_free_ent
1684
1685Releases a hash entry, such as while iterating though the hash. See
1686C<hv_iternext> and C<hv_delayfree_ent>.
1687
1688 void hv_free_ent _((HV* hv, HE* entry));
1689
cb1a09d0 1690=item hv_iterinit
1691
1692Prepares a starting point to traverse a hash table.
1693
1694 I32 hv_iterinit _((HV* tb));
1695
1696=item hv_iterkey
1697
1698Returns the key from the current position of the hash iterator. See
1699C<hv_iterinit>.
1700
1701 char* hv_iterkey _((HE* entry, I32* retlen));
1702
1e422769 1703=item hv_iterkeysv
3fe9a6f1 1704
1e422769 1705Returns the key as an C<SV*> from the current position of the hash
1706iterator. The return value will always be a mortal copy of the
1707key. Also see C<hv_iterinit>.
1708
1709 SV* hv_iterkeysv _((HE* entry));
1710
cb1a09d0 1711=item hv_iternext
1712
1713Returns entries from a hash iterator. See C<hv_iterinit>.
1714
1715 HE* hv_iternext _((HV* tb));
1716
1717=item hv_iternextsv
1718
1719Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
1720operation.
1721
1722 SV * hv_iternextsv _((HV* hv, char** key, I32* retlen));
1723
1724=item hv_iterval
1725
1726Returns the value from the current position of the hash iterator. See
1727C<hv_iterkey>.
1728
1729 SV* hv_iterval _((HV* tb, HE* entry));
1730
1731=item hv_magic
1732
1733Adds magic to a hash. See C<sv_magic>.
1734
1735 void hv_magic _((HV* hv, GV* gv, int how));
1736
1737=item HvNAME
1738
1739Returns the package name of a stash. See C<SvSTASH>, C<CvSTASH>.
1740
1741 char *HvNAME (HV* stash)
1742
1743=item hv_store
1744
1745Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
54310121 1746the length of the key. The C<hash> parameter is the precomputed hash
cb1a09d0 1747value; if it is zero then Perl will compute it. The return value will be
04343c6d 1748NULL if the operation failed or if the value did not need to be actually
1749stored within the hash (as in the case of tied hashes). Otherwise it can
1750be dereferenced to get the original C<SV*>. Note that the caller is
1751responsible for suitably incrementing the reference count of C<val>
1752before the call, and decrementing it if the function returned NULL.
1753
1754See L<Understanding the Magic of Tied Hashes and Arrays> for more
1755information on how to use this function on tied hashes.
cb1a09d0 1756
1757 SV** hv_store _((HV* tb, char* key, U32 klen, SV* val, U32 hash));
1758
1e422769 1759=item hv_store_ent
1760
1761Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
54310121 1762parameter is the precomputed hash value; if it is zero then Perl will
1e422769 1763compute it. The return value is the new hash entry so created. It will be
04343c6d 1764NULL if the operation failed or if the value did not need to be actually
1765stored within the hash (as in the case of tied hashes). Otherwise the
1766contents of the return value can be accessed using the C<He???> macros
1767described here. Note that the caller is responsible for suitably
1768incrementing the reference count of C<val> before the call, and decrementing
1769it if the function returned NULL.
1770
1771See L<Understanding the Magic of Tied Hashes and Arrays> for more
1772information on how to use this function on tied hashes.
1e422769 1773
1774 HE* hv_store_ent _((HV* tb, SV* key, SV* val, U32 hash));
1775
cb1a09d0 1776=item hv_undef
1777
1778Undefines the hash.
1779
1780 void hv_undef _((HV* tb));
1781
1782=item isALNUM
1783
1784Returns a boolean indicating whether the C C<char> is an ascii alphanumeric
5f05dabc 1785character or digit.
cb1a09d0 1786
1787 int isALNUM (char c)
1788
1789=item isALPHA
1790
5fb8527f 1791Returns a boolean indicating whether the C C<char> is an ascii alphabetic
cb1a09d0 1792character.
1793
1794 int isALPHA (char c)
1795
1796=item isDIGIT
1797
1798Returns a boolean indicating whether the C C<char> is an ascii digit.
1799
1800 int isDIGIT (char c)
1801
1802=item isLOWER
1803
1804Returns a boolean indicating whether the C C<char> is a lowercase character.
1805
1806 int isLOWER (char c)
1807
1808=item isSPACE
1809
1810Returns a boolean indicating whether the C C<char> is whitespace.
1811
1812 int isSPACE (char c)
1813
1814=item isUPPER
1815
1816Returns a boolean indicating whether the C C<char> is an uppercase character.
1817
1818 int isUPPER (char c)
1819
1820=item items
1821
1822Variable which is setup by C<xsubpp> to indicate the number of items on the
5fb8527f 1823stack. See L<perlxs/"Variable-length Parameter Lists">.
1824
1825=item ix
1826
1827Variable which is setup by C<xsubpp> to indicate which of an XSUB's aliases
1828was used to invoke it. See L<perlxs/"The ALIAS: Keyword">.
cb1a09d0 1829
1830=item LEAVE
1831
1832Closing bracket on a callback. See C<ENTER> and L<perlcall>.
1833
1834 LEAVE;
1835
1836=item MARK
1837
5fb8527f 1838Stack marker variable for the XSUB. See C<dMARK>.
cb1a09d0 1839
1840=item mg_clear
1841
1842Clear something magical that the SV represents. See C<sv_magic>.
