Commit | Line | Data |
98994639 |
1 | /* numeric.c |
2 | * |
3 | * Copyright (c) 2001, Larry Wall |
4 | * |
5 | * You may distribute under the terms of either the GNU General Public |
6 | * License or the Artistic License, as specified in the README file. |
7 | * |
8 | */ |
9 | |
10 | /* |
11 | * "That only makes eleven (plus one mislaid) and not fourteen, unless |
12 | * wizards count differently to other people." |
13 | */ |
14 | |
15 | #include "EXTERN.h" |
16 | #define PERL_IN_NUMERIC_C |
17 | #include "perl.h" |
18 | |
19 | U32 |
20 | Perl_cast_ulong(pTHX_ NV f) |
21 | { |
22 | if (f < 0.0) |
23 | return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f; |
24 | if (f < U32_MAX_P1) { |
25 | #if CASTFLAGS & 2 |
26 | if (f < U32_MAX_P1_HALF) |
27 | return (U32) f; |
28 | f -= U32_MAX_P1_HALF; |
29 | return ((U32) f) | (1 + U32_MAX >> 1); |
30 | #else |
31 | return (U32) f; |
32 | #endif |
33 | } |
34 | return f > 0 ? U32_MAX : 0 /* NaN */; |
35 | } |
36 | |
37 | I32 |
38 | Perl_cast_i32(pTHX_ NV f) |
39 | { |
40 | if (f < I32_MAX_P1) |
41 | return f < I32_MIN ? I32_MIN : (I32) f; |
42 | if (f < U32_MAX_P1) { |
43 | #if CASTFLAGS & 2 |
44 | if (f < U32_MAX_P1_HALF) |
45 | return (I32)(U32) f; |
46 | f -= U32_MAX_P1_HALF; |
47 | return (I32)(((U32) f) | (1 + U32_MAX >> 1)); |
48 | #else |
49 | return (I32)(U32) f; |
50 | #endif |
51 | } |
52 | return f > 0 ? (I32)U32_MAX : 0 /* NaN */; |
53 | } |
54 | |
55 | IV |
56 | Perl_cast_iv(pTHX_ NV f) |
57 | { |
58 | if (f < IV_MAX_P1) |
59 | return f < IV_MIN ? IV_MIN : (IV) f; |
60 | if (f < UV_MAX_P1) { |
61 | #if CASTFLAGS & 2 |
62 | /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */ |
63 | if (f < UV_MAX_P1_HALF) |
64 | return (IV)(UV) f; |
65 | f -= UV_MAX_P1_HALF; |
66 | return (IV)(((UV) f) | (1 + UV_MAX >> 1)); |
67 | #else |
68 | return (IV)(UV) f; |
69 | #endif |
70 | } |
71 | return f > 0 ? (IV)UV_MAX : 0 /* NaN */; |
72 | } |
73 | |
74 | UV |
75 | Perl_cast_uv(pTHX_ NV f) |
76 | { |
77 | if (f < 0.0) |
78 | return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f; |
79 | if (f < UV_MAX_P1) { |
80 | #if CASTFLAGS & 2 |
81 | if (f < UV_MAX_P1_HALF) |
82 | return (UV) f; |
83 | f -= UV_MAX_P1_HALF; |
84 | return ((UV) f) | (1 + UV_MAX >> 1); |
85 | #else |
86 | return (UV) f; |
87 | #endif |
88 | } |
89 | return f > 0 ? UV_MAX : 0 /* NaN */; |
90 | } |
91 | |
92 | #if defined(HUGE_VAL) || (defined(USE_LONG_DOUBLE) && defined(HUGE_VALL)) |
93 | /* |
94 | * This hack is to force load of "huge" support from libm.a |
95 | * So it is in perl for (say) POSIX to use. |
96 | * Needed for SunOS with Sun's 'acc' for example. |
97 | */ |
98 | NV |
99 | Perl_huge(void) |
100 | { |
101 | # if defined(USE_LONG_DOUBLE) && defined(HUGE_VALL) |
102 | return HUGE_VALL; |
103 | # endif |
104 | return HUGE_VAL; |
105 | } |
106 | #endif |
107 | |
108 | NV |
109 | Perl_scan_bin(pTHX_ char *start, STRLEN len, STRLEN *retlen) |
110 | { |
111 | register char *s = start; |
112 | register NV rnv = 0.0; |
113 | register UV ruv = 0; |
114 | register bool seenb = FALSE; |
115 | register bool overflowed = FALSE; |
