Commit | Line | Data |
98994639 |
1 | /* numeric.c |
2 | * |
3 | * Copyright (c) 2001, Larry Wall |
4 | * |
5 | * You may distribute under the terms of either the GNU General Public |
6 | * License or the Artistic License, as specified in the README file. |
7 | * |
8 | */ |
9 | |
10 | /* |
11 | * "That only makes eleven (plus one mislaid) and not fourteen, unless |
12 | * wizards count differently to other people." |
13 | */ |
14 | |
15 | #include "EXTERN.h" |
16 | #define PERL_IN_NUMERIC_C |
17 | #include "perl.h" |
18 | |
19 | U32 |
20 | Perl_cast_ulong(pTHX_ NV f) |
21 | { |
22 | if (f < 0.0) |
23 | return f < I32_MIN ? (U32) I32_MIN : (U32)(I32) f; |
24 | if (f < U32_MAX_P1) { |
25 | #if CASTFLAGS & 2 |
26 | if (f < U32_MAX_P1_HALF) |
27 | return (U32) f; |
28 | f -= U32_MAX_P1_HALF; |
29 | return ((U32) f) | (1 + U32_MAX >> 1); |
30 | #else |
31 | return (U32) f; |
32 | #endif |
33 | } |
34 | return f > 0 ? U32_MAX : 0 /* NaN */; |
35 | } |
36 | |
37 | I32 |
38 | Perl_cast_i32(pTHX_ NV f) |
39 | { |
40 | if (f < I32_MAX_P1) |
41 | return f < I32_MIN ? I32_MIN : (I32) f; |
42 | if (f < U32_MAX_P1) { |
43 | #if CASTFLAGS & 2 |
44 | if (f < U32_MAX_P1_HALF) |
45 | return (I32)(U32) f; |
46 | f -= U32_MAX_P1_HALF; |
47 | return (I32)(((U32) f) | (1 + U32_MAX >> 1)); |
48 | #else |
49 | return (I32)(U32) f; |
50 | #endif |
51 | } |
52 | return f > 0 ? (I32)U32_MAX : 0 /* NaN */; |
53 | } |
54 | |
55 | IV |
56 | Perl_cast_iv(pTHX_ NV f) |
57 | { |
58 | if (f < IV_MAX_P1) |
59 | return f < IV_MIN ? IV_MIN : (IV) f; |
60 | if (f < UV_MAX_P1) { |
61 | #if CASTFLAGS & 2 |
62 | /* For future flexibility allowing for sizeof(UV) >= sizeof(IV) */ |
63 | if (f < UV_MAX_P1_HALF) |
64 | return (IV)(UV) f; |
65 | f -= UV_MAX_P1_HALF; |
66 | return (IV)(((UV) f) | (1 + UV_MAX >> 1)); |
67 | #else |
68 | return (IV)(UV) f; |
69 | #endif |
70 | } |
71 | return f > 0 ? (IV)UV_MAX : 0 /* NaN */; |
72 | } |
73 | |
74 | UV |
75 | Perl_cast_uv(pTHX_ NV f) |
76 | { |
77 | if (f < 0.0) |
78 | return f < IV_MIN ? (UV) IV_MIN : (UV)(IV) f; |
79 | if (f < UV_MAX_P1) { |
80 | #if CASTFLAGS & 2 |
81 | if (f < UV_MAX_P1_HALF) |
82 | return (UV) f; |
83 | f -= UV_MAX_P1_HALF; |
84 | return ((UV) f) | (1 + UV_MAX >> 1); |
85 | #else |
86 | return (UV) f; |
87 | #endif |
88 | } |
89 | return f > 0 ? UV_MAX : 0 /* NaN */; |
90 | } |
91 | |
92 | #if defined(HUGE_VAL) || (defined(USE_LONG_DOUBLE) && defined(HUGE_VALL)) |
93 | /* |
94 | * This hack is to force load of "huge" support from libm.a |
95 | * So it is in perl for (say) POSIX to use. |
96 | * Needed for SunOS with Sun's 'acc' for example. |
97 | */ |
98 | NV |
99 | Perl_huge(void) |
100 | { |
101 | # if defined(USE_LONG_DOUBLE) && defined(HUGE_VALL) |
102 | return HUGE_VALL; |
103 | # endif |
104 | return HUGE_VAL; |
105 | } |
106 | #endif |
107 | |
53305cf1 |
108 | /* |
109 | =for apidoc grok_bin |
98994639 |
110 | |
53305cf1 |
111 | converts a string representing a binary number to numeric form. |
112 | |
113 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
114 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
115 | The scan stops at the end of the string, or the first invalid character. |
116 | On return I<*len> is set to the length scanned string, and I<*flags> gives |
117 | output flags. |
118 | |
119 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
120 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_bin> |
121 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
122 | and writes the value to I<*result> (or the value is discarded if I<result> |
123 | is NULL). |
124 | |
125 | The hex number may optinally be prefixed with "0b" or "b". If |
126 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> on entry then the binary |