1843
1844 int mg_clear _((SV* sv));
1845
1846=item mg_copy
1847
1848Copies the magic from one SV to another. See C<sv_magic>.
1849
1850 int mg_copy _((SV *, SV *, char *, STRLEN));
1851
1852=item mg_find
1853
1854Finds the magic pointer for type matching the SV. See C<sv_magic>.
1855
1856 MAGIC* mg_find _((SV* sv, int type));
1857
1858=item mg_free
1859
1860Free any magic storage used by the SV. See C<sv_magic>.
1861
1862 int mg_free _((SV* sv));
1863
1864=item mg_get
1865
1866Do magic after a value is retrieved from the SV. See C<sv_magic>.
1867
1868 int mg_get _((SV* sv));
1869
1870=item mg_len
1871
1872Report on the SV's length. See C<sv_magic>.
1873
1874 U32 mg_len _((SV* sv));
1875
1876=item mg_magical
1877
1878Turns on the magical status of an SV. See C<sv_magic>.
1879
1880 void mg_magical _((SV* sv));
1881
1882=item mg_set
1883
1884Do magic after a value is assigned to the SV. See C<sv_magic>.
1885
1886 int mg_set _((SV* sv));
1887
1888=item Move
1889
1890The XSUB-writer's interface to the C C<memmove> function. The C<s> is the
1891source, C<d> is the destination, C<n> is the number of items, and C<t> is
0146554f 1892the type. Can do overlapping moves. See also C<Copy>.
cb1a09d0 1893
1894 (void) Move( s, d, n, t );
1895
1896=item na
1897
1898A variable which may be used with C<SvPV> to tell Perl to calculate the
1899string length.
1900
1901=item New
1902
1903The XSUB-writer's interface to the C C<malloc> function.
1904
1905 void * New( x, void *ptr, int size, type )
1906
1907=item Newc
1908
1909The XSUB-writer's interface to the C C<malloc> function, with cast.
1910
1911 void * Newc( x, void *ptr, int size, type, cast )
1912
1913=item Newz
1914
1915The XSUB-writer's interface to the C C<malloc> function. The allocated
1916memory is zeroed with C<memzero>.
1917
1918 void * Newz( x, void *ptr, int size, type )
1919
1920=item newAV
1921
5f05dabc 1922Creates a new AV. The reference count is set to 1.
cb1a09d0 1923
1924 AV* newAV _((void));
1925
1926=item newHV
1927
5f05dabc 1928Creates a new HV. The reference count is set to 1.
cb1a09d0 1929
1930 HV* newHV _((void));
1931
5f05dabc 1932=item newRV_inc
cb1a09d0 1933
5f05dabc 1934Creates an RV wrapper for an SV. The reference count for the original SV is
cb1a09d0 1935incremented.
1936
5f05dabc 1937 SV* newRV_inc _((SV* ref));
1938
1939For historical reasons, "newRV" is a synonym for "newRV_inc".
1940
1941=item newRV_noinc
1942
1943Creates an RV wrapper for an SV. The reference count for the original
1944SV is B<not> incremented.
1945
07fa94a1 1946 SV* newRV_noinc _((SV* ref));
cb1a09d0 1947
1948=item newSV
1949
1950Creates a new SV. The C<len> parameter indicates the number of bytes of
68dc0745 1951preallocated string space the SV should have. The reference count for the
07fa94a1 1952new SV is set to 1.
cb1a09d0 1953
1954 SV* newSV _((STRLEN len));
1955
1956=item newSViv
1957
07fa94a1 1958Creates a new SV and copies an integer into it. The reference count for the
1959SV is set to 1.
cb1a09d0 1960
1961 SV* newSViv _((IV i));
1962
1963=item newSVnv
1964
07fa94a1 1965Creates a new SV and copies a double into it. The reference count for the
1966SV is set to 1.
cb1a09d0 1967
1968 SV* newSVnv _((NV i));
1969
1970=item newSVpv
1971
07fa94a1 1972Creates a new SV and copies a string into it. The reference count for the
1973SV is set to 1. If C<len> is zero then Perl will compute the length.
cb1a09d0 1974
1975 SV* newSVpv _((char* s, STRLEN len));
1976
1977=item newSVrv
1978
1979Creates a new SV for the RV, C<rv>, to point to. If C<rv> is not an RV then
5fb8527f 1980it will be upgraded to one. If C<classname> is non-null then the new SV will
cb1a09d0 1981be blessed in the specified package. The new SV is returned and its
5f05dabc 1982reference count is 1.
8ebc5c01 1983
cb1a09d0 1984 SV* newSVrv _((SV* rv, char* classname));
1985
1986=item newSVsv
1987
5fb8527f 1988Creates a new SV which is an exact duplicate of the original SV.
cb1a09d0 1989
1990 SV* newSVsv _((SV* old));
1991
1992=item newXS
1993
1994Used by C<xsubpp> to hook up XSUBs as Perl subs.
1995
1996=item newXSproto
1997
1998Used by C<xsubpp> to hook up XSUBs as Perl subs. Adds Perl prototypes to
1999the subs.
2000
2001=item Nullav
2002
2003Null AV pointer.
2004
2005=item Nullch
2006
2007Null character pointer.
2008
2009=item Nullcv
2010
2011Null CV pointer.
2012
2013=item Nullhv
2014
2015Null HV pointer.
