[5.004_61 PATCH] Make incompatible changes to RE engine NOW
[p5sagit/p5-mst-13.2.git] / pod / perlguts.pod
CommitLineData
a0d0e21e 1=head1 NAME
2
3perlguts - Perl's Internal Functions
4
5=head1 DESCRIPTION
6
7This document attempts to describe some of the internal functions of the
8Perl executable. It is far from complete and probably contains many errors.
9Please refer any questions or comments to the author below.
10
0a753a76 11=head1 Variables
12
5f05dabc 13=head2 Datatypes
a0d0e21e 14
15Perl has three typedefs that handle Perl's three main data types:
16
17 SV Scalar Value
18 AV Array Value
19 HV Hash Value
20
d1b91892 21Each typedef has specific routines that manipulate the various data types.
a0d0e21e 22
23=head2 What is an "IV"?
24
5f05dabc 25Perl uses a special typedef IV which is a simple integer type that is
26guaranteed to be large enough to hold a pointer (as well as an integer).
a0d0e21e 27
d1b91892 28Perl also uses two special typedefs, I32 and I16, which will always be at
29least 32-bits and 16-bits long, respectively.
a0d0e21e 30
54310121 31=head2 Working with SVs
a0d0e21e 32
33An SV can be created and loaded with one command. There are four types of
34values that can be loaded: an integer value (IV), a double (NV), a string,
35(PV), and another scalar (SV).
36
9da1e3b5 37The six routines are:
a0d0e21e 38
39 SV* newSViv(IV);
40 SV* newSVnv(double);
41 SV* newSVpv(char*, int);
9da1e3b5 42 SV* newSVpvn(char*, int);
46fc3d4c 43 SV* newSVpvf(const char*, ...);
a0d0e21e 44 SV* newSVsv(SV*);
45
deb3007b 46To change the value of an *already-existing* SV, there are seven routines:
a0d0e21e 47
48 void sv_setiv(SV*, IV);
deb3007b 49 void sv_setuv(SV*, UV);
a0d0e21e 50 void sv_setnv(SV*, double);
a0d0e21e 51 void sv_setpv(SV*, char*);
46fc3d4c 52 void sv_setpvn(SV*, char*, int)
53 void sv_setpvf(SV*, const char*, ...);
a0d0e21e 54 void sv_setsv(SV*, SV*);
55
56Notice that you can choose to specify the length of the string to be
9da1e3b5 57assigned by using C<sv_setpvn>, C<newSVpvn>, or C<newSVpv>, or you may
58allow Perl to calculate the length by using C<sv_setpv> or by specifying
590 as the second argument to C<newSVpv>. Be warned, though, that Perl will
60determine the string's length by using C<strlen>, which depends on the
61string terminating with a NUL character. The arguments of C<sv_setpvf>
62are processed like C<sprintf>, and the formatted output becomes the value.
63The C<sv_set*()> functions are not generic enough to operate on values
64that have "magic". See L<Magic Virtual Tables> later in this document.
a0d0e21e 65
54310121 66All SVs that will contain strings should, but need not, be terminated
5f05dabc 67with a NUL character. If it is not NUL-terminated there is a risk of
68core dumps and corruptions from code which passes the string to C
69functions or system calls which expect a NUL-terminated string.
70Perl's own functions typically add a trailing NUL for this reason.
71Nevertheless, you should be very careful when you pass a string stored
72in an SV to a C function or system call.
73
a0d0e21e 74To access the actual value that an SV points to, you can use the macros:
75
76 SvIV(SV*)
77 SvNV(SV*)
78 SvPV(SV*, STRLEN len)
79
80which will automatically coerce the actual scalar type into an IV, double,
81or string.
82
83In the C<SvPV> macro, the length of the string returned is placed into the
84variable C<len> (this is a macro, so you do I<not> use C<&len>). If you do not
85care what the length of the data is, use the global variable C<na>. Remember,
86however, that Perl allows arbitrary strings of data that may both contain
54310121 87NULs and might not be terminated by a NUL.
a0d0e21e 88
07fa94a1 89If you want to know if the scalar value is TRUE, you can use:
a0d0e21e 90
91 SvTRUE(SV*)
92
93Although Perl will automatically grow strings for you, if you need to force
94Perl to allocate more memory for your SV, you can use the macro
95
96 SvGROW(SV*, STRLEN newlen)
97
98which will determine if more memory needs to be allocated. If so, it will
99call the function C<sv_grow>. Note that C<SvGROW> can only increase, not
5f05dabc 100decrease, the allocated memory of an SV and that it does not automatically
101add a byte for the a trailing NUL (perl's own string functions typically do
8ebc5c01 102C<SvGROW(sv, len + 1)>).
a0d0e21e 103
104If you have an SV and want to know what kind of data Perl thinks is stored
105in it, you can use the following macros to check the type of SV you have.
106
107 SvIOK(SV*)
108 SvNOK(SV*)
109 SvPOK(SV*)
110
111You can get and set the current length of the string stored in an SV with
112the following macros:
113
114 SvCUR(SV*)
115 SvCUR_set(SV*, I32 val)
116
cb1a09d0 117You can also get a pointer to the end of the string stored in the SV
118with the macro:
119
120 SvEND(SV*)
121
122But note that these last three macros are valid only if C<SvPOK()> is true.
a0d0e21e 123
d1b91892 124If you want to append something to the end of string stored in an C<SV*>,
125you can use the following functions:
126
127 void sv_catpv(SV*, char*);
128 void sv_catpvn(SV*, char*, int);
46fc3d4c 129 void sv_catpvf(SV*, const char*, ...);
d1b91892 130 void sv_catsv(SV*, SV*);
131
132The first function calculates the length of the string to be appended by
133using C<strlen>. In the second, you specify the length of the string
46fc3d4c 134yourself. The third function processes its arguments like C<sprintf> and
135appends the formatted output. The fourth function extends the string
136stored in the first SV with the string stored in the second SV. It also
189b2af5 137forces the second SV to be interpreted as a string. The C<sv_cat*()>
138functions are not generic enough to operate on values that have "magic".
139See L<Magic Virtual Tables> later in this document.
d1b91892 140
a0d0e21e 141If you know the name of a scalar variable, you can get a pointer to its SV
142by using the following:
143
5f05dabc 144 SV* perl_get_sv("package::varname", FALSE);
a0d0e21e 145
146This returns NULL if the variable does not exist.
147
d1b91892 148If you want to know if this variable (or any other SV) is actually C<defined>,
a0d0e21e 149you can call:
150
151 SvOK(SV*)
152
153The scalar C<undef> value is stored in an SV instance called C<sv_undef>. Its
154address can be used whenever an C<SV*> is needed.
155
156There are also the two values C<sv_yes> and C<sv_no>, which contain Boolean
157TRUE and FALSE values, respectively. Like C<sv_undef>, their addresses can
158be used whenever an C<SV*> is needed.
159
160Do not be fooled into thinking that C<(SV *) 0> is the same as C<&sv_undef>.
161Take this code:
162
163 SV* sv = (SV*) 0;
164 if (I-am-to-return-a-real-value) {
165 sv = sv_2mortal(newSViv(42));
166 }
167 sv_setsv(ST(0), sv);
168
169This code tries to return a new SV (which contains the value 42) if it should
04343c6d 170return a real value, or undef otherwise. Instead it has returned a NULL
a0d0e21e 171pointer which, somewhere down the line, will cause a segmentation violation,
5f05dabc 172bus error, or just weird results. Change the zero to C<&sv_undef> in the first
173line and all will be well.
a0d0e21e 174
175To free an SV that you've created, call C<SvREFCNT_dec(SV*)>. Normally this
3fe9a6f1 176call is not necessary (see L<Reference Counts and Mortality>).
a0d0e21e 177
d1b91892 178=head2 What's Really Stored in an SV?
a0d0e21e 179
180Recall that the usual method of determining the type of scalar you have is
5f05dabc 181to use C<Sv*OK> macros. Because a scalar can be both a number and a string,
d1b91892 182usually these macros will always return TRUE and calling the C<Sv*V>
a0d0e21e 183macros will do the appropriate conversion of string to integer/double or
184integer/double to string.
185
186If you I<really> need to know if you have an integer, double, or string
187pointer in an SV, you can use the following three macros instead:
188
189 SvIOKp(SV*)
190 SvNOKp(SV*)
191 SvPOKp(SV*)
192
193These will tell you if you truly have an integer, double, or string pointer
d1b91892 194stored in your SV. The "p" stands for private.
a0d0e21e 195
07fa94a1 196In general, though, it's best to use the C<Sv*V> macros.
a0d0e21e 197
54310121 198=head2 Working with AVs
a0d0e21e 199
07fa94a1 200There are two ways to create and load an AV. The first method creates an
201empty AV:
a0d0e21e 202
203 AV* newAV();
204
54310121 205The second method both creates the AV and initially populates it with SVs:
a0d0e21e 206
207 AV* av_make(I32 num, SV **ptr);
208
5f05dabc 209The second argument points to an array containing C<num> C<SV*>'s. Once the
54310121 210AV has been created, the SVs can be destroyed, if so desired.
a0d0e21e 211
54310121 212Once the AV has been created, the following operations are possible on AVs:
a0d0e21e 213
214 void av_push(AV*, SV*);
215 SV* av_pop(AV*);
216 SV* av_shift(AV*);
217 void av_unshift(AV*, I32 num);
218
219These should be familiar operations, with the exception of C<av_unshift>.
220This routine adds C<num> elements at the front of the array with the C<undef>
221value. You must then use C<av_store> (described below) to assign values
222to these new elements.
223
224Here are some other functions:
225
5f05dabc 226 I32 av_len(AV*);
a0d0e21e 227 SV** av_fetch(AV*, I32 key, I32 lval);
a0d0e21e 228 SV** av_store(AV*, I32 key, SV* val);
a0d0e21e 229
5f05dabc 230The C<av_len> function returns the highest index value in array (just
231like $#array in Perl). If the array is empty, -1 is returned. The
232C<av_fetch> function returns the value at index C<key>, but if C<lval>
233is non-zero, then C<av_fetch> will store an undef value at that index.
04343c6d 234The C<av_store> function stores the value C<val> at index C<key>, and does
235not increment the reference count of C<val>. Thus the caller is responsible
236for taking care of that, and if C<av_store> returns NULL, the caller will
237have to decrement the reference count to avoid a memory leak. Note that
238C<av_fetch> and C<av_store> both return C<SV**>'s, not C<SV*>'s as their
239return value.
d1b91892 240
a0d0e21e 241 void av_clear(AV*);
a0d0e21e 242 void av_undef(AV*);
cb1a09d0 243 void av_extend(AV*, I32 key);
5f05dabc 244
245The C<av_clear> function deletes all the elements in the AV* array, but
246does not actually delete the array itself. The C<av_undef> function will
247delete all the elements in the array plus the array itself. The
248C<av_extend> function extends the array so that it contains C<key>
249elements. If C<key> is less than the current length of the array, then
250nothing is done.
a0d0e21e 251
252If you know the name of an array variable, you can get a pointer to its AV
253by using the following:
254
5f05dabc 255 AV* perl_get_av("package::varname", FALSE);
a0d0e21e 256
257This returns NULL if the variable does not exist.
258
04343c6d 259See L<Understanding the Magic of Tied Hashes and Arrays> for more
260information on how to use the array access functions on tied arrays.
261
54310121 262=head2 Working with HVs
a0d0e21e 263
264To create an HV, you use the following routine:
265
266 HV* newHV();
267
54310121 268Once the HV has been created, the following operations are possible on HVs:
a0d0e21e 269
270 SV** hv_store(HV*, char* key, U32 klen, SV* val, U32 hash);
271 SV** hv_fetch(HV*, char* key, U32 klen, I32 lval);
272
5f05dabc 273The C<klen> parameter is the length of the key being passed in (Note that
274you cannot pass 0 in as a value of C<klen> to tell Perl to measure the
275length of the key). The C<val> argument contains the SV pointer to the
54310121 276scalar being stored, and C<hash> is the precomputed hash value (zero if
5f05dabc 277you want C<hv_store> to calculate it for you). The C<lval> parameter
278indicates whether this fetch is actually a part of a store operation, in
279which case a new undefined value will be added to the HV with the supplied
280key and C<hv_fetch> will return as if the value had already existed.
a0d0e21e 281
5f05dabc 282Remember that C<hv_store> and C<hv_fetch> return C<SV**>'s and not just
283C<SV*>. To access the scalar value, you must first dereference the return
284value. However, you should check to make sure that the return value is
285not NULL before dereferencing it.
a0d0e21e 286
287These two functions check if a hash table entry exists, and deletes it.
288
289 bool hv_exists(HV*, char* key, U32 klen);
d1b91892 290 SV* hv_delete(HV*, char* key, U32 klen, I32 flags);
a0d0e21e 291
5f05dabc 292If C<flags> does not include the C<G_DISCARD> flag then C<hv_delete> will
293create and return a mortal copy of the deleted value.
294
a0d0e21e 295And more miscellaneous functions:
296
297 void hv_clear(HV*);
a0d0e21e 298 void hv_undef(HV*);
5f05dabc 299
300Like their AV counterparts, C<hv_clear> deletes all the entries in the hash
301table but does not actually delete the hash table. The C<hv_undef> deletes
302both the entries and the hash table itself.
a0d0e21e 303
d1b91892 304Perl keeps the actual data in linked list of structures with a typedef of HE.
305These contain the actual key and value pointers (plus extra administrative
306overhead). The key is a string pointer; the value is an C<SV*>. However,
307once you have an C<HE*>, to get the actual key and value, use the routines
308specified below.
309
a0d0e21e 310 I32 hv_iterinit(HV*);
311 /* Prepares starting point to traverse hash table */
312 HE* hv_iternext(HV*);
313 /* Get the next entry, and return a pointer to a
314 structure that has both the key and value */
315 char* hv_iterkey(HE* entry, I32* retlen);
316 /* Get the key from an HE structure and also return
317 the length of the key string */
cb1a09d0 318 SV* hv_iterval(HV*, HE* entry);
a0d0e21e 319 /* Return a SV pointer to the value of the HE
320 structure */
cb1a09d0 321 SV* hv_iternextsv(HV*, char** key, I32* retlen);
d1b91892 322 /* This convenience routine combines hv_iternext,
323 hv_iterkey, and hv_iterval. The key and retlen
324 arguments are return values for the key and its
325 length. The value is returned in the SV* argument */
a0d0e21e 326
327If you know the name of a hash variable, you can get a pointer to its HV
328by using the following:
329
5f05dabc 330 HV* perl_get_hv("package::varname", FALSE);
a0d0e21e 331
332This returns NULL if the variable does not exist.
333
8ebc5c01 334The hash algorithm is defined in the C<PERL_HASH(hash, key, klen)> macro:
a0d0e21e 335
336 i = klen;
337 hash = 0;
338 s = key;
339 while (i--)
340 hash = hash * 33 + *s++;
341
04343c6d 342See L<Understanding the Magic of Tied Hashes and Arrays> for more
343information on how to use the hash access functions on tied hashes.
344
1e422769 345=head2 Hash API Extensions
346
347Beginning with version 5.004, the following functions are also supported:
348
349 HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash);
350 HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash);
351
352 bool hv_exists_ent (HV* tb, SV* key, U32 hash);
353 SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash);
354
355 SV* hv_iterkeysv (HE* entry);
356
357Note that these functions take C<SV*> keys, which simplifies writing
358of extension code that deals with hash structures. These functions
359also allow passing of C<SV*> keys to C<tie> functions without forcing
360you to stringify the keys (unlike the previous set of functions).
361
362They also return and accept whole hash entries (C<HE*>), making their
363use more efficient (since the hash number for a particular string
364doesn't have to be recomputed every time). See L<API LISTING> later in
365this document for detailed descriptions.
366
367The following macros must always be used to access the contents of hash
368entries. Note that the arguments to these macros must be simple
369variables, since they may get evaluated more than once. See
370L<API LISTING> later in this document for detailed descriptions of these
371macros.
372
373 HePV(HE* he, STRLEN len)
374 HeVAL(HE* he)
375 HeHASH(HE* he)
376 HeSVKEY(HE* he)
377 HeSVKEY_force(HE* he)
378 HeSVKEY_set(HE* he, SV* sv)
379
380These two lower level macros are defined, but must only be used when
381dealing with keys that are not C<SV*>s:
382
383 HeKEY(HE* he)
384 HeKLEN(HE* he)
385
04343c6d 386Note that both C<hv_store> and C<hv_store_ent> do not increment the
387reference count of the stored C<val>, which is the caller's responsibility.
388If these functions return a NULL value, the caller will usually have to
389decrement the reference count of C<val> to avoid a memory leak.
1e422769 390
a0d0e21e 391=head2 References
392
d1b91892 393References are a special type of scalar that point to other data types
394(including references).
a0d0e21e 395
07fa94a1 396To create a reference, use either of the following functions:
a0d0e21e 397
5f05dabc 398 SV* newRV_inc((SV*) thing);
399 SV* newRV_noinc((SV*) thing);
a0d0e21e 400
5f05dabc 401The C<thing> argument can be any of an C<SV*>, C<AV*>, or C<HV*>. The
07fa94a1 402functions are identical except that C<newRV_inc> increments the reference
403count of the C<thing>, while C<newRV_noinc> does not. For historical
404reasons, C<newRV> is a synonym for C<newRV_inc>.
