note strict/lax version requirements in documentation
[p5sagit/p5-mst-13.2.git] / pod / perlcall.pod
CommitLineData
a0d0e21e 1=head1 NAME
2
3perlcall - Perl calling conventions from C
4
5=head1 DESCRIPTION
6
d1b91892 7The purpose of this document is to show you how to call Perl subroutines
5f05dabc 8directly from C, i.e., how to write I<callbacks>.
a0d0e21e 9
d1b91892 10Apart from discussing the C interface provided by Perl for writing
11callbacks the document uses a series of examples to show how the
12interface actually works in practice. In addition some techniques for
13coding callbacks are covered.
a0d0e21e 14
d1b91892 15Examples where callbacks are necessary include
a0d0e21e 16
17=over 5
18
d1b91892 19=item * An Error Handler
a0d0e21e 20
21You have created an XSUB interface to an application's C API.
22
23A fairly common feature in applications is to allow you to define a C
d1b91892 24function that will be called whenever something nasty occurs. What we
25would like is to be able to specify a Perl subroutine that will be
26called instead.
a0d0e21e 27
d1b91892 28=item * An Event Driven Program
a0d0e21e 29
d1b91892 30The classic example of where callbacks are used is when writing an
31event driven program like for an X windows application. In this case
184e9718 32you register functions to be called whenever specific events occur,
5f05dabc 33e.g., a mouse button is pressed, the cursor moves into a window or a
d1b91892 34menu item is selected.
a0d0e21e 35
36=back
37
d1b91892 38Although the techniques described here are applicable when embedding
39Perl in a C program, this is not the primary goal of this document.
40There are other details that must be considered and are specific to
41embedding Perl. For details on embedding Perl in C refer to
42L<perlembed>.
a0d0e21e 43
d1b91892 44Before you launch yourself head first into the rest of this document,
45it would be a good idea to have read the following two documents -
8e07c86e 46L<perlxs> and L<perlguts>.
a0d0e21e 47
4929bf7b 48=head1 THE CALL_ FUNCTIONS
a0d0e21e 49
d1b91892 50Although this stuff is easier to explain using examples, you first need
51be aware of a few important definitions.
a0d0e21e 52
d1b91892 53Perl has a number of C functions that allow you to call Perl
54subroutines. They are
a0d0e21e 55
4358a253 56 I32 call_sv(SV* sv, I32 flags);
57 I32 call_pv(char *subname, I32 flags);
58 I32 call_method(char *methname, I32 flags);
59 I32 call_argv(char *subname, I32 flags, register char **argv);
a0d0e21e 60
4929bf7b 61The key function is I<call_sv>. All the other functions are
d1b91892 62fairly simple wrappers which make it easier to call Perl subroutines in
4929bf7b 63special cases. At the end of the day they will all call I<call_sv>
5f05dabc 64to invoke the Perl subroutine.
d1b91892 65
4929bf7b 66All the I<call_*> functions have a C<flags> parameter which is
d1b91892 67used to pass a bit mask of options to Perl. This bit mask operates
68identically for each of the functions. The settings available in the
69bit mask are discussed in L<FLAG VALUES>.
70
71Each of the functions will now be discussed in turn.
72
73=over 5
74
4929bf7b 75=item call_sv
d1b91892 76
4929bf7b 77I<call_sv> takes two parameters, the first, C<sv>, is an SV*.
d1b91892 78This allows you to specify the Perl subroutine to be called either as a
79C string (which has first been converted to an SV) or a reference to a
4929bf7b 80subroutine. The section, I<Using call_sv>, shows how you can make
81use of I<call_sv>.
d1b91892 82
4929bf7b 83=item call_pv
d1b91892 84
4929bf7b 85The function, I<call_pv>, is similar to I<call_sv> except it
d1b91892 86expects its first parameter to be a C char* which identifies the Perl
4929bf7b 87subroutine you want to call, e.g., C<call_pv("fred", 0)>. If the
d1b91892 88subroutine you want to call is in another package, just include the
5f05dabc 89package name in the string, e.g., C<"pkg::fred">.
d1b91892 90
4929bf7b 91=item call_method
d1b91892 92
4929bf7b 93The function I<call_method> is used to call a method from a Perl
d1b91892 94class. The parameter C<methname> corresponds to the name of the method
95to be called. Note that the class that the method belongs to is passed
96on the Perl stack rather than in the parameter list. This class can be
97either the name of the class (for a static method) or a reference to an
98object (for a virtual method). See L<perlobj> for more information on
4929bf7b 99static and virtual methods and L<Using call_method> for an example
100of using I<call_method>.
d1b91892 101
4929bf7b 102=item call_argv
d1b91892 103
4929bf7b 104I<call_argv> calls the Perl subroutine specified by the C string
d1b91892 105stored in the C<subname> parameter. It also takes the usual C<flags>
106parameter. The final parameter, C<argv>, consists of a NULL terminated
107list of C strings to be passed as parameters to the Perl subroutine.
4929bf7b 108See I<Using call_argv>.
d1b91892 109
110=back
111
112All the functions return an integer. This is a count of the number of
113items returned by the Perl subroutine. The actual items returned by the
114subroutine are stored on the Perl stack.
115
116As a general rule you should I<always> check the return value from
117these functions. Even if you are expecting only a particular number of
118values to be returned from the Perl subroutine, there is nothing to
19799a22 119stop someone from doing something unexpected--don't say you haven't
d1b91892 120been warned.
121
122=head1 FLAG VALUES
123
4929bf7b 124The C<flags> parameter in all the I<call_*> functions is a bit mask
d1b91892 125which can consist of any combination of the symbols defined below,
126OR'ed together.
127
128
54310121 129=head2 G_VOID
130
131Calls the Perl subroutine in a void context.
132
133This flag has 2 effects:
134
135=over 5
136
137=item 1.
138
139It indicates to the subroutine being called that it is executing in
140a void context (if it executes I<wantarray> the result will be the
141undefined value).
142
143=item 2.
144
145It ensures that nothing is actually returned from the subroutine.
146
147=back
148
4929bf7b 149The value returned by the I<call_*> function indicates how many
54310121 150items have been returned by the Perl subroutine - in this case it will
151be 0.
152
153
d1b91892 154=head2 G_SCALAR
155
156Calls the Perl subroutine in a scalar context. This is the default
4929bf7b 157context flag setting for all the I<call_*> functions.
d1b91892 158
184e9718 159This flag has 2 effects:
d1b91892 160
161=over 5
162
163=item 1.
164
184e9718 165It indicates to the subroutine being called that it is executing in a
d1b91892 166scalar context (if it executes I<wantarray> the result will be false).
a0d0e21e 167
d1b91892 168=item 2.
169
184e9718 170It ensures that only a scalar is actually returned from the subroutine.
d1b91892 171The subroutine can, of course, ignore the I<wantarray> and return a
172list anyway. If so, then only the last element of the list will be
173returned.
174
175=back
176
4929bf7b 177The value returned by the I<call_*> function indicates how many
d1b91892 178items have been returned by the Perl subroutine - in this case it will
179be either 0 or 1.
a0d0e21e 180
d1b91892 181If 0, then you have specified the G_DISCARD flag.
a0d0e21e 182
d1b91892 183If 1, then the item actually returned by the Perl subroutine will be
184stored on the Perl stack - the section I<Returning a Scalar> shows how
185to access this value on the stack. Remember that regardless of how
186many items the Perl subroutine returns, only the last one will be
187accessible from the stack - think of the case where only one value is
188returned as being a list with only one element. Any other items that
189were returned will not exist by the time control returns from the
4929bf7b 190I<call_*> function. The section I<Returning a list in a scalar
54310121 191context> shows an example of this behavior.
a0d0e21e 192
a0d0e21e 193
d1b91892 194=head2 G_ARRAY
a0d0e21e 195
d1b91892 196Calls the Perl subroutine in a list context.
a0d0e21e 197
184e9718 198As with G_SCALAR, this flag has 2 effects:
a0d0e21e 199
200=over 5
201
d1b91892 202=item 1.