2016
2017=item Nullsv
2018
2019Null SV pointer.
2020
2021=item ORIGMARK
2022
2023The original stack mark for the XSUB. See C<dORIGMARK>.
2024
2025=item perl_alloc
2026
2027Allocates a new Perl interpreter. See L<perlembed>.
2028
2029=item perl_call_argv
2030
2031Performs a callback to the specified Perl sub. See L<perlcall>.
2032
2033 I32 perl_call_argv _((char* subname, I32 flags, char** argv));
2034
2035=item perl_call_method
2036
2037Performs a callback to the specified Perl method. The blessed object must
2038be on the stack. See L<perlcall>.
2039
2040 I32 perl_call_method _((char* methname, I32 flags));
2041
2042=item perl_call_pv
2043
2044Performs a callback to the specified Perl sub. See L<perlcall>.
2045
2046 I32 perl_call_pv _((char* subname, I32 flags));
2047
2048=item perl_call_sv
2049
2050Performs a callback to the Perl sub whose name is in the SV. See
2051L<perlcall>.
2052
2053 I32 perl_call_sv _((SV* sv, I32 flags));
2054
2055=item perl_construct
2056
2057Initializes a new Perl interpreter. See L<perlembed>.
2058
2059=item perl_destruct
2060
2061Shuts down a Perl interpreter. See L<perlembed>.
2062
2063=item perl_eval_sv
2064
2065Tells Perl to C<eval> the string in the SV.
2066
2067 I32 perl_eval_sv _((SV* sv, I32 flags));
2068
137443ea 2069=item perl_eval_pv
2070
2071Tells Perl to C<eval> the given string and return an SV* result.
2072
2073 SV* perl_eval_pv _((char* p, I32 croak_on_error));
2074
cb1a09d0 2075=item perl_free
2076
2077Releases a Perl interpreter. See L<perlembed>.
2078
2079=item perl_get_av
2080
2081Returns the AV of the specified Perl array. If C<create> is set and the
2082Perl variable does not exist then it will be created. If C<create> is not
04343c6d 2083set and the variable does not exist then NULL is returned.
cb1a09d0 2084
2085 AV* perl_get_av _((char* name, I32 create));
2086
2087=item perl_get_cv
2088
2089Returns the CV of the specified Perl sub. If C<create> is set and the Perl
2090variable does not exist then it will be created. If C<create> is not
04343c6d 2091set and the variable does not exist then NULL is returned.
cb1a09d0 2092
2093 CV* perl_get_cv _((char* name, I32 create));
2094
2095=item perl_get_hv
2096
2097Returns the HV of the specified Perl hash. If C<create> is set and the Perl
2098variable does not exist then it will be created. If C<create> is not
04343c6d 2099set and the variable does not exist then NULL is returned.
cb1a09d0 2100
2101 HV* perl_get_hv _((char* name, I32 create));
2102
2103=item perl_get_sv
2104
2105Returns the SV of the specified Perl scalar. If C<create> is set and the
2106Perl variable does not exist then it will be created. If C<create> is not
04343c6d 2107set and the variable does not exist then NULL is returned.
cb1a09d0 2108
2109 SV* perl_get_sv _((char* name, I32 create));
2110
2111=item perl_parse
2112
2113Tells a Perl interpreter to parse a Perl script. See L<perlembed>.
2114
2115=item perl_require_pv
2116
2117Tells Perl to C<require> a module.
2118
2119 void perl_require_pv _((char* pv));
2120
2121=item perl_run
2122
2123Tells a Perl interpreter to run. See L<perlembed>.
2124
2125=item POPi
2126
2127Pops an integer off the stack.
2128
2129 int POPi();
2130
2131=item POPl
2132
2133Pops a long off the stack.
2134
2135 long POPl();
2136
2137=item POPp
2138
2139Pops a string off the stack.
2140
2141 char * POPp();
2142
2143=item POPn
2144
2145Pops a double off the stack.
2146
2147 double POPn();
2148
2149=item POPs
2150
2151Pops an SV off the stack.
2152
2153 SV* POPs();
2154
2155=item PUSHMARK
2156
2157Opening bracket for arguments on a callback. See C<PUTBACK> and L<perlcall>.
2158
2159 PUSHMARK(p)
2160
2161=item PUSHi
2162
2163Push an integer onto the stack. The stack must have room for this element.
2164See C<XPUSHi>.
2165
2166 PUSHi(int d)
2167
2168=item PUSHn
2169
2170Push a double onto the stack. The stack must have room for this element.
2171See C<XPUSHn>.
2172
2173 PUSHn(double d)
2174
2175=item PUSHp
2176
2177Push a string onto the stack. The stack must have room for this element.
2178The C<len> indicates the length of the string. See C<XPUSHp>.
2179
2180 PUSHp(char *c, int len )
2181
2182=item PUSHs
2183
2184Push an SV onto the stack. The stack must have room for this element. See
2185C<XPUSHs>.
2186
2187 PUSHs(sv)
2188
2189=item PUTBACK
2190
2191Closing bracket for XSUB arguments. This is usually handled by C<xsubpp>.
2192See C<PUSHMARK> and L<perlcall> for other uses.
2193
2194 PUTBACK;
2195
2196=item Renew
2197
2198The XSUB-writer's interface to the C C<realloc> function.
2199
2200 void * Renew( void *ptr, int size, type )
2201
2202=item Renewc
2203
2204The XSUB-writer's interface to the C C<realloc> function, with cast.