405
406Once you have a reference, you can use the following macro to dereference
407the reference:
a0d0e21e 408
409 SvRV(SV*)
410
411then call the appropriate routines, casting the returned C<SV*> to either an
d1b91892 412C<AV*> or C<HV*>, if required.
a0d0e21e 413
d1b91892 414To determine if an SV is a reference, you can use the following macro:
a0d0e21e 415
416 SvROK(SV*)
417
07fa94a1 418To discover what type of value the reference refers to, use the following
419macro and then check the return value.
d1b91892 420
421 SvTYPE(SvRV(SV*))
422
423The most useful types that will be returned are:
424
425 SVt_IV Scalar
426 SVt_NV Scalar
427 SVt_PV Scalar
5f05dabc 428 SVt_RV Scalar
d1b91892 429 SVt_PVAV Array
430 SVt_PVHV Hash
431 SVt_PVCV Code
5f05dabc 432 SVt_PVGV Glob (possible a file handle)
433 SVt_PVMG Blessed or Magical Scalar
434
435 See the sv.h header file for more details.
d1b91892 436
cb1a09d0 437=head2 Blessed References and Class Objects
438
439References are also used to support object-oriented programming. In the
440OO lexicon, an object is simply a reference that has been blessed into a
441package (or class). Once blessed, the programmer may now use the reference
442to access the various methods in the class.
443
444A reference can be blessed into a package with the following function:
445
446 SV* sv_bless(SV* sv, HV* stash);
447
448The C<sv> argument must be a reference. The C<stash> argument specifies
3fe9a6f1 449which class the reference will belong to. See
2ae324a7 450L<Stashes and Globs> for information on converting class names into stashes.
cb1a09d0 451
452/* Still under construction */
453
454Upgrades rv to reference if not already one. Creates new SV for rv to
8ebc5c01 455point to. If C<classname> is non-null, the SV is blessed into the specified
456class. SV is returned.
cb1a09d0 457
458 SV* newSVrv(SV* rv, char* classname);
459
8ebc5c01 460Copies integer or double into an SV whose reference is C<rv>. SV is blessed
461if C<classname> is non-null.
cb1a09d0 462
463 SV* sv_setref_iv(SV* rv, char* classname, IV iv);
464 SV* sv_setref_nv(SV* rv, char* classname, NV iv);
465
5f05dabc 466Copies the pointer value (I<the address, not the string!>) into an SV whose
8ebc5c01 467reference is rv. SV is blessed if C<classname> is non-null.
cb1a09d0 468
469 SV* sv_setref_pv(SV* rv, char* classname, PV iv);
470
8ebc5c01 471Copies string into an SV whose reference is C<rv>. Set length to 0 to let
472Perl calculate the string length. SV is blessed if C<classname> is non-null.
cb1a09d0 473
474 SV* sv_setref_pvn(SV* rv, char* classname, PV iv, int length);
475
476 int sv_isa(SV* sv, char* name);
477 int sv_isobject(SV* sv);
478
5f05dabc 479=head2 Creating New Variables
cb1a09d0 480
5f05dabc 481To create a new Perl variable with an undef value which can be accessed from
482your Perl script, use the following routines, depending on the variable type.
cb1a09d0 483
5f05dabc 484 SV* perl_get_sv("package::varname", TRUE);
485 AV* perl_get_av("package::varname", TRUE);
486 HV* perl_get_hv("package::varname", TRUE);
cb1a09d0 487
488Notice the use of TRUE as the second parameter. The new variable can now
489be set, using the routines appropriate to the data type.
490
5f05dabc 491There are additional macros whose values may be bitwise OR'ed with the
492C<TRUE> argument to enable certain extra features. Those bits are:
cb1a09d0 493
5f05dabc 494 GV_ADDMULTI Marks the variable as multiply defined, thus preventing the
54310121 495 "Name <varname> used only once: possible typo" warning.
07fa94a1 496 GV_ADDWARN Issues the warning "Had to create <varname> unexpectedly" if
497 the variable did not exist before the function was called.
cb1a09d0 498
07fa94a1 499If you do not specify a package name, the variable is created in the current
500package.
cb1a09d0 501
5f05dabc 502=head2 Reference Counts and Mortality
a0d0e21e 503
54310121 504Perl uses an reference count-driven garbage collection mechanism. SVs,
505AVs, or HVs (xV for short in the following) start their life with a
55497cff 506reference count of 1. If the reference count of an xV ever drops to 0,
07fa94a1 507then it will be destroyed and its memory made available for reuse.
55497cff 508
509This normally doesn't happen at the Perl level unless a variable is
5f05dabc 510undef'ed or the last variable holding a reference to it is changed or
511overwritten. At the internal level, however, reference counts can be
55497cff 512manipulated with the following macros:
513
514 int SvREFCNT(SV* sv);
5f05dabc 515 SV* SvREFCNT_inc(SV* sv);
55497cff 516 void SvREFCNT_dec(SV* sv);
517
518However, there is one other function which manipulates the reference
07fa94a1 519count of its argument. The C<newRV_inc> function, you will recall,
520creates a reference to the specified argument. As a side effect,
521it increments the argument's reference count. If this is not what
522you want, use C<newRV_noinc> instead.
523
524For example, imagine you want to return a reference from an XSUB function.
525Inside the XSUB routine, you create an SV which initially has a reference
526count of one. Then you call C<newRV_inc>, passing it the just-created SV.
5f05dabc 527This returns the reference as a new SV, but the reference count of the
528SV you passed to C<newRV_inc> has been incremented to two. Now you
07fa94a1 529return the reference from the XSUB routine and forget about the SV.
530But Perl hasn't! Whenever the returned reference is destroyed, the
531reference count of the original SV is decreased to one and nothing happens.
532The SV will hang around without any way to access it until Perl itself
533terminates. This is a memory leak.
5f05dabc 534
535The correct procedure, then, is to use C<newRV_noinc> instead of
faed5253 536C<newRV_inc>. Then, if and when the last reference is destroyed,
537the reference count of the SV will go to zero and it will be destroyed,
07fa94a1 538stopping any memory leak.
55497cff 539
5f05dabc 540There are some convenience functions available that can help with the
54310121 541destruction of xVs. These functions introduce the concept of "mortality".
07fa94a1 542An xV that is mortal has had its reference count marked to be decremented,
543but not actually decremented, until "a short time later". Generally the
544term "short time later" means a single Perl statement, such as a call to
54310121 545an XSUB function. The actual determinant for when mortal xVs have their
07fa94a1 546reference count decremented depends on two macros, SAVETMPS and FREETMPS.
547See L<perlcall> and L<perlxs> for more details on these macros.
55497cff 548
549"Mortalization" then is at its simplest a deferred C<SvREFCNT_dec>.
550However, if you mortalize a variable twice, the reference count will
551later be decremented twice.
552
553You should be careful about creating mortal variables. Strange things
554can happen if you make the same value mortal within multiple contexts,
5f05dabc 555or if you make a variable mortal multiple times.
a0d0e21e 556
557To create a mortal variable, use the functions:
558
559 SV* sv_newmortal()
560 SV* sv_2mortal(SV*)
561 SV* sv_mortalcopy(SV*)
562
5f05dabc 563The first call creates a mortal SV, the second converts an existing
564SV to a mortal SV (and thus defers a call to C<SvREFCNT_dec>), and the
565third creates a mortal copy of an existing SV.
a0d0e21e 566
54310121 567The mortal routines are not just for SVs -- AVs and HVs can be
faed5253 568made mortal by passing their address (type-casted to C<SV*>) to the
07fa94a1 569C<sv_2mortal> or C<sv_mortalcopy> routines.
a0d0e21e 570
5f05dabc 571=head2 Stashes and Globs
a0d0e21e 572
aa689395 573A "stash" is a hash that contains all of the different objects that
574are contained within a package. Each key of the stash is a symbol
575name (shared by all the different types of objects that have the same
576name), and each value in the hash table is a GV (Glob Value). This GV
577in turn contains references to the various objects of that name,
578including (but not limited to) the following:
cb1a09d0 579
a0d0e21e 580 Scalar Value
581 Array Value
582 Hash Value
583 File Handle
584 Directory Handle
585 Format
586 Subroutine
587
5f05dabc 588There is a single stash called "defstash" that holds the items that exist
589in the "main" package. To get at the items in other packages, append the
590string "::" to the package name. The items in the "Foo" package are in
591the stash "Foo::" in defstash. The items in the "Bar::Baz" package are
592in the stash "Baz::" in "Bar::"'s stash.
a0d0e21e 593
d1b91892 594To get the stash pointer for a particular package, use the function:
a0d0e21e 595
596 HV* gv_stashpv(char* name, I32 create)
597 HV* gv_stashsv(SV*, I32 create)
598
599The first function takes a literal string, the second uses the string stored
d1b91892 600in the SV. Remember that a stash is just a hash table, so you get back an
cb1a09d0 601C<HV*>. The C<create> flag will create a new package if it is set.
a0d0e21e 602
603The name that C<gv_stash*v> wants is the name of the package whose symbol table
604you want. The default package is called C<main>. If you have multiply nested
d1b91892 605packages, pass their names to C<gv_stash*v>, separated by C<::> as in the Perl
606language itself.
a0d0e21e 607
608Alternately, if you have an SV that is a blessed reference, you can find
609out the stash pointer by using:
610
611 HV* SvSTASH(SvRV(SV*));
612
613then use the following to get the package name itself:
614
615 char* HvNAME(HV* stash);
616
5f05dabc 617If you need to bless or re-bless an object you can use the following
618function:
a0d0e21e 619
620 SV* sv_bless(SV*, HV* stash)
621
622where the first argument, an C<SV*>, must be a reference, and the second
623argument is a stash. The returned C<SV*> can now be used in the same way
624as any other SV.
625
d1b91892 626For more information on references and blessings, consult L<perlref>.
627
54310121 628=head2 Double-Typed SVs
0a753a76 629
630Scalar variables normally contain only one type of value, an integer,
631double, pointer, or reference. Perl will automatically convert the
632actual scalar data from the stored type into the requested type.
633
634Some scalar variables contain more than one type of scalar data. For
635example, the variable C<$!> contains either the numeric value of C<errno>
636or its string equivalent from either C<strerror> or C<sys_errlist[]>.
637
638To force multiple data values into an SV, you must do two things: use the
639C<sv_set*v> routines to add the additional scalar type, then set a flag
640so that Perl will believe it contains more than one type of data. The
641four macros to set the flags are:
642
643 SvIOK_on
644 SvNOK_on
645 SvPOK_on
646 SvROK_on
647
648The particular macro you must use depends on which C<sv_set*v> routine
649you called first. This is because every C<sv_set*v> routine turns on
650only the bit for the particular type of data being set, and turns off
651all the rest.
652
653For example, to create a new Perl variable called "dberror" that contains
654both the numeric and descriptive string error values, you could use the
655following code:
656
657 extern int dberror;
658 extern char *dberror_list;
659
660 SV* sv = perl_get_sv("dberror", TRUE);
661 sv_setiv(sv, (IV) dberror);
662 sv_setpv(sv, dberror_list[dberror]);
663 SvIOK_on(sv);
664
665If the order of C<sv_setiv> and C<sv_setpv> had been reversed, then the
666macro C<SvPOK_on> would need to be called instead of C<SvIOK_on>.
667
668=head2 Magic Variables
a0d0e21e 669
d1b91892 670[This section still under construction. Ignore everything here. Post no
671bills. Everything not permitted is forbidden.]
672
d1b91892 673Any SV may be magical, that is, it has special features that a normal
674SV does not have. These features are stored in the SV structure in a
5f05dabc 675linked list of C<struct magic>'s, typedef'ed to C<MAGIC>.
d1b91892 676
677 struct magic {
678 MAGIC* mg_moremagic;
679 MGVTBL* mg_virtual;
680 U16 mg_private;
681 char mg_type;
682 U8 mg_flags;
683 SV* mg_obj;
684 char* mg_ptr;
685 I32 mg_len;
686 };
687
688Note this is current as of patchlevel 0, and could change at any time.
689
690=head2 Assigning Magic
691
692Perl adds magic to an SV using the sv_magic function:
693
694 void sv_magic(SV* sv, SV* obj, int how, char* name, I32 namlen);
695
696The C<sv> argument is a pointer to the SV that is to acquire a new magical
697feature.
698
699If C<sv> is not already magical, Perl uses the C<SvUPGRADE> macro to
700set the C<SVt_PVMG> flag for the C<sv>. Perl then continues by adding
701it to the beginning of the linked list of magical features. Any prior
702entry of the same type of magic is deleted. Note that this can be
5fb8527f 703overridden, and multiple instances of the same type of magic can be
d1b91892 704associated with an SV.
705
54310121 706The C<name> and C<namlen> arguments are used to associate a string with
707the magic, typically the name of a variable. C<namlen> is stored in the
708C<mg_len> field and if C<name> is non-null and C<namlen> >= 0 a malloc'd
d1b91892 709copy of the name is stored in C<mg_ptr> field.
710
711The sv_magic function uses C<how> to determine which, if any, predefined
712"Magic Virtual Table" should be assigned to the C<mg_virtual> field.
cb1a09d0 713See the "Magic Virtual Table" section below. The C<how> argument is also
714stored in the C<mg_type> field.
d1b91892 715
716The C<obj> argument is stored in the C<mg_obj> field of the C<MAGIC>
717structure. If it is not the same as the C<sv> argument, the reference
718count of the C<obj> object is incremented. If it is the same, or if
04343c6d 719the C<how> argument is "#", or if it is a NULL pointer, then C<obj> is
d1b91892 720merely stored, without the reference count being incremented.
721
cb1a09d0 722There is also a function to add magic to an C<HV>:
723
724 void hv_magic(HV *hv, GV *gv, int how);
725
726This simply calls C<sv_magic> and coerces the C<gv> argument into an C<SV>.
727
728To remove the magic from an SV, call the function sv_unmagic:
729
730 void sv_unmagic(SV *sv, int type);
731
732The C<type> argument should be equal to the C<how> value when the C<SV>
733was initially made magical.
734
d1b91892 735=head2 Magic Virtual Tables
736
737The C<mg_virtual> field in the C<MAGIC> structure is a pointer to a
738C<MGVTBL>, which is a structure of function pointers and stands for
739"Magic Virtual Table" to handle the various operations that might be
740applied to that variable.
741
742The C<MGVTBL> has five pointers to the following routine types:
743
744 int (*svt_get)(SV* sv, MAGIC* mg);
745 int (*svt_set)(SV* sv, MAGIC* mg);
746 U32 (*svt_len)(SV* sv, MAGIC* mg);
747 int (*svt_clear)(SV* sv, MAGIC* mg);
748 int (*svt_free)(SV* sv, MAGIC* mg);
749
750This MGVTBL structure is set at compile-time in C<perl.h> and there are
751currently 19 types (or 21 with overloading turned on). These different
752structures contain pointers to various routines that perform additional
753actions depending on which function is being called.
754
755 Function pointer Action taken
756 ---------------- ------------
757 svt_get Do something after the value of the SV is retrieved.
758 svt_set Do something after the SV is assigned a value.
759 svt_len Report on the SV's length.
760 svt_clear Clear something the SV represents.
761 svt_free Free any extra storage associated with the SV.
762
763For instance, the MGVTBL structure called C<vtbl_sv> (which corresponds
764to an C<mg_type> of '\0') contains:
765
766 { magic_get, magic_set, magic_len, 0, 0 }
767
768Thus, when an SV is determined to be magical and of type '\0', if a get
769operation is being performed, the routine C<magic_get> is called. All
770the various routines for the various magical types begin with C<magic_>.
771
772The current kinds of Magic Virtual Tables are:
773
bdbeb323 774 mg_type MGVTBL Type of magic
5f05dabc 775 ------- ------ ----------------------------
bdbeb323 776 \0 vtbl_sv Special scalar variable
777 A vtbl_amagic %OVERLOAD hash
778 a vtbl_amagicelem %OVERLOAD hash element
779 c (none) Holds overload table (AMT) on stash
780 B vtbl_bm Boyer-Moore (fast string search)
d1b91892 781 E vtbl_env %ENV hash
782 e vtbl_envelem %ENV hash element
bdbeb323 783 f vtbl_fm Formline ('compiled' format)
784 g vtbl_mglob m//g target / study()ed string
d1b91892 785 I vtbl_isa @ISA array
786 i vtbl_isaelem @ISA array element
bdbeb323 787 k vtbl_nkeys scalar(keys()) lvalue
788 L (none) Debugger %_<filename
789 l vtbl_dbline Debugger %_<filename element
44a8e56a 790 o vtbl_collxfrm Locale transformation
bdbeb323 791 P vtbl_pack Tied array or hash
792 p vtbl_packelem Tied array or hash element
793 q vtbl_packelem Tied scalar or handle
794 S vtbl_sig %SIG hash
795 s vtbl_sigelem %SIG hash element
d1b91892 796 t vtbl_taint Taintedness
bdbeb323 797 U vtbl_uvar Available for use by extensions
798 v vtbl_vec vec() lvalue
799 x vtbl_substr substr() lvalue
800 y vtbl_defelem Shadow "foreach" iterator variable /
801 smart parameter vivification
802 * vtbl_glob GV (typeglob)
803 # vtbl_arylen Array length ($#ary)
804 . vtbl_pos pos() lvalue
805 ~ (none) Available for use by extensions
d1b91892 806
68dc0745 807When an uppercase and lowercase letter both exist in the table, then the
808uppercase letter is used to represent some kind of composite type (a list
809or a hash), and the lowercase letter is used to represent an element of
d1b91892 810that composite type.