116 | |
117 | for (; len-- && *s; s++) { |
118 | if (!(*s == '0' || *s == '1')) { |
119 | if (*s == '_' && len && *retlen |
120 | && (s[1] == '0' || s[1] == '1')) |
121 | { |
122 | --len; |
123 | ++s; |
124 | } |
125 | else if (seenb == FALSE && *s == 'b' && ruv == 0) { |
126 | /* Disallow 0bbb0b0bbb... */ |
127 | seenb = TRUE; |
128 | continue; |
129 | } |
130 | else { |
131 | if (ckWARN(WARN_DIGIT)) |
132 | Perl_warner(aTHX_ WARN_DIGIT, |
133 | "Illegal binary digit '%c' ignored", *s); |
134 | break; |
135 | } |
136 | } |
137 | if (!overflowed) { |
138 | register UV xuv = ruv << 1; |
139 | |
140 | if ((xuv >> 1) != ruv) { |
141 | overflowed = TRUE; |
142 | rnv = (NV) ruv; |
143 | if (ckWARN_d(WARN_OVERFLOW)) |
144 | Perl_warner(aTHX_ WARN_OVERFLOW, |
145 | "Integer overflow in binary number"); |
146 | } |
147 | else |
148 | ruv = xuv | (*s - '0'); |
149 | } |
150 | if (overflowed) { |
151 | rnv *= 2; |
152 | /* If an NV has not enough bits in its mantissa to |
153 | * represent an UV this summing of small low-order numbers |
154 | * is a waste of time (because the NV cannot preserve |
155 | * the low-order bits anyway): we could just remember when |
156 | * did we overflow and in the end just multiply rnv by the |
157 | * right amount. */ |
158 | rnv += (*s - '0'); |
159 | } |
160 | } |
161 | if (!overflowed) |
162 | rnv = (NV) ruv; |
163 | if ( ( overflowed && rnv > 4294967295.0) |
164 | #if UVSIZE > 4 |
165 | || (!overflowed && ruv > 0xffffffff ) |
166 | #endif |
167 | ) { |
168 | if (ckWARN(WARN_PORTABLE)) |
169 | Perl_warner(aTHX_ WARN_PORTABLE, |
170 | "Binary number > 0b11111111111111111111111111111111 non-portable"); |
171 | } |
172 | *retlen = s - start; |
173 | return rnv; |
174 | } |
175 | |
176 | NV |
177 | Perl_scan_oct(pTHX_ char *start, STRLEN len, STRLEN *retlen) |
178 | { |
179 | register char *s = start; |
180 | register NV rnv = 0.0; |
181 | register UV ruv = 0; |
182 | register bool overflowed = FALSE; |
183 | |
184 | for (; len-- && *s; s++) { |
185 | if (!(*s >= '0' && *s <= '7')) { |
186 | if (*s == '_' && len && *retlen |
187 | && (s[1] >= '0' && s[1] <= '7')) |
188 | { |
189 | --len; |
190 | ++s; |
191 | } |
192 | else { |
193 | /* Allow \octal to work the DWIM way (that is, stop scanning |
194 | * as soon as non-octal characters are seen, complain only iff |
195 | * someone seems to want to use the digits eight and nine). */ |
196 | if (*s == '8' || *s == '9') { |
197 | if (ckWARN(WARN_DIGIT)) |
198 | Perl_warner(aTHX_ WARN_DIGIT, |
199 | "Illegal octal digit '%c' ignored", *s); |
200 | } |
201 | break; |
202 | } |
203 | } |
204 | if (!overflowed) { |
205 | register UV xuv = ruv << 3; |
206 | |
207 | if ((xuv >> 3) != ruv) { |
208 | overflowed = TRUE; |
209 | rnv = (NV) ruv; |
210 | if (ckWARN_d(WARN_OVERFLOW)) |
211 | Perl_warner(aTHX_ WARN_OVERFLOW, |
212 | "Integer overflow in octal number"); |
213 | } |
214 | else |
215 | ruv = xuv | (*s - '0'); |
216 | } |
217 | if (overflowed) { |
218 | rnv *= 8.0; |
219 | /* If an NV has not enough bits in its mantissa to |