2205
2206 void * Renewc( void *ptr, int size, type, cast )
2207
2208=item RETVAL
2209
2210Variable which is setup by C<xsubpp> to hold the return value for an XSUB.
5fb8527f 2211This is always the proper type for the XSUB.
2212See L<perlxs/"The RETVAL Variable">.
cb1a09d0 2213
2214=item safefree
2215
2216The XSUB-writer's interface to the C C<free> function.
2217
2218=item safemalloc
2219
2220The XSUB-writer's interface to the C C<malloc> function.
2221
2222=item saferealloc
2223
2224The XSUB-writer's interface to the C C<realloc> function.
2225
2226=item savepv
2227
2228Copy a string to a safe spot. This does not use an SV.
2229
2230 char* savepv _((char* sv));
2231
2232=item savepvn
2233
2234Copy a string to a safe spot. The C<len> indicates number of bytes to
2235copy. This does not use an SV.
2236
2237 char* savepvn _((char* sv, I32 len));
2238
2239=item SAVETMPS
2240
2241Opening bracket for temporaries on a callback. See C<FREETMPS> and
2242L<perlcall>.
2243
2244 SAVETMPS;
2245
2246=item SP
2247
2248Stack pointer. This is usually handled by C<xsubpp>. See C<dSP> and
2249C<SPAGAIN>.
2250
2251=item SPAGAIN
2252
54310121 2253Refetch the stack pointer. Used after a callback. See L<perlcall>.
cb1a09d0 2254
2255 SPAGAIN;
2256
2257=item ST
2258
2259Used to access elements on the XSUB's stack.
2260
2261 SV* ST(int x)
2262
2263=item strEQ
2264
2265Test two strings to see if they are equal. Returns true or false.
2266
2267 int strEQ( char *s1, char *s2 )
2268
2269=item strGE
2270
2271Test two strings to see if the first, C<s1>, is greater than or equal to the
2272second, C<s2>. Returns true or false.
2273
2274 int strGE( char *s1, char *s2 )
2275
2276=item strGT
2277
2278Test two strings to see if the first, C<s1>, is greater than the second,
2279C<s2>. Returns true or false.
2280
2281 int strGT( char *s1, char *s2 )
2282
2283=item strLE
2284
2285Test two strings to see if the first, C<s1>, is less than or equal to the
2286second, C<s2>. Returns true or false.
2287
2288 int strLE( char *s1, char *s2 )
2289
2290=item strLT
2291
2292Test two strings to see if the first, C<s1>, is less than the second,
2293C<s2>. Returns true or false.
2294
2295 int strLT( char *s1, char *s2 )
2296
2297=item strNE
2298
2299Test two strings to see if they are different. Returns true or false.
2300
2301 int strNE( char *s1, char *s2 )
2302
2303=item strnEQ
2304
2305Test two strings to see if they are equal. The C<len> parameter indicates
2306the number of bytes to compare. Returns true or false.
2307
2308 int strnEQ( char *s1, char *s2 )
2309
2310=item strnNE
2311
2312Test two strings to see if they are different. The C<len> parameter
2313indicates the number of bytes to compare. Returns true or false.
2314
2315 int strnNE( char *s1, char *s2, int len )
2316
2317=item sv_2mortal
2318
2319Marks an SV as mortal. The SV will be destroyed when the current context
2320ends.
2321
2322 SV* sv_2mortal _((SV* sv));
2323
2324=item sv_bless
2325
2326Blesses an SV into a specified package. The SV must be an RV. The package
07fa94a1 2327must be designated by its stash (see C<gv_stashpv()>). The reference count
2328of the SV is unaffected.
cb1a09d0 2329
2330 SV* sv_bless _((SV* sv, HV* stash));
2331
2332=item sv_catpv
2333
2334Concatenates the string onto the end of the string which is in the SV.
2335
2336 void sv_catpv _((SV* sv, char* ptr));
2337
2338=item sv_catpvn
2339
2340Concatenates the string onto the end of the string which is in the SV. The
2341C<len> indicates number of bytes to copy.
2342
2343 void sv_catpvn _((SV* sv, char* ptr, STRLEN len));
2344
46fc3d4c 2345=item sv_catpvf
2346
2347Processes its arguments like C<sprintf> and appends the formatted output
2348to an SV.
2349
2350 void sv_catpvf _((SV* sv, const char* pat, ...));
2351
cb1a09d0 2352=item sv_catsv
2353
5fb8527f 2354Concatenates the string from SV C<ssv> onto the end of the string in SV
cb1a09d0 2355C<dsv>.
2356
2357 void sv_catsv _((SV* dsv, SV* ssv));
2358
5fb8527f 2359=item sv_cmp
2360
2361Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
2362string in C<sv1> is less than, equal to, or greater than the string in
2363C<sv2>.
2364
2365 I32 sv_cmp _((SV* sv1, SV* sv2));
2366
2367=item sv_cmp
2368
2369Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
2370string in C<sv1> is less than, equal to, or greater than the string in
2371C<sv2>.
2372
2373 I32 sv_cmp _((SV* sv1, SV* sv2));
2374
cb1a09d0 2375=item SvCUR
2376
2377Returns the length of the string which is in the SV. See C<SvLEN>.
2378
2379 int SvCUR (SV* sv)
2380
2381=item SvCUR_set
2382
2383Set the length of the string which is in the SV. See C<SvCUR>.