127 | number may use '_' characters to separate digits. |
128 | |
129 | =cut |
130 | */ |
131 | |
132 | UV |
133 | Perl_grok_bin(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) { |
134 | const char *s = start; |
135 | STRLEN len = *len_p; |
136 | UV value = 0; |
137 | NV value_nv = 0; |
138 | |
139 | const UV max_div_2 = UV_MAX / 2; |
140 | bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; |
141 | bool overflowed = FALSE; |
142 | |
143 | /* strip off leading b or 0b. |
144 | for compatibility silently suffer "b" and "0b" as valid binary numbers. |
145 | */ |
146 | if (len >= 1) { |
147 | if (s[0] == 'b') { |
148 | s++; |
149 | len--; |
98994639 |
150 | } |
53305cf1 |
151 | else if (len >= 2 && s[0] == '0' && s[1] == 'b') { |
152 | s+=2; |
153 | len-=2; |
98994639 |
154 | } |
53305cf1 |
155 | } |
156 | |
157 | for (; len-- && *s; s++) { |
158 | char bit = *s; |
159 | if (bit == '0' || bit == '1') { |
160 | /* Write it in this wonky order with a goto to attempt to get the |
161 | compiler to make the common case integer-only loop pretty tight. |
162 | With gcc seems to be much straighter code than old scan_bin. */ |
163 | redo: |
164 | if (!overflowed) { |
165 | if (value <= max_div_2) { |
166 | value = (value << 1) | (bit - '0'); |
167 | continue; |
168 | } |
169 | /* Bah. We're just overflowed. */ |
170 | if (ckWARN_d(WARN_OVERFLOW)) |
171 | Perl_warner(aTHX_ WARN_OVERFLOW, |
172 | "Integer overflow in binary number"); |
173 | overflowed = TRUE; |
174 | value_nv = (NV) value; |
175 | } |
176 | value_nv *= 2.0; |
98994639 |
177 | /* If an NV has not enough bits in its mantissa to |
178 | * represent an UV this summing of small low-order numbers |
179 | * is a waste of time (because the NV cannot preserve |
180 | * the low-order bits anyway): we could just remember when |
53305cf1 |
181 | * did we overflow and in the end just multiply value_nv by the |
98994639 |
182 | * right amount. */ |
53305cf1 |
183 | value_nv += (NV)(bit - '0'); |
184 | continue; |
185 | } |
186 | if (bit == '_' && len && allow_underscores && (bit = s[1]) |
187 | && (bit == '0' || bit == '1')) |
98994639 |
188 | { |
189 | --len; |
190 | ++s; |
53305cf1 |
191 | goto redo; |
98994639 |
192 | } |
53305cf1 |
193 | if (ckWARN(WARN_DIGIT)) |
194 | Perl_warner(aTHX_ WARN_DIGIT, |
195 | "Illegal binary digit '%c' ignored", *s); |
196 | break; |
98994639 |
197 | } |
53305cf1 |
198 | |
199 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
200 | #if UVSIZE > 4 |
53305cf1 |
201 | || (!overflowed && value > 0xffffffff ) |
98994639 |
202 | #endif |
203 | ) { |
204 | if (ckWARN(WARN_PORTABLE)) |
205 | Perl_warner(aTHX_ WARN_PORTABLE, |
53305cf1 |
206 | "Binary number > 0b11111111111111111111111111111111 non-portable"); |
207 | } |
208 | *len_p = s - start; |
209 | if (!overflowed) { |
210 | *flags = 0; |
211 | return value; |
98994639 |
212 | } |
53305cf1 |
213 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
214 | if (result) |
215 | *result = value_nv; |
216 | return UV_MAX; |
98994639 |
217 | } |
218 | |
53305cf1 |
219 | /* |
220 | =for apidoc grok_hex |
221 | |
222 | converts a string representing a hex number to numeric form. |
223 | |
224 | On entry I<start> and I<*len> give the string to scan, I<*flags> gives |
225 | conversion flags, and I<result> should be NULL or a pointer to an NV. |
226 | The scan stops at the end of the string, or the first non-hex-digit character. |
227 | On return I<*len> is set to the length scanned string, and I<*flags> gives |
228 | output flags. |
229 | |
230 | If the value is <= UV_MAX it is returned as a UV, the output flags are clear, |
231 | and nothing is written to I<*result>. If the value is > UV_MAX C<grok_hex> |