811
bdbeb323 812The '~' and 'U' magic types are defined specifically for use by
813extensions and will not be used by perl itself. Extensions can use
814'~' magic to 'attach' private information to variables (typically
815objects). This is especially useful because there is no way for
816normal perl code to corrupt this private information (unlike using
817extra elements of a hash object).
818
819Similarly, 'U' magic can be used much like tie() to call a C function
820any time a scalar's value is used or changed. The C<MAGIC>'s
821C<mg_ptr> field points to a C<ufuncs> structure:
822
823 struct ufuncs {
824 I32 (*uf_val)(IV, SV*);
825 I32 (*uf_set)(IV, SV*);
826 IV uf_index;
827 };
828
829When the SV is read from or written to, the C<uf_val> or C<uf_set>
830function will be called with C<uf_index> as the first arg and a
831pointer to the SV as the second.
5f05dabc 832
bdbeb323 833Note that because multiple extensions may be using '~' or 'U' magic,
834it is important for extensions to take extra care to avoid conflict.
835Typically only using the magic on objects blessed into the same class
836as the extension is sufficient. For '~' magic, it may also be
837appropriate to add an I32 'signature' at the top of the private data
838area and check that.
5f05dabc 839
ef50df4b 840Also note that the C<sv_set*()> and C<sv_cat*()> functions described
841earlier do B<not> invoke 'set' magic on their targets. This must
842be done by the user either by calling the C<SvSETMAGIC()> macro after
843calling these functions, or by using one of the C<sv_set*_mg()> or
844C<sv_cat*_mg()> functions. Similarly, generic C code must call the
845C<SvGETMAGIC()> macro to invoke any 'get' magic if they use an SV
846obtained from external sources in functions that don't handle magic.
847L<API LISTING> later in this document identifies such functions.
189b2af5 848For example, calls to the C<sv_cat*()> functions typically need to be
849followed by C<SvSETMAGIC()>, but they don't need a prior C<SvGETMAGIC()>
850since their implementation handles 'get' magic.
851
d1b91892 852=head2 Finding Magic
853
854 MAGIC* mg_find(SV*, int type); /* Finds the magic pointer of that type */
855
856This routine returns a pointer to the C<MAGIC> structure stored in the SV.
857If the SV does not have that magical feature, C<NULL> is returned. Also,
54310121 858if the SV is not of type SVt_PVMG, Perl may core dump.
d1b91892 859
860 int mg_copy(SV* sv, SV* nsv, char* key, STRLEN klen);
861
862This routine checks to see what types of magic C<sv> has. If the mg_type
68dc0745 863field is an uppercase letter, then the mg_obj is copied to C<nsv>, but
864the mg_type field is changed to be the lowercase letter.
a0d0e21e 865
04343c6d 866=head2 Understanding the Magic of Tied Hashes and Arrays
867
868Tied hashes and arrays are magical beasts of the 'P' magic type.
9edb2b46 869
870WARNING: As of the 5.004 release, proper usage of the array and hash
871access functions requires understanding a few caveats. Some
872of these caveats are actually considered bugs in the API, to be fixed
873in later releases, and are bracketed with [MAYCHANGE] below. If
874you find yourself actually applying such information in this section, be
875aware that the behavior may change in the future, umm, without warning.
04343c6d 876
877The C<av_store> function, when given a tied array argument, merely
878copies the magic of the array onto the value to be "stored", using
879C<mg_copy>. It may also return NULL, indicating that the value did not
9edb2b46 880actually need to be stored in the array. [MAYCHANGE] After a call to
881C<av_store> on a tied array, the caller will usually need to call
882C<mg_set(val)> to actually invoke the perl level "STORE" method on the
883TIEARRAY object. If C<av_store> did return NULL, a call to
884C<SvREFCNT_dec(val)> will also be usually necessary to avoid a memory
885leak. [/MAYCHANGE]
04343c6d 886
887The previous paragraph is applicable verbatim to tied hash access using the
888C<hv_store> and C<hv_store_ent> functions as well.
889
890C<av_fetch> and the corresponding hash functions C<hv_fetch> and
891C<hv_fetch_ent> actually return an undefined mortal value whose magic
892has been initialized using C<mg_copy>. Note the value so returned does not
9edb2b46 893need to be deallocated, as it is already mortal. [MAYCHANGE] But you will
894need to call C<mg_get()> on the returned value in order to actually invoke
895the perl level "FETCH" method on the underlying TIE object. Similarly,
04343c6d 896you may also call C<mg_set()> on the return value after possibly assigning
897a suitable value to it using C<sv_setsv>, which will invoke the "STORE"
9edb2b46 898method on the TIE object. [/MAYCHANGE]
04343c6d 899
9edb2b46 900[MAYCHANGE]
04343c6d 901In other words, the array or hash fetch/store functions don't really
902fetch and store actual values in the case of tied arrays and hashes. They
903merely call C<mg_copy> to attach magic to the values that were meant to be
904"stored" or "fetched". Later calls to C<mg_get> and C<mg_set> actually
905do the job of invoking the TIE methods on the underlying objects. Thus
9edb2b46 906the magic mechanism currently implements a kind of lazy access to arrays
04343c6d 907and hashes.
908
909Currently (as of perl version 5.004), use of the hash and array access
910functions requires the user to be aware of whether they are operating on
9edb2b46 911"normal" hashes and arrays, or on their tied variants. The API may be
912changed to provide more transparent access to both tied and normal data
913types in future versions.
914[/MAYCHANGE]
04343c6d 915
916You would do well to understand that the TIEARRAY and TIEHASH interfaces
917are mere sugar to invoke some perl method calls while using the uniform hash
918and array syntax. The use of this sugar imposes some overhead (typically
919about two to four extra opcodes per FETCH/STORE operation, in addition to
920the creation of all the mortal variables required to invoke the methods).
921This overhead will be comparatively small if the TIE methods are themselves
922substantial, but if they are only a few statements long, the overhead
923will not be insignificant.
924
d1c897a1 925=head2 Localizing changes
926
927Perl has a very handy construction
928
929 {
930 local $var = 2;
931 ...
932 }
933
934This construction is I<approximately> equivalent to
935
936 {
937 my $oldvar = $var;
938 $var = 2;
939 ...
940 $var = $oldvar;
941 }
942
943The biggest difference is that the first construction would
944reinstate the initial value of $var, irrespective of how control exits
945the block: C<goto>, C<return>, C<die>/C<eval> etc. It is a little bit
946more efficient as well.
947
948There is a way to achieve a similar task from C via Perl API: create a
949I<pseudo-block>, and arrange for some changes to be automatically
950undone at the end of it, either explicit, or via a non-local exit (via
951die()). A I<block>-like construct is created by a pair of
952C<ENTER>/C<LEAVE> macros (see L<perlcall/EXAMPLE/"Returning a
953Scalar">). Such a construct may be created specially for some
954important localized task, or an existing one (like boundaries of
955enclosing Perl subroutine/block, or an existing pair for freeing TMPs)
956may be used. (In the second case the overhead of additional
957localization must be almost negligible.) Note that any XSUB is
958automatically enclosed in an C<ENTER>/C<LEAVE> pair.
959
960Inside such a I<pseudo-block> the following service is available:
961
962=over
963
964=item C<SAVEINT(int i)>
965
966=item C<SAVEIV(IV i)>
967
968=item C<SAVEI32(I32 i)>
969
970=item C<SAVELONG(long i)>
971
972These macros arrange things to restore the value of integer variable
973C<i> at the end of enclosing I<pseudo-block>.
974
975=item C<SAVESPTR(s)>
976
977=item C<SAVEPPTR(p)>
978
979These macros arrange things to restore the value of pointers C<s> and
980C<p>. C<s> must be a pointer of a type which survives conversion to
981C<SV*> and back, C<p> should be able to survive conversion to C<char*>
982and back.
983
984=item C<SAVEFREESV(SV *sv)>
985
986The refcount of C<sv> would be decremented at the end of
987I<pseudo-block>. This is similar to C<sv_2mortal>, which should (?) be
988used instead.
989
990=item C<SAVEFREEOP(OP *op)>
991
992The C<OP *> is op_free()ed at the end of I<pseudo-block>.
993
994=item C<SAVEFREEPV(p)>
995
996The chunk of memory which is pointed to by C<p> is Safefree()ed at the
997end of I<pseudo-block>.
998
999=item C<SAVECLEARSV(SV *sv)>
1000
1001Clears a slot in the current scratchpad which corresponds to C<sv> at
1002the end of I<pseudo-block>.
1003
1004=item C<SAVEDELETE(HV *hv, char *key, I32 length)>
1005
1006The key C<key> of C<hv> is deleted at the end of I<pseudo-block>. The
1007string pointed to by C<key> is Safefree()ed. If one has a I<key> in
1008short-lived storage, the corresponding string may be reallocated like
1009this:
1010
1011 SAVEDELETE(defstash, savepv(tmpbuf), strlen(tmpbuf));
1012
1013=item C<SAVEDESTRUCTOR(f,p)>
1014
1015At the end of I<pseudo-block> the function C<f> is called with the
1016only argument (of type C<void*>) C<p>.
1017
1018=item C<SAVESTACK_POS()>
1019
1020The current offset on the Perl internal stack (cf. C<SP>) is restored
1021at the end of I<pseudo-block>.
1022
1023=back
1024
1025The following API list contains functions, thus one needs to
1026provide pointers to the modifiable data explicitly (either C pointers,
1027or Perlish C<GV *>s). Where the above macros take C<int>, a similar
1028function takes C<int *>.
1029
1030=over
1031
1032=item C<SV* save_scalar(GV *gv)>
1033
1034Equivalent to Perl code C<local $gv>.
1035
1036=item C<AV* save_ary(GV *gv)>
1037
1038=item C<HV* save_hash(GV *gv)>
1039
1040Similar to C<save_scalar>, but localize C<@gv> and C<%gv>.
1041
1042=item C<void save_item(SV *item)>
1043
1044Duplicates the current value of C<SV>, on the exit from the current
1045C<ENTER>/C<LEAVE> I<pseudo-block> will restore the value of C<SV>
1046using the stored value.
1047
1048=item C<void save_list(SV **sarg, I32 maxsarg)>
1049
1050A variant of C<save_item> which takes multiple arguments via an array
1051C<sarg> of C<SV*> of length C<maxsarg>.
1052
1053=item C<SV* save_svref(SV **sptr)>
1054
1055Similar to C<save_scalar>, but will reinstate a C<SV *>.
1056
1057=item C<void save_aptr(AV **aptr)>
1058
1059=item C<void save_hptr(HV **hptr)>
1060
1061Similar to C<save_svref>, but localize C<AV *> and C<HV *>.
1062
1063=back
1064
1065The C<Alias> module implements localization of the basic types within the
1066I<caller's scope>. People who are interested in how to localize things in
1067the containing scope should take a look there too.
1068
0a753a76 1069=head1 Subroutines
a0d0e21e 1070
68dc0745 1071=head2 XSUBs and the Argument Stack
5f05dabc 1072
1073The XSUB mechanism is a simple way for Perl programs to access C subroutines.
1074An XSUB routine will have a stack that contains the arguments from the Perl
1075program, and a way to map from the Perl data structures to a C equivalent.
1076
1077The stack arguments are accessible through the C<ST(n)> macro, which returns
1078the C<n>'th stack argument. Argument 0 is the first argument passed in the
1079Perl subroutine call. These arguments are C<SV*>, and can be used anywhere
1080an C<SV*> is used.
1081
1082Most of the time, output from the C routine can be handled through use of
1083the RETVAL and OUTPUT directives. However, there are some cases where the
1084argument stack is not already long enough to handle all the return values.
1085An example is the POSIX tzname() call, which takes no arguments, but returns
1086two, the local time zone's standard and summer time abbreviations.
1087
1088To handle this situation, the PPCODE directive is used and the stack is
1089extended using the macro:
1090
1091 EXTEND(sp, num);
1092
1093where C<sp> is the stack pointer, and C<num> is the number of elements the
1094stack should be extended by.
1095
1096Now that there is room on the stack, values can be pushed on it using the
54310121 1097macros to push IVs, doubles, strings, and SV pointers respectively:
5f05dabc 1098
1099 PUSHi(IV)
1100 PUSHn(double)
1101 PUSHp(char*, I32)
1102 PUSHs(SV*)
1103
1104And now the Perl program calling C<tzname>, the two values will be assigned
1105as in:
1106
1107 ($standard_abbrev, $summer_abbrev) = POSIX::tzname;
1108
1109An alternate (and possibly simpler) method to pushing values on the stack is
1110to use the macros:
1111
1112 XPUSHi(IV)
1113 XPUSHn(double)
1114 XPUSHp(char*, I32)
1115 XPUSHs(SV*)
1116
1117These macros automatically adjust the stack for you, if needed. Thus, you
1118do not need to call C<EXTEND> to extend the stack.
1119
1120For more information, consult L<perlxs> and L<perlxstut>.
1121
1122=head2 Calling Perl Routines from within C Programs
a0d0e21e 1123
1124There are four routines that can be used to call a Perl subroutine from
1125within a C program. These four are:
1126
1127 I32 perl_call_sv(SV*, I32);
1128 I32 perl_call_pv(char*, I32);
1129 I32 perl_call_method(char*, I32);
1130 I32 perl_call_argv(char*, I32, register char**);
1131
d1b91892 1132The routine most often used is C<perl_call_sv>. The C<SV*> argument
1133contains either the name of the Perl subroutine to be called, or a
1134reference to the subroutine. The second argument consists of flags
1135that control the context in which the subroutine is called, whether
1136or not the subroutine is being passed arguments, how errors should be
1137trapped, and how to treat return values.
a0d0e21e 1138
1139All four routines return the number of arguments that the subroutine returned
1140on the Perl stack.
1141
d1b91892 1142When using any of these routines (except C<perl_call_argv>), the programmer
1143must manipulate the Perl stack. These include the following macros and
1144functions:
a0d0e21e 1145
1146 dSP
1147 PUSHMARK()
1148 PUTBACK
1149 SPAGAIN
1150 ENTER
1151 SAVETMPS
1152 FREETMPS
1153 LEAVE
1154 XPUSH*()
cb1a09d0 1155 POP*()
a0d0e21e 1156
5f05dabc 1157For a detailed description of calling conventions from C to Perl,
1158consult L<perlcall>.
a0d0e21e 1159
5f05dabc 1160=head2 Memory Allocation
a0d0e21e 1161
5f05dabc 1162It is suggested that you use the version of malloc that is distributed
1163with Perl. It keeps pools of various sizes of unallocated memory in
07fa94a1 1164order to satisfy allocation requests more quickly. However, on some
1165platforms, it may cause spurious malloc or free errors.
d1b91892 1166
1167 New(x, pointer, number, type);
1168 Newc(x, pointer, number, type, cast);
1169 Newz(x, pointer, number, type);
1170
07fa94a1 1171These three macros are used to initially allocate memory.
5f05dabc 1172
1173The first argument C<x> was a "magic cookie" that was used to keep track
1174of who called the macro, to help when debugging memory problems. However,
07fa94a1 1175the current code makes no use of this feature (most Perl developers now
1176use run-time memory checkers), so this argument can be any number.
5f05dabc 1177
1178The second argument C<pointer> should be the name of a variable that will
1179point to the newly allocated memory.
d1b91892 1180
d1b91892 1181The third and fourth arguments C<number> and C<type> specify how many of
1182the specified type of data structure should be allocated. The argument
1183C<type> is passed to C<sizeof>. The final argument to C<Newc>, C<cast>,
1184should be used if the C<pointer> argument is different from the C<type>
1185argument.
1186
1187Unlike the C<New> and C<Newc> macros, the C<Newz> macro calls C<memzero>
1188to zero out all the newly allocated memory.
1189
1190 Renew(pointer, number, type);
1191 Renewc(pointer, number, type, cast);
1192 Safefree(pointer)
1193
1194These three macros are used to change a memory buffer size or to free a
1195piece of memory no longer needed. The arguments to C<Renew> and C<Renewc>
1196match those of C<New> and C<Newc> with the exception of not needing the
1197"magic cookie" argument.