220 | * represent an UV this summing of small low-order numbers |
221 | * is a waste of time (because the NV cannot preserve |
222 | * the low-order bits anyway): we could just remember when |
223 | * did we overflow and in the end just multiply rnv by the |
224 | * right amount of 8-tuples. */ |
225 | rnv += (NV)(*s - '0'); |
226 | } |
227 | } |
228 | if (!overflowed) |
229 | rnv = (NV) ruv; |
230 | if ( ( overflowed && rnv > 4294967295.0) |
231 | #if UVSIZE > 4 |
232 | || (!overflowed && ruv > 0xffffffff ) |
233 | #endif |
234 | ) { |
235 | if (ckWARN(WARN_PORTABLE)) |
236 | Perl_warner(aTHX_ WARN_PORTABLE, |
237 | "Octal number > 037777777777 non-portable"); |
238 | } |
239 | *retlen = s - start; |
240 | return rnv; |
241 | } |
242 | |
243 | NV |
244 | Perl_scan_hex(pTHX_ char *start, STRLEN len, STRLEN *retlen) |
245 | { |
246 | register char *s = start; |
247 | register NV rnv = 0.0; |
248 | register UV ruv = 0; |
249 | register bool overflowed = FALSE; |
250 | char *hexdigit; |
251 | |
252 | if (len > 2) { |
253 | if (s[0] == 'x') { |
254 | s++; |
255 | len--; |
256 | } |
257 | else if (len > 3 && s[0] == '0' && s[1] == 'x') { |
258 | s+=2; |
259 | len-=2; |
260 | } |
261 | } |
262 | |
263 | for (; len-- && *s; s++) { |
264 | hexdigit = strchr((char *) PL_hexdigit, *s); |
265 | if (!hexdigit) { |
266 | if (*s == '_' && len && *retlen && s[1] |
267 | && (hexdigit = strchr((char *) PL_hexdigit, s[1]))) |
268 | { |
269 | --len; |
270 | ++s; |
271 | } |
272 | else { |
273 | if (ckWARN(WARN_DIGIT)) |
274 | Perl_warner(aTHX_ WARN_DIGIT, |
275 | "Illegal hexadecimal digit '%c' ignored", *s); |
276 | break; |
277 | } |
278 | } |
279 | if (!overflowed) { |
280 | register UV xuv = ruv << 4; |
281 | |
282 | if ((xuv >> 4) != ruv) { |
283 | overflowed = TRUE; |
284 | rnv = (NV) ruv; |
285 | if (ckWARN_d(WARN_OVERFLOW)) |
286 | Perl_warner(aTHX_ WARN_OVERFLOW, |
287 | "Integer overflow in hexadecimal number"); |
288 | } |
289 | else |
290 | ruv = xuv | ((hexdigit - PL_hexdigit) & 15); |
291 | } |
292 | if (overflowed) { |
293 | rnv *= 16.0; |
294 | /* If an NV has not enough bits in its mantissa to |
295 | * represent an UV this summing of small low-order numbers |
296 | * is a waste of time (because the NV cannot preserve |
297 | * the low-order bits anyway): we could just remember when |
298 | * did we overflow and in the end just multiply rnv by the |
299 | * right amount of 16-tuples. */ |
300 | rnv += (NV)((hexdigit - PL_hexdigit) & 15); |
301 | } |
302 | } |
303 | if (!overflowed) |
304 | rnv = (NV) ruv; |
305 | if ( ( overflowed && rnv > 4294967295.0) |
306 | #if UVSIZE > 4 |
307 | || (!overflowed && ruv > 0xffffffff ) |
308 | #endif |
309 | ) { |
310 | if (ckWARN(WARN_PORTABLE)) |
311 | Perl_warner(aTHX_ WARN_PORTABLE, |
312 | "Hexadecimal number > 0xffffffff non-portable"); |
313 | } |
314 | *retlen = s - start; |
315 | return rnv; |
316 | } |
317 | |
318 | /* |
319 | =for apidoc grok_numeric_radix |
320 | |
321 | Scan and skip for a numeric decimal separator (radix). |
322 | |
323 | =cut |
324 | */ |
325 | bool |
326 | Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send) |