203
90fdbbb7 204It indicates to the subroutine being called that it is executing in a
205list context (if it executes I<wantarray> the result will be true).
a0d0e21e 206
a0d0e21e 207
d1b91892 208=item 2.
a0d0e21e 209
184e9718 210It ensures that all items returned from the subroutine will be
4929bf7b 211accessible when control returns from the I<call_*> function.
a0d0e21e 212
d1b91892 213=back
a0d0e21e 214
4929bf7b 215The value returned by the I<call_*> function indicates how many
d1b91892 216items have been returned by the Perl subroutine.
a0d0e21e 217
184e9718 218If 0, then you have specified the G_DISCARD flag.
a0d0e21e 219
d1b91892 220If not 0, then it will be a count of the number of items returned by
221the subroutine. These items will be stored on the Perl stack. The
222section I<Returning a list of values> gives an example of using the
223G_ARRAY flag and the mechanics of accessing the returned items from the
224Perl stack.
a0d0e21e 225
d1b91892 226=head2 G_DISCARD
a0d0e21e 227
4929bf7b 228By default, the I<call_*> functions place the items returned from
d1b91892 229by the Perl subroutine on the stack. If you are not interested in
230these items, then setting this flag will make Perl get rid of them
231automatically for you. Note that it is still possible to indicate a
232context to the Perl subroutine by using either G_SCALAR or G_ARRAY.
a0d0e21e 233
d1b91892 234If you do not set this flag then it is I<very> important that you make
5f05dabc 235sure that any temporaries (i.e., parameters passed to the Perl
d1b91892 236subroutine and values returned from the subroutine) are disposed of
237yourself. The section I<Returning a Scalar> gives details of how to
5f05dabc 238dispose of these temporaries explicitly and the section I<Using Perl to
d1b91892 239dispose of temporaries> discusses the specific circumstances where you
240can ignore the problem and let Perl deal with it for you.
a0d0e21e 241
d1b91892 242=head2 G_NOARGS
a0d0e21e 243
4929bf7b 244Whenever a Perl subroutine is called using one of the I<call_*>
d1b91892 245functions, it is assumed by default that parameters are to be passed to
246the subroutine. If you are not passing any parameters to the Perl
247subroutine, you can save a bit of time by setting this flag. It has
248the effect of not creating the C<@_> array for the Perl subroutine.
a0d0e21e 249
d1b91892 250Although the functionality provided by this flag may seem
251straightforward, it should be used only if there is a good reason to do
252so. The reason for being cautious is that even if you have specified
253the G_NOARGS flag, it is still possible for the Perl subroutine that
254has been called to think that you have passed it parameters.
a0d0e21e 255
d1b91892 256In fact, what can happen is that the Perl subroutine you have called
257can access the C<@_> array from a previous Perl subroutine. This will
4929bf7b 258occur when the code that is executing the I<call_*> function has
d1b91892 259itself been called from another Perl subroutine. The code below
260illustrates this
a0d0e21e 261
84f709e7 262 sub fred
263 { print "@_\n" }
a0d0e21e 264
84f709e7 265 sub joe
266 { &fred }
a0d0e21e 267
4358a253 268 &joe(1,2,3);
a0d0e21e 269
270This will print
271
d1b91892 272 1 2 3
273
274What has happened is that C<fred> accesses the C<@_> array which
275belongs to C<joe>.
a0d0e21e 276
a0d0e21e 277
54310121 278=head2 G_EVAL
a0d0e21e 279
d1b91892 280It is possible for the Perl subroutine you are calling to terminate
5f05dabc 281abnormally, e.g., by calling I<die> explicitly or by not actually
268118b2 282existing. By default, when either of these events occurs, the
283process will terminate immediately. If you want to trap this
d1b91892 284type of event, specify the G_EVAL flag. It will put an I<eval { }>
285around the subroutine call.
a0d0e21e 286
4929bf7b 287Whenever control returns from the I<call_*> function you need to
d1b91892 288check the C<$@> variable as you would in a normal Perl script.
289
4929bf7b 290The value returned from the I<call_*> function is dependent on
d1b91892 291what other flags have been specified and whether an error has
184e9718 292occurred. Here are all the different cases that can occur:
d1b91892 293
294=over 5
295
296=item *
297
4929bf7b 298If the I<call_*> function returns normally, then the value
d1b91892 299returned is as specified in the previous sections.
300
301=item *
302
303If G_DISCARD is specified, the return value will always be 0.
304
305=item *
306
307If G_ARRAY is specified I<and> an error has occurred, the return value
308will always be 0.
309
310=item *
a0d0e21e 311
d1b91892 312If G_SCALAR is specified I<and> an error has occurred, the return value
313will be 1 and the value on the top of the stack will be I<undef>. This
314means that if you have already detected the error by checking C<$@> and
315you want the program to continue, you must remember to pop the I<undef>
316from the stack.
a0d0e21e 317
318=back
319
54310121 320See I<Using G_EVAL> for details on using G_EVAL.
d1b91892 321
c07a80fd 322=head2 G_KEEPERR
323
324You may have noticed that using the G_EVAL flag described above will
325B<always> clear the C<$@> variable and set it to a string describing
326the error iff there was an error in the called code. This unqualified
327resetting of C<$@> can be problematic in the reliable identification of
328errors using the C<eval {}> mechanism, because the possibility exists
329that perl will call other code (end of block processing code, for
330example) between the time the error causes C<$@> to be set within
331C<eval {}>, and the subsequent statement which checks for the value of
332C<$@> gets executed in the user's script.
333
334This scenario will mostly be applicable to code that is meant to be
335called from within destructors, asynchronous callbacks, signal
336handlers, C<__DIE__> or C<__WARN__> hooks, and C<tie> functions. In
337such situations, you will not want to clear C<$@> at all, but simply to
338append any new errors to any existing value of C<$@>.
339
340The G_KEEPERR flag is meant to be used in conjunction with G_EVAL in
4929bf7b 341I<call_*> functions that are used to implement such code. This flag
c07a80fd 342has no effect when G_EVAL is not used.
343
344When G_KEEPERR is used, any errors in the called code will be prefixed
345with the string "\t(in cleanup)", and appended to the current value
d1f347d7 346of C<$@>. an error will not be appended if that same error string is
347already at the end of C<$@>.
348
349In addition, a warning is generated using the appended string. This can be
350disabled using C<no warnings 'misc'>.
c07a80fd 351
352The G_KEEPERR flag was introduced in Perl version 5.002.
353
354See I<Using G_KEEPERR> for an example of a situation that warrants the
355use of this flag.
356
54310121 357=head2 Determining the Context
d1b91892 358
359As mentioned above, you can determine the context of the currently
54310121 360executing subroutine in Perl with I<wantarray>. The equivalent test
361can be made in C by using the C<GIMME_V> macro, which returns
90fdbbb7 362C<G_ARRAY> if you have been called in a list context, C<G_SCALAR> if
7a2e2cd6 363in a scalar context, or C<G_VOID> if in a void context (i.e. the
54310121 364return value will not be used). An older version of this macro is
365called C<GIMME>; in a void context it returns C<G_SCALAR> instead of
366C<G_VOID>. An example of using the C<GIMME_V> macro is shown in
367section I<Using GIMME_V>.
d1b91892 368
a0d0e21e 369=head1 EXAMPLES
370
371Enough of the definition talk, let's have a few examples.
372
d1b91892 373Perl provides many macros to assist in accessing the Perl stack.
374Wherever possible, these macros should always be used when interfacing
5f05dabc 375to Perl internals. We hope this should make the code less vulnerable
d1b91892 376to any changes made to Perl in the future.
a0d0e21e 377
d1b91892 378Another point worth noting is that in the first series of examples I
4929bf7b 379have made use of only the I<call_pv> function. This has been done
d1b91892 380to keep the code simpler and ease you into the topic. Wherever
4929bf7b 381possible, if the choice is between using I<call_pv> and
382I<call_sv>, you should always try to use I<call_sv>. See
383I<Using call_sv> for details.
a0d0e21e 384
d1b91892 385=head2 No Parameters, Nothing returned
a0d0e21e 386
d1b91892 387This first trivial example will call a Perl subroutine, I<PrintUID>, to
388print out the UID of the process.
a0d0e21e 389
84f709e7 390 sub PrintUID
391 {
4358a253 392 print "UID is $<\n";
a0d0e21e 393 }
394
d1b91892 395and here is a C function to call it
a0d0e21e 396
d1b91892 397 static void
a0d0e21e 398 call_PrintUID()
399 {
4358a253 400 dSP;
a0d0e21e 401
4358a253 402 PUSHMARK(SP);
403 call_pv("PrintUID", G_DISCARD|G_NOARGS);
a0d0e21e 404 }
405
d1b91892 406Simple, eh.
a0d0e21e 407
d1b91892 408A few points to note about this example.
a0d0e21e 409
410=over 5
411
d1b91892 412=item 1.
a0d0e21e 413
924508f0 414Ignore C<dSP> and C<PUSHMARK(SP)> for now. They will be discussed in
d1b91892 415the next example.
a0d0e21e 416
417=item 2.
418
d1b91892 419We aren't passing any parameters to I<PrintUID> so G_NOARGS can be
420specified.
a0d0e21e 421
d1b91892 422=item 3.
a0d0e21e 423
424We aren't interested in anything returned from I<PrintUID>, so
5f05dabc 425G_DISCARD is specified. Even if I<PrintUID> was changed to
a0d0e21e 426return some value(s), having specified G_DISCARD will mean that they
4929bf7b 427will be wiped by the time control returns from I<call_pv>.
a0d0e21e 428
d1b91892 429=item 4.
a0d0e21e 430
4929bf7b 431As I<call_pv> is being used, the Perl subroutine is specified as a
d1b91892 432C string. In this case the subroutine name has been 'hard-wired' into the
433code.
a0d0e21e 434
435=item 5.
436
d1b91892 437Because we specified G_DISCARD, it is not necessary to check the value
4929bf7b 438returned from I<call_pv>. It will always be 0.
a0d0e21e 439
440=back
441
d1b91892 442=head2 Passing Parameters
a0d0e21e 443
d1b91892 444Now let's make a slightly more complex example. This time we want to
19799a22 445call a Perl subroutine, C<LeftString>, which will take 2 parameters--a
446string ($s) and an integer ($n). The subroutine will simply
447print the first $n characters of the string.
a0d0e21e 448
d1b91892 449So the Perl subroutine would look like this
a0d0e21e 450
84f709e7 451 sub LeftString
452 {
4358a253 453 my($s, $n) = @_;
454 print substr($s, 0, $n), "\n";
a0d0e21e 455 }
456
457The C function required to call I<LeftString> would look like this.