2384
2385 SvCUR_set (SV* sv, int val )
2386
5fb8527f 2387=item sv_dec
2388
5f05dabc 2389Auto-decrement of the value in the SV.
5fb8527f 2390
2391 void sv_dec _((SV* sv));
2392
2393=item sv_dec
2394
5f05dabc 2395Auto-decrement of the value in the SV.
5fb8527f 2396
2397 void sv_dec _((SV* sv));
2398
cb1a09d0 2399=item SvEND
2400
2401Returns a pointer to the last character in the string which is in the SV.
2402See C<SvCUR>. Access the character as
2403
2404 *SvEND(sv)
2405
5fb8527f 2406=item sv_eq
2407
2408Returns a boolean indicating whether the strings in the two SVs are
2409identical.
2410
2411 I32 sv_eq _((SV* sv1, SV* sv2));
2412
cb1a09d0 2413=item SvGROW
2414
5fb8527f 2415Expands the character buffer in the SV. Calls C<sv_grow> to perform the
2416expansion if necessary. Returns a pointer to the character buffer.
cb1a09d0 2417
2418 char * SvGROW( SV* sv, int len )
2419
5fb8527f 2420=item sv_grow
2421
2422Expands the character buffer in the SV. This will use C<sv_unref> and will
2423upgrade the SV to C<SVt_PV>. Returns a pointer to the character buffer.
2424Use C<SvGROW>.
2425
2426=item sv_inc
2427
07fa94a1 2428Auto-increment of the value in the SV.
5fb8527f 2429
2430 void sv_inc _((SV* sv));
2431
cb1a09d0 2432=item SvIOK
2433
2434Returns a boolean indicating whether the SV contains an integer.
2435
2436 int SvIOK (SV* SV)
2437
2438=item SvIOK_off
2439
2440Unsets the IV status of an SV.
2441
2442 SvIOK_off (SV* sv)
2443
2444=item SvIOK_on
2445
2446Tells an SV that it is an integer.
2447
2448 SvIOK_on (SV* sv)
2449
5fb8527f 2450=item SvIOK_only
2451
2452Tells an SV that it is an integer and disables all other OK bits.
2453
2454 SvIOK_on (SV* sv)
2455
2456=item SvIOK_only
2457
2458Tells an SV that it is an integer and disables all other OK bits.
2459
2460 SvIOK_on (SV* sv)
2461
cb1a09d0 2462=item SvIOKp
2463
2464Returns a boolean indicating whether the SV contains an integer. Checks the
2465B<private> setting. Use C<SvIOK>.
2466
2467 int SvIOKp (SV* SV)
2468
2469=item sv_isa
2470
2471Returns a boolean indicating whether the SV is blessed into the specified
2472class. This does not know how to check for subtype, so it doesn't work in
2473an inheritance relationship.
2474
2475 int sv_isa _((SV* sv, char* name));
2476
2477=item SvIV
2478
2479Returns the integer which is in the SV.
2480
2481 int SvIV (SV* sv)
2482
2483=item sv_isobject
2484
2485Returns a boolean indicating whether the SV is an RV pointing to a blessed
2486object. If the SV is not an RV, or if the object is not blessed, then this
2487will return false.
2488
2489 int sv_isobject _((SV* sv));
2490
2491=item SvIVX
2492
2493Returns the integer which is stored in the SV.
2494
2495 int SvIVX (SV* sv);
2496
2497=item SvLEN
2498
2499Returns the size of the string buffer in the SV. See C<SvCUR>.
2500
2501 int SvLEN (SV* sv)
2502
5fb8527f 2503=item sv_len
2504
2505Returns the length of the string in the SV. Use C<SvCUR>.
2506
2507 STRLEN sv_len _((SV* sv));
2508
2509=item sv_len
2510
2511Returns the length of the string in the SV. Use C<SvCUR>.
2512
2513 STRLEN sv_len _((SV* sv));
2514
cb1a09d0 2515=item sv_magic
2516
2517Adds magic to an SV.
2518
2519 void sv_magic _((SV* sv, SV* obj, int how, char* name, I32 namlen));
2520
2521=item sv_mortalcopy
2522
2523Creates a new SV which is a copy of the original SV. The new SV is marked
5f05dabc 2524as mortal.
cb1a09d0 2525
2526 SV* sv_mortalcopy _((SV* oldsv));
2527
2528=item SvOK
2529
2530Returns a boolean indicating whether the value is an SV.
2531
2532 int SvOK (SV* sv)
2533
2534=item sv_newmortal
2535
5f05dabc 2536Creates a new SV which is mortal. The reference count of the SV is set to 1.
cb1a09d0 2537
2538 SV* sv_newmortal _((void));
2539
2540=item sv_no
2541
2542This is the C<false> SV. See C<sv_yes>. Always refer to this as C<&sv_no>.
2543
2544=item SvNIOK
2545
2546Returns a boolean indicating whether the SV contains a number, integer or
2547double.
2548
2549 int SvNIOK (SV* SV)
2550
2551=item SvNIOK_off
2552
2553Unsets the NV/IV status of an SV.
2554
2555 SvNIOK_off (SV* sv)
2556
2557=item SvNIOKp
2558
2559Returns a boolean indicating whether the SV contains a number, integer or
2560double. Checks the B<private> setting. Use C<SvNIOK>.