1198
1199 Move(source, dest, number, type);
1200 Copy(source, dest, number, type);
1201 Zero(dest, number, type);
1202
1203These three macros are used to move, copy, or zero out previously allocated
1204memory. The C<source> and C<dest> arguments point to the source and
1205destination starting points. Perl will move, copy, or zero out C<number>
1206instances of the size of the C<type> data structure (using the C<sizeof>
1207function).
a0d0e21e 1208
5f05dabc 1209=head2 PerlIO
ce3d39e2 1210
5f05dabc 1211The most recent development releases of Perl has been experimenting with
1212removing Perl's dependency on the "normal" standard I/O suite and allowing
1213other stdio implementations to be used. This involves creating a new
1214abstraction layer that then calls whichever implementation of stdio Perl
68dc0745 1215was compiled with. All XSUBs should now use the functions in the PerlIO
5f05dabc 1216abstraction layer and not make any assumptions about what kind of stdio
1217is being used.
1218
1219For a complete description of the PerlIO abstraction, consult L<perlapio>.
1220
8ebc5c01 1221=head2 Putting a C value on Perl stack
ce3d39e2 1222
1223A lot of opcodes (this is an elementary operation in the internal perl
1224stack machine) put an SV* on the stack. However, as an optimization
1225the corresponding SV is (usually) not recreated each time. The opcodes
1226reuse specially assigned SVs (I<target>s) which are (as a corollary)
1227not constantly freed/created.
1228
0a753a76 1229Each of the targets is created only once (but see
ce3d39e2 1230L<Scratchpads and recursion> below), and when an opcode needs to put
1231an integer, a double, or a string on stack, it just sets the
1232corresponding parts of its I<target> and puts the I<target> on stack.
1233
1234The macro to put this target on stack is C<PUSHTARG>, and it is
1235directly used in some opcodes, as well as indirectly in zillions of
1236others, which use it via C<(X)PUSH[pni]>.
1237
8ebc5c01 1238=head2 Scratchpads
ce3d39e2 1239
54310121 1240The question remains on when the SVs which are I<target>s for opcodes
5f05dabc 1241are created. The answer is that they are created when the current unit --
1242a subroutine or a file (for opcodes for statements outside of
1243subroutines) -- is compiled. During this time a special anonymous Perl
ce3d39e2 1244array is created, which is called a scratchpad for the current
1245unit.
1246
54310121 1247A scratchpad keeps SVs which are lexicals for the current unit and are
ce3d39e2 1248targets for opcodes. One can deduce that an SV lives on a scratchpad
1249by looking on its flags: lexicals have C<SVs_PADMY> set, and
1250I<target>s have C<SVs_PADTMP> set.
1251
54310121 1252The correspondence between OPs and I<target>s is not 1-to-1. Different
1253OPs in the compile tree of the unit can use the same target, if this
ce3d39e2 1254would not conflict with the expected life of the temporary.
1255
2ae324a7 1256=head2 Scratchpads and recursion
ce3d39e2 1257
1258In fact it is not 100% true that a compiled unit contains a pointer to
1259the scratchpad AV. In fact it contains a pointer to an AV of
1260(initially) one element, and this element is the scratchpad AV. Why do
1261we need an extra level of indirection?
1262
1263The answer is B<recursion>, and maybe (sometime soon) B<threads>. Both
1264these can create several execution pointers going into the same
1265subroutine. For the subroutine-child not write over the temporaries
1266for the subroutine-parent (lifespan of which covers the call to the
1267child), the parent and the child should have different
1268scratchpads. (I<And> the lexicals should be separate anyway!)
1269
5f05dabc 1270So each subroutine is born with an array of scratchpads (of length 1).
1271On each entry to the subroutine it is checked that the current
ce3d39e2 1272depth of the recursion is not more than the length of this array, and
1273if it is, new scratchpad is created and pushed into the array.
1274
1275The I<target>s on this scratchpad are C<undef>s, but they are already
1276marked with correct flags.
1277
0a753a76 1278=head1 Compiled code
1279
1280=head2 Code tree
1281
1282Here we describe the internal form your code is converted to by
1283Perl. Start with a simple example:
1284
1285 $a = $b + $c;
1286
1287This is converted to a tree similar to this one:
1288
1289 assign-to
1290 / \
1291 + $a
1292 / \
1293 $b $c
1294
1295(but slightly more complicated). This tree reflect the way Perl
1296parsed your code, but has nothing to do with the execution order.
1297There is an additional "thread" going through the nodes of the tree
1298which shows the order of execution of the nodes. In our simplified
1299example above it looks like:
1300
1301 $b ---> $c ---> + ---> $a ---> assign-to
1302
1303But with the actual compile tree for C<$a = $b + $c> it is different:
1304some nodes I<optimized away>. As a corollary, though the actual tree
1305contains more nodes than our simplified example, the execution order
1306is the same as in our example.
1307
1308=head2 Examining the tree
1309
1310If you have your perl compiled for debugging (usually done with C<-D
1311optimize=-g> on C<Configure> command line), you may examine the
1312compiled tree by specifying C<-Dx> on the Perl command line. The
1313output takes several lines per node, and for C<$b+$c> it looks like
1314this:
1315
1316 5 TYPE = add ===> 6
1317 TARG = 1
1318 FLAGS = (SCALAR,KIDS)
1319 {
1320 TYPE = null ===> (4)
1321 (was rv2sv)
1322 FLAGS = (SCALAR,KIDS)
1323 {
1324 3 TYPE = gvsv ===> 4
1325 FLAGS = (SCALAR)
1326 GV = main::b
1327 }
1328 }
1329 {
1330 TYPE = null ===> (5)
1331 (was rv2sv)
1332 FLAGS = (SCALAR,KIDS)
1333 {
1334 4 TYPE = gvsv ===> 5
1335 FLAGS = (SCALAR)
1336 GV = main::c
1337 }
1338 }
1339
1340This tree has 5 nodes (one per C<TYPE> specifier), only 3 of them are
1341not optimized away (one per number in the left column). The immediate
1342children of the given node correspond to C<{}> pairs on the same level
1343of indentation, thus this listing corresponds to the tree:
1344
1345 add
1346 / \
1347 null null
1348 | |
1349 gvsv gvsv
1350
1351The execution order is indicated by C<===E<gt>> marks, thus it is C<3
13524 5 6> (node C<6> is not included into above listing), i.e.,
1353C<gvsv gvsv add whatever>.
1354
1355=head2 Compile pass 1: check routines
1356
1357The tree is created by the I<pseudo-compiler> while yacc code feeds it
1358the constructions it recognizes. Since yacc works bottom-up, so does
1359the first pass of perl compilation.
1360
1361What makes this pass interesting for perl developers is that some
1362optimization may be performed on this pass. This is optimization by
1363so-called I<check routines>. The correspondence between node names
1364and corresponding check routines is described in F<opcode.pl> (do not
1365forget to run C<make regen_headers> if you modify this file).
1366
1367A check routine is called when the node is fully constructed except
1368for the execution-order thread. Since at this time there is no
1369back-links to the currently constructed node, one can do most any
1370operation to the top-level node, including freeing it and/or creating
1371new nodes above/below it.
1372
1373The check routine returns the node which should be inserted into the
1374tree (if the top-level node was not modified, check routine returns
1375its argument).
1376
1377By convention, check routines have names C<ck_*>. They are usually
1378called from C<new*OP> subroutines (or C<convert>) (which in turn are
1379called from F<perly.y>).
1380
1381=head2 Compile pass 1a: constant folding
1382
1383Immediately after the check routine is called the returned node is
1384checked for being compile-time executable. If it is (the value is
1385judged to be constant) it is immediately executed, and a I<constant>
1386node with the "return value" of the corresponding subtree is
1387substituted instead. The subtree is deleted.
1388
1389If constant folding was not performed, the execution-order thread is
1390created.
1391
1392=head2 Compile pass 2: context propagation
1393
1394When a context for a part of compile tree is known, it is propagated
1395down through the tree. Aat this time the context can have 5 values
1396(instead of 2 for runtime context): void, boolean, scalar, list, and
1397lvalue. In contrast with the pass 1 this pass is processed from top
1398to bottom: a node's context determines the context for its children.
1399
1400Additional context-dependent optimizations are performed at this time.
1401Since at this moment the compile tree contains back-references (via
1402"thread" pointers), nodes cannot be free()d now. To allow
1403optimized-away nodes at this stage, such nodes are null()ified instead
1404of free()ing (i.e. their type is changed to OP_NULL).
1405
1406=head2 Compile pass 3: peephole optimization
1407
1408After the compile tree for a subroutine (or for an C<eval> or a file)
1409is created, an additional pass over the code is performed. This pass
1410is neither top-down or bottom-up, but in the execution order (with
1411additional compilications for conditionals). These optimizations are
1412done in the subroutine peep(). Optimizations performed at this stage
1413are subject to the same restrictions as in the pass 2.
1414
1415=head1 API LISTING
a0d0e21e 1416
cb1a09d0 1417This is a listing of functions, macros, flags, and variables that may be
1418useful to extension writers or that may be found while reading other
1419extensions.
e89caa19 1420The sort order of the listing is case insensitive, with any
1421occurrences of '_' ignored for the the purpose of sorting.
a0d0e21e 1422
cb1a09d0 1423=over 8
a0d0e21e 1424
cb1a09d0 1425=item av_clear
1426
0146554f 1427Clears an array, making it empty. Does not free the memory used by the
1428array itself.
cb1a09d0 1429
ef50df4b 1430 void av_clear (AV* ar)
cb1a09d0 1431
1432=item av_extend
1433
1434Pre-extend an array. The C<key> is the index to which the array should be
1435extended.
1436
ef50df4b 1437 void av_extend (AV* ar, I32 key)
cb1a09d0 1438
1439=item av_fetch
1440
1441Returns the SV at the specified index in the array. The C<key> is the
1442index. If C<lval> is set then the fetch will be part of a store. Check
1443that the return value is non-null before dereferencing it to a C<SV*>.
1444
04343c6d 1445See L<Understanding the Magic of Tied Hashes and Arrays> for more
1446information on how to use this function on tied arrays.
1447
ef50df4b 1448 SV** av_fetch (AV* ar, I32 key, I32 lval)
cb1a09d0 1449
e89caa19 1450=item AvFILL
1451
1452Same as C<av_len>.
1453
cb1a09d0 1454=item av_len
1455
1456Returns the highest index in the array. Returns -1 if the array is empty.
1457
ef50df4b 1458 I32 av_len (AV* ar)
cb1a09d0 1459
1460=item av_make
1461
5fb8527f 1462Creates a new AV and populates it with a list of SVs. The SVs are copied
1463into the array, so they may be freed after the call to av_make. The new AV
5f05dabc 1464will have a reference count of 1.
cb1a09d0 1465
ef50df4b 1466 AV* av_make (I32 size, SV** svp)
cb1a09d0 1467
1468=item av_pop
1469
1470Pops an SV off the end of the array. Returns C<&sv_undef> if the array is
1471empty.
1472
ef50df4b 1473 SV* av_pop (AV* ar)
cb1a09d0 1474
1475=item av_push
1476
5fb8527f 1477Pushes an SV onto the end of the array. The array will grow automatically
1478to accommodate the addition.
cb1a09d0 1479
ef50df4b 1480 void av_push (AV* ar, SV* val)
cb1a09d0 1481
1482=item av_shift
1483
1484Shifts an SV off the beginning of the array.
1485
ef50df4b 1486 SV* av_shift (AV* ar)
cb1a09d0 1487
1488=item av_store
1489
1490Stores an SV in an array. The array index is specified as C<key>. The
04343c6d 1491return value will be NULL if the operation failed or if the value did not
1492need to be actually stored within the array (as in the case of tied arrays).
1493Otherwise it can be dereferenced to get the original C<SV*>. Note that the
1494caller is responsible for suitably incrementing the reference count of C<val>
1495before the call, and decrementing it if the function returned NULL.
1496
1497See L<Understanding the Magic of Tied Hashes and Arrays> for more
1498information on how to use this function on tied arrays.
cb1a09d0 1499
ef50df4b 1500 SV** av_store (AV* ar, I32 key, SV* val)
cb1a09d0 1501
1502=item av_undef
1503
0146554f 1504Undefines the array. Frees the memory used by the array itself.
cb1a09d0 1505
ef50df4b 1506 void av_undef (AV* ar)
cb1a09d0 1507
1508=item av_unshift
1509
0146554f 1510Unshift the given number of C<undef> values onto the beginning of the
1511array. The array will grow automatically to accommodate the addition.
1512You must then use C<av_store> to assign values to these new elements.
cb1a09d0 1513
ef50df4b 1514 void av_unshift (AV* ar, I32 num)
cb1a09d0 1515
1516=item CLASS
1517
1518Variable which is setup by C<xsubpp> to indicate the class name for a C++ XS
5fb8527f 1519constructor. This is always a C<char*>. See C<THIS> and
1520L<perlxs/"Using XS With C++">.
cb1a09d0 1521
1522=item Copy
1523
1524The XSUB-writer's interface to the C C<memcpy> function. The C<s> is the
1525source, C<d> is the destination, C<n> is the number of items, and C<t> is
0146554f 1526the type. May fail on overlapping copies. See also C<Move>.
cb1a09d0 1527
e89caa19 1528 void Copy( s, d, n, t )
cb1a09d0 1529
1530=item croak
1531
1532This is the XSUB-writer's interface to Perl's C<die> function. Use this
1533function the same way you use the C C<printf> function. See C<warn>.
1534
1535=item CvSTASH
1536
1537Returns the stash of the CV.
1538
e89caa19 1539 HV* CvSTASH( SV* sv )
cb1a09d0 1540
1541=item DBsingle
1542
1543When Perl is run in debugging mode, with the B<-d> switch, this SV is a
1544boolean which indicates whether subs are being single-stepped.
5fb8527f 1545Single-stepping is automatically turned on after every step. This is the C
1546variable which corresponds to Perl's $DB::single variable. See C<DBsub>.
cb1a09d0 1547
1548=item DBsub
1549
1550When Perl is run in debugging mode, with the B<-d> switch, this GV contains
5fb8527f 1551the SV which holds the name of the sub being debugged. This is the C
1552variable which corresponds to Perl's $DB::sub variable. See C<DBsingle>.
cb1a09d0 1553The sub name can be found by
1554
1555 SvPV( GvSV( DBsub ), na )
1556
5fb8527f 1557=item DBtrace
1558
1559Trace variable used when Perl is run in debugging mode, with the B<-d>
1560switch. This is the C variable which corresponds to Perl's $DB::trace
1561variable. See C<DBsingle>.
1562
cb1a09d0 1563=item dMARK
1564
5fb8527f 1565Declare a stack marker variable, C<mark>, for the XSUB. See C<MARK> and
1566C<dORIGMARK>.
cb1a09d0 1567
1568=item dORIGMARK
1569
1570Saves the original stack mark for the XSUB. See C<ORIGMARK>.
1571
5fb8527f 1572=item dowarn
1573
1574The C variable which corresponds to Perl's $^W warning variable.
1575
cb1a09d0 1576=item dSP
1577
5fb8527f 1578Declares a stack pointer variable, C<sp>, for the XSUB. See C<SP>.
cb1a09d0 1579
1580=item dXSARGS
1581
1582Sets up stack and mark pointers for an XSUB, calling dSP and dMARK. This is
1583usually handled automatically by C<xsubpp>. Declares the C<items> variable
1584to indicate the number of items on the stack.
1585
5fb8527f 1586=item dXSI32
1587
1588Sets up the C<ix> variable for an XSUB which has aliases. This is usually
1589handled automatically by C<xsubpp>.
1590
cb1a09d0 1591=item ENTER
1592
1593Opening bracket on a callback. See C<LEAVE> and L<perlcall>.
1594
1595 ENTER;
1596
1597=item EXTEND
1598
1599Used to extend the argument stack for an XSUB's return values.
1600
ef50df4b 1601 EXTEND( sp, int x )
cb1a09d0 1602
e89caa19 1603=item fbm_compile
1604
1605Analyses the string in order to make fast searches on it using fbm_instr() --
1606the Boyer-Moore algorithm.
1607
1608 void fbm_compile(SV* sv)
1609
1610=item fbm_instr
1611
1612Returns the location of the SV in the string delimited by C<str> and
1613C<strend>. It returns C<Nullch> if the string can't be found. The
1614C<sv> does not have to be fbm_compiled, but the search will not be as
1615fast then.
1616
1617 char* fbm_instr(char *str, char *strend, SV *sv)
1618
cb1a09d0 1619=item FREETMPS
1620
1621Closing bracket for temporaries on a callback. See C<SAVETMPS> and
1622L<perlcall>.
1623
1624 FREETMPS;
1625
1626=item G_ARRAY
1627
54310121 1628Used to indicate array context. See C<GIMME_V>, C<GIMME> and L<perlcall>.
cb1a09d0 1629
1630=item G_DISCARD
1631
1632Indicates that arguments returned from a callback should be discarded. See
1633L<perlcall>.
1634
1635=item G_EVAL
1636
1637Used to force a Perl C<eval> wrapper around a callback. See L<perlcall>.
1638
1639=item GIMME
1640
54310121 1641A backward-compatible version of C<GIMME_V> which can only return
1642C<G_SCALAR> or C<G_ARRAY>; in a void context, it returns C<G_SCALAR>.