458
459 static void
460 call_LeftString(a, b)
4358a253 461 char * a;
462 int b;
a0d0e21e 463 {
4358a253 464 dSP;
a0d0e21e 465
4358a253 466 ENTER;
467 SAVETMPS;
9b6570b4 468
4358a253 469 PUSHMARK(SP);
a0d0e21e 470 XPUSHs(sv_2mortal(newSVpv(a, 0)));
471 XPUSHs(sv_2mortal(newSViv(b)));
4358a253 472 PUTBACK;
a0d0e21e 473
4929bf7b 474 call_pv("LeftString", G_DISCARD);
9b6570b4 475
4358a253 476 FREETMPS;
477 LEAVE;
a0d0e21e 478 }
479
a0d0e21e 480Here are a few notes on the C function I<call_LeftString>.
481
482=over 5
483
d1b91892 484=item 1.
a0d0e21e 485
d1b91892 486Parameters are passed to the Perl subroutine using the Perl stack.
487This is the purpose of the code beginning with the line C<dSP> and
1e62ac33 488ending with the line C<PUTBACK>. The C<dSP> declares a local copy
924508f0 489of the stack pointer. This local copy should B<always> be accessed
490as C<SP>.
a0d0e21e 491
d1b91892 492=item 2.
a0d0e21e 493
494If you are going to put something onto the Perl stack, you need to know
19799a22 495where to put it. This is the purpose of the macro C<dSP>--it declares
d1b91892 496and initializes a I<local> copy of the Perl stack pointer.
a0d0e21e 497
498All the other macros which will be used in this example require you to
d1b91892 499have used this macro.
a0d0e21e 500
d1b91892 501The exception to this rule is if you are calling a Perl subroutine
502directly from an XSUB function. In this case it is not necessary to
19799a22 503use the C<dSP> macro explicitly--it will be declared for you
d1b91892 504automatically.
a0d0e21e 505
d1b91892 506=item 3.
a0d0e21e 507
508Any parameters to be pushed onto the stack should be bracketed by the
d1b91892 509C<PUSHMARK> and C<PUTBACK> macros. The purpose of these two macros, in
5f05dabc 510this context, is to count the number of parameters you are
511pushing automatically. Then whenever Perl is creating the C<@_> array for the
d1b91892 512subroutine, it knows how big to make it.
513
514The C<PUSHMARK> macro tells Perl to make a mental note of the current
515stack pointer. Even if you aren't passing any parameters (like the
516example shown in the section I<No Parameters, Nothing returned>) you
517must still call the C<PUSHMARK> macro before you can call any of the
4929bf7b 518I<call_*> functions--Perl still needs to know that there are no
d1b91892 519parameters.
520
521The C<PUTBACK> macro sets the global copy of the stack pointer to be
4929bf7b 522the same as our local copy. If we didn't do this I<call_pv>
19799a22 523wouldn't know where the two parameters we pushed were--remember that
d1b91892 524up to now all the stack pointer manipulation we have done is with our
525local copy, I<not> the global copy.
526
527=item 4.
528
a0d0e21e 529Next, we come to XPUSHs. This is where the parameters actually get
d1b91892 530pushed onto the stack. In this case we are pushing a string and an
531integer.
a0d0e21e 532
54310121 533See L<perlguts/"XSUBs and the Argument Stack"> for details
d1b91892 534on how the XPUSH macros work.
a0d0e21e 535
087fe227 536=item 5.
a0d0e21e 537
9b6570b4 538Because we created temporary values (by means of sv_2mortal() calls)
539we will have to tidy up the Perl stack and dispose of mortal SVs.
540
541This is the purpose of
542
4358a253 543 ENTER;
544 SAVETMPS;
9b6570b4 545
546at the start of the function, and
547
4358a253 548 FREETMPS;
549 LEAVE;
9b6570b4 550
551at the end. The C<ENTER>/C<SAVETMPS> pair creates a boundary for any
552temporaries we create. This means that the temporaries we get rid of
553will be limited to those which were created after these calls.
554
555The C<FREETMPS>/C<LEAVE> pair will get rid of any values returned by
556the Perl subroutine (see next example), plus it will also dump the
557mortal SVs we have created. Having C<ENTER>/C<SAVETMPS> at the
558beginning of the code makes sure that no other mortals are destroyed.
559
560Think of these macros as working a bit like using C<{> and C<}> in Perl
561to limit the scope of local variables.
562
563See the section I<Using Perl to dispose of temporaries> for details of
564an alternative to using these macros.
565
087fe227 566=item 6.
9b6570b4 567
087fe227 568Finally, I<LeftString> can now be called via the I<call_pv> function.
569The only flag specified this time is G_DISCARD. Because we are passing
5702 parameters to the Perl subroutine this time, we have not specified
571G_NOARGS.
a0d0e21e 572
573=back
574
d1b91892 575=head2 Returning a Scalar
a0d0e21e 576
d1b91892 577Now for an example of dealing with the items returned from a Perl
578subroutine.
a0d0e21e 579
5f05dabc 580Here is a Perl subroutine, I<Adder>, that takes 2 integer parameters
d1b91892 581and simply returns their sum.
a0d0e21e 582
84f709e7 583 sub Adder
584 {
4358a253 585 my($a, $b) = @_;
586 $a + $b;
a0d0e21e 587 }
588
5f05dabc 589Because we are now concerned with the return value from I<Adder>, the C
d1b91892 590function required to call it is now a bit more complex.
a0d0e21e 591
592 static void
593 call_Adder(a, b)
4358a253 594 int a;
595 int b;
a0d0e21e 596 {
4358a253 597 dSP;
598 int count;
a0d0e21e 599
4358a253 600 ENTER;
a0d0e21e 601 SAVETMPS;
602
4358a253 603 PUSHMARK(SP);
a0d0e21e 604 XPUSHs(sv_2mortal(newSViv(a)));
605 XPUSHs(sv_2mortal(newSViv(b)));
4358a253 606 PUTBACK;
a0d0e21e 607
4929bf7b 608 count = call_pv("Adder", G_SCALAR);
a0d0e21e 609
4358a253 610 SPAGAIN;
a0d0e21e 611
d1b91892 612 if (count != 1)
4358a253 613 croak("Big trouble\n");
a0d0e21e 614
4358a253 615 printf ("The sum of %d and %d is %d\n", a, b, POPi);
a0d0e21e 616
4358a253 617 PUTBACK;
618 FREETMPS;
619 LEAVE;
a0d0e21e 620 }
621
a0d0e21e 622Points to note this time are
623
624=over 5
625
54310121 626=item 1.
a0d0e21e 627
d1b91892 628The only flag specified this time was G_SCALAR. That means the C<@_>
629array will be created and that the value returned by I<Adder> will
4929bf7b 630still exist after the call to I<call_pv>.
a0d0e21e 631
a0d0e21e 632=item 2.
633
a0d0e21e 634The purpose of the macro C<SPAGAIN> is to refresh the local copy of the
635stack pointer. This is necessary because it is possible that the memory
68dc0745 636allocated to the Perl stack has been reallocated whilst in the
4929bf7b 637I<call_pv> call.
a0d0e21e 638
d1b91892 639If you are making use of the Perl stack pointer in your code you must
54310121 640always refresh the local copy using SPAGAIN whenever you make use
4929bf7b 641of the I<call_*> functions or any other Perl internal function.
a0d0e21e 642
9b6570b4 643=item 3.
a0d0e21e 644
d1b91892 645Although only a single value was expected to be returned from I<Adder>,
4929bf7b 646it is still good practice to check the return code from I<call_pv>
d1b91892 647anyway.
a0d0e21e 648
d1b91892 649Expecting a single value is not quite the same as knowing that there
650will be one. If someone modified I<Adder> to return a list and we
651didn't check for that possibility and take appropriate action the Perl
652stack would end up in an inconsistent state. That is something you
5f05dabc 653I<really> don't want to happen ever.
a0d0e21e 654
9b6570b4 655=item 4.
a0d0e21e 656
d1b91892 657The C<POPi> macro is used here to pop the return value from the stack.