327 | { |
328 | #ifdef USE_LOCALE_NUMERIC |
329 | if (PL_numeric_radix_sv && IN_LOCALE) { |
330 | STRLEN len; |
331 | char* radix = SvPV(PL_numeric_radix_sv, len); |
332 | if (*sp + len <= send && memEQ(*sp, radix, len)) { |
333 | *sp += len; |
334 | return TRUE; |
335 | } |
336 | } |
337 | /* always try "." if numeric radix didn't match because |
338 | * we may have data from different locales mixed */ |
339 | #endif |
340 | if (*sp < send && **sp == '.') { |
341 | ++*sp; |
342 | return TRUE; |
343 | } |
344 | return FALSE; |
345 | } |
346 | |
347 | /* |
348 | =for apidoc grok_number |
349 | |
350 | Recognise (or not) a number. The type of the number is returned |
351 | (0 if unrecognised), otherwise it is a bit-ORed combination of |
352 | IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT, |
60939fb8 |
353 | IS_NUMBER_NEG, IS_NUMBER_INFINITY (defined in perl.h). |
354 | |
355 | If the value of the number can fit an in UV, it is returned in the *valuep |
356 | IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV |
357 | will never be set unless *valuep is valid, but *valuep may have been assigned |
358 | to during processing even though IS_NUMBER_IN_UV is not set on return. |
359 | If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when |
360 | valuep is non-NULL, but no actual assignment (or SEGV) will occur. |
361 | |
362 | IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were |
363 | seen (in which case *valuep gives the true value truncated to an integer), and |
364 | IS_NUMBER_NEG if the number is negative (in which case *valuep holds the |
365 | absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the |
366 | number is larger than a UV. |
98994639 |
367 | |
368 | =cut |
369 | */ |
370 | int |
371 | Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep) |
372 | { |
60939fb8 |
373 | const char *s = pv; |
374 | const char *send = pv + len; |
375 | const UV max_div_10 = UV_MAX / 10; |
376 | const char max_mod_10 = UV_MAX % 10; |
377 | int numtype = 0; |
378 | int sawinf = 0; |
379 | |
380 | while (s < send && isSPACE(*s)) |
381 | s++; |
382 | if (s == send) { |
383 | return 0; |
384 | } else if (*s == '-') { |
385 | s++; |
386 | numtype = IS_NUMBER_NEG; |
387 | } |
388 | else if (*s == '+') |
389 | s++; |
390 | |
391 | if (s == send) |
392 | return 0; |
393 | |
394 | /* next must be digit or the radix separator or beginning of infinity */ |
395 | if (isDIGIT(*s)) { |
396 | /* UVs are at least 32 bits, so the first 9 decimal digits cannot |
397 | overflow. */ |
398 | UV value = *s - '0'; |
399 | /* This construction seems to be more optimiser friendly. |
400 | (without it gcc does the isDIGIT test and the *s - '0' separately) |
401 | With it gcc on arm is managing 6 instructions (6 cycles) per digit. |
402 | In theory the optimiser could deduce how far to unroll the loop |
403 | before checking for overflow. */ |
58bb9ec3 |
404 | if (++s < send) { |
405 | int digit = *s - '0'; |
60939fb8 |
406 | if (digit >= 0 && digit <= 9) { |
407 | value = value * 10 + digit; |
58bb9ec3 |
408 | if (++s < send) { |