2561
2562 int SvNIOKp (SV* SV)
2563
2564=item SvNOK
2565
2566Returns a boolean indicating whether the SV contains a double.
2567
2568 int SvNOK (SV* SV)
2569
2570=item SvNOK_off
2571
2572Unsets the NV status of an SV.
2573
2574 SvNOK_off (SV* sv)
2575
2576=item SvNOK_on
2577
2578Tells an SV that it is a double.
2579
2580 SvNOK_on (SV* sv)
2581
5fb8527f 2582=item SvNOK_only
2583
2584Tells an SV that it is a double and disables all other OK bits.
2585
2586 SvNOK_on (SV* sv)
2587
2588=item SvNOK_only
2589
2590Tells an SV that it is a double and disables all other OK bits.
2591
2592 SvNOK_on (SV* sv)
2593
cb1a09d0 2594=item SvNOKp
2595
2596Returns a boolean indicating whether the SV contains a double. Checks the
2597B<private> setting. Use C<SvNOK>.
2598
2599 int SvNOKp (SV* SV)
2600
2601=item SvNV
2602
2603Returns the double which is stored in the SV.
2604
2605 double SvNV (SV* sv);
2606
2607=item SvNVX
2608
2609Returns the double which is stored in the SV.
2610
2611 double SvNVX (SV* sv);
2612
2613=item SvPOK
2614
2615Returns a boolean indicating whether the SV contains a character string.
2616
2617 int SvPOK (SV* SV)
2618
2619=item SvPOK_off
2620
2621Unsets the PV status of an SV.
2622
2623 SvPOK_off (SV* sv)
2624
2625=item SvPOK_on
2626
2627Tells an SV that it is a string.
2628
2629 SvPOK_on (SV* sv)
2630
5fb8527f 2631=item SvPOK_only
2632
2633Tells an SV that it is a string and disables all other OK bits.
2634
2635 SvPOK_on (SV* sv)
2636
2637=item SvPOK_only
2638
2639Tells an SV that it is a string and disables all other OK bits.
2640
2641 SvPOK_on (SV* sv)
2642
cb1a09d0 2643=item SvPOKp
2644
2645Returns a boolean indicating whether the SV contains a character string.
2646Checks the B<private> setting. Use C<SvPOK>.
2647
2648 int SvPOKp (SV* SV)
2649
2650=item SvPV
2651
2652Returns a pointer to the string in the SV, or a stringified form of the SV
2653if the SV does not contain a string. If C<len> is C<na> then Perl will
2654handle the length on its own.
2655
2656 char * SvPV (SV* sv, int len )
2657
2658=item SvPVX
2659
2660Returns a pointer to the string in the SV. The SV must contain a string.
2661
2662 char * SvPVX (SV* sv)
2663
2664=item SvREFCNT
2665
5f05dabc 2666Returns the value of the object's reference count.
cb1a09d0 2667
2668 int SvREFCNT (SV* sv);
2669
2670=item SvREFCNT_dec
2671
5f05dabc 2672Decrements the reference count of the given SV.
cb1a09d0 2673
2674 void SvREFCNT_dec (SV* sv)
2675
2676=item SvREFCNT_inc
2677
5f05dabc 2678Increments the reference count of the given SV.
cb1a09d0 2679
2680 void SvREFCNT_inc (SV* sv)
2681
2682=item SvROK
2683
2684Tests if the SV is an RV.
2685
2686 int SvROK (SV* sv)
2687
2688=item SvROK_off
2689
2690Unsets the RV status of an SV.
2691
2692 SvROK_off (SV* sv)
2693
2694=item SvROK_on
2695
2696Tells an SV that it is an RV.
2697
2698 SvROK_on (SV* sv)
2699
2700=item SvRV
2701
2702Dereferences an RV to return the SV.
2703
2704 SV* SvRV (SV* sv);
2705
2706=item sv_setiv
2707
2708Copies an integer into the given SV.
2709
2710 void sv_setiv _((SV* sv, IV num));
2711
2712=item sv_setnv
2713
2714Copies a double into the given SV.
2715
2716 void sv_setnv _((SV* sv, double num));
2717
2718=item sv_setpv
2719
2720Copies a string into an SV. The string must be null-terminated.
2721
2722 void sv_setpv _((SV* sv, char* ptr));
2723
2724=item sv_setpvn
2725
2726Copies a string into an SV. The C<len> parameter indicates the number of
2727bytes to be copied.
2728
2729 void sv_setpvn _((SV* sv, char* ptr, STRLEN len));
2730
46fc3d4c 2731=item sv_setpvf
2732
2733Processes its arguments like C<sprintf> and sets an SV to the formatted
2734output.