658In this case we wanted an integer, so C<POPi> was used.
a0d0e21e 659
660
d1b91892 661Here is the complete list of POP macros available, along with the types
662they return.
a0d0e21e 663
d1b91892 664 POPs SV
665 POPp pointer
666 POPn double
667 POPi integer
668 POPl long
a0d0e21e 669
9b6570b4 670=item 5.
a0d0e21e 671
d1b91892 672The final C<PUTBACK> is used to leave the Perl stack in a consistent
673state before exiting the function. This is necessary because when we
674popped the return value from the stack with C<POPi> it updated only our
675local copy of the stack pointer. Remember, C<PUTBACK> sets the global
676stack pointer to be the same as our local copy.
a0d0e21e 677
678=back
679
680
d1b91892 681=head2 Returning a list of values
a0d0e21e 682
d1b91892 683Now, let's extend the previous example to return both the sum of the
684parameters and the difference.
a0d0e21e 685
d1b91892 686Here is the Perl subroutine
a0d0e21e 687
84f709e7 688 sub AddSubtract
689 {
4358a253 690 my($a, $b) = @_;
691 ($a+$b, $a-$b);
a0d0e21e 692 }
693
a0d0e21e 694and this is the C function
695
696 static void
697 call_AddSubtract(a, b)
4358a253 698 int a;
699 int b;
a0d0e21e 700 {
4358a253 701 dSP;
702 int count;
a0d0e21e 703
4358a253 704 ENTER;
a0d0e21e 705 SAVETMPS;
706
4358a253 707 PUSHMARK(SP);
a0d0e21e 708 XPUSHs(sv_2mortal(newSViv(a)));
709 XPUSHs(sv_2mortal(newSViv(b)));
4358a253 710 PUTBACK;
a0d0e21e 711
4929bf7b 712 count = call_pv("AddSubtract", G_ARRAY);
a0d0e21e 713
4358a253 714 SPAGAIN;
a0d0e21e 715
d1b91892 716 if (count != 2)
4358a253 717 croak("Big trouble\n");
a0d0e21e 718
4358a253 719 printf ("%d - %d = %d\n", a, b, POPi);
720 printf ("%d + %d = %d\n", a, b, POPi);
a0d0e21e 721
4358a253 722 PUTBACK;
723 FREETMPS;
724 LEAVE;
a0d0e21e 725 }
726
d1b91892 727If I<call_AddSubtract> is called like this
728
4358a253 729 call_AddSubtract(7, 4);
d1b91892 730
731then here is the output
732
733 7 - 4 = 3
734 7 + 4 = 11
a0d0e21e 735
736Notes
737
738=over 5
739
740=item 1.
741
90fdbbb7 742We wanted list context, so G_ARRAY was used.
a0d0e21e 743
744=item 2.
745
d1b91892 746Not surprisingly C<POPi> is used twice this time because we were
747retrieving 2 values from the stack. The important thing to note is that
748when using the C<POP*> macros they come off the stack in I<reverse>
749order.
a0d0e21e 750
751=back
752
d1b91892 753=head2 Returning a list in a scalar context
754
755Say the Perl subroutine in the previous section was called in a scalar
756context, like this
757
758 static void
759 call_AddSubScalar(a, b)
4358a253 760 int a;
761 int b;
d1b91892 762 {
4358a253 763 dSP;
764 int count;
765 int i;
d1b91892 766
4358a253 767 ENTER;
d1b91892 768 SAVETMPS;
769
4358a253 770 PUSHMARK(SP);
d1b91892 771 XPUSHs(sv_2mortal(newSViv(a)));
772 XPUSHs(sv_2mortal(newSViv(b)));
4358a253 773 PUTBACK;
d1b91892 774
4929bf7b 775 count = call_pv("AddSubtract", G_SCALAR);
d1b91892 776
4358a253 777 SPAGAIN;
d1b91892 778
4358a253 779 printf ("Items Returned = %d\n", count);
d1b91892 780
4358a253 781 for (i = 1; i <= count; ++i)
782 printf ("Value %d = %d\n", i, POPi);
d1b91892 783
4358a253 784 PUTBACK;
785 FREETMPS;
786 LEAVE;
d1b91892 787 }
788
789The other modification made is that I<call_AddSubScalar> will print the
790number of items returned from the Perl subroutine and their value (for
791simplicity it assumes that they are integer). So if
792I<call_AddSubScalar> is called
793
4358a253 794 call_AddSubScalar(7, 4);
d1b91892 795
796then the output will be
797
798 Items Returned = 1
799 Value 1 = 3
800
801In this case the main point to note is that only the last item in the
54310121 802list is returned from the subroutine, I<AddSubtract> actually made it back to
d1b91892 803I<call_AddSubScalar>.
804
805
806=head2 Returning Data from Perl via the parameter list
a0d0e21e 807
808It is also possible to return values directly via the parameter list -
809whether it is actually desirable to do it is another matter entirely.
810
d1b91892 811The Perl subroutine, I<Inc>, below takes 2 parameters and increments
812each directly.
a0d0e21e 813
84f709e7 814 sub Inc
815 {
4358a253 816 ++ $_[0];
817 ++ $_[1];
a0d0e21e 818 }
819
820and here is a C function to call it.
821
822 static void
823 call_Inc(a, b)
4358a253 824 int a;
825 int b;
a0d0e21e 826 {
4358a253 827 dSP;
828 int count;
829 SV * sva;
830 SV * svb;
a0d0e21e 831
4358a253 832 ENTER;
a0d0e21e 833 SAVETMPS;
834
4358a253 835 sva = sv_2mortal(newSViv(a));
836 svb = sv_2mortal(newSViv(b));
a0d0e21e 837
4358a253 838 PUSHMARK(SP);
a0d0e21e 839 XPUSHs(sva);
840 XPUSHs(svb);
4358a253 841 PUTBACK;
a0d0e21e 842
4929bf7b 843 count = call_pv("Inc", G_DISCARD);
a0d0e21e 844
845 if (count != 0)
d1b91892 846 croak ("call_Inc: expected 0 values from 'Inc', got %d\n",
4358a253 847 count);
a0d0e21e 848
4358a253 849 printf ("%d + 1 = %d\n", a, SvIV(sva));
850 printf ("%d + 1 = %d\n", b, SvIV(svb));
a0d0e21e 851
4358a253 852 FREETMPS;
853 LEAVE;
a0d0e21e 854 }
855
d1b91892 856To be able to access the two parameters that were pushed onto the stack
4929bf7b 857after they return from I<call_pv> it is necessary to make a note
19799a22 858of their addresses--thus the two variables C<sva> and C<svb>.
a0d0e21e 859
d1b91892 860The reason this is necessary is that the area of the Perl stack which
861held them will very likely have been overwritten by something else by
4929bf7b 862the time control returns from I<call_pv>.
a0d0e21e 863
864
865
866
d1b91892 867=head2 Using G_EVAL
a0d0e21e 868
d1b91892 869Now an example using G_EVAL. Below is a Perl subroutine which computes
870the difference of its 2 parameters. If this would result in a negative
871result, the subroutine calls I<die>.
a0d0e21e 872
84f709e7 873 sub Subtract
874 {
4358a253 875 my ($a, $b) = @_;
a0d0e21e 876
4358a253 877 die "death can be fatal\n" if $a < $b;
a0d0e21e 878
4358a253 879 $a - $b;
a0d0e21e 880 }
881
882and some C to call it
883
884 static void
885 call_Subtract(a, b)
4358a253 886 int a;
887 int b;
a0d0e21e 888 {
4358a253 889 dSP;
890 int count;
a0d0e21e 891
4358a253 892 ENTER;
a0d0e21e 893 SAVETMPS;
894
4358a253 895 PUSHMARK(SP);
a0d0e21e 896 XPUSHs(sv_2mortal(newSViv(a)));
897 XPUSHs(sv_2mortal(newSViv(b)));
4358a253 898 PUTBACK;
a0d0e21e 899
4929bf7b 900 count = call_pv("Subtract", G_EVAL|G_SCALAR);
a0d0e21e 901
4358a253 902 SPAGAIN;
d1b91892 903
904 /* Check the eval first */
9cde0e7f 905 if (SvTRUE(ERRSV))
d1b91892 906 {
1c5b513e 907 printf ("Uh oh - %s\n", SvPV_nolen(ERRSV));
4358a253 908 POPs;
d1b91892 909 }
910 else
911 {
912 if (count != 1)
913 croak("call_Subtract: wanted 1 value from 'Subtract', got %d\n",
4358a253 914 count);
a0d0e21e 915
4358a253 916 printf ("%d - %d = %d\n", a, b, POPi);
d1b91892 917 }
a0d0e21e 918
4358a253 919 PUTBACK;
920 FREETMPS;
921 LEAVE;
a0d0e21e 922 }
923
924If I<call_Subtract> is called thus
925
d1b91892 926 call_Subtract(4, 5)
a0d0e21e 927
928the following will be printed
929
d1b91892 930 Uh oh - death can be fatal
a0d0e21e 931
932Notes
933
934=over 5
935
936=item 1.
937
d1b91892 938We want to be able to catch the I<die> so we have used the G_EVAL
939flag. Not specifying this flag would mean that the program would
940terminate immediately at the I<die> statement in the subroutine
941I<Subtract>.
a0d0e21e 942
943=item 2.
944
54310121 945The code
a0d0e21e 946
9cde0e7f 947 if (SvTRUE(ERRSV))
d1b91892 948 {
1c5b513e 949 printf ("Uh oh - %s\n", SvPV_nolen(ERRSV));
4358a253 950 POPs;
d1b91892 951 }
a0d0e21e 952
d1b91892 953is the direct equivalent of this bit of Perl
a0d0e21e 954
4358a253 955 print "Uh oh - $@\n" if $@;
a0d0e21e 956
9cde0e7f 957C<PL_errgv> is a perl global of type C<GV *> that points to the
958symbol table entry containing the error. C<ERRSV> therefore
c07a80fd 959refers to the C equivalent of C<$@>.