1643
1644=item GIMME_V
1645
1646The XSUB-writer's equivalent to Perl's C<wantarray>. Returns
1647C<G_VOID>, C<G_SCALAR> or C<G_ARRAY> for void, scalar or array
1648context, respectively.
cb1a09d0 1649
1650=item G_NOARGS
1651
1652Indicates that no arguments are being sent to a callback. See L<perlcall>.
1653
1654=item G_SCALAR
1655
54310121 1656Used to indicate scalar context. See C<GIMME_V>, C<GIMME>, and L<perlcall>.
1657
faed5253 1658=item gv_fetchmeth
1659
1660Returns the glob with the given C<name> and a defined subroutine or
9607fc9c 1661C<NULL>. The glob lives in the given C<stash>, or in the stashes
1662accessable via @ISA and @<UNIVERSAL>.
faed5253 1663
9607fc9c 1664The argument C<level> should be either 0 or -1. If C<level==0>, as a
0a753a76 1665side-effect creates a glob with the given C<name> in the given
1666C<stash> which in the case of success contains an alias for the
1667subroutine, and sets up caching info for this glob. Similarly for all
1668the searched stashes.
1669
9607fc9c 1670This function grants C<"SUPER"> token as a postfix of the stash name.
1671
0a753a76 1672The GV returned from C<gv_fetchmeth> may be a method cache entry,
1673which is not visible to Perl code. So when calling C<perl_call_sv>,
1674you should not use the GV directly; instead, you should use the
1675method's CV, which can be obtained from the GV with the C<GvCV> macro.
faed5253 1676
ef50df4b 1677 GV* gv_fetchmeth (HV* stash, char* name, STRLEN len, I32 level)
faed5253 1678
1679=item gv_fetchmethod
1680
dc848c6f 1681=item gv_fetchmethod_autoload
1682
faed5253 1683Returns the glob which contains the subroutine to call to invoke the
dc848c6f 1684method on the C<stash>. In fact in the presense of autoloading this may
1685be the glob for "AUTOLOAD". In this case the corresponding variable
faed5253 1686$AUTOLOAD is already setup.
1687
dc848c6f 1688The third parameter of C<gv_fetchmethod_autoload> determines whether AUTOLOAD
1689lookup is performed if the given method is not present: non-zero means
1690yes, look for AUTOLOAD; zero means no, don't look for AUTOLOAD. Calling
1691C<gv_fetchmethod> is equivalent to calling C<gv_fetchmethod_autoload> with a
1692non-zero C<autoload> parameter.
1693
1694These functions grant C<"SUPER"> token as a prefix of the method name.
1695
1696Note that if you want to keep the returned glob for a long time, you
1697need to check for it being "AUTOLOAD", since at the later time the call
faed5253 1698may load a different subroutine due to $AUTOLOAD changing its value.
1699Use the glob created via a side effect to do this.
1700
dc848c6f 1701These functions have the same side-effects and as C<gv_fetchmeth> with
1702C<level==0>. C<name> should be writable if contains C<':'> or C<'\''>.
0a753a76 1703The warning against passing the GV returned by C<gv_fetchmeth> to
dc848c6f 1704C<perl_call_sv> apply equally to these functions.
faed5253 1705
ef50df4b 1706 GV* gv_fetchmethod (HV* stash, char* name)
1707 GV* gv_fetchmethod_autoload (HV* stash, char* name, I32 autoload)
faed5253 1708
e89caa19 1709=item G_VOID
1710
1711Used to indicate void context. See C<GIMME_V> and L<perlcall>.
1712
cb1a09d0 1713=item gv_stashpv
1714
1715Returns a pointer to the stash for a specified package. If C<create> is set
1716then the package will be created if it does not already exist. If C<create>
1717is not set and the package does not exist then NULL is returned.
1718
ef50df4b 1719 HV* gv_stashpv (char* name, I32 create)
cb1a09d0 1720
1721=item gv_stashsv
1722
1723Returns a pointer to the stash for a specified package. See C<gv_stashpv>.
1724
ef50df4b 1725 HV* gv_stashsv (SV* sv, I32 create)
cb1a09d0 1726
e5581bf4 1727=item GvSV
cb1a09d0 1728
e5581bf4 1729Return the SV from the GV.
44a8e56a 1730
1e422769 1731=item HEf_SVKEY
1732
1733This flag, used in the length slot of hash entries and magic
1734structures, specifies the structure contains a C<SV*> pointer where a
1735C<char*> pointer is to be expected. (For information only--not to be used).
1736
1e422769 1737=item HeHASH
1738
e89caa19 1739Returns the computed hash stored in the hash entry.
1e422769 1740
e89caa19 1741 U32 HeHASH(HE* he)
1e422769 1742
1743=item HeKEY
1744
1745Returns the actual pointer stored in the key slot of the hash entry.
1746The pointer may be either C<char*> or C<SV*>, depending on the value of
1747C<HeKLEN()>. Can be assigned to. The C<HePV()> or C<HeSVKEY()> macros
1748are usually preferable for finding the value of a key.
1749
e89caa19 1750 char* HeKEY(HE* he)
1e422769 1751
1752=item HeKLEN
1753
1754If this is negative, and amounts to C<HEf_SVKEY>, it indicates the entry
1755holds an C<SV*> key. Otherwise, holds the actual length of the key.
1756Can be assigned to. The C<HePV()> macro is usually preferable for finding
1757key lengths.
1758
e89caa19 1759 int HeKLEN(HE* he)
1e422769 1760
1761=item HePV
1762
1763Returns the key slot of the hash entry as a C<char*> value, doing any
1764necessary dereferencing of possibly C<SV*> keys. The length of
1765the string is placed in C<len> (this is a macro, so do I<not> use
1766C<&len>). If you do not care about what the length of the key is,
1767you may use the global variable C<na>. Remember though, that hash
1768keys in perl are free to contain embedded nulls, so using C<strlen()>
1769or similar is not a good way to find the length of hash keys.
1770This is very similar to the C<SvPV()> macro described elsewhere in
1771this document.
1772
e89caa19 1773 char* HePV(HE* he, STRLEN len)
1e422769 1774
1775=item HeSVKEY
1776
1777Returns the key as an C<SV*>, or C<Nullsv> if the hash entry
1778does not contain an C<SV*> key.
1779
1780 HeSVKEY(HE* he)
1781
1782=item HeSVKEY_force
1783
1784Returns the key as an C<SV*>. Will create and return a temporary
1785mortal C<SV*> if the hash entry contains only a C<char*> key.
1786
1787 HeSVKEY_force(HE* he)
1788
1789=item HeSVKEY_set
1790
1791Sets the key to a given C<SV*>, taking care to set the appropriate flags
1792to indicate the presence of an C<SV*> key, and returns the same C<SV*>.
1793
1794 HeSVKEY_set(HE* he, SV* sv)
1795
1796=item HeVAL
1797
1798Returns the value slot (type C<SV*>) stored in the hash entry.
1799
1800 HeVAL(HE* he)
1801
cb1a09d0 1802=item hv_clear
1803
1804Clears a hash, making it empty.
1805
ef50df4b 1806 void hv_clear (HV* tb)
cb1a09d0 1807
68dc0745 1808=item hv_delayfree_ent
1809
1810Releases a hash entry, such as while iterating though the hash, but
1811delays actual freeing of key and value until the end of the current
1812statement (or thereabouts) with C<sv_2mortal>. See C<hv_iternext>
1813and C<hv_free_ent>.
1814
ef50df4b 1815 void hv_delayfree_ent (HV* hv, HE* entry)
68dc0745 1816
cb1a09d0 1817=item hv_delete
1818
1819Deletes a key/value pair in the hash. The value SV is removed from the hash
5fb8527f 1820and returned to the caller. The C<klen> is the length of the key. The
04343c6d 1821C<flags> value will normally be zero; if set to G_DISCARD then NULL will be
cb1a09d0 1822returned.
1823
ef50df4b 1824 SV* hv_delete (HV* tb, char* key, U32 klen, I32 flags)
cb1a09d0 1825
1e422769 1826=item hv_delete_ent
1827
1828Deletes a key/value pair in the hash. The value SV is removed from the hash
1829and returned to the caller. The C<flags> value will normally be zero; if set
04343c6d 1830to G_DISCARD then NULL will be returned. C<hash> can be a valid precomputed
1e422769 1831hash value, or 0 to ask for it to be computed.
1832
ef50df4b 1833 SV* hv_delete_ent (HV* tb, SV* key, I32 flags, U32 hash)
1e422769 1834
cb1a09d0 1835=item hv_exists
1836
1837Returns a boolean indicating whether the specified hash key exists. The
5fb8527f 1838C<klen> is the length of the key.
cb1a09d0 1839
ef50df4b 1840 bool hv_exists (HV* tb, char* key, U32 klen)
cb1a09d0 1841
1e422769 1842=item hv_exists_ent
1843
1844Returns a boolean indicating whether the specified hash key exists. C<hash>
54310121 1845can be a valid precomputed hash value, or 0 to ask for it to be computed.
1e422769 1846
ef50df4b 1847 bool hv_exists_ent (HV* tb, SV* key, U32 hash)
1e422769 1848
cb1a09d0 1849=item hv_fetch
1850
1851Returns the SV which corresponds to the specified key in the hash. The
5fb8527f 1852C<klen> is the length of the key. If C<lval> is set then the fetch will be
cb1a09d0 1853part of a store. Check that the return value is non-null before
1854dereferencing it to a C<SV*>.
1855
04343c6d 1856See L<Understanding the Magic of Tied Hashes and Arrays> for more
1857information on how to use this function on tied hashes.
1858
ef50df4b 1859 SV** hv_fetch (HV* tb, char* key, U32 klen, I32 lval)
cb1a09d0 1860
1e422769 1861=item hv_fetch_ent
1862
1863Returns the hash entry which corresponds to the specified key in the hash.
54310121 1864C<hash> must be a valid precomputed hash number for the given C<key>, or
1e422769 18650 if you want the function to compute it. IF C<lval> is set then the
1866fetch will be part of a store. Make sure the return value is non-null
1867before accessing it. The return value when C<tb> is a tied hash
1868is a pointer to a static location, so be sure to make a copy of the
1869structure if you need to store it somewhere.
1870
04343c6d 1871See L<Understanding the Magic of Tied Hashes and Arrays> for more
1872information on how to use this function on tied hashes.
1873
ef50df4b 1874 HE* hv_fetch_ent (HV* tb, SV* key, I32 lval, U32 hash)
1e422769 1875
68dc0745 1876=item hv_free_ent
1877
1878Releases a hash entry, such as while iterating though the hash. See
1879C<hv_iternext> and C<hv_delayfree_ent>.
1880
ef50df4b 1881 void hv_free_ent (HV* hv, HE* entry)
68dc0745 1882
cb1a09d0 1883=item hv_iterinit
1884
1885Prepares a starting point to traverse a hash table.
1886
ef50df4b 1887 I32 hv_iterinit (HV* tb)
cb1a09d0 1888
fb73857a 1889Note that hv_iterinit I<currently> returns the number of I<buckets> in
1890the hash and I<not> the number of keys (as indicated in the Advanced
1891Perl Programming book). This may change in future. Use the HvKEYS(hv)
1892macro to find the number of keys in a hash.
1893
cb1a09d0 1894=item hv_iterkey
1895
1896Returns the key from the current position of the hash iterator. See
1897C<hv_iterinit>.
1898
ef50df4b 1899 char* hv_iterkey (HE* entry, I32* retlen)
cb1a09d0 1900
1e422769 1901=item hv_iterkeysv
3fe9a6f1 1902
1e422769 1903Returns the key as an C<SV*> from the current position of the hash
1904iterator. The return value will always be a mortal copy of the
1905key. Also see C<hv_iterinit>.
1906
ef50df4b 1907 SV* hv_iterkeysv (HE* entry)
1e422769 1908
cb1a09d0 1909=item hv_iternext
1910
1911Returns entries from a hash iterator. See C<hv_iterinit>.
1912
ef50df4b 1913 HE* hv_iternext (HV* tb)
cb1a09d0 1914
1915=item hv_iternextsv
1916
1917Performs an C<hv_iternext>, C<hv_iterkey>, and C<hv_iterval> in one
1918operation.
1919
e89caa19 1920 SV* hv_iternextsv (HV* hv, char** key, I32* retlen)
cb1a09d0 1921
1922=item hv_iterval
1923
1924Returns the value from the current position of the hash iterator. See
1925C<hv_iterkey>.
1926
ef50df4b 1927 SV* hv_iterval (HV* tb, HE* entry)
cb1a09d0 1928
1929=item hv_magic
1930
1931Adds magic to a hash. See C<sv_magic>.
1932
ef50df4b 1933 void hv_magic (HV* hv, GV* gv, int how)
cb1a09d0 1934
1935=item HvNAME
1936
1937Returns the package name of a stash. See C<SvSTASH>, C<CvSTASH>.
1938
e89caa19 1939 char* HvNAME (HV* stash)
cb1a09d0 1940
1941=item hv_store
1942
1943Stores an SV in a hash. The hash key is specified as C<key> and C<klen> is
54310121 1944the length of the key. The C<hash> parameter is the precomputed hash
cb1a09d0 1945value; if it is zero then Perl will compute it. The return value will be
04343c6d 1946NULL if the operation failed or if the value did not need to be actually
1947stored within the hash (as in the case of tied hashes). Otherwise it can
1948be dereferenced to get the original C<SV*>. Note that the caller is
1949responsible for suitably incrementing the reference count of C<val>
1950before the call, and decrementing it if the function returned NULL.
1951
1952See L<Understanding the Magic of Tied Hashes and Arrays> for more
1953information on how to use this function on tied hashes.
cb1a09d0 1954
ef50df4b 1955 SV** hv_store (HV* tb, char* key, U32 klen, SV* val, U32 hash)
cb1a09d0 1956
1e422769 1957=item hv_store_ent
1958
1959Stores C<val> in a hash. The hash key is specified as C<key>. The C<hash>
54310121 1960parameter is the precomputed hash value; if it is zero then Perl will
1e422769 1961compute it. The return value is the new hash entry so created. It will be
04343c6d 1962NULL if the operation failed or if the value did not need to be actually
1963stored within the hash (as in the case of tied hashes). Otherwise the
1964contents of the return value can be accessed using the C<He???> macros
1965described here. Note that the caller is responsible for suitably
1966incrementing the reference count of C<val> before the call, and decrementing
1967it if the function returned NULL.
1968
1969See L<Understanding the Magic of Tied Hashes and Arrays> for more
1970information on how to use this function on tied hashes.
1e422769 1971
ef50df4b 1972 HE* hv_store_ent (HV* tb, SV* key, SV* val, U32 hash)
1e422769 1973
cb1a09d0 1974=item hv_undef
1975
1976Undefines the hash.
1977
ef50df4b 1978 void hv_undef (HV* tb)
cb1a09d0 1979
1980=item isALNUM
1981
1982Returns a boolean indicating whether the C C<char> is an ascii alphanumeric
5f05dabc 1983character or digit.
cb1a09d0 1984
e89caa19 1985 int isALNUM (char c)
cb1a09d0 1986
1987=item isALPHA
1988
5fb8527f 1989Returns a boolean indicating whether the C C<char> is an ascii alphabetic
cb1a09d0 1990character.
1991
e89caa19 1992 int isALPHA (char c)
cb1a09d0 1993
1994=item isDIGIT
1995
1996Returns a boolean indicating whether the C C<char> is an ascii digit.
1997
e89caa19 1998 int isDIGIT (char c)
cb1a09d0 1999
2000=item isLOWER
2001
2002Returns a boolean indicating whether the C C<char> is a lowercase character.
2003
e89caa19 2004 int isLOWER (char c)
cb1a09d0 2005
2006=item isSPACE
2007
2008Returns a boolean indicating whether the C C<char> is whitespace.
2009
e89caa19 2010 int isSPACE (char c)
cb1a09d0 2011
2012=item isUPPER
2013
2014Returns a boolean indicating whether the C C<char> is an uppercase character.
2015
e89caa19 2016 int isUPPER (char c)
cb1a09d0 2017
2018=item items
2019
2020Variable which is setup by C<xsubpp> to indicate the number of items on the
5fb8527f 2021stack. See L<perlxs/"Variable-length Parameter Lists">.
2022
2023=item ix
2024
2025Variable which is setup by C<xsubpp> to indicate which of an XSUB's aliases
2026was used to invoke it. See L<perlxs/"The ALIAS: Keyword">.
cb1a09d0 2027
2028=item LEAVE
2029
2030Closing bracket on a callback. See C<ENTER> and L<perlcall>.
2031
2032 LEAVE;
2033
e89caa19 2034=item looks_like_number
2035
2036Test if an the content of an SV looks like a number (or is a number).
2037
2038 int looks_like_number(SV*)
2039
2040
cb1a09d0 2041=item MARK
2042
5fb8527f 2043Stack marker variable for the XSUB. See C<dMARK>.
cb1a09d0 2044
2045=item mg_clear
2046
2047Clear something magical that the SV represents. See C<sv_magic>.