232 | returns UV_MAX, sets C<PERL_SCAN_GREATER_THAN_UV_MAX> in the output flags, |
233 | and writes the value to I<*result> (or the value is discarded if I<result> |
234 | is NULL). |
235 | |
236 | The hex number may optinally be prefixed with "0x" or "x". If |
237 | C<PERL_SCAN_ALLOW_UNDERSCORES> is set in I<*flags> on entry then the hex |
238 | number may use '_' characters to separate digits. |
239 | |
240 | =cut |
241 | */ |
242 | |
243 | UV |
244 | Perl_grok_hex(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) { |
245 | const char *s = start; |
246 | STRLEN len = *len_p; |
247 | UV value = 0; |
248 | NV value_nv = 0; |
249 | |
250 | const UV max_div_16 = UV_MAX / 16; |
251 | bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; |
252 | bool overflowed = FALSE; |
253 | const char *hexdigit; |
98994639 |
254 | |
53305cf1 |
255 | /* strip off leading x or 0x. |
256 | for compatibility silently suffer "x" and "0x" as valid hex numbers. */ |
257 | if (len >= 1) { |
98994639 |
258 | if (s[0] == 'x') { |
259 | s++; |
260 | len--; |
261 | } |
53305cf1 |
262 | else if (len >= 2 && s[0] == '0' && s[1] == 'x') { |
98994639 |
263 | s+=2; |
264 | len-=2; |
265 | } |
266 | } |
267 | |
268 | for (; len-- && *s; s++) { |
269 | hexdigit = strchr((char *) PL_hexdigit, *s); |
53305cf1 |
270 | if (hexdigit) { |
271 | /* Write it in this wonky order with a goto to attempt to get the |
272 | compiler to make the common case integer-only loop pretty tight. |
273 | With gcc seems to be much straighter code than old scan_hex. */ |
274 | redo: |
275 | if (!overflowed) { |
276 | if (value <= max_div_16) { |
277 | value = (value << 4) | ((hexdigit - PL_hexdigit) & 15); |
278 | continue; |
279 | } |
280 | /* Bah. We're just overflowed. */ |
281 | if (ckWARN_d(WARN_OVERFLOW)) |
282 | Perl_warner(aTHX_ WARN_OVERFLOW, |
283 | "Integer overflow in hexadecimal number"); |
284 | overflowed = TRUE; |
285 | value_nv = (NV) value; |
286 | } |
287 | value_nv *= 16.0; |
288 | /* If an NV has not enough bits in its mantissa to |
289 | * represent an UV this summing of small low-order numbers |
290 | * is a waste of time (because the NV cannot preserve |
291 | * the low-order bits anyway): we could just remember when |
292 | * did we overflow and in the end just multiply value_nv by the |
293 | * right amount of 16-tuples. */ |
294 | value_nv += (NV)((hexdigit - PL_hexdigit) & 15); |
295 | continue; |
296 | } |
297 | if (*s == '_' && len && allow_underscores && s[1] |
98994639 |
298 | && (hexdigit = strchr((char *) PL_hexdigit, s[1]))) |
299 | { |
300 | --len; |
301 | ++s; |
53305cf1 |
302 | goto redo; |
98994639 |
303 | } |
53305cf1 |
304 | if (ckWARN(WARN_DIGIT)) |
305 | Perl_warner(aTHX_ WARN_DIGIT, |
306 | "Illegal hexadecimal digit '%c' ignored", *s); |
307 | break; |
308 | } |
309 | |
310 | if ( ( overflowed && value_nv > 4294967295.0) |
311 | #if UVSIZE > 4 |
312 | || (!overflowed && value > 0xffffffff ) |
313 | #endif |
314 | ) { |
315 | if (ckWARN(WARN_PORTABLE)) |
316 | Perl_warner(aTHX_ WARN_PORTABLE, |
317 | "Hexadecimal number > 0xffffffff non-portable"); |
318 | } |
319 | *len_p = s - start; |
320 | if (!overflowed) { |
321 | *flags = 0; |
322 | return value; |
323 | } |
324 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
325 | if (result) |
326 | *result = value_nv; |
327 | return UV_MAX; |
328 | } |
329 | |
330 | /* |
331 | =for apidoc grok_oct |
332 | |
333 | |
334 | =cut |
335 | */ |
336 | |
337 | UV |
338 | Perl_grok_oct(pTHX_ char *start, STRLEN *len_p, I32 *flags, NV *result) { |
339 | const char *s = start; |
340 | STRLEN len = *len_p; |
341 | UV value = 0; |
342 | NV value_nv = 0; |
343 | |
344 | const UV max_div_8 = UV_MAX / 8; |
345 | bool allow_underscores = *flags & PERL_SCAN_ALLOW_UNDERSCORES; |