960
d1b91892 961=item 3.
a0d0e21e 962
d1b91892 963Note that the stack is popped using C<POPs> in the block where
9cde0e7f 964C<SvTRUE(ERRSV)> is true. This is necessary because whenever a
4929bf7b 965I<call_*> function invoked with G_EVAL|G_SCALAR returns an error,
5f05dabc 966the top of the stack holds the value I<undef>. Because we want the
d1b91892 967program to continue after detecting this error, it is essential that
968the stack is tidied up by removing the I<undef>.
a0d0e21e 969
970=back
971
972
c07a80fd 973=head2 Using G_KEEPERR
974
975Consider this rather facetious example, where we have used an XS
976version of the call_Subtract example above inside a destructor:
977
978 package Foo;
84f709e7 979 sub new { bless {}, $_[0] }
54310121 980 sub Subtract {
84f709e7 981 my($a,$b) = @_;
4358a253 982 die "death can be fatal" if $a < $b;
84f709e7 983 $a - $b;
c07a80fd 984 }
84f709e7 985 sub DESTROY { call_Subtract(5, 4); }
986 sub foo { die "foo dies"; }
c07a80fd 987
988 package main;
989 eval { Foo->new->foo };
990 print "Saw: $@" if $@; # should be, but isn't
991
992This example will fail to recognize that an error occurred inside the
993C<eval {}>. Here's why: the call_Subtract code got executed while perl
5f05dabc 994was cleaning up temporaries when exiting the eval block, and because
4929bf7b 995call_Subtract is implemented with I<call_pv> using the G_EVAL
c07a80fd 996flag, it promptly reset C<$@>. This results in the failure of the
997outermost test for C<$@>, and thereby the failure of the error trap.
998
4929bf7b 999Appending the G_KEEPERR flag, so that the I<call_pv> call in
c07a80fd 1000call_Subtract reads:
1001
4929bf7b 1002 count = call_pv("Subtract", G_EVAL|G_SCALAR|G_KEEPERR);
c07a80fd 1003
1004will preserve the error and restore reliable error handling.
1005
4929bf7b 1006=head2 Using call_sv
a0d0e21e 1007
d1b91892 1008In all the previous examples I have 'hard-wired' the name of the Perl
1009subroutine to be called from C. Most of the time though, it is more
1010convenient to be able to specify the name of the Perl subroutine from
1011within the Perl script.
a0d0e21e 1012
1013Consider the Perl code below
1014
84f709e7 1015 sub fred
1016 {
4358a253 1017 print "Hello there\n";
d1b91892 1018 }
1019
4358a253 1020 CallSubPV("fred");
d1b91892 1021
1022Here is a snippet of XSUB which defines I<CallSubPV>.
1023
1024 void
1025 CallSubPV(name)
1026 char * name
1027 CODE:
4358a253 1028 PUSHMARK(SP);
1029 call_pv(name, G_DISCARD|G_NOARGS);
a0d0e21e 1030
54310121 1031That is fine as far as it goes. The thing is, the Perl subroutine
5f05dabc 1032can be specified as only a string. For Perl 4 this was adequate,
d1b91892 1033but Perl 5 allows references to subroutines and anonymous subroutines.
4929bf7b 1034This is where I<call_sv> is useful.
d1b91892 1035
1036The code below for I<CallSubSV> is identical to I<CallSubPV> except
1037that the C<name> parameter is now defined as an SV* and we use
4929bf7b 1038I<call_sv> instead of I<call_pv>.
d1b91892 1039
1040 void
1041 CallSubSV(name)
1042 SV * name
1043 CODE:
4358a253 1044 PUSHMARK(SP);
1045 call_sv(name, G_DISCARD|G_NOARGS);
a0d0e21e 1046
5f05dabc 1047Because we are using an SV to call I<fred> the following can all be used
a0d0e21e 1048
4358a253 1049 CallSubSV("fred");
1050 CallSubSV(\&fred);
1051 $ref = \&fred;
1052 CallSubSV($ref);
1053 CallSubSV( sub { print "Hello there\n" } );
a0d0e21e 1054
4929bf7b 1055As you can see, I<call_sv> gives you much greater flexibility in
d1b91892 1056how you can specify the Perl subroutine.
1057
1058You should note that if it is necessary to store the SV (C<name> in the
1059example above) which corresponds to the Perl subroutine so that it can
5f05dabc 1060be used later in the program, it not enough just to store a copy of the
d1b91892 1061pointer to the SV. Say the code above had been like this
1062
4358a253 1063 static SV * rememberSub;
d1b91892 1064
1065 void
1066 SaveSub1(name)
1067 SV * name
1068 CODE:
4358a253 1069 rememberSub = name;
d1b91892 1070
1071 void
1072 CallSavedSub1()
1073 CODE:
4358a253 1074 PUSHMARK(SP);
1075 call_sv(rememberSub, G_DISCARD|G_NOARGS);
a0d0e21e 1076
d1b91892 1077The reason this is wrong is that by the time you come to use the
1078pointer C<rememberSub> in C<CallSavedSub1>, it may or may not still refer
1079to the Perl subroutine that was recorded in C<SaveSub1>. This is
1080particularly true for these cases
a0d0e21e 1081
4358a253 1082 SaveSub1(\&fred);
1083 CallSavedSub1();
a0d0e21e 1084
4358a253 1085 SaveSub1( sub { print "Hello there\n" } );
1086 CallSavedSub1();
a0d0e21e 1087
d1b91892 1088By the time each of the C<SaveSub1> statements above have been executed,
54310121 1089the SV*s which corresponded to the parameters will no longer exist.
d1b91892 1090Expect an error message from Perl of the form
a0d0e21e 1091
d1b91892 1092 Can't use an undefined value as a subroutine reference at ...
a0d0e21e 1093
d1b91892 1094for each of the C<CallSavedSub1> lines.
a0d0e21e 1095
54310121 1096Similarly, with this code
a0d0e21e 1097
4358a253 1098 $ref = \&fred;
1099 SaveSub1($ref);
1100 $ref = 47;
1101 CallSavedSub1();
a0d0e21e 1102
54310121 1103you can expect one of these messages (which you actually get is dependent on
1104the version of Perl you are using)
a0d0e21e 1105
d1b91892 1106 Not a CODE reference at ...
1107 Undefined subroutine &main::47 called ...
a0d0e21e 1108
19799a22 1109The variable $ref may have referred to the subroutine C<fred>
d1b91892 1110whenever the call to C<SaveSub1> was made but by the time
5f05dabc 1111C<CallSavedSub1> gets called it now holds the number C<47>. Because we
d1b91892 1112saved only a pointer to the original SV in C<SaveSub1>, any changes to
19799a22 1113$ref will be tracked by the pointer C<rememberSub>. This means that
d1b91892 1114whenever C<CallSavedSub1> gets called, it will attempt to execute the
1115code which is referenced by the SV* C<rememberSub>. In this case
1116though, it now refers to the integer C<47>, so expect Perl to complain
1117loudly.
a0d0e21e 1118
d1b91892 1119A similar but more subtle problem is illustrated with this code
a0d0e21e 1120
4358a253 1121 $ref = \&fred;
1122 SaveSub1($ref);
1123 $ref = \&joe;
1124 CallSavedSub1();
a0d0e21e 1125
d1b91892 1126This time whenever C<CallSavedSub1> get called it will execute the Perl
54310121 1127subroutine C<joe> (assuming it exists) rather than C<fred> as was
d1b91892 1128originally requested in the call to C<SaveSub1>.
a0d0e21e 1129
d1b91892 1130To get around these problems it is necessary to take a full copy of the
1131SV. The code below shows C<SaveSub2> modified to do that
a0d0e21e 1132
4358a253 1133 static SV * keepSub = (SV*)NULL;
d1b91892 1134
1135 void
1136 SaveSub2(name)
1137 SV * name
1138 CODE:
1139 /* Take a copy of the callback */
1140 if (keepSub == (SV*)NULL)
1141 /* First time, so create a new SV */
4358a253 1142 keepSub = newSVsv(name);
d1b91892 1143 else
1144 /* Been here before, so overwrite */
4358a253 1145 SvSetSV(keepSub, name);
d1b91892 1146
1147 void
1148 CallSavedSub2()
1149 CODE:
4358a253 1150 PUSHMARK(SP);
1151 call_sv(keepSub, G_DISCARD|G_NOARGS);
d1b91892 1152
5f05dabc 1153To avoid creating a new SV every time C<SaveSub2> is called,
d1b91892 1154the function first checks to see if it has been called before. If not,
1155then space for a new SV is allocated and the reference to the Perl
1156subroutine, C<name> is copied to the variable C<keepSub> in one
1157operation using C<newSVsv>. Thereafter, whenever C<SaveSub2> is called
1158the existing SV, C<keepSub>, is overwritten with the new value using
1159C<SvSetSV>.
1160
4929bf7b 1161=head2 Using call_argv
d1b91892 1162
1163Here is a Perl subroutine which prints whatever parameters are passed
1164to it.
1165
84f709e7 1166 sub PrintList
1167 {
4358a253 1168 my(@list) = @_;
d1b91892 1169
84f709e7 1170 foreach (@list) { print "$_\n" }
d1b91892 1171 }
1172
4929bf7b 1173and here is an example of I<call_argv> which will call
d1b91892 1174I<PrintList>.