2735
2736 void sv_setpvf _((SV* sv, const char* pat, ...));
2737
cb1a09d0 2738=item sv_setref_iv
2739
5fb8527f 2740Copies an integer into a new SV, optionally blessing the SV. The C<rv>
2741argument will be upgraded to an RV. That RV will be modified to point to
2742the new SV. The C<classname> argument indicates the package for the
2743blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 2744will be returned and will have a reference count of 1.
cb1a09d0 2745
2746 SV* sv_setref_iv _((SV *rv, char *classname, IV iv));
2747
2748=item sv_setref_nv
2749
5fb8527f 2750Copies a double into a new SV, optionally blessing the SV. The C<rv>
2751argument will be upgraded to an RV. That RV will be modified to point to
2752the new SV. The C<classname> argument indicates the package for the
2753blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 2754will be returned and will have a reference count of 1.
cb1a09d0 2755
2756 SV* sv_setref_nv _((SV *rv, char *classname, double nv));
2757
2758=item sv_setref_pv
2759
5fb8527f 2760Copies a pointer into a new SV, optionally blessing the SV. The C<rv>
2761argument will be upgraded to an RV. That RV will be modified to point to
2762the new SV. If the C<pv> argument is NULL then C<sv_undef> will be placed
2763into the SV. The C<classname> argument indicates the package for the
2764blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 2765will be returned and will have a reference count of 1.
cb1a09d0 2766
2767 SV* sv_setref_pv _((SV *rv, char *classname, void* pv));
2768
2769Do not use with integral Perl types such as HV, AV, SV, CV, because those
2770objects will become corrupted by the pointer copy process.
2771
2772Note that C<sv_setref_pvn> copies the string while this copies the pointer.
2773
2774=item sv_setref_pvn
2775
5fb8527f 2776Copies a string into a new SV, optionally blessing the SV. The length of the
2777string must be specified with C<n>. The C<rv> argument will be upgraded to
2778an RV. That RV will be modified to point to the new SV. The C<classname>
cb1a09d0 2779argument indicates the package for the blessing. Set C<classname> to
2780C<Nullch> to avoid the blessing. The new SV will be returned and will have
5f05dabc 2781a reference count of 1.
cb1a09d0 2782
2783 SV* sv_setref_pvn _((SV *rv, char *classname, char* pv, I32 n));
2784
2785Note that C<sv_setref_pv> copies the pointer while this copies the string.
2786
2787=item sv_setsv
2788
2789Copies the contents of the source SV C<ssv> into the destination SV C<dsv>.
5f05dabc 2790The source SV may be destroyed if it is mortal.
cb1a09d0 2791
2792 void sv_setsv _((SV* dsv, SV* ssv));
2793
2794=item SvSTASH
2795
2796Returns the stash of the SV.
2797
2798 HV * SvSTASH (SV* sv)
2799
2800=item SVt_IV
2801
2802Integer type flag for scalars. See C<svtype>.
2803
2804=item SVt_PV
2805
2806Pointer type flag for scalars. See C<svtype>.
2807
2808=item SVt_PVAV
2809
2810Type flag for arrays. See C<svtype>.
2811
2812=item SVt_PVCV
2813
2814Type flag for code refs. See C<svtype>.
2815
2816=item SVt_PVHV
2817
2818Type flag for hashes. See C<svtype>.
2819
2820=item SVt_PVMG
2821
2822Type flag for blessed scalars. See C<svtype>.
2823
2824=item SVt_NV
2825
2826Double type flag for scalars. See C<svtype>.
2827
2828=item SvTRUE
2829
2830Returns a boolean indicating whether Perl would evaluate the SV as true or
2831false, defined or undefined.
2832
2833 int SvTRUE (SV* sv)
2834
2835=item SvTYPE
2836
2837Returns the type of the SV. See C<svtype>.
2838
2839 svtype SvTYPE (SV* sv)
2840
2841=item svtype
2842
2843An enum of flags for Perl types. These are found in the file B<sv.h> in the
2844C<svtype> enum. Test these flags with the C<SvTYPE> macro.
2845
2846=item SvUPGRADE
2847
5fb8527f 2848Used to upgrade an SV to a more complex form. Uses C<sv_upgrade> to perform
2849the upgrade if necessary. See C<svtype>.
2850
2851 bool SvUPGRADE _((SV* sv, svtype mt));
2852
2853=item sv_upgrade
2854
2855Upgrade an SV to a more complex form. Use C<SvUPGRADE>. See C<svtype>.
cb1a09d0 2856
2857=item sv_undef
2858
2859This is the C<undef> SV. Always refer to this as C<&sv_undef>.
2860
5fb8527f 2861=item sv_unref
2862
07fa94a1 2863Unsets the RV status of the SV, and decrements the reference count of
2864whatever was being referenced by the RV. This can almost be thought of
2865as a reversal of C<newSVrv>. See C<SvROK_off>.
5fb8527f 2866
2867 void sv_unref _((SV* sv));
2868
cb1a09d0 2869=item sv_usepvn
2870
2871Tells an SV to use C<ptr> to find its string value. Normally the string is
5fb8527f 2872stored inside the SV but sv_usepvn allows the SV to use an outside string.
2873The C<ptr> should point to memory that was allocated by C<malloc>. The
cb1a09d0 2874string length, C<len>, must be supplied. This function will realloc the
2875memory pointed to by C<ptr>, so that pointer should not be freed or used by
2876the programmer after giving it to sv_usepvn.
2877
2878 void sv_usepvn _((SV* sv, char* ptr, STRLEN len));
2879
2880=item sv_yes
2881
2882This is the C<true> SV. See C<sv_no>. Always refer to this as C<&sv_yes>.
2883
2884=item THIS
2885
2886Variable which is setup by C<xsubpp> to designate the object in a C++ XSUB.
2887This is always the proper type for the C++ object. See C<CLASS> and
5fb8527f 2888L<perlxs/"Using XS With C++">.
cb1a09d0 2889
2890=item toLOWER
2891
2892Converts the specified character to lowercase.
2893
2894 int toLOWER (char c)
2895
2896=item toUPPER
2897
2898Converts the specified character to uppercase.