346 | bool overflowed = FALSE; |
347 | |
348 | for (; len-- && *s; s++) { |
349 | /* gcc 2.95 optimiser not smart enough to figure that this subtraction |
350 | out front allows slicker code. */ |
351 | int digit = *s - '0'; |
352 | if (digit >= 0 && digit <= 7) { |
353 | /* Write it in this wonky order with a goto to attempt to get the |
354 | compiler to make the common case integer-only loop pretty tight. |
355 | */ |
356 | redo: |
357 | if (!overflowed) { |
358 | if (value <= max_div_8) { |
359 | value = (value << 3) | digit; |
360 | continue; |
361 | } |
362 | /* Bah. We're just overflowed. */ |
363 | if (ckWARN_d(WARN_OVERFLOW)) |
364 | Perl_warner(aTHX_ WARN_OVERFLOW, |
365 | "Integer overflow in octal number"); |
366 | overflowed = TRUE; |
367 | value_nv = (NV) value; |
368 | } |
369 | value_nv *= 8.0; |
98994639 |
370 | /* If an NV has not enough bits in its mantissa to |
371 | * represent an UV this summing of small low-order numbers |
372 | * is a waste of time (because the NV cannot preserve |
373 | * the low-order bits anyway): we could just remember when |
53305cf1 |
374 | * did we overflow and in the end just multiply value_nv by the |
375 | * right amount of 8-tuples. */ |
376 | value_nv += (NV)digit; |
377 | continue; |
378 | } |
379 | if (digit == ('_' - '0') && len && allow_underscores |
380 | && (digit = s[1] - '0') && (digit >= 0 && digit <= 7)) |
381 | { |
382 | --len; |
383 | ++s; |
384 | goto redo; |
385 | } |
386 | /* Allow \octal to work the DWIM way (that is, stop scanning |
387 | * as soon as non-octal characters are seen, complain only iff |
388 | * someone seems to want to use the digits eight and nine). */ |
389 | if (digit == 8 || digit == 9) { |
390 | if (ckWARN(WARN_DIGIT)) |
391 | Perl_warner(aTHX_ WARN_DIGIT, |
392 | "Illegal octal digit '%c' ignored", *s); |
393 | } |
394 | break; |
98994639 |
395 | } |
53305cf1 |
396 | |
397 | if ( ( overflowed && value_nv > 4294967295.0) |
98994639 |
398 | #if UVSIZE > 4 |
53305cf1 |
399 | || (!overflowed && value > 0xffffffff ) |
98994639 |
400 | #endif |
401 | ) { |
402 | if (ckWARN(WARN_PORTABLE)) |
403 | Perl_warner(aTHX_ WARN_PORTABLE, |
53305cf1 |
404 | "Octal number > 037777777777 non-portable"); |
405 | } |
406 | *len_p = s - start; |
407 | if (!overflowed) { |
408 | *flags = 0; |
409 | return value; |
98994639 |
410 | } |
53305cf1 |
411 | *flags = PERL_SCAN_GREATER_THAN_UV_MAX; |
412 | if (result) |
413 | *result = value_nv; |
414 | return UV_MAX; |
415 | } |
416 | |
417 | /* |
418 | =for apidoc scan_bin |
419 | |
420 | For backwards compatibility. Use C<grok_bin> instead. |
421 | |
422 | =for apidoc scan_hex |
423 | |
424 | For backwards compatibility. Use C<grok_hex> instead. |
425 | |
426 | =for apidoc scan_oct |
427 | |
428 | For backwards compatibility. Use C<grok_oct> instead. |
429 | |
430 | =cut |
431 | */ |
432 | |
433 | NV |
434 | Perl_scan_bin(pTHX_ char *start, STRLEN len, STRLEN *retlen) |
435 | { |
436 | NV rnv; |
437 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
438 | UV ruv = grok_bin (start, &len, &flags, &rnv); |
439 | |
440 | *retlen = len; |
441 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
442 | } |
443 | |
444 | NV |
445 | Perl_scan_oct(pTHX_ char *start, STRLEN len, STRLEN *retlen) |
446 | { |
447 | NV rnv; |
448 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
449 | UV ruv = grok_oct (start, &len, &flags, &rnv); |
450 | |
451 | *retlen = len; |
452 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
453 | } |
454 | |
455 | NV |
456 | Perl_scan_hex(pTHX_ char *start, STRLEN len, STRLEN *retlen) |
457 | { |
458 | NV rnv; |
459 | I32 flags = *retlen ? PERL_SCAN_ALLOW_UNDERSCORES : 0; |