1175
4358a253 1176 static char * words[] = {"alpha", "beta", "gamma", "delta", NULL};
d1b91892 1177
1178 static void
1179 call_PrintList()
1180 {
4358a253 1181 dSP;
d1b91892 1182
4358a253 1183 call_argv("PrintList", G_DISCARD, words);
d1b91892 1184 }
1185
1186Note that it is not necessary to call C<PUSHMARK> in this instance.
4929bf7b 1187This is because I<call_argv> will do it for you.
d1b91892 1188
4929bf7b 1189=head2 Using call_method
a0d0e21e 1190
1191Consider the following Perl code
1192
d1b91892 1193 {
4358a253 1194 package Mine;
84f709e7 1195
1196 sub new
1197 {
4358a253 1198 my($type) = shift;
84f709e7 1199 bless [@_]
1200 }
1201
1202 sub Display
1203 {
4358a253 1204 my ($self, $index) = @_;
1205 print "$index: $$self[$index]\n";
84f709e7 1206 }
1207
1208 sub PrintID
1209 {
4358a253 1210 my($class) = @_;
1211 print "This is Class $class version 1.0\n";
84f709e7 1212 }
d1b91892 1213 }
1214
5f05dabc 1215It implements just a very simple class to manage an array. Apart from
d1b91892 1216the constructor, C<new>, it declares methods, one static and one
5f05dabc 1217virtual. The static method, C<PrintID>, prints out simply the class
d1b91892 1218name and a version number. The virtual method, C<Display>, prints out a
1219single element of the array. Here is an all Perl example of using it.
1220
797f796a 1221 $a = Mine->new('red', 'green', 'blue');
4358a253 1222 $a->Display(1);
797f796a 1223 Mine->PrintID;
a0d0e21e 1224
d1b91892 1225will print
a0d0e21e 1226
d1b91892 1227 1: green
54310121 1228 This is Class Mine version 1.0
a0d0e21e 1229
d1b91892 1230Calling a Perl method from C is fairly straightforward. The following
1231things are required
a0d0e21e 1232
d1b91892 1233=over 5
1234
1235=item *
1236
1237a reference to the object for a virtual method or the name of the class
1238for a static method.
1239
1240=item *
1241
1242the name of the method.
1243
1244=item *
1245
1246any other parameters specific to the method.
1247
1248=back
1249
1250Here is a simple XSUB which illustrates the mechanics of calling both
1251the C<PrintID> and C<Display> methods from C.
1252
1253 void
1254 call_Method(ref, method, index)
1255 SV * ref
1256 char * method
1257 int index
1258 CODE:
924508f0 1259 PUSHMARK(SP);
d1b91892 1260 XPUSHs(ref);
4358a253 1261 XPUSHs(sv_2mortal(newSViv(index)));
d1b91892 1262 PUTBACK;
1263
4358a253 1264 call_method(method, G_DISCARD);
d1b91892 1265
1266 void
1267 call_PrintID(class, method)
1268 char * class
1269 char * method
1270 CODE:
924508f0 1271 PUSHMARK(SP);
4358a253 1272 XPUSHs(sv_2mortal(newSVpv(class, 0)));
d1b91892 1273 PUTBACK;
1274
4358a253 1275 call_method(method, G_DISCARD);
d1b91892 1276
1277
1278So the methods C<PrintID> and C<Display> can be invoked like this
1279
797f796a 1280 $a = Mine->new('red', 'green', 'blue');
4358a253 1281 call_Method($a, 'Display', 1);
1282 call_PrintID('Mine', 'PrintID');
d1b91892 1283
1284The only thing to note is that in both the static and virtual methods,
19799a22 1285the method name is not passed via the stack--it is used as the first
4929bf7b 1286parameter to I<call_method>.
d1b91892 1287
54310121 1288=head2 Using GIMME_V
d1b91892 1289
54310121 1290Here is a trivial XSUB which prints the context in which it is
d1b91892 1291currently executing.
1292
1293 void
1294 PrintContext()
1295 CODE:
54310121 1296 I32 gimme = GIMME_V;
1297 if (gimme == G_VOID)
4358a253 1298 printf ("Context is Void\n");
54310121 1299 else if (gimme == G_SCALAR)
4358a253 1300 printf ("Context is Scalar\n");
d1b91892 1301 else
4358a253 1302 printf ("Context is Array\n");
d1b91892 1303
1304and here is some Perl to test it
1305
4358a253 1306 PrintContext;
1307 $a = PrintContext;
1308 @a = PrintContext;
d1b91892 1309
1310The output from that will be
1311
54310121 1312 Context is Void
d1b91892 1313 Context is Scalar
1314 Context is Array
1315
1316=head2 Using Perl to dispose of temporaries
1317
1318In the examples given to date, any temporaries created in the callback
4929bf7b 1319(i.e., parameters passed on the stack to the I<call_*> function or
d1b91892 1320values returned via the stack) have been freed by one of these methods
1321
1322=over 5
1323
1324=item *
1325
4929bf7b 1326specifying the G_DISCARD flag with I<call_*>.
d1b91892 1327
1328=item *
1329
1330explicitly disposed of using the C<ENTER>/C<SAVETMPS> -
1331C<FREETMPS>/C<LEAVE> pairing.
1332
1333=back
1334
1335There is another method which can be used, namely letting Perl do it
1336for you automatically whenever it regains control after the callback
1337has terminated. This is done by simply not using the
1338
4358a253 1339 ENTER;
1340 SAVETMPS;
d1b91892 1341 ...
4358a253 1342 FREETMPS;
1343 LEAVE;
d1b91892 1344
1345sequence in the callback (and not, of course, specifying the G_DISCARD
1346flag).
1347
1348If you are going to use this method you have to be aware of a possible
1349memory leak which can arise under very specific circumstances. To
1350explain these circumstances you need to know a bit about the flow of
1351control between Perl and the callback routine.
1352
1353The examples given at the start of the document (an error handler and
1354an event driven program) are typical of the two main sorts of flow
1355control that you are likely to encounter with callbacks. There is a
1356very important distinction between them, so pay attention.
1357
1358In the first example, an error handler, the flow of control could be as
1359follows. You have created an interface to an external library.
1360Control can reach the external library like this
1361
1362 perl --> XSUB --> external library
1363
1364Whilst control is in the library, an error condition occurs. You have
1365previously set up a Perl callback to handle this situation, so it will
1366get executed. Once the callback has finished, control will drop back to
1367Perl again. Here is what the flow of control will be like in that
1368situation
1369
1370 perl --> XSUB --> external library
1371 ...
1372 error occurs
1373 ...
4929bf7b 1374 external library --> call_* --> perl
d1b91892 1375 |
4929bf7b 1376 perl <-- XSUB <-- external library <-- call_* <----+
d1b91892 1377
4929bf7b 1378After processing of the error using I<call_*> is completed,
d1b91892 1379control reverts back to Perl more or less immediately.
1380
1381In the diagram, the further right you go the more deeply nested the
1382scope is. It is only when control is back with perl on the extreme
1383left of the diagram that you will have dropped back to the enclosing
1384scope and any temporaries you have left hanging around will be freed.
1385
1386In the second example, an event driven program, the flow of control
1387will be more like this
1388
1389 perl --> XSUB --> event handler
1390 ...
4929bf7b 1391 event handler --> call_* --> perl
d1b91892 1392 |
4929bf7b 1393 event handler <-- call_* <----+
d1b91892 1394 ...
4929bf7b 1395 event handler --> call_* --> perl
d1b91892 1396 |
4929bf7b 1397 event handler <-- call_* <----+
d1b91892 1398 ...
4929bf7b 1399 event handler --> call_* --> perl
d1b91892 1400 |
4929bf7b 1401 event handler <-- call_* <----+
d1b91892 1402
1403In this case the flow of control can consist of only the repeated
1404sequence
1405
4929bf7b 1406 event handler --> call_* --> perl
d1b91892 1407
54310121 1408for practically the complete duration of the program. This means that
1409control may I<never> drop back to the surrounding scope in Perl at the
1410extreme left.
d1b91892 1411
1412So what is the big problem? Well, if you are expecting Perl to tidy up
1413those temporaries for you, you might be in for a long wait. For Perl
5f05dabc 1414to dispose of your temporaries, control must drop back to the
d1b91892 1415enclosing scope at some stage. In the event driven scenario that may
1416never happen. This means that as time goes on, your program will
1417create more and more temporaries, none of which will ever be freed. As
1418each of these temporaries consumes some memory your program will
19799a22 1419eventually consume all the available memory in your system--kapow!
d1b91892 1420
19799a22 1421So here is the bottom line--if you are sure that control will revert
d1b91892 1422back to the enclosing Perl scope fairly quickly after the end of your
5f05dabc 1423callback, then it isn't absolutely necessary to dispose explicitly of
d1b91892 1424any temporaries you may have created. Mind you, if you are at all
1425uncertain about what to do, it doesn't do any harm to tidy up anyway.
1426
1427
1428=head2 Strategies for storing Callback Context Information
1429
1430
1431Potentially one of the trickiest problems to overcome when designing a
1432callback interface can be figuring out how to store the mapping between
1433the C callback function and the Perl equivalent.
1434
1435To help understand why this can be a real problem first consider how a
1436callback is set up in an all C environment. Typically a C API will
1437provide a function to register a callback. This will expect a pointer
1438to a function as one of its parameters. Below is a call to a
1439hypothetical function C<register_fatal> which registers the C function
1440to get called when a fatal error occurs.