2899
2900 int toUPPER (char c)
2901
2902=item warn
2903
2904This is the XSUB-writer's interface to Perl's C<warn> function. Use this
2905function the same way you use the C C<printf> function. See C<croak()>.
2906
2907=item XPUSHi
2908
2909Push an integer onto the stack, extending the stack if necessary. See
2910C<PUSHi>.
2911
2912 XPUSHi(int d)
2913
2914=item XPUSHn
2915
2916Push a double onto the stack, extending the stack if necessary. See
2917C<PUSHn>.
2918
2919 XPUSHn(double d)
2920
2921=item XPUSHp
2922
2923Push a string onto the stack, extending the stack if necessary. The C<len>
2924indicates the length of the string. See C<PUSHp>.
2925
2926 XPUSHp(char *c, int len)
2927
2928=item XPUSHs
2929
2930Push an SV onto the stack, extending the stack if necessary. See C<PUSHs>.
2931
2932 XPUSHs(sv)
2933
5fb8527f 2934=item XS
2935
2936Macro to declare an XSUB and its C parameter list. This is handled by
2937C<xsubpp>.
2938
cb1a09d0 2939=item XSRETURN
2940
2941Return from XSUB, indicating number of items on the stack. This is usually
2942handled by C<xsubpp>.
2943
5fb8527f 2944 XSRETURN(int x);
cb1a09d0 2945
2946=item XSRETURN_EMPTY
2947
5fb8527f 2948Return an empty list from an XSUB immediately.
cb1a09d0 2949
2950 XSRETURN_EMPTY;
2951
5fb8527f 2952=item XSRETURN_IV
2953
2954Return an integer from an XSUB immediately. Uses C<XST_mIV>.
2955
2956 XSRETURN_IV(IV v);
2957
cb1a09d0 2958=item XSRETURN_NO
2959
5fb8527f 2960Return C<&sv_no> from an XSUB immediately. Uses C<XST_mNO>.
cb1a09d0 2961
2962 XSRETURN_NO;
2963
5fb8527f 2964=item XSRETURN_NV
2965
2966Return an double from an XSUB immediately. Uses C<XST_mNV>.
2967
2968 XSRETURN_NV(NV v);
2969
2970=item XSRETURN_PV
2971
2972Return a copy of a string from an XSUB immediately. Uses C<XST_mPV>.
2973
2974 XSRETURN_PV(char *v);
2975
cb1a09d0 2976=item XSRETURN_UNDEF
2977
5fb8527f 2978Return C<&sv_undef> from an XSUB immediately. Uses C<XST_mUNDEF>.
cb1a09d0 2979
2980 XSRETURN_UNDEF;
2981
2982=item XSRETURN_YES
2983
5fb8527f 2984Return C<&sv_yes> from an XSUB immediately. Uses C<XST_mYES>.
cb1a09d0 2985
2986 XSRETURN_YES;
2987
5fb8527f 2988=item XST_mIV
2989
2990Place an integer into the specified position C<i> on the stack. The value is
2991stored in a new mortal SV.
2992
2993 XST_mIV( int i, IV v );
2994
2995=item XST_mNV
2996
2997Place a double into the specified position C<i> on the stack. The value is
2998stored in a new mortal SV.
2999
3000 XST_mNV( int i, NV v );
3001
3002=item XST_mNO
3003
3004Place C<&sv_no> into the specified position C<i> on the stack.
3005
3006 XST_mNO( int i );
3007
3008=item XST_mPV
3009
3010Place a copy of a string into the specified position C<i> on the stack. The
3011value is stored in a new mortal SV.
3012
3013 XST_mPV( int i, char *v );
3014
3015=item XST_mUNDEF
3016
3017Place C<&sv_undef> into the specified position C<i> on the stack.
3018
3019 XST_mUNDEF( int i );
3020
3021=item XST_mYES
3022
3023Place C<&sv_yes> into the specified position C<i> on the stack.
3024
3025 XST_mYES( int i );
3026
3027=item XS_VERSION
3028
3029The version identifier for an XS module. This is usually handled
3030automatically by C<ExtUtils::MakeMaker>. See C<XS_VERSION_BOOTCHECK>.
3031
3032=item XS_VERSION_BOOTCHECK
3033
3034Macro to verify that a PM module's $VERSION variable matches the XS module's
3035C<XS_VERSION> variable. This is usually handled automatically by
3036C<xsubpp>. See L<perlxs/"The VERSIONCHECK: Keyword">.
3037
cb1a09d0 3038=item Zero
3039
3040The XSUB-writer's interface to the C C<memzero> function. The C<d> is the
3041destination, C<n> is the number of items, and C<t> is the type.
3042
3043 (void) Zero( d, n, t );
3044
3045=back
3046
5f05dabc 3047=head1 EDITOR
cb1a09d0 3048
9607fc9c 3049Jeff Okamoto <F<okamoto@corp.hp.com>>
cb1a09d0 3050
3051With lots of help and suggestions from Dean Roehrich, Malcolm Beattie,
3052Andreas Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil
55497cff 3053Bowers, Matthew Green, Tim Bunce, Spider Boardman, and Ulrich Pfeifer.
cb1a09d0 3054
9607fc9c 3055API Listing by Dean Roehrich <F<roehrich@cray.com>>.
cb1a09d0 3056
3057=head1 DATE
3058
04343c6d 3059Version 31.8: 1997/5/17