460 | UV ruv = grok_hex (start, &len, &flags, &rnv); |
461 | |
462 | *retlen = len; |
463 | return (flags & PERL_SCAN_GREATER_THAN_UV_MAX) ? rnv : (NV)ruv; |
98994639 |
464 | } |
465 | |
466 | /* |
467 | =for apidoc grok_numeric_radix |
468 | |
469 | Scan and skip for a numeric decimal separator (radix). |
470 | |
471 | =cut |
472 | */ |
473 | bool |
474 | Perl_grok_numeric_radix(pTHX_ const char **sp, const char *send) |
475 | { |
476 | #ifdef USE_LOCALE_NUMERIC |
477 | if (PL_numeric_radix_sv && IN_LOCALE) { |
478 | STRLEN len; |
479 | char* radix = SvPV(PL_numeric_radix_sv, len); |
480 | if (*sp + len <= send && memEQ(*sp, radix, len)) { |
481 | *sp += len; |
482 | return TRUE; |
483 | } |
484 | } |
485 | /* always try "." if numeric radix didn't match because |
486 | * we may have data from different locales mixed */ |
487 | #endif |
488 | if (*sp < send && **sp == '.') { |
489 | ++*sp; |
490 | return TRUE; |
491 | } |
492 | return FALSE; |
493 | } |
494 | |
495 | /* |
496 | =for apidoc grok_number |
497 | |
498 | Recognise (or not) a number. The type of the number is returned |
499 | (0 if unrecognised), otherwise it is a bit-ORed combination of |
500 | IS_NUMBER_IN_UV, IS_NUMBER_GREATER_THAN_UV_MAX, IS_NUMBER_NOT_INT, |
aa8b85de |
501 | IS_NUMBER_NEG, IS_NUMBER_INFINITY, IS_NUMBER_NAN (defined in perl.h). |
60939fb8 |
502 | |
503 | If the value of the number can fit an in UV, it is returned in the *valuep |
504 | IS_NUMBER_IN_UV will be set to indicate that *valuep is valid, IS_NUMBER_IN_UV |
505 | will never be set unless *valuep is valid, but *valuep may have been assigned |
506 | to during processing even though IS_NUMBER_IN_UV is not set on return. |
507 | If valuep is NULL, IS_NUMBER_IN_UV will be set for the same cases as when |
508 | valuep is non-NULL, but no actual assignment (or SEGV) will occur. |
509 | |
510 | IS_NUMBER_NOT_INT will be set with IS_NUMBER_IN_UV if trailing decimals were |
511 | seen (in which case *valuep gives the true value truncated to an integer), and |
512 | IS_NUMBER_NEG if the number is negative (in which case *valuep holds the |
513 | absolute value). IS_NUMBER_IN_UV is not set if e notation was used or the |
514 | number is larger than a UV. |
98994639 |
515 | |
516 | =cut |
517 | */ |
518 | int |
519 | Perl_grok_number(pTHX_ const char *pv, STRLEN len, UV *valuep) |
520 | { |
60939fb8 |
521 | const char *s = pv; |
522 | const char *send = pv + len; |
523 | const UV max_div_10 = UV_MAX / 10; |
524 | const char max_mod_10 = UV_MAX % 10; |
525 | int numtype = 0; |
526 | int sawinf = 0; |
aa8b85de |
527 | int sawnan = 0; |
60939fb8 |
528 | |
529 | while (s < send && isSPACE(*s)) |
530 | s++; |
531 | if (s == send) { |
532 | return 0; |
533 | } else if (*s == '-') { |
534 | s++; |
535 | numtype = IS_NUMBER_NEG; |
536 | } |
537 | else if (*s == '+') |
538 | s++; |
539 | |
540 | if (s == send) |
541 | return 0; |
542 | |
543 | /* next must be digit or the radix separator or beginning of infinity */ |
544 | if (isDIGIT(*s)) { |
545 | /* UVs are at least 32 bits, so the first 9 decimal digits cannot |
546 | overflow. */ |
547 | UV value = *s - '0'; |
548 | /* This construction seems to be more optimiser friendly. |
549 | (without it gcc does the isDIGIT test and the *s - '0' separately) |
550 | With it gcc on arm is managing 6 instructions (6 cycles) per digit. |
551 | In theory the optimiser could deduce how far to unroll the loop |
552 | before checking for overflow. */ |
58bb9ec3 |
553 | if (++s < send) { |
554 | int digit = *s - '0'; |
60939fb8 |
555 | if (digit >= 0 && digit <= 9) { |
556 | value = value * 10 + digit; |
58bb9ec3 |
557 | if (++s < send) { |
558 | digit = *s - '0'; |
60939fb8 |
559 | if (digit >= 0 && digit <= 9) { |