2048
ef50df4b 2049 int mg_clear (SV* sv)
cb1a09d0 2050
2051=item mg_copy
2052
2053Copies the magic from one SV to another. See C<sv_magic>.
2054
ef50df4b 2055 int mg_copy (SV *, SV *, char *, STRLEN)
cb1a09d0 2056
2057=item mg_find
2058
2059Finds the magic pointer for type matching the SV. See C<sv_magic>.
2060
ef50df4b 2061 MAGIC* mg_find (SV* sv, int type)
cb1a09d0 2062
2063=item mg_free
2064
2065Free any magic storage used by the SV. See C<sv_magic>.
2066
ef50df4b 2067 int mg_free (SV* sv)
cb1a09d0 2068
2069=item mg_get
2070
2071Do magic after a value is retrieved from the SV. See C<sv_magic>.
2072
ef50df4b 2073 int mg_get (SV* sv)
cb1a09d0 2074
2075=item mg_len
2076
2077Report on the SV's length. See C<sv_magic>.
2078
ef50df4b 2079 U32 mg_len (SV* sv)
cb1a09d0 2080
2081=item mg_magical
2082
2083Turns on the magical status of an SV. See C<sv_magic>.
2084
ef50df4b 2085 void mg_magical (SV* sv)
cb1a09d0 2086
2087=item mg_set
2088
2089Do magic after a value is assigned to the SV. See C<sv_magic>.
2090
ef50df4b 2091 int mg_set (SV* sv)
cb1a09d0 2092
2093=item Move
2094
2095The XSUB-writer's interface to the C C<memmove> function. The C<s> is the
2096source, C<d> is the destination, C<n> is the number of items, and C<t> is
0146554f 2097the type. Can do overlapping moves. See also C<Copy>.
cb1a09d0 2098
e89caa19 2099 void Move( s, d, n, t )
cb1a09d0 2100
2101=item na
2102
2103A variable which may be used with C<SvPV> to tell Perl to calculate the
2104string length.
2105
2106=item New
2107
2108The XSUB-writer's interface to the C C<malloc> function.
2109
e89caa19 2110 void* New( x, void *ptr, int size, type )
cb1a09d0 2111
2112=item newAV
2113
5f05dabc 2114Creates a new AV. The reference count is set to 1.
cb1a09d0 2115
ef50df4b 2116 AV* newAV (void)
cb1a09d0 2117
e89caa19 2118=item Newc
2119
2120The XSUB-writer's interface to the C C<malloc> function, with cast.
2121
2122 void* Newc( x, void *ptr, int size, type, cast )
2123
cb1a09d0 2124=item newHV
2125
5f05dabc 2126Creates a new HV. The reference count is set to 1.
cb1a09d0 2127
ef50df4b 2128 HV* newHV (void)
cb1a09d0 2129
5f05dabc 2130=item newRV_inc
cb1a09d0 2131
5f05dabc 2132Creates an RV wrapper for an SV. The reference count for the original SV is
cb1a09d0 2133incremented.
2134
ef50df4b 2135 SV* newRV_inc (SV* ref)
5f05dabc 2136
2137For historical reasons, "newRV" is a synonym for "newRV_inc".
2138
2139=item newRV_noinc
2140
2141Creates an RV wrapper for an SV. The reference count for the original
2142SV is B<not> incremented.
2143
ef50df4b 2144 SV* newRV_noinc (SV* ref)
cb1a09d0 2145
8c52afec 2146=item NEWSV
cb1a09d0 2147
e89caa19 2148Creates a new SV. A non-zero C<len> parameter indicates the number of
2149bytes of preallocated string space the SV should have. An extra byte
2150for a tailing NUL is also reserved. (SvPOK is not set for the SV even
2151if string space is allocated.) The reference count for the new SV is
2152set to 1. C<id> is an integer id between 0 and 1299 (used to identify
2153leaks).
cb1a09d0 2154
ef50df4b 2155 SV* NEWSV (int id, STRLEN len)
cb1a09d0 2156
2157=item newSViv
2158
07fa94a1 2159Creates a new SV and copies an integer into it. The reference count for the
2160SV is set to 1.
cb1a09d0 2161
ef50df4b 2162 SV* newSViv (IV i)
cb1a09d0 2163
2164=item newSVnv
2165
07fa94a1 2166Creates a new SV and copies a double into it. The reference count for the
2167SV is set to 1.
cb1a09d0 2168
ef50df4b 2169 SV* newSVnv (NV i)
cb1a09d0 2170
2171=item newSVpv
2172
07fa94a1 2173Creates a new SV and copies a string into it. The reference count for the
2174SV is set to 1. If C<len> is zero then Perl will compute the length.
cb1a09d0 2175
ef50df4b 2176 SV* newSVpv (char* s, STRLEN len)
cb1a09d0 2177
e89caa19 2178=item newSVpvf
2179
2180Creates a new SV an initialize it with the string formatted like
2181C<sprintf>.
2182
2183 SV* newSVpvf(const char* pat, ...);
2184
9da1e3b5 2185=item newSVpvn
2186
2187Creates a new SV and copies a string into it. The reference count for the
2188SV is set to 1. If C<len> is zero then Perl will create a zero length
2189string.
2190
ef50df4b 2191 SV* newSVpvn (char* s, STRLEN len)
9da1e3b5 2192
cb1a09d0 2193=item newSVrv
2194
2195Creates a new SV for the RV, C<rv>, to point to. If C<rv> is not an RV then
5fb8527f 2196it will be upgraded to one. If C<classname> is non-null then the new SV will
cb1a09d0 2197be blessed in the specified package. The new SV is returned and its
5f05dabc 2198reference count is 1.
8ebc5c01 2199
ef50df4b 2200 SV* newSVrv (SV* rv, char* classname)
cb1a09d0 2201
2202=item newSVsv
2203
5fb8527f 2204Creates a new SV which is an exact duplicate of the original SV.
cb1a09d0 2205
ef50df4b 2206 SV* newSVsv (SV* old)
cb1a09d0 2207
2208=item newXS
2209
2210Used by C<xsubpp> to hook up XSUBs as Perl subs.
2211
2212=item newXSproto
2213
2214Used by C<xsubpp> to hook up XSUBs as Perl subs. Adds Perl prototypes to
2215the subs.
2216
e89caa19 2217=item Newz
2218
2219The XSUB-writer's interface to the C C<malloc> function. The allocated
2220memory is zeroed with C<memzero>.
2221
2222 void* Newz( x, void *ptr, int size, type )
2223
cb1a09d0 2224=item Nullav
2225
2226Null AV pointer.
2227
2228=item Nullch
2229
2230Null character pointer.
2231
2232=item Nullcv
2233
2234Null CV pointer.
2235
2236=item Nullhv
2237
2238Null HV pointer.
2239
2240=item Nullsv
2241
2242Null SV pointer.
2243
2244=item ORIGMARK
2245
2246The original stack mark for the XSUB. See C<dORIGMARK>.
2247
2248=item perl_alloc
2249
2250Allocates a new Perl interpreter. See L<perlembed>.
2251
2252=item perl_call_argv
2253
2254Performs a callback to the specified Perl sub. See L<perlcall>.
2255
ef50df4b 2256 I32 perl_call_argv (char* subname, I32 flags, char** argv)
cb1a09d0 2257
2258=item perl_call_method
2259
2260Performs a callback to the specified Perl method. The blessed object must
2261be on the stack. See L<perlcall>.
2262
ef50df4b 2263 I32 perl_call_method (char* methname, I32 flags)
cb1a09d0 2264
2265=item perl_call_pv
2266
2267Performs a callback to the specified Perl sub. See L<perlcall>.
2268
ef50df4b 2269 I32 perl_call_pv (char* subname, I32 flags)
cb1a09d0 2270
2271=item perl_call_sv
2272
2273Performs a callback to the Perl sub whose name is in the SV. See
2274L<perlcall>.
2275
ef50df4b 2276 I32 perl_call_sv (SV* sv, I32 flags)
cb1a09d0 2277
2278=item perl_construct
2279
2280Initializes a new Perl interpreter. See L<perlembed>.
2281
2282=item perl_destruct
2283
2284Shuts down a Perl interpreter. See L<perlembed>.
2285
2286=item perl_eval_sv
2287
2288Tells Perl to C<eval> the string in the SV.
2289
ef50df4b 2290 I32 perl_eval_sv (SV* sv, I32 flags)
cb1a09d0 2291
137443ea 2292=item perl_eval_pv
2293
2294Tells Perl to C<eval> the given string and return an SV* result.
2295
ef50df4b 2296 SV* perl_eval_pv (char* p, I32 croak_on_error)
137443ea 2297
cb1a09d0 2298=item perl_free
2299
2300Releases a Perl interpreter. See L<perlembed>.
2301
2302=item perl_get_av
2303
2304Returns the AV of the specified Perl array. If C<create> is set and the
2305Perl variable does not exist then it will be created. If C<create> is not
04343c6d 2306set and the variable does not exist then NULL is returned.
cb1a09d0 2307
ef50df4b 2308 AV* perl_get_av (char* name, I32 create)
cb1a09d0 2309
2310=item perl_get_cv
2311
2312Returns the CV of the specified Perl sub. If C<create> is set and the Perl
2313variable does not exist then it will be created. If C<create> is not
04343c6d 2314set and the variable does not exist then NULL is returned.
cb1a09d0 2315
ef50df4b 2316 CV* perl_get_cv (char* name, I32 create)
cb1a09d0 2317
2318=item perl_get_hv
2319
2320Returns the HV of the specified Perl hash. If C<create> is set and the Perl
2321variable does not exist then it will be created. If C<create> is not
04343c6d 2322set and the variable does not exist then NULL is returned.
cb1a09d0 2323
ef50df4b 2324 HV* perl_get_hv (char* name, I32 create)
cb1a09d0 2325
2326=item perl_get_sv
2327
2328Returns the SV of the specified Perl scalar. If C<create> is set and the
2329Perl variable does not exist then it will be created. If C<create> is not
04343c6d 2330set and the variable does not exist then NULL is returned.
cb1a09d0 2331
ef50df4b 2332 SV* perl_get_sv (char* name, I32 create)
cb1a09d0 2333
2334=item perl_parse
2335
2336Tells a Perl interpreter to parse a Perl script. See L<perlembed>.
2337
2338=item perl_require_pv
2339
2340Tells Perl to C<require> a module.
2341
ef50df4b 2342 void perl_require_pv (char* pv)
cb1a09d0 2343
2344=item perl_run
2345
2346Tells a Perl interpreter to run. See L<perlembed>.
2347
2348=item POPi
2349
2350Pops an integer off the stack.
2351
e89caa19 2352 int POPi()
cb1a09d0 2353
2354=item POPl
2355
2356Pops a long off the stack.
2357
e89caa19 2358 long POPl()
cb1a09d0 2359
2360=item POPp
2361
2362Pops a string off the stack.
2363
e89caa19 2364 char* POPp()
cb1a09d0 2365
2366=item POPn
2367
2368Pops a double off the stack.
2369
e89caa19 2370 double POPn()
cb1a09d0 2371
2372=item POPs
2373
2374Pops an SV off the stack.
2375
e89caa19 2376 SV* POPs()
cb1a09d0 2377
2378=item PUSHMARK
2379
2380Opening bracket for arguments on a callback. See C<PUTBACK> and L<perlcall>.
2381
2382 PUSHMARK(p)
2383
2384=item PUSHi
2385
2386Push an integer onto the stack. The stack must have room for this element.
189b2af5 2387Handles 'set' magic. See C<XPUSHi>.
cb1a09d0 2388
e89caa19 2389 void PUSHi(int d)
cb1a09d0 2390
2391=item PUSHn
2392
2393Push a double onto the stack. The stack must have room for this element.
189b2af5 2394Handles 'set' magic. See C<XPUSHn>.
cb1a09d0 2395
e89caa19 2396 void PUSHn(double d)
cb1a09d0 2397
2398=item PUSHp
2399
2400Push a string onto the stack. The stack must have room for this element.
189b2af5 2401The C<len> indicates the length of the string. Handles 'set' magic. See
2402C<XPUSHp>.
cb1a09d0 2403
e89caa19 2404 void PUSHp(char *c, int len )
cb1a09d0 2405
2406=item PUSHs
2407
189b2af5 2408Push an SV onto the stack. The stack must have room for this element. Does
2409not handle 'set' magic. See C<XPUSHs>.
cb1a09d0 2410
e89caa19 2411 void PUSHs(sv)
2412
2413=item PUSHu
2414
2415Push an unsigned integer onto the stack. The stack must have room for
2416this element. See C<XPUSHu>.
2417
2418 void PUSHu(unsigned int d)
2419
cb1a09d0 2420
2421=item PUTBACK
2422
2423Closing bracket for XSUB arguments. This is usually handled by C<xsubpp>.
2424See C<PUSHMARK> and L<perlcall> for other uses.
2425
2426 PUTBACK;
2427
2428=item Renew
2429
2430The XSUB-writer's interface to the C C<realloc> function.
2431
e89caa19 2432 void* Renew( void *ptr, int size, type )
cb1a09d0 2433
2434=item Renewc
2435
2436The XSUB-writer's interface to the C C<realloc> function, with cast.
2437
e89caa19 2438 void* Renewc( void *ptr, int size, type, cast )
cb1a09d0 2439
2440=item RETVAL
2441
2442Variable which is setup by C<xsubpp> to hold the return value for an XSUB.
5fb8527f 2443This is always the proper type for the XSUB.
2444See L<perlxs/"The RETVAL Variable">.
cb1a09d0 2445
2446=item safefree
2447
2448The XSUB-writer's interface to the C C<free> function.
2449
2450=item safemalloc
2451
2452The XSUB-writer's interface to the C C<malloc> function.
2453
2454=item saferealloc
2455
2456The XSUB-writer's interface to the C C<realloc> function.
2457
2458=item savepv
2459
2460Copy a string to a safe spot. This does not use an SV.
2461
ef50df4b 2462 char* savepv (char* sv)
cb1a09d0 2463
2464=item savepvn
2465
2466Copy a string to a safe spot. The C<len> indicates number of bytes to
2467copy. This does not use an SV.
2468
ef50df4b 2469 char* savepvn (char* sv, I32 len)
cb1a09d0 2470
2471=item SAVETMPS
2472
2473Opening bracket for temporaries on a callback. See C<FREETMPS> and
2474L<perlcall>.
2475
2476 SAVETMPS;
2477
2478=item SP
2479
2480Stack pointer. This is usually handled by C<xsubpp>. See C<dSP> and
2481C<SPAGAIN>.
2482
2483=item SPAGAIN
2484
54310121 2485Refetch the stack pointer. Used after a callback. See L<perlcall>.
cb1a09d0 2486
2487 SPAGAIN;
2488
2489=item ST
2490
2491Used to access elements on the XSUB's stack.
2492
e89caa19 2493 SV* ST(int x)
cb1a09d0 2494
2495=item strEQ
2496
2497Test two strings to see if they are equal. Returns true or false.
2498
e89caa19 2499 int strEQ( char *s1, char *s2 )
cb1a09d0 2500
2501=item strGE
2502
2503Test two strings to see if the first, C<s1>, is greater than or equal to the
2504second, C<s2>. Returns true or false.
2505
e89caa19 2506 int strGE( char *s1, char *s2 )
cb1a09d0 2507
2508=item strGT
2509
2510Test two strings to see if the first, C<s1>, is greater than the second,
2511C<s2>. Returns true or false.
2512
e89caa19 2513 int strGT( char *s1, char *s2 )
cb1a09d0 2514
2515=item strLE
2516
2517Test two strings to see if the first, C<s1>, is less than or equal to the
2518second, C<s2>. Returns true or false.
2519
e89caa19 2520 int strLE( char *s1, char *s2 )
cb1a09d0 2521
2522=item strLT
2523
2524Test two strings to see if the first, C<s1>, is less than the second,
2525C<s2>. Returns true or false.
2526
e89caa19 2527 int strLT( char *s1, char *s2 )
cb1a09d0 2528
2529=item strNE
2530
2531Test two strings to see if they are different. Returns true or false.
2532
e89caa19 2533 int strNE( char *s1, char *s2 )
cb1a09d0 2534
2535=item strnEQ
2536
2537Test two strings to see if they are equal. The C<len> parameter indicates
2538the number of bytes to compare. Returns true or false.
2539
e89caa19 2540 int strnEQ( char *s1, char *s2 )
cb1a09d0 2541
2542=item strnNE
2543
2544Test two strings to see if they are different. The C<len> parameter
2545indicates the number of bytes to compare. Returns true or false.
2546
e89caa19 2547 int strnNE( char *s1, char *s2, int len )
cb1a09d0 2548
2549=item sv_2mortal
2550
2551Marks an SV as mortal. The SV will be destroyed when the current context
2552ends.
2553
ef50df4b 2554 SV* sv_2mortal (SV* sv)
cb1a09d0 2555
2556=item sv_bless
2557
2558Blesses an SV into a specified package. The SV must be an RV. The package
07fa94a1 2559must be designated by its stash (see C<gv_stashpv()>). The reference count
2560of the SV is unaffected.
cb1a09d0 2561
ef50df4b 2562 SV* sv_bless (SV* sv, HV* stash)
cb1a09d0 2563
ef50df4b 2564=item sv_catpv
189b2af5 2565
ef50df4b 2566Concatenates the string onto the end of the string which is in the SV.