1441
4358a253 1442 register_fatal(cb1);
d1b91892 1443
1444The single parameter C<cb1> is a pointer to a function, so you must
1445have defined C<cb1> in your code, say something like this
1446
1447 static void
1448 cb1()
1449 {
4358a253 1450 printf ("Fatal Error\n");
1451 exit(1);
d1b91892 1452 }
1453
1454Now change that to call a Perl subroutine instead
1455
1456 static SV * callback = (SV*)NULL;
1457
1458 static void
1459 cb1()
1460 {
4358a253 1461 dSP;
d1b91892 1462
4358a253 1463 PUSHMARK(SP);
d1b91892 1464
1465 /* Call the Perl sub to process the callback */
4358a253 1466 call_sv(callback, G_DISCARD);
d1b91892 1467 }
1468
1469
1470 void
1471 register_fatal(fn)
1472 SV * fn
1473 CODE:
1474 /* Remember the Perl sub */
1475 if (callback == (SV*)NULL)
4358a253 1476 callback = newSVsv(fn);
d1b91892 1477 else
4358a253 1478 SvSetSV(callback, fn);
d1b91892 1479
1480 /* register the callback with the external library */
4358a253 1481 register_fatal(cb1);
d1b91892 1482
1483where the Perl equivalent of C<register_fatal> and the callback it
1484registers, C<pcb1>, might look like this
1485
1486 # Register the sub pcb1
4358a253 1487 register_fatal(\&pcb1);
d1b91892 1488
84f709e7 1489 sub pcb1
1490 {
4358a253 1491 die "I'm dying...\n";
d1b91892 1492 }
1493
1494The mapping between the C callback and the Perl equivalent is stored in
1495the global variable C<callback>.
1496
5f05dabc 1497This will be adequate if you ever need to have only one callback
d1b91892 1498registered at any time. An example could be an error handler like the
1499code sketched out above. Remember though, repeated calls to
1500C<register_fatal> will replace the previously registered callback
1501function with the new one.
1502
1503Say for example you want to interface to a library which allows asynchronous
1504file i/o. In this case you may be able to register a callback whenever
1505a read operation has completed. To be of any use we want to be able to
1506call separate Perl subroutines for each file that is opened. As it
1507stands, the error handler example above would not be adequate as it
1508allows only a single callback to be defined at any time. What we
1509require is a means of storing the mapping between the opened file and
1510the Perl subroutine we want to be called for that file.
1511
1512Say the i/o library has a function C<asynch_read> which associates a C
19799a22 1513function C<ProcessRead> with a file handle C<fh>--this assumes that it
d1b91892 1514has also provided some routine to open the file and so obtain the file
1515handle.
1516
1517 asynch_read(fh, ProcessRead)
1518
1519This may expect the C I<ProcessRead> function of this form
1520
1521 void
1522 ProcessRead(fh, buffer)
4358a253 1523 int fh;
1524 char * buffer;
d1b91892 1525 {
54310121 1526 ...
d1b91892 1527 }
1528
1529To provide a Perl interface to this library we need to be able to map
1530between the C<fh> parameter and the Perl subroutine we want called. A
1531hash is a convenient mechanism for storing this mapping. The code
1532below shows a possible implementation
1533
4358a253 1534 static HV * Mapping = (HV*)NULL;
a0d0e21e 1535
d1b91892 1536 void
1537 asynch_read(fh, callback)
1538 int fh
1539 SV * callback
1540 CODE:
1541 /* If the hash doesn't already exist, create it */
1542 if (Mapping == (HV*)NULL)
4358a253 1543 Mapping = newHV();
d1b91892 1544
1545 /* Save the fh -> callback mapping */
4358a253 1546 hv_store(Mapping, (char*)&fh, sizeof(fh), newSVsv(callback), 0);
d1b91892 1547
1548 /* Register with the C Library */
4358a253 1549 asynch_read(fh, asynch_read_if);
d1b91892 1550
1551and C<asynch_read_if> could look like this
1552
1553 static void
1554 asynch_read_if(fh, buffer)
4358a253 1555 int fh;
1556 char * buffer;
d1b91892 1557 {
4358a253 1558 dSP;
1559 SV ** sv;
d1b91892 1560
1561 /* Get the callback associated with fh */
4358a253 1562 sv = hv_fetch(Mapping, (char*)&fh , sizeof(fh), FALSE);
d1b91892 1563 if (sv == (SV**)NULL)
4358a253 1564 croak("Internal error...\n");
d1b91892 1565
4358a253 1566 PUSHMARK(SP);
1567 XPUSHs(sv_2mortal(newSViv(fh)));
1568 XPUSHs(sv_2mortal(newSVpv(buffer, 0)));
1569 PUTBACK;
d1b91892 1570
1571 /* Call the Perl sub */
4358a253 1572 call_sv(*sv, G_DISCARD);
d1b91892 1573 }
1574
1575For completeness, here is C<asynch_close>. This shows how to remove
1576the entry from the hash C<Mapping>.
1577
1578 void
1579 asynch_close(fh)
1580 int fh
1581 CODE:
1582 /* Remove the entry from the hash */
4358a253 1583 (void) hv_delete(Mapping, (char*)&fh, sizeof(fh), G_DISCARD);
a0d0e21e 1584
d1b91892 1585 /* Now call the real asynch_close */
4358a253 1586 asynch_close(fh);
a0d0e21e 1587
d1b91892 1588So the Perl interface would look like this
1589
84f709e7 1590 sub callback1
1591 {
4358a253 1592 my($handle, $buffer) = @_;
d1b91892 1593 }
a0d0e21e 1594
d1b91892 1595 # Register the Perl callback
4358a253 1596 asynch_read($fh, \&callback1);
a0d0e21e 1597
4358a253 1598 asynch_close($fh);
d1b91892 1599
1600The mapping between the C callback and Perl is stored in the global
1601hash C<Mapping> this time. Using a hash has the distinct advantage that
1602it allows an unlimited number of callbacks to be registered.
1603
1604What if the interface provided by the C callback doesn't contain a
1605parameter which allows the file handle to Perl subroutine mapping? Say
1606in the asynchronous i/o package, the callback function gets passed only
1607the C<buffer> parameter like this
1608
1609 void
1610 ProcessRead(buffer)
4358a253 1611 char * buffer;
d1b91892 1612 {
1613 ...
1614 }
a0d0e21e 1615
d1b91892 1616Without the file handle there is no straightforward way to map from the
1617C callback to the Perl subroutine.
a0d0e21e 1618
54310121 1619In this case a possible way around this problem is to predefine a
d1b91892 1620series of C functions to act as the interface to Perl, thus
1621
1622 #define MAX_CB 3
1623 #define NULL_HANDLE -1
4358a253 1624 typedef void (*FnMap)();
d1b91892 1625
1626 struct MapStruct {
4358a253 1627 FnMap Function;
1628 SV * PerlSub;
1629 int Handle;
1630 };
d1b91892 1631
4358a253 1632 static void fn1();
1633 static void fn2();
1634 static void fn3();
d1b91892 1635
1636 static struct MapStruct Map [MAX_CB] =
1637 {
1638 { fn1, NULL, NULL_HANDLE },
1639 { fn2, NULL, NULL_HANDLE },
1640 { fn3, NULL, NULL_HANDLE }
4358a253 1641 };
d1b91892 1642
1643 static void
1644 Pcb(index, buffer)
4358a253 1645 int index;
1646 char * buffer;
d1b91892 1647 {
4358a253 1648 dSP;
d1b91892 1649
4358a253 1650 PUSHMARK(SP);
1651 XPUSHs(sv_2mortal(newSVpv(buffer, 0)));
1652 PUTBACK;
d1b91892 1653
1654 /* Call the Perl sub */
4358a253 1655 call_sv(Map[index].PerlSub, G_DISCARD);
d1b91892 1656 }
1657
1658 static void
1659 fn1(buffer)
4358a253 1660 char * buffer;
d1b91892 1661 {
4358a253 1662 Pcb(0, buffer);
d1b91892 1663 }
1664
1665 static void
1666 fn2(buffer)
4358a253 1667 char * buffer;
d1b91892 1668 {
4358a253 1669 Pcb(1, buffer);
d1b91892 1670 }
1671
1672 static void
1673 fn3(buffer)
4358a253 1674 char * buffer;
d1b91892 1675 {
4358a253 1676 Pcb(2, buffer);
d1b91892 1677 }
1678
1679 void
1680 array_asynch_read(fh, callback)
1681 int fh
1682 SV * callback
1683 CODE:
4358a253 1684 int index;
1685 int null_index = MAX_CB;
d1b91892 1686
1687 /* Find the same handle or an empty entry */
4358a253 1688 for (index = 0; index < MAX_CB; ++index)
d1b91892 1689 {
1690 if (Map[index].Handle == fh)
4358a253 1691 break;
d1b91892 1692
1693 if (Map[index].Handle == NULL_HANDLE)
4358a253 1694 null_index = index;
d1b91892 1695 }
1696
1697 if (index == MAX_CB && null_index == MAX_CB)
4358a253 1698 croak ("Too many callback functions registered\n");
d1b91892 1699
1700 if (index == MAX_CB)
4358a253 1701 index = null_index;
d1b91892 1702
1703 /* Save the file handle */
4358a253 1704 Map[index].Handle = fh;
d1b91892 1705
1706 /* Remember the Perl sub */
1707 if (Map[index].PerlSub == (SV*)NULL)
4358a253 1708 Map[index].PerlSub = newSVsv(callback);
d1b91892 1709 else
4358a253 1710 SvSetSV(Map[index].PerlSub, callback);
d1b91892 1711
4358a253 1712 asynch_read(fh, Map[index].Function);
d1b91892 1713
1714 void
1715 array_asynch_close(fh)
1716 int fh
1717 CODE:
4358a253 1718 int index;
d1b91892 1719
1720 /* Find the file handle */
4358a253 1721 for (index = 0; index < MAX_CB; ++ index)
d1b91892 1722 if (Map[index].Handle == fh)
4358a253 1723 break;
d1b91892 1724
1725 if (index == MAX_CB)
4358a253 1726 croak ("could not close fh %d\n", fh);
d1b91892 1727
4358a253 1728 Map[index].Handle = NULL_HANDLE;
1729 SvREFCNT_dec(Map[index].PerlSub);
1730 Map[index].PerlSub = (SV*)NULL;
d1b91892 1731
4358a253 1732 asynch_close(fh);
d1b91892 1733
5f05dabc 1734In this case the functions C<fn1>, C<fn2>, and C<fn3> are used to
d1b91892 1735remember the Perl subroutine to be called. Each of the functions holds
4a6725af 1736a separate hard-wired index which is used in the function C<Pcb> to
d1b91892 1737access the C<Map> array and actually call the Perl subroutine.