560 | value = value * 10 + digit; |
58bb9ec3 |
561 | if (++s < send) { |
562 | digit = *s - '0'; |
60939fb8 |
563 | if (digit >= 0 && digit <= 9) { |
564 | value = value * 10 + digit; |
58bb9ec3 |
565 | if (++s < send) { |
566 | digit = *s - '0'; |
60939fb8 |
567 | if (digit >= 0 && digit <= 9) { |
568 | value = value * 10 + digit; |
58bb9ec3 |
569 | if (++s < send) { |
570 | digit = *s - '0'; |
60939fb8 |
571 | if (digit >= 0 && digit <= 9) { |
572 | value = value * 10 + digit; |
58bb9ec3 |
573 | if (++s < send) { |
574 | digit = *s - '0'; |
60939fb8 |
575 | if (digit >= 0 && digit <= 9) { |
576 | value = value * 10 + digit; |
58bb9ec3 |
577 | if (++s < send) { |
578 | digit = *s - '0'; |
60939fb8 |
579 | if (digit >= 0 && digit <= 9) { |
580 | value = value * 10 + digit; |
58bb9ec3 |
581 | if (++s < send) { |
582 | digit = *s - '0'; |
60939fb8 |
583 | if (digit >= 0 && digit <= 9) { |
584 | value = value * 10 + digit; |
58bb9ec3 |
585 | if (++s < send) { |
60939fb8 |
586 | /* Now got 9 digits, so need to check |
587 | each time for overflow. */ |
58bb9ec3 |
588 | digit = *s - '0'; |
60939fb8 |
589 | while (digit >= 0 && digit <= 9 |
590 | && (value < max_div_10 |
591 | || (value == max_div_10 |
592 | && digit <= max_mod_10))) { |
593 | value = value * 10 + digit; |
58bb9ec3 |
594 | if (++s < send) |
595 | digit = *s - '0'; |
60939fb8 |
596 | else |
597 | break; |
598 | } |
599 | if (digit >= 0 && digit <= 9 |
51bd16da |
600 | && (s < send)) { |
60939fb8 |
601 | /* value overflowed. |
602 | skip the remaining digits, don't |
603 | worry about setting *valuep. */ |
604 | do { |
605 | s++; |
606 | } while (s < send && isDIGIT(*s)); |
607 | numtype |= |
608 | IS_NUMBER_GREATER_THAN_UV_MAX; |
609 | goto skip_value; |
610 | } |
611 | } |
612 | } |
98994639 |
613 | } |
60939fb8 |
614 | } |
615 | } |
616 | } |
617 | } |
618 | } |
619 | } |
620 | } |
621 | } |
622 | } |
623 | } |
624 | } |
98994639 |
625 | } |
60939fb8 |
626 | } |
98994639 |
627 | } |
60939fb8 |
628 | numtype |= IS_NUMBER_IN_UV; |
629 | if (valuep) |
630 | *valuep = value; |
631 | |
632 | skip_value: |
633 | if (GROK_NUMERIC_RADIX(&s, send)) { |
634 | numtype |= IS_NUMBER_NOT_INT; |
635 | while (s < send && isDIGIT(*s)) /* optional digits after the radix */ |
636 | s++; |
98994639 |
637 | } |
60939fb8 |
638 | } |
639 | else if (GROK_NUMERIC_RADIX(&s, send)) { |
640 | numtype |= IS_NUMBER_NOT_INT | IS_NUMBER_IN_UV; /* valuep assigned below */ |
641 | /* no digits before the radix means we need digits after it */ |
642 | if (s < send && isDIGIT(*s)) { |
643 | do { |
644 | s++; |
645 | } while (s < send && isDIGIT(*s)); |
646 | if (valuep) { |
647 | /* integer approximation is valid - it's 0. */ |
648 | *valuep = 0; |
649 | } |
98994639 |
650 | } |
60939fb8 |
651 | else |
652 | return 0; |
653 | } else if (*s == 'I' || *s == 'i') { |
654 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
655 | s++; if (s == send || (*s != 'F' && *s != 'f')) return 0; |
656 | s++; if (s < send && (*s == 'I' || *s == 'i')) { |
657 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
658 | s++; if (s == send || (*s != 'I' && *s != 'i')) return 0; |
659 | s++; if (s == send || (*s != 'T' && *s != 't')) return 0; |
660 | s++; if (s == send || (*s != 'Y' && *s != 'y')) return 0; |
661 | s++; |
98994639 |
662 | } |
60939fb8 |
663 | sawinf = 1; |
aa8b85de |
664 | } else if (*s == 'N' || *s == 'n') { |
665 | /* XXX TODO: There are signaling NaNs and quiet NaNs. */ |
666 | s++; if (s == send || (*s != 'A' && *s != 'a')) return 0; |
667 | s++; if (s == send || (*s != 'N' && *s != 'n')) return 0; |
668 | s++; |
669 | sawnan = 1; |
670 | } else |
98994639 |
671 | return 0; |
60939fb8 |
672 | |
673 | if (sawinf) { |