2567Handles 'get' magic, but not 'set' magic. See C<sv_catpv_mg>.
189b2af5 2568
ef50df4b 2569 void sv_catpv (SV* sv, char* ptr)
189b2af5 2570
ef50df4b 2571=item sv_catpv_mg
cb1a09d0 2572
ef50df4b 2573Like C<sv_catpv>, but also handles 'set' magic.
cb1a09d0 2574
ef50df4b 2575 void sv_catpvn (SV* sv, char* ptr)
cb1a09d0 2576
2577=item sv_catpvn
2578
2579Concatenates the string onto the end of the string which is in the SV. The
189b2af5 2580C<len> indicates number of bytes to copy. Handles 'get' magic, but not
ef50df4b 2581'set' magic. See C<sv_catpvn_mg>.
cb1a09d0 2582
ef50df4b 2583 void sv_catpvn (SV* sv, char* ptr, STRLEN len)
2584
2585=item sv_catpvn_mg
2586
2587Like C<sv_catpvn>, but also handles 'set' magic.
2588
2589 void sv_catpvn_mg (SV* sv, char* ptr, STRLEN len)
cb1a09d0 2590
46fc3d4c 2591=item sv_catpvf
2592
2593Processes its arguments like C<sprintf> and appends the formatted output
189b2af5 2594to an SV. Handles 'get' magic, but not 'set' magic. C<SvSETMAGIC()> must
2595typically be called after calling this function to handle 'set' magic.
46fc3d4c 2596
ef50df4b 2597 void sv_catpvf (SV* sv, const char* pat, ...)
2598
2599=item sv_catpvf_mg
2600
2601Like C<sv_catpvf>, but also handles 'set' magic.
2602
2603 void sv_catpvf_mg (SV* sv, const char* pat, ...)
46fc3d4c 2604
cb1a09d0 2605=item sv_catsv
2606
5fb8527f 2607Concatenates the string from SV C<ssv> onto the end of the string in SV
ef50df4b 2608C<dsv>. Handles 'get' magic, but not 'set' magic. See C<sv_catsv_mg>.
2609
2610 void sv_catsv (SV* dsv, SV* ssv)
2611
2612=item sv_catsv_mg
cb1a09d0 2613
ef50df4b 2614Like C<sv_catsv>, but also handles 'set' magic.
2615
2616 void sv_catsv_mg (SV* dsv, SV* ssv)
cb1a09d0 2617
e89caa19 2618=item sv_chop
2619
2620Efficient removal of characters from the beginning of the string
2621buffer. SvPOK(sv) must be true and the C<ptr> must be a pointer to
2622somewhere inside the string buffer. The C<ptr> becomes the first
2623character of the adjusted string.
2624
2625 void sv_chop(SV* sv, char *ptr)
2626
2627
5fb8527f 2628=item sv_cmp
2629
2630Compares the strings in two SVs. Returns -1, 0, or 1 indicating whether the
2631string in C<sv1> is less than, equal to, or greater than the string in
2632C<sv2>.
2633
ef50df4b 2634 I32 sv_cmp (SV* sv1, SV* sv2)
5fb8527f 2635
cb1a09d0 2636=item SvCUR
2637
2638Returns the length of the string which is in the SV. See C<SvLEN>.
2639
e89caa19 2640 int SvCUR (SV* sv)
cb1a09d0 2641
2642=item SvCUR_set
2643
2644Set the length of the string which is in the SV. See C<SvCUR>.
2645
e89caa19 2646 void SvCUR_set (SV* sv, int val )
cb1a09d0 2647
5fb8527f 2648=item sv_dec
2649
5f05dabc 2650Auto-decrement of the value in the SV.
5fb8527f 2651
ef50df4b 2652 void sv_dec (SV* sv)
5fb8527f 2653
e89caa19 2654=item sv_derived_from
2655
2656Returns a boolean indicating whether the SV is a subclass of the
2657specified class.
2658
2659 int sv_derived_from(SV* sv, char* class)
2660
cb1a09d0 2661=item SvEND
2662
2663Returns a pointer to the last character in the string which is in the SV.
2664See C<SvCUR>. Access the character as
2665
e89caa19 2666 char* SvEND(sv)
cb1a09d0 2667
5fb8527f 2668=item sv_eq
2669
2670Returns a boolean indicating whether the strings in the two SVs are
2671identical.
2672
ef50df4b 2673 I32 sv_eq (SV* sv1, SV* sv2)
5fb8527f 2674
189b2af5 2675=item SvGETMAGIC
2676
2677Invokes C<mg_get> on an SV if it has 'get' magic. This macro evaluates
2678its argument more than once.
2679
2680 void SvGETMAGIC( SV *sv )
2681
cb1a09d0 2682=item SvGROW
2683
e89caa19 2684Expands the character buffer in the SV so that it has room for the
2685indicated number of bytes (remember to reserve space for an extra
2686trailing NUL character). Calls C<sv_grow> to perform the expansion if
2687necessary. Returns a pointer to the character buffer.
cb1a09d0 2688
e89caa19 2689 char* SvGROW( SV* sv, int len )
cb1a09d0 2690
5fb8527f 2691=item sv_grow
2692
2693Expands the character buffer in the SV. This will use C<sv_unref> and will
2694upgrade the SV to C<SVt_PV>. Returns a pointer to the character buffer.
2695Use C<SvGROW>.
2696
2697=item sv_inc
2698
07fa94a1 2699Auto-increment of the value in the SV.
5fb8527f 2700
ef50df4b 2701 void sv_inc (SV* sv)
5fb8527f 2702
e89caa19 2703=item sv_insert
2704
2705Inserts a string at the specified offset/length within the SV.
2706Similar to the Perl substr() function.
2707
2708 void sv_insert(SV *sv, STRLEN offset, STRLEN len,
2709 char *str, STRLEN strlen)
2710
cb1a09d0 2711=item SvIOK
2712
2713Returns a boolean indicating whether the SV contains an integer.
2714
e89caa19 2715 int SvIOK (SV* SV)
cb1a09d0 2716
2717=item SvIOK_off
2718
2719Unsets the IV status of an SV.
2720
e89caa19 2721 void SvIOK_off (SV* sv)
cb1a09d0 2722
2723=item SvIOK_on
2724
2725Tells an SV that it is an integer.
2726
e89caa19 2727 void SvIOK_on (SV* sv)
cb1a09d0 2728
5fb8527f 2729=item SvIOK_only
2730
2731Tells an SV that it is an integer and disables all other OK bits.
2732
e89caa19 2733 void SvIOK_only (SV* sv)
5fb8527f 2734
cb1a09d0 2735=item SvIOKp
2736
2737Returns a boolean indicating whether the SV contains an integer. Checks the
2738B<private> setting. Use C<SvIOK>.
2739
e89caa19 2740 int SvIOKp (SV* SV)
cb1a09d0 2741
2742=item sv_isa
2743
2744Returns a boolean indicating whether the SV is blessed into the specified
2745class. This does not know how to check for subtype, so it doesn't work in
2746an inheritance relationship.
2747
ef50df4b 2748 int sv_isa (SV* sv, char* name)
cb1a09d0 2749
cb1a09d0 2750=item sv_isobject
2751
2752Returns a boolean indicating whether the SV is an RV pointing to a blessed
2753object. If the SV is not an RV, or if the object is not blessed, then this
2754will return false.
2755
ef50df4b 2756 int sv_isobject (SV* sv)
cb1a09d0 2757
e89caa19 2758=item SvIV
2759
2760Returns the integer which is in the SV.
2761
2762 int SvIV (SV* sv)
2763
cb1a09d0 2764=item SvIVX
2765
2766Returns the integer which is stored in the SV.
2767
e89caa19 2768 int SvIVX (SV* sv)
cb1a09d0 2769
2770=item SvLEN
2771
2772Returns the size of the string buffer in the SV. See C<SvCUR>.
2773
e89caa19 2774 int SvLEN (SV* sv)
cb1a09d0 2775
5fb8527f 2776=item sv_len
2777
2778Returns the length of the string in the SV. Use C<SvCUR>.
2779
ef50df4b 2780 STRLEN sv_len (SV* sv)
5fb8527f 2781
cb1a09d0 2782=item sv_magic
2783
2784Adds magic to an SV.
2785
ef50df4b 2786 void sv_magic (SV* sv, SV* obj, int how, char* name, I32 namlen)
cb1a09d0 2787
2788=item sv_mortalcopy
2789
2790Creates a new SV which is a copy of the original SV. The new SV is marked
5f05dabc 2791as mortal.
cb1a09d0 2792
ef50df4b 2793 SV* sv_mortalcopy (SV* oldsv)
cb1a09d0 2794
cb1a09d0 2795=item sv_newmortal
2796
5f05dabc 2797Creates a new SV which is mortal. The reference count of the SV is set to 1.
cb1a09d0 2798
ef50df4b 2799 SV* sv_newmortal (void)
cb1a09d0 2800
cb1a09d0 2801=item SvNIOK
2802
2803Returns a boolean indicating whether the SV contains a number, integer or
2804double.
2805
e89caa19 2806 int SvNIOK (SV* SV)
cb1a09d0 2807
2808=item SvNIOK_off
2809
2810Unsets the NV/IV status of an SV.
2811
e89caa19 2812 void SvNIOK_off (SV* sv)
cb1a09d0 2813
2814=item SvNIOKp
2815
2816Returns a boolean indicating whether the SV contains a number, integer or
2817double. Checks the B<private> setting. Use C<SvNIOK>.
2818
e89caa19 2819 int SvNIOKp (SV* SV)
2820
2821=item sv_no
2822
2823This is the C<false> SV. See C<sv_yes>. Always refer to this as C<&sv_no>.
cb1a09d0 2824
2825=item SvNOK
2826
2827Returns a boolean indicating whether the SV contains a double.
2828
e89caa19 2829 int SvNOK (SV* SV)
cb1a09d0 2830
2831=item SvNOK_off
2832
2833Unsets the NV status of an SV.
2834
e89caa19 2835 void SvNOK_off (SV* sv)
cb1a09d0 2836
2837=item SvNOK_on
2838
2839Tells an SV that it is a double.
2840
e89caa19 2841 void SvNOK_on (SV* sv)
cb1a09d0 2842
5fb8527f 2843=item SvNOK_only
2844
2845Tells an SV that it is a double and disables all other OK bits.
2846
e89caa19 2847 void SvNOK_only (SV* sv)
5fb8527f 2848
cb1a09d0 2849=item SvNOKp
2850
2851Returns a boolean indicating whether the SV contains a double. Checks the
2852B<private> setting. Use C<SvNOK>.
2853
e89caa19 2854 int SvNOKp (SV* SV)
cb1a09d0 2855
2856=item SvNV
2857
2858Returns the double which is stored in the SV.
2859
e89caa19 2860 double SvNV (SV* sv)
cb1a09d0 2861
2862=item SvNVX
2863
2864Returns the double which is stored in the SV.
2865
e89caa19 2866 double SvNVX (SV* sv)
2867
2868=item SvOK
2869
2870Returns a boolean indicating whether the value is an SV.
2871
2872 int SvOK (SV* sv)
2873
2874=item SvOOK
2875
2876Returns a boolean indicating whether the SvIVX is a valid offset value
2877for the SvPVX. This hack is used internally to speed up removal of
2878characters from the beginning of a SvPV. When SvOOK is true, then the
2879start of the allocated string buffer is really (SvPVX - SvIVX).
2880
2881 int SvOOK(Sv* sv)
cb1a09d0 2882
2883=item SvPOK
2884
2885Returns a boolean indicating whether the SV contains a character string.
2886
e89caa19 2887 int SvPOK (SV* SV)
cb1a09d0 2888
2889=item SvPOK_off
2890
2891Unsets the PV status of an SV.
2892
e89caa19 2893 void SvPOK_off (SV* sv)
cb1a09d0 2894
2895=item SvPOK_on
2896
2897Tells an SV that it is a string.
2898
e89caa19 2899 void SvPOK_on (SV* sv)
cb1a09d0 2900
5fb8527f 2901=item SvPOK_only
2902
2903Tells an SV that it is a string and disables all other OK bits.
2904
e89caa19 2905 void SvPOK_only (SV* sv)
5fb8527f 2906
cb1a09d0 2907=item SvPOKp
2908
2909Returns a boolean indicating whether the SV contains a character string.
2910Checks the B<private> setting. Use C<SvPOK>.
2911
e89caa19 2912 int SvPOKp (SV* SV)
cb1a09d0 2913
2914=item SvPV
2915
2916Returns a pointer to the string in the SV, or a stringified form of the SV
2917if the SV does not contain a string. If C<len> is C<na> then Perl will
189b2af5 2918handle the length on its own. Handles 'get' magic.
cb1a09d0 2919
e89caa19 2920 char* SvPV (SV* sv, int len )
2921
2922=item SvPV_force
2923
2924Like <SvPV> but will force the SV into becoming a string (SvPOK). You
2925want force if you are going to update the SvPVX directly.
2926
2927 char* SvPV_force(SV* sv, int len)
2928
cb1a09d0 2929
2930=item SvPVX
2931
2932Returns a pointer to the string in the SV. The SV must contain a string.
2933
e89caa19 2934 char* SvPVX (SV* sv)
cb1a09d0 2935
2936=item SvREFCNT
2937
5f05dabc 2938Returns the value of the object's reference count.
cb1a09d0 2939
e89caa19 2940 int SvREFCNT (SV* sv)
cb1a09d0 2941
2942=item SvREFCNT_dec
2943
5f05dabc 2944Decrements the reference count of the given SV.
cb1a09d0 2945
e89caa19 2946 void SvREFCNT_dec (SV* sv)
cb1a09d0 2947
2948=item SvREFCNT_inc
2949
5f05dabc 2950Increments the reference count of the given SV.
cb1a09d0 2951
e89caa19 2952 void SvREFCNT_inc (SV* sv)
cb1a09d0 2953
2954=item SvROK
2955
2956Tests if the SV is an RV.
2957
e89caa19 2958 int SvROK (SV* sv)
cb1a09d0 2959
2960=item SvROK_off
2961
2962Unsets the RV status of an SV.
2963
e89caa19 2964 void SvROK_off (SV* sv)
cb1a09d0 2965
2966=item SvROK_on
2967
2968Tells an SV that it is an RV.
2969
e89caa19 2970 void SvROK_on (SV* sv)
cb1a09d0 2971
2972=item SvRV
2973
2974Dereferences an RV to return the SV.
2975
ef50df4b 2976 SV* SvRV (SV* sv)
cb1a09d0 2977
189b2af5 2978=item SvSETMAGIC
2979
2980Invokes C<mg_set> on an SV if it has 'set' magic. This macro evaluates
2981its argument more than once.
2982
2983 void SvSETMAGIC( SV *sv )
2984
ef50df4b 2985=item sv_setiv
189b2af5 2986
ef50df4b 2987Copies an integer into the given SV. Does not handle 'set' magic.
2988See C<sv_setiv_mg>.
189b2af5 2989
ef50df4b 2990 void sv_setiv (SV* sv, IV num)
189b2af5 2991
ef50df4b 2992=item sv_setiv_mg
189b2af5 2993
ef50df4b 2994Like C<sv_setiv>, but also handles 'set' magic.
189b2af5 2995
ef50df4b 2996 void sv_setiv_mg (SV* sv, IV num)
189b2af5 2997
ef50df4b 2998=item sv_setnv
189b2af5 2999
ef50df4b 3000Copies a double into the given SV. Does not handle 'set' magic.
3001See C<sv_setnv_mg>.
189b2af5 3002
ef50df4b 3003 void sv_setnv (SV* sv, double num)
189b2af5 3004
ef50df4b 3005=item sv_setnv_mg
189b2af5 3006
ef50df4b 3007Like C<sv_setnv>, but also handles 'set' magic.
189b2af5 3008
ef50df4b 3009 void sv_setnv_mg (SV* sv, double num)
189b2af5 3010
ef50df4b 3011=item sv_setpv
189b2af5 3012
ef50df4b 3013Copies a string into an SV. The string must be null-terminated.
3014Does not handle 'set' magic. See C<sv_setpv_mg>.
189b2af5 3015
ef50df4b 3016 void sv_setpv (SV* sv, char* ptr)
189b2af5 3017
ef50df4b 3018=item sv_setpv_mg
189b2af5 3019
ef50df4b 3020Like C<sv_setpv>, but also handles 'set' magic.
189b2af5 3021
ef50df4b 3022 void sv_setpv_mg (SV* sv, char* ptr)
189b2af5 3023
ef50df4b 3024=item sv_setpviv
cb1a09d0 3025
ef50df4b 3026Copies an integer into the given SV, also updating its string value.