409 | digit = *s - '0'; |
60939fb8 |
410 | if (digit >= 0 && digit <= 9) { |
411 | value = value * 10 + digit; |
58bb9ec3 |
412 | if (++s < send) { |
413 | digit = *s - '0'; |
60939fb8 |
414 | if (digit >= 0 && digit <= 9) { |
415 | value = value * 10 + digit; |
58bb9ec3 |
416 | if (++s < send) { |
417 | digit = *s - '0'; |
60939fb8 |
418 | if (digit >= 0 && digit <= 9) { |
419 | value = value * 10 + digit; |
58bb9ec3 |
420 | if (++s < send) { |
421 | digit = *s - '0'; |
60939fb8 |
422 | if (digit >= 0 && digit <= 9) { |
423 | value = value * 10 + digit; |
58bb9ec3 |
424 | if (++s < send) { |
425 | digit = *s - '0'; |
60939fb8 |
426 | if (digit >= 0 && digit <= 9) { |
427 | value = value * 10 + digit; |
58bb9ec3 |
428 | if (++s < send) { |
429 | digit = *s - '0'; |
60939fb8 |
430 | if (digit >= 0 && digit <= 9) { |
431 | value = value * 10 + digit; |
58bb9ec3 |
432 | if (++s < send) { |
433 | digit = *s - '0'; |
60939fb8 |
434 | if (digit >= 0 && digit <= 9) { |
435 | value = value * 10 + digit; |
58bb9ec3 |
436 | if (++s < send) { |
60939fb8 |
437 | /* Now got 9 digits, so need to check |
438 | each time for overflow. */ |
58bb9ec3 |
439 | digit = *s - '0'; |
60939fb8 |
440 | while (digit >= 0 && digit <= 9 |
441 | && (value < max_div_10 |
442 | || (value == max_div_10 |
443 | && digit <= max_mod_10))) { |
444 | value = value * 10 + digit; |
58bb9ec3 |
445 | if (++s < send) |
446 | digit = *s - '0'; |
60939fb8 |
447 | else |
448 | break; |
449 | } |
450 | if (digit >= 0 && digit <= 9 |
51bd16da |
451 | && (s < send)) { |
60939fb8 |
452 | /* value overflowed. |
453 | skip the remaining digits, don't |
454 | worry about setting *valuep. */ |
455 | do { |
456 | s++; |
457 | } while (s < send && isDIGIT(*s)); |
458 | numtype |= |
459 | IS_NUMBER_GREATER_THAN_UV_MAX; |
460 | goto skip_value; |
461 | } |
462 | } |
463 | } |
98994639 |
464 | } |
60939fb8 |
465 | } |
466 | } |
467 | } |
468 | } |
469 | } |
470 | } |
471 | } |
472 | } |
473 | } |
474 | } |
475 | } |
98994639 |
476 | } |
60939fb8 |
477 | } |
98994639 |
478 | } |
60939fb8 |
479 | numtype |= IS_NUMBER_IN_UV; |
480 | if (valuep) |
481 | *valuep = value; |
482 | |
483 | skip_value: |
484 | if (GROK_NUMERIC_RADIX(&s, send)) { |
485 | numtype |= IS_NUMBER_NOT_INT; |
486 | while (s < send && isDIGIT(*s)) /* optional digits after the radix */ |
487 | s++; |
98994639 |
488 | } |
60939fb8 |
489 | } |
490 | else if (GROK_NUMERIC_RADIX(&s, send)) { |
491 | numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */ |
492 | /* no digits before the radix means we need digits after it */ |
493 | if (s < send && isDIGIT(*s)) { |
494 | do { |
495 | s++; |
496 | } while (s < send && isDIGIT(*s)); |
497 | if (valuep) { |
498 | /* integer approximation is valid - it's 0. */ |
499 | *valuep = 0; |
500 | } |
98994639 |
501 | } |
60939fb8 |
502 | else |
503 | return 0; |
504 | } else if (*s == 'I' || *s == 'i') { |
505 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
506 | s++; if (s == send || (*s != 'F' && *s != 'f')) return 0; |
507 | s++; if (s < send && (*s == 'I' || *s == 'i')) { |