674 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
675 | numtype |= IS_NUMBER_INFINITY | IS_NUMBER_NOT_INT; |
aa8b85de |
676 | } else if (sawnan) { |
677 | numtype &= IS_NUMBER_NEG; /* Keep track of sign */ |
678 | numtype |= IS_NUMBER_NAN | IS_NUMBER_NOT_INT; |
60939fb8 |
679 | } else if (s < send) { |
680 | /* we can have an optional exponent part */ |
681 | if (*s == 'e' || *s == 'E') { |
682 | /* The only flag we keep is sign. Blow away any "it's UV" */ |
683 | numtype &= IS_NUMBER_NEG; |
684 | numtype |= IS_NUMBER_NOT_INT; |
685 | s++; |
686 | if (s < send && (*s == '-' || *s == '+')) |
687 | s++; |
688 | if (s < send && isDIGIT(*s)) { |
689 | do { |
690 | s++; |
691 | } while (s < send && isDIGIT(*s)); |
692 | } |
693 | else |
694 | return 0; |
695 | } |
696 | } |
697 | while (s < send && isSPACE(*s)) |
698 | s++; |
699 | if (s >= send) |
aa8b85de |
700 | return numtype; |
60939fb8 |
701 | if (len == 10 && memEQ(pv, "0 but true", 10)) { |
702 | if (valuep) |
703 | *valuep = 0; |
704 | return IS_NUMBER_IN_UV; |
705 | } |
706 | return 0; |
98994639 |
707 | } |
708 | |
709 | NV |
710 | S_mulexp10(NV value, I32 exponent) |
711 | { |
712 | NV result = 1.0; |
713 | NV power = 10.0; |
714 | bool negative = 0; |
715 | I32 bit; |
716 | |
717 | if (exponent == 0) |
718 | return value; |
719 | else if (exponent < 0) { |
720 | negative = 1; |
721 | exponent = -exponent; |
722 | } |
87032ba1 |
723 | |
24866caa |
724 | /* On OpenVMS VAX we by default use the D_FLOAT double format, |
67597c89 |
725 | * and that format does not have *easy* capabilities [1] for |
24866caa |
726 | * overflowing doubles 'silently' as IEEE fp does. We also need |
727 | * to support G_FLOAT on both VAX and Alpha, and though the exponent |
728 | * range is much larger than D_FLOAT it still doesn't do silent |
729 | * overflow. Therefore we need to detect early whether we would |
730 | * overflow (this is the behaviour of the native string-to-float |
731 | * conversion routines, and therefore of native applications, too). |
67597c89 |
732 | * |
24866caa |
733 | * [1] Trying to establish a condition handler to trap floating point |
734 | * exceptions is not a good idea. */ |
735 | #if defined(VMS) && !defined(__IEEE_FP) && defined(NV_MAX_10_EXP) |
67597c89 |
736 | if (!negative && |
24866caa |
737 | (log10(value) + exponent) >= (NV_MAX_10_EXP)) |
67597c89 |
738 | return NV_MAX; |
67597c89 |
739 | #endif |
87032ba1 |
740 | |
741 | /* In UNICOS and in certain Cray models (such as T90) there is no |
742 | * IEEE fp, and no way at all from C to catch fp overflows gracefully. |
743 | * There is something you can do if you are willing to use some |
744 | * inline assembler: the instruction is called DFI-- but that will |
745 | * disable *all* floating point interrupts, a little bit too large |
746 | * a hammer. Therefore we need to catch potential overflows before |
747 | * it's too late. */ |
748 | #if defined(_UNICOS) && defined(NV_MAX_10_EXP) |
749 | if (!negative && |
750 | (log10(value) + exponent) >= NV_MAX_10_EXP) |
751 | return NV_MAX; |
752 | #endif |
753 | |
98994639 |
754 | for (bit = 1; exponent; bit <<= 1) { |
755 | if (exponent & bit) { |
756 | exponent ^= bit; |
757 | result *= power; |
758 | } |
7014c407 |
759 | /* Floating point exceptions are supposed to be turned off. */ |
98994639 |
760 | power *= power; |
761 | } |
762 | return negative ? value / result : value * result; |
763 | } |
764 | |
765 | NV |
766 | Perl_my_atof(pTHX_ const char* s) |
767 | { |
768 | NV x = 0.0; |
769 | #ifdef USE_LOCALE_NUMERIC |
770 | if (PL_numeric_local && IN_LOCALE) { |
771 | NV y; |
772 | |
773 | /* Scan the number twice; once using locale and once without; |
774 | * choose the larger result (in absolute value). */ |