3027Does not handle 'set' magic. See C<sv_setpviv_mg>.
cb1a09d0 3028
ef50df4b 3029 void sv_setpviv (SV* sv, IV num)
cb1a09d0 3030
ef50df4b 3031=item sv_setpviv_mg
cb1a09d0 3032
ef50df4b 3033Like C<sv_setpviv>, but also handles 'set' magic.
cb1a09d0 3034
ef50df4b 3035 void sv_setpviv_mg (SV* sv, IV num)
cb1a09d0 3036
ef50df4b 3037=item sv_setpvn
cb1a09d0 3038
ef50df4b 3039Copies a string into an SV. The C<len> parameter indicates the number of
3040bytes to be copied. Does not handle 'set' magic. See C<sv_setpvn_mg>.
cb1a09d0 3041
ef50df4b 3042 void sv_setpvn (SV* sv, char* ptr, STRLEN len)
cb1a09d0 3043
ef50df4b 3044=item sv_setpvn_mg
189b2af5 3045
ef50df4b 3046Like C<sv_setpvn>, but also handles 'set' magic.
189b2af5 3047
ef50df4b 3048 void sv_setpvn_mg (SV* sv, char* ptr, STRLEN len)
189b2af5 3049
ef50df4b 3050=item sv_setpvf
cb1a09d0 3051
ef50df4b 3052Processes its arguments like C<sprintf> and sets an SV to the formatted
3053output. Does not handle 'set' magic. See C<sv_setpvf_mg>.
cb1a09d0 3054
ef50df4b 3055 void sv_setpvf (SV* sv, const char* pat, ...)
cb1a09d0 3056
ef50df4b 3057=item sv_setpvf_mg
46fc3d4c 3058
ef50df4b 3059Like C<sv_setpvf>, but also handles 'set' magic.
46fc3d4c 3060
ef50df4b 3061 void sv_setpvf_mg (SV* sv, const char* pat, ...)
46fc3d4c 3062
cb1a09d0 3063=item sv_setref_iv
3064
5fb8527f 3065Copies an integer into a new SV, optionally blessing the SV. The C<rv>
3066argument will be upgraded to an RV. That RV will be modified to point to
3067the new SV. The C<classname> argument indicates the package for the
3068blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 3069will be returned and will have a reference count of 1.
cb1a09d0 3070
ef50df4b 3071 SV* sv_setref_iv (SV *rv, char *classname, IV iv)
cb1a09d0 3072
3073=item sv_setref_nv
3074
5fb8527f 3075Copies a double into a new SV, optionally blessing the SV. The C<rv>
3076argument will be upgraded to an RV. That RV will be modified to point to
3077the new SV. The C<classname> argument indicates the package for the
3078blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 3079will be returned and will have a reference count of 1.
cb1a09d0 3080
ef50df4b 3081 SV* sv_setref_nv (SV *rv, char *classname, double nv)
cb1a09d0 3082
3083=item sv_setref_pv
3084
5fb8527f 3085Copies a pointer into a new SV, optionally blessing the SV. The C<rv>
3086argument will be upgraded to an RV. That RV will be modified to point to
3087the new SV. If the C<pv> argument is NULL then C<sv_undef> will be placed
3088into the SV. The C<classname> argument indicates the package for the
3089blessing. Set C<classname> to C<Nullch> to avoid the blessing. The new SV
5f05dabc 3090will be returned and will have a reference count of 1.
cb1a09d0 3091
ef50df4b 3092 SV* sv_setref_pv (SV *rv, char *classname, void* pv)
cb1a09d0 3093
3094Do not use with integral Perl types such as HV, AV, SV, CV, because those
3095objects will become corrupted by the pointer copy process.
3096
3097Note that C<sv_setref_pvn> copies the string while this copies the pointer.
3098
3099=item sv_setref_pvn
3100
5fb8527f 3101Copies a string into a new SV, optionally blessing the SV. The length of the
3102string must be specified with C<n>. The C<rv> argument will be upgraded to
3103an RV. That RV will be modified to point to the new SV. The C<classname>
cb1a09d0 3104argument indicates the package for the blessing. Set C<classname> to
3105C<Nullch> to avoid the blessing. The new SV will be returned and will have
5f05dabc 3106a reference count of 1.
cb1a09d0 3107
ef50df4b 3108 SV* sv_setref_pvn (SV *rv, char *classname, char* pv, I32 n)
cb1a09d0 3109
3110Note that C<sv_setref_pv> copies the pointer while this copies the string.
3111
189b2af5 3112=item SvSetSV
3113
3114Calls C<sv_setsv> if dsv is not the same as ssv. May evaluate arguments
3115more than once.
3116
3117 void SvSetSV (SV* dsv, SV* ssv)
3118
3119=item SvSetSV_nosteal
3120
3121Calls a non-destructive version of C<sv_setsv> if dsv is not the same as ssv.
3122May evaluate arguments more than once.
3123
3124 void SvSetSV_nosteal (SV* dsv, SV* ssv)
3125
cb1a09d0 3126=item sv_setsv
3127
3128Copies the contents of the source SV C<ssv> into the destination SV C<dsv>.
189b2af5 3129The source SV may be destroyed if it is mortal. Does not handle 'set' magic.
ef50df4b 3130See the macro forms C<SvSetSV>, C<SvSetSV_nosteal> and C<sv_setsv_mg>.
3131
3132 void sv_setsv (SV* dsv, SV* ssv)
3133
3134=item sv_setsv_mg
3135
3136Like C<sv_setsv>, but also handles 'set' magic.
cb1a09d0 3137
ef50df4b 3138 void sv_setsv_mg (SV* dsv, SV* ssv)
cb1a09d0 3139
189b2af5 3140=item sv_setuv
3141
3142Copies an unsigned integer into the given SV. Does not handle 'set' magic.
ef50df4b 3143See C<sv_setuv_mg>.
189b2af5 3144
ef50df4b 3145 void sv_setuv (SV* sv, UV num)
3146
3147=item sv_setuv_mg
3148
3149Like C<sv_setuv>, but also handles 'set' magic.
3150
3151 void sv_setuv_mg (SV* sv, UV num)
189b2af5 3152
cb1a09d0 3153=item SvSTASH
3154
3155Returns the stash of the SV.
3156
e89caa19 3157 HV* SvSTASH (SV* sv)
3158
3159=item SvTAINT
3160
3161Taints an SV if tainting is enabled
3162
3163 void SvTAINT (SV* sv)
3164
3165=item SvTAINTED
3166
3167Checks to see if an SV is tainted. Returns TRUE if it is, FALSE if not.
3168
3169 int SvTAINTED (SV* sv)
3170
3171=item SvTAINTED_off
3172
3173Untaints an SV. Be I<very> careful with this routine, as it short-circuits
3174some of Perl's fundamental security features. XS module authors should
3175not use this function unless they fully understand all the implications
3176of unconditionally untainting the value. Untainting should be done in
3177the standard perl fashion, via a carefully crafted regexp, rather than
3178directly untainting variables.
3179
3180 void SvTAINTED_off (SV* sv)
3181
3182=item SvTAINTED_on
3183
3184Marks an SV as tainted.
3185
3186 void SvTAINTED_on (SV* sv)
cb1a09d0 3187
3188=item SVt_IV
3189
3190Integer type flag for scalars. See C<svtype>.
3191
3192=item SVt_PV
3193
3194Pointer type flag for scalars. See C<svtype>.
3195
3196=item SVt_PVAV
3197
3198Type flag for arrays. See C<svtype>.
3199
3200=item SVt_PVCV
3201
3202Type flag for code refs. See C<svtype>.
3203
3204=item SVt_PVHV
3205
3206Type flag for hashes. See C<svtype>.
3207
3208=item SVt_PVMG
3209
3210Type flag for blessed scalars. See C<svtype>.
3211
3212=item SVt_NV
3213
3214Double type flag for scalars. See C<svtype>.
3215
3216=item SvTRUE
3217
3218Returns a boolean indicating whether Perl would evaluate the SV as true or
189b2af5 3219false, defined or undefined. Does not handle 'get' magic.
cb1a09d0 3220
e89caa19 3221 int SvTRUE (SV* sv)
cb1a09d0 3222
3223=item SvTYPE
3224
3225Returns the type of the SV. See C<svtype>.
3226
3227 svtype SvTYPE (SV* sv)
3228
3229=item svtype
3230
3231An enum of flags for Perl types. These are found in the file B<sv.h> in the
3232C<svtype> enum. Test these flags with the C<SvTYPE> macro.
3233
cb1a09d0 3234=item sv_undef
3235
3236This is the C<undef> SV. Always refer to this as C<&sv_undef>.
3237
5fb8527f 3238=item sv_unref
3239
07fa94a1 3240Unsets the RV status of the SV, and decrements the reference count of
3241whatever was being referenced by the RV. This can almost be thought of
3242as a reversal of C<newSVrv>. See C<SvROK_off>.
5fb8527f 3243
ef50df4b 3244 void sv_unref (SV* sv)
189b2af5 3245
e89caa19 3246=item SvUPGRADE
3247
3248Used to upgrade an SV to a more complex form. Uses C<sv_upgrade> to perform
3249the upgrade if necessary. See C<svtype>.
3250
3251 bool SvUPGRADE (SV* sv, svtype mt)
3252
3253=item sv_upgrade
3254
3255Upgrade an SV to a more complex form. Use C<SvUPGRADE>. See C<svtype>.
3256
cb1a09d0 3257=item sv_usepvn
3258
3259Tells an SV to use C<ptr> to find its string value. Normally the string is
5fb8527f 3260stored inside the SV but sv_usepvn allows the SV to use an outside string.
3261The C<ptr> should point to memory that was allocated by C<malloc>. The
cb1a09d0 3262string length, C<len>, must be supplied. This function will realloc the
3263memory pointed to by C<ptr>, so that pointer should not be freed or used by
189b2af5 3264the programmer after giving it to sv_usepvn. Does not handle 'set' magic.
ef50df4b 3265See C<sv_usepvn_mg>.
3266
3267 void sv_usepvn (SV* sv, char* ptr, STRLEN len)
3268
3269=item sv_usepvn_mg
3270
3271Like C<sv_usepvn>, but also handles 'set' magic.
cb1a09d0 3272
ef50df4b 3273 void sv_usepvn_mg (SV* sv, char* ptr, STRLEN len)
cb1a09d0 3274
e89caa19 3275=item SvUV
3276
3277Returns the unsigned integer which is in the SV.
3278
3279 UV SvUV(SV* sv)
3280
3281=item SvUVX
3282
3283Returns the unsigned integer which is stored in the SV.
3284
3285 UV SvUVX(SV* sv)
3286
cb1a09d0 3287=item sv_yes
3288
3289This is the C<true> SV. See C<sv_no>. Always refer to this as C<&sv_yes>.
3290
3291=item THIS
3292
3293Variable which is setup by C<xsubpp> to designate the object in a C++ XSUB.
3294This is always the proper type for the C++ object. See C<CLASS> and
5fb8527f 3295L<perlxs/"Using XS With C++">.
cb1a09d0 3296
3297=item toLOWER
3298
3299Converts the specified character to lowercase.
3300
e89caa19 3301 int toLOWER (char c)
cb1a09d0 3302
3303=item toUPPER
3304
3305Converts the specified character to uppercase.
3306
e89caa19 3307 int toUPPER (char c)
cb1a09d0 3308
3309=item warn
3310
3311This is the XSUB-writer's interface to Perl's C<warn> function. Use this
3312function the same way you use the C C<printf> function. See C<croak()>.
3313
3314=item XPUSHi
3315
189b2af5 3316Push an integer onto the stack, extending the stack if necessary. Handles
3317'set' magic. See C<PUSHi>.
cb1a09d0 3318
3319 XPUSHi(int d)
3320
3321=item XPUSHn
3322
189b2af5 3323Push a double onto the stack, extending the stack if necessary. Handles 'set'
3324magic. See C<PUSHn>.
cb1a09d0 3325
3326 XPUSHn(double d)
3327
3328=item XPUSHp
3329
3330Push a string onto the stack, extending the stack if necessary. The C<len>
189b2af5 3331indicates the length of the string. Handles 'set' magic. See C<PUSHp>.
cb1a09d0 3332
3333 XPUSHp(char *c, int len)
3334
3335=item XPUSHs
3336
189b2af5 3337Push an SV onto the stack, extending the stack if necessary. Does not
3338handle 'set' magic. See C<PUSHs>.
cb1a09d0 3339
3340 XPUSHs(sv)
3341
e89caa19 3342=item XPUSHu
3343
3344Push an unsigned integer onto the stack, extending the stack if
3345necessary. See C<PUSHu>.
3346
5fb8527f 3347=item XS
3348
3349Macro to declare an XSUB and its C parameter list. This is handled by
3350C<xsubpp>.
3351
cb1a09d0 3352=item XSRETURN
3353
3354Return from XSUB, indicating number of items on the stack. This is usually
3355handled by C<xsubpp>.
3356
ef50df4b 3357 XSRETURN(int x)
cb1a09d0 3358
3359=item XSRETURN_EMPTY
3360
5fb8527f 3361Return an empty list from an XSUB immediately.
cb1a09d0 3362
3363 XSRETURN_EMPTY;
3364
5fb8527f 3365=item XSRETURN_IV
3366
3367Return an integer from an XSUB immediately. Uses C<XST_mIV>.
3368
ef50df4b 3369 XSRETURN_IV(IV v)
5fb8527f 3370
cb1a09d0 3371=item XSRETURN_NO
3372
5fb8527f 3373Return C<&sv_no> from an XSUB immediately. Uses C<XST_mNO>.
cb1a09d0 3374
3375 XSRETURN_NO;
3376
5fb8527f 3377=item XSRETURN_NV
3378
3379Return an double from an XSUB immediately. Uses C<XST_mNV>.
3380
ef50df4b 3381 XSRETURN_NV(NV v)
5fb8527f 3382
3383=item XSRETURN_PV
3384
3385Return a copy of a string from an XSUB immediately. Uses C<XST_mPV>.
3386
ef50df4b 3387 XSRETURN_PV(char *v)
5fb8527f 3388
cb1a09d0 3389=item XSRETURN_UNDEF
3390
5fb8527f 3391Return C<&sv_undef> from an XSUB immediately. Uses C<XST_mUNDEF>.
cb1a09d0 3392
3393 XSRETURN_UNDEF;
3394
3395=item XSRETURN_YES
3396
5fb8527f 3397Return C<&sv_yes> from an XSUB immediately. Uses C<XST_mYES>.
cb1a09d0 3398
3399 XSRETURN_YES;
3400
5fb8527f 3401=item XST_mIV
3402
3403Place an integer into the specified position C<i> on the stack. The value is
3404stored in a new mortal SV.
3405
ef50df4b 3406 XST_mIV( int i, IV v )
5fb8527f 3407
3408=item XST_mNV
3409
3410Place a double into the specified position C<i> on the stack. The value is
3411stored in a new mortal SV.
3412
ef50df4b 3413 XST_mNV( int i, NV v )
5fb8527f 3414
3415=item XST_mNO
3416
3417Place C<&sv_no> into the specified position C<i> on the stack.
3418
ef50df4b 3419 XST_mNO( int i )
5fb8527f 3420
3421=item XST_mPV
3422
3423Place a copy of a string into the specified position C<i> on the stack. The
3424value is stored in a new mortal SV.
3425
ef50df4b 3426 XST_mPV( int i, char *v )
5fb8527f 3427
3428=item XST_mUNDEF
3429
3430Place C<&sv_undef> into the specified position C<i> on the stack.
3431
ef50df4b 3432 XST_mUNDEF( int i )
5fb8527f 3433
3434=item XST_mYES
3435
3436Place C<&sv_yes> into the specified position C<i> on the stack.
3437
ef50df4b 3438 XST_mYES( int i )
5fb8527f 3439
3440=item XS_VERSION
3441
3442The version identifier for an XS module. This is usually handled
3443automatically by C<ExtUtils::MakeMaker>. See C<XS_VERSION_BOOTCHECK>.
3444
3445=item XS_VERSION_BOOTCHECK
3446
3447Macro to verify that a PM module's $VERSION variable matches the XS module's
3448C<XS_VERSION> variable. This is usually handled automatically by
3449C<xsubpp>. See L<perlxs/"The VERSIONCHECK: Keyword">.
3450
cb1a09d0 3451=item Zero
3452
3453The XSUB-writer's interface to the C C<memzero> function. The C<d> is the
3454destination, C<n> is the number of items, and C<t> is the type.
3455
e89caa19 3456 void Zero( d, n, t )
cb1a09d0 3457
3458=back
3459
9cecd9f2 3460=head1 AUTHORS
cb1a09d0 3461
9cecd9f2 3462Until May 1997, this document was maintained by Jeff Okamoto
3463<okamoto@corp.hp.com>. It is now maintained as part of Perl itself.
cb1a09d0 3464
3465With lots of help and suggestions from Dean Roehrich, Malcolm Beattie,
3466Andreas Koenig, Paul Hudson, Ilya Zakharevich, Paul Marquess, Neil
189b2af5 3467Bowers, Matthew Green, Tim Bunce, Spider Boardman, Ulrich Pfeifer,
3468Stephen McCamant, and Gurusamy Sarathy.
cb1a09d0 3469
9cecd9f2 3470API Listing originally by Dean Roehrich <roehrich@cray.com>.