508 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
509 | s++; if (s == send || (*s != 'I' && *s != 'i')) return 0; |
510 | s++; if (s == send || (*s != 'T' && *s != 't')) return 0; |
511 | s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0; |
512 | s++; |
98994639 |
513 | } |
60939fb8 |
514 | sawinf = 1; |
515 | } else /* Add test for NaN here. */ |
98994639 |
516 | return 0; |
60939fb8 |
517 | |
518 | if (sawinf) { |
519 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
520 | numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT; |
521 | } else if (s < send) { |
522 | /* we can have an optional exponent part */ |
523 | if (*s == 'e' || *s == 'E') { |
524 | /* The only flag we keep is sign. Blow away any "it's UV" */ |
525 | numtype &= IS_NUMBER_NEG; |
526 | numtype |= IS_NUMBER_NOT_INT; |
527 | s++; |
528 | if (s < send && (*s == '-' || *s == '+')) |
529 | s++; |
530 | if (s < send && isDIGIT(*s)) { |
531 | do { |
532 | s++; |
533 | } while (s < send && isDIGIT(*s)); |
534 | } |
535 | else |
536 | return 0; |
537 | } |
538 | } |
539 | while (s < send && isSPACE(*s)) |
540 | s++; |
541 | if (s >= send) |
542 | return numtype; |
543 | if (len == 10 && memEQ(pv, "0 but true", 10)) { |
544 | if (valuep) |
545 | *valuep = 0; |
546 | return IS_NUMBER_IN_UV; |
547 | } |
548 | return 0; |
98994639 |
549 | } |
550 | |
551 | NV |
552 | S_mulexp10(NV value, I32 exponent) |
553 | { |
554 | NV result = 1.0; |
555 | NV power = 10.0; |
556 | bool negative = 0; |
557 | I32 bit; |
558 | |
559 | if (exponent == 0) |
560 | return value; |
561 | else if (exponent < 0) { |
562 | negative = 1; |
563 | exponent = -exponent; |
564 | } |
a333faaf |
565 | #ifdef __VAX /* avoid %SYSTEM-F-FLTOVF_F sans VAXC$ESTABLISH */ |
566 | # if defined(__DECC_VER) && __DECC_VER <= 50390006 |
567 | /* __F_FLT_MAX_10_EXP - 5 == 33 */ |
568 | if (!negative && |
569 | (log10(value) + exponent) >= (__F_FLT_MAX_10_EXP - 5)) |
570 | return NV_MAX; |
571 | # endif |
572 | #endif |
98994639 |
573 | for (bit = 1; exponent; bit <<= 1) { |
574 | if (exponent & bit) { |
575 | exponent ^= bit; |
576 | result *= power; |
577 | } |
578 | power *= power; |
579 | } |
580 | return negative ? value / result : value * result; |
581 | } |
582 | |
583 | NV |
584 | Perl_my_atof(pTHX_ const char* s) |
585 | { |
586 | NV x = 0.0; |
587 | #ifdef USE_LOCALE_NUMERIC |
588 | if (PL_numeric_local && IN_LOCALE) { |
589 | NV y; |
590 | |
591 | /* Scan the number twice; once using locale and once without; |
592 | * choose the larger result (in absolute value). */ |
593 | Perl_atof2(aTHX_ s, &x); |
594 | SET_NUMERIC_STANDARD(); |
595 | Perl_atof2(aTHX_ s, &y); |
596 | SET_NUMERIC_LOCAL(); |
597 | if ((y < 0.0 && y < x) || (y > 0.0 && y > x)) |
598 | return y; |
599 | } |
600 | else |
601 | Perl_atof2(aTHX_ s, &x); |
602 | #else |
603 | Perl_atof2(aTHX_ s, &x); |
604 | #endif |
605 | return x; |
606 | } |
607 | |
608 | char* |
609 | Perl_my_atof2(pTHX_ const char* orig, NV* value) |
610 | { |
611 | NV result = 0.0; |
612 | bool negative = 0; |
613 | char* s = (char*)orig; |