775 | Perl_atof2(aTHX_ s, &x); |
776 | SET_NUMERIC_STANDARD(); |
777 | Perl_atof2(aTHX_ s, &y); |
778 | SET_NUMERIC_LOCAL(); |
779 | if ((y < 0.0 && y < x) || (y > 0.0 && y > x)) |
780 | return y; |
781 | } |
782 | else |
783 | Perl_atof2(aTHX_ s, &x); |
784 | #else |
785 | Perl_atof2(aTHX_ s, &x); |
786 | #endif |
787 | return x; |
788 | } |
789 | |
790 | char* |
791 | Perl_my_atof2(pTHX_ const char* orig, NV* value) |
792 | { |
793 | NV result = 0.0; |
794 | bool negative = 0; |
795 | char* s = (char*)orig; |
796 | char* send = s + strlen(orig) - 1; |
797 | bool seendigit = 0; |
798 | I32 expextra = 0; |
799 | I32 exponent = 0; |
800 | I32 i; |
801 | /* this is arbitrary */ |
802 | #define PARTLIM 6 |
803 | /* we want the largest integers we can usefully use */ |
804 | #if defined(HAS_QUAD) && defined(USE_64_BIT_INT) |
805 | # define PARTSIZE ((int)TYPE_DIGITS(U64)-1) |
806 | U64 part[PARTLIM]; |
807 | #else |
808 | # define PARTSIZE ((int)TYPE_DIGITS(U32)-1) |
809 | U32 part[PARTLIM]; |
810 | #endif |
811 | I32 ipart = 0; /* index into part[] */ |
812 | I32 offcount; /* number of digits in least significant part */ |
813 | |
96a05aee |
814 | /* leading whitespace */ |
815 | while (isSPACE(*s)) |
816 | ++s; |
817 | |
98994639 |
818 | /* sign */ |
819 | switch (*s) { |
820 | case '-': |
821 | negative = 1; |
822 | /* fall through */ |
823 | case '+': |
824 | ++s; |
825 | } |
826 | |
827 | part[0] = offcount = 0; |
828 | if (isDIGIT(*s)) { |
829 | seendigit = 1; /* get this over with */ |
830 | |
831 | /* skip leading zeros */ |
832 | while (*s == '0') |
833 | ++s; |
834 | } |
835 | |
836 | /* integer digits */ |
837 | while (isDIGIT(*s)) { |
838 | if (++offcount > PARTSIZE) { |
839 | if (++ipart < PARTLIM) { |
840 | part[ipart] = 0; |
841 | offcount = 1; /* ++0 */ |
842 | } |
843 | else { |
844 | /* limits of precision reached */ |
845 | --ipart; |
846 | --offcount; |
847 | if (*s >= '5') |
848 | ++part[ipart]; |
849 | while (isDIGIT(*s)) { |
850 | ++expextra; |
851 | ++s; |
852 | } |
853 | /* warn of loss of precision? */ |
854 | break; |
855 | } |
856 | } |
857 | part[ipart] = part[ipart] * 10 + (*s++ - '0'); |
858 | } |
859 | |
860 | /* decimal point */ |
861 | if (GROK_NUMERIC_RADIX((const char **)&s, send)) { |
862 | if (isDIGIT(*s)) |
863 | seendigit = 1; /* get this over with */ |
864 | |
865 | /* decimal digits */ |
866 | while (isDIGIT(*s)) { |
867 | if (++offcount > PARTSIZE) { |
868 | if (++ipart < PARTLIM) { |
869 | part[ipart] = 0; |
870 | offcount = 1; /* ++0 */ |
871 | } |
872 | else { |
873 | /* limits of precision reached */ |
874 | --ipart; |
875 | --offcount; |
876 | if (*s >= '5') |
877 | ++part[ipart]; |
878 | while (isDIGIT(*s)) |
879 | ++s; |
880 | /* warn of loss of precision? */ |
881 | break; |
882 | } |
883 | } |
884 | --expextra; |
885 | part[ipart] = part[ipart] * 10 + (*s++ - '0'); |
886 | } |
887 | } |
888 | |
889 | /* combine components of mantissa */ |
890 | for (i = 0; i <= ipart; ++i) |
891 | result += S_mulexp10((NV)part[ipart - i], |
892 | i ? offcount + (i - 1) * PARTSIZE : 0); |
893 | |
894 | if (seendigit && (*s == 'e' || *s == 'E')) { |
895 | bool expnegative = 0; |
896 | |
897 | ++s; |
898 | switch (*s) { |
899 | case '-': |
900 | expnegative = 1; |
901 | /* fall through */ |
902 | case '+': |
903 | ++s; |
904 | } |
905 | while (isDIGIT(*s)) |
906 | exponent = exponent * 10 + (*s++ - '0'); |
907 | if (expnegative) |
908 | exponent = -exponent; |
909 | } |
910 | |
911 | /* now apply the exponent */ |
912 | exponent += expextra; |
913 | result = S_mulexp10(result, exponent); |
914 | |
915 | /* now apply the sign */ |
916 | if (negative) |
917 | result = -result; |
918 | *value = result; |
919 | return s; |
920 | } |
921 | |