1738
1739There are some obvious disadvantages with this technique.
1740
1741Firstly, the code is considerably more complex than with the previous
1742example.
1743
4a6725af 1744Secondly, there is a hard-wired limit (in this case 3) to the number of
d1b91892 1745callbacks that can exist simultaneously. The only way to increase the
1746limit is by modifying the code to add more functions and then
54310121 1747recompiling. None the less, as long as the number of functions is
d1b91892 1748chosen with some care, it is still a workable solution and in some
1749cases is the only one available.
1750
1751To summarize, here are a number of possible methods for you to consider
1752for storing the mapping between C and the Perl callback
1753
1754=over 5
1755
1756=item 1. Ignore the problem - Allow only 1 callback
1757
1758For a lot of situations, like interfacing to an error handler, this may
1759be a perfectly adequate solution.
1760
1761=item 2. Create a sequence of callbacks - hard wired limit
1762
1763If it is impossible to tell from the parameters passed back from the C
1764callback what the context is, then you may need to create a sequence of C
1765callback interface functions, and store pointers to each in an array.
1766
1767=item 3. Use a parameter to map to the Perl callback
1768
1769A hash is an ideal mechanism to store the mapping between C and Perl.
1770
1771=back
a0d0e21e 1772
a0d0e21e 1773
1774=head2 Alternate Stack Manipulation
1775
a0d0e21e 1776
d1b91892 1777Although I have made use of only the C<POP*> macros to access values
1778returned from Perl subroutines, it is also possible to bypass these
8e07c86e 1779macros and read the stack using the C<ST> macro (See L<perlxs> for a
d1b91892 1780full description of the C<ST> macro).
1781
1782Most of the time the C<POP*> macros should be adequate, the main
1783problem with them is that they force you to process the returned values
1784in sequence. This may not be the most suitable way to process the
1785values in some cases. What we want is to be able to access the stack in
1786a random order. The C<ST> macro as used when coding an XSUB is ideal
1787for this purpose.
1788
1789The code below is the example given in the section I<Returning a list
1790of values> recoded to use C<ST> instead of C<POP*>.
1791
1792 static void
1793 call_AddSubtract2(a, b)
4358a253 1794 int a;
1795 int b;
d1b91892 1796 {
4358a253 1797 dSP;
1798 I32 ax;
1799 int count;
d1b91892 1800
4358a253 1801 ENTER;
d1b91892 1802 SAVETMPS;
1803
4358a253 1804 PUSHMARK(SP);
d1b91892 1805 XPUSHs(sv_2mortal(newSViv(a)));
1806 XPUSHs(sv_2mortal(newSViv(b)));
4358a253 1807 PUTBACK;
d1b91892 1808
4929bf7b 1809 count = call_pv("AddSubtract", G_ARRAY);
d1b91892 1810
4358a253 1811 SPAGAIN;
1812 SP -= count;
1813 ax = (SP - PL_stack_base) + 1;
d1b91892 1814
1815 if (count != 2)
4358a253 1816 croak("Big trouble\n");
a0d0e21e 1817
4358a253 1818 printf ("%d + %d = %d\n", a, b, SvIV(ST(0)));
1819 printf ("%d - %d = %d\n", a, b, SvIV(ST(1)));
d1b91892 1820
4358a253 1821 PUTBACK;
1822 FREETMPS;
1823 LEAVE;
d1b91892 1824 }
1825
1826Notes
1827
1828=over 5
1829
1830=item 1.
1831
1832Notice that it was necessary to define the variable C<ax>. This is
1833because the C<ST> macro expects it to exist. If we were in an XSUB it
1834would not be necessary to define C<ax> as it is already defined for
1835you.
1836
1837=item 2.
1838
1839The code
1840
4358a253 1841 SPAGAIN;
1842 SP -= count;
1843 ax = (SP - PL_stack_base) + 1;
d1b91892 1844
1845sets the stack up so that we can use the C<ST> macro.
1846
1847=item 3.
1848
1849Unlike the original coding of this example, the returned
1850values are not accessed in reverse order. So C<ST(0)> refers to the
54310121 1851first value returned by the Perl subroutine and C<ST(count-1)>
d1b91892 1852refers to the last.
1853
1854=back
a0d0e21e 1855
8f183262 1856=head2 Creating and calling an anonymous subroutine in C
1857
4929bf7b 1858As we've already shown, C<call_sv> can be used to invoke an
c2611fb3 1859anonymous subroutine. However, our example showed a Perl script
1860invoking an XSUB to perform this operation. Let's see how it can be
8f183262 1861done inside our C code:
1862
8f183262 1863 ...
1864
4929bf7b 1865 SV *cvrv = eval_pv("sub { print 'You will not find me cluttering any namespace!' }", TRUE);
8f183262 1866
1867 ...
1868
4929bf7b 1869 call_sv(cvrv, G_VOID|G_NOARGS);
8f183262 1870
4929bf7b 1871C<eval_pv> is used to compile the anonymous subroutine, which
1872will be the return value as well (read more about C<eval_pv> in
4a4eefd0 1873L<perlapi/eval_pv>). Once this code reference is in hand, it
8f183262 1874can be mixed in with all the previous examples we've shown.
1875
9850bf21 1876=head1 LIGHTWEIGHT CALLBACKS
1877
1878Sometimes you need to invoke the same subroutine repeatedly.
1879This usually happens with a function that acts on a list of
1880values, such as Perl's built-in sort(). You can pass a
1881comparison function to sort(), which will then be invoked
1882for every pair of values that needs to be compared. The first()
1883and reduce() functions from L<List::Util> follow a similar
1884pattern.
1885
1886In this case it is possible to speed up the routine (often
1887quite substantially) by using the lightweight callback API.
1888The idea is that the calling context only needs to be
1889created and destroyed once, and the sub can be called
1890arbitrarily many times in between.
1891
ac036724 1892It is usual to pass parameters using global variables (typically
1893$_ for one parameter, or $a and $b for two parameters) rather
9850bf21 1894than via @_. (It is possible to use the @_ mechanism if you know
1895what you're doing, though there is as yet no supported API for
1896it. It's also inherently slower.)
1897
1898The pattern of macro calls is like this:
1899
82f35e8b 1900 dMULTICALL; /* Declare local variables */
9850bf21 1901 I32 gimme = G_SCALAR; /* context of the call: G_SCALAR,
1902 * G_LIST, or G_VOID */
1903
82f35e8b 1904 PUSH_MULTICALL(cv); /* Set up the context for calling cv,
1905 and set local vars appropriately */
9850bf21 1906
1907 /* loop */ {
1908 /* set the value(s) af your parameter variables */
1909 MULTICALL; /* Make the actual call */
1910 } /* end of loop */
1911
1912 POP_MULTICALL; /* Tear down the calling context */
1913
1914For some concrete examples, see the implementation of the
1915first() and reduce() functions of List::Util 1.18. There you
1916will also find a header file that emulates the multicall API
1917on older versions of perl.
1918
a0d0e21e 1919=head1 SEE ALSO
1920
8e07c86e 1921L<perlxs>, L<perlguts>, L<perlembed>
a0d0e21e 1922
1923=head1 AUTHOR
1924
0536e0eb 1925Paul Marquess
a0d0e21e 1926
d1b91892 1927Special thanks to the following people who assisted in the creation of
1928the document.
a0d0e21e 1929
c07a80fd 1930Jeff Okamoto, Tim Bunce, Nick Gianniotis, Steve Kelem, Gurusamy Sarathy
1931and Larry Wall.
a0d0e21e 1932
1933=head1 DATE
1934
137443ea 1935Version 1.3, 14th Apr 1997