614 | char* send = s + strlen(orig) - 1; |
615 | bool seendigit = 0; |
616 | I32 expextra = 0; |
617 | I32 exponent = 0; |
618 | I32 i; |
619 | /* this is arbitrary */ |
620 | #define PARTLIM 6 |
621 | /* we want the largest integers we can usefully use */ |
622 | #if defined(HAS_QUAD) && defined(USE_64_BIT_INT) |
623 | # define PARTSIZE ((int)TYPE_DIGITS(U64)-1) |
624 | U64 part[PARTLIM]; |
625 | #else |
626 | # define PARTSIZE ((int)TYPE_DIGITS(U32)-1) |
627 | U32 part[PARTLIM]; |
628 | #endif |
629 | I32 ipart = 0; /* index into part[] */ |
630 | I32 offcount; /* number of digits in least significant part */ |
631 | |
632 | /* sign */ |
633 | switch (*s) { |
634 | case '-': |
635 | negative = 1; |
636 | /* fall through */ |
637 | case '+': |
638 | ++s; |
639 | } |
640 | |
641 | part[0] = offcount = 0; |
642 | if (isDIGIT(*s)) { |
643 | seendigit = 1; /* get this over with */ |
644 | |
645 | /* skip leading zeros */ |
646 | while (*s == '0') |
647 | ++s; |
648 | } |
649 | |
650 | /* integer digits */ |
651 | while (isDIGIT(*s)) { |
652 | if (++offcount > PARTSIZE) { |
653 | if (++ipart < PARTLIM) { |
654 | part[ipart] = 0; |
655 | offcount = 1; /* ++0 */ |
656 | } |
657 | else { |
658 | /* limits of precision reached */ |
659 | --ipart; |
660 | --offcount; |
661 | if (*s >= '5') |
662 | ++part[ipart]; |
663 | while (isDIGIT(*s)) { |
664 | ++expextra; |
665 | ++s; |
666 | } |
667 | /* warn of loss of precision? */ |
668 | break; |
669 | } |
670 | } |
671 | part[ipart] = part[ipart] * 10 + (*s++ - '0'); |
672 | } |
673 | |
674 | /* decimal point */ |
675 | if (GROK_NUMERIC_RADIX((const char **)&s, send)) { |
676 | if (isDIGIT(*s)) |
677 | seendigit = 1; /* get this over with */ |
678 | |
679 | /* decimal digits */ |
680 | while (isDIGIT(*s)) { |
681 | if (++offcount > PARTSIZE) { |
682 | if (++ipart < PARTLIM) { |
683 | part[ipart] = 0; |
684 | offcount = 1; /* ++0 */ |
685 | } |
686 | else { |
687 | /* limits of precision reached */ |
688 | --ipart; |
689 | --offcount; |
690 | if (*s >= '5') |
691 | ++part[ipart]; |
692 | while (isDIGIT(*s)) |
693 | ++s; |
694 | /* warn of loss of precision? */ |
695 | break; |
696 | } |
697 | } |
698 | --expextra; |
699 | part[ipart] = part[ipart] * 10 + (*s++ - '0'); |
700 | } |
701 | } |
702 | |
703 | /* combine components of mantissa */ |
704 | for (i = 0; i <= ipart; ++i) |
705 | result += S_mulexp10((NV)part[ipart - i], |
706 | i ? offcount + (i - 1) * PARTSIZE : 0); |
707 | |
708 | if (seendigit && (*s == 'e' || *s == 'E')) { |
709 | bool expnegative = 0; |
710 | |
711 | ++s; |
712 | switch (*s) { |
713 | case '-': |
714 | expnegative = 1; |
715 | /* fall through */ |
716 | case '+': |
717 | ++s; |
718 | } |
719 | while (isDIGIT(*s)) |
720 | exponent = exponent * 10 + (*s++ - '0'); |
721 | if (expnegative) |
722 | exponent = -exponent; |
723 | } |
724 | |
725 | /* now apply the exponent */ |
726 | exponent += expextra; |
727 | result = S_mulexp10(result, exponent); |
728 | |
729 | /* now apply the sign */ |
730 | if (negative) |
731 | result = -result; |
732 | *value = result; |
733 | return s; |
734 | } |
